]> Git Repo - linux.git/blob - drivers/leds/trigger/ledtrig-activity.c
Merge tag 'acpi-fix-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux.git] / drivers / leds / trigger / ledtrig-activity.c
1 /*
2  * Activity LED trigger
3  *
4  * Copyright (C) 2017 Willy Tarreau <[email protected]>
5  * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  */
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/leds.h>
16 #include <linux/module.h>
17 #include <linux/reboot.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/timer.h>
21 #include "../leds.h"
22
23 static int panic_detected;
24
25 struct activity_data {
26         struct timer_list timer;
27         struct led_classdev *led_cdev;
28         u64 last_used;
29         u64 last_boot;
30         int time_left;
31         int state;
32         int invert;
33 };
34
35 static void led_activity_function(struct timer_list *t)
36 {
37         struct activity_data *activity_data = from_timer(activity_data, t,
38                                                          timer);
39         struct led_classdev *led_cdev = activity_data->led_cdev;
40         struct timespec boot_time;
41         unsigned int target;
42         unsigned int usage;
43         int delay;
44         u64 curr_used;
45         u64 curr_boot;
46         s32 diff_used;
47         s32 diff_boot;
48         int cpus;
49         int i;
50
51         if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
52                 led_cdev->blink_brightness = led_cdev->new_blink_brightness;
53
54         if (unlikely(panic_detected)) {
55                 /* full brightness in case of panic */
56                 led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
57                 return;
58         }
59
60         get_monotonic_boottime(&boot_time);
61
62         cpus = 0;
63         curr_used = 0;
64
65         for_each_possible_cpu(i) {
66                 curr_used += kcpustat_cpu(i).cpustat[CPUTIME_USER]
67                           +  kcpustat_cpu(i).cpustat[CPUTIME_NICE]
68                           +  kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]
69                           +  kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]
70                           +  kcpustat_cpu(i).cpustat[CPUTIME_IRQ];
71                 cpus++;
72         }
73
74         /* We come here every 100ms in the worst case, so that's 100M ns of
75          * cumulated time. By dividing by 2^16, we get the time resolution
76          * down to 16us, ensuring we won't overflow 32-bit computations below
77          * even up to 3k CPUs, while keeping divides cheap on smaller systems.
78          */
79         curr_boot = timespec_to_ns(&boot_time) * cpus;
80         diff_boot = (curr_boot - activity_data->last_boot) >> 16;
81         diff_used = (curr_used - activity_data->last_used) >> 16;
82         activity_data->last_boot = curr_boot;
83         activity_data->last_used = curr_used;
84
85         if (diff_boot <= 0 || diff_used < 0)
86                 usage = 0;
87         else if (diff_used >= diff_boot)
88                 usage = 100;
89         else
90                 usage = 100 * diff_used / diff_boot;
91
92         /*
93          * Now we know the total boot_time multiplied by the number of CPUs, and
94          * the total idle+wait time for all CPUs. We'll compare how they evolved
95          * since last call. The % of overall CPU usage is :
96          *
97          *      1 - delta_idle / delta_boot
98          *
99          * What we want is that when the CPU usage is zero, the LED must blink
100          * slowly with very faint flashes that are detectable but not disturbing
101          * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
102          * blinking frequency to increase up to the point where the load is
103          * enough to saturate one core in multi-core systems or 50% in single
104          * core systems. At this point it should reach 10 Hz with a 10/90 duty
105          * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
106          * remains stable (10 Hz) and only the duty cycle increases to report
107          * the activity, up to the point where we have 90ms ON, 10ms OFF when
108          * all cores are saturated. It's important that the LED never stays in
109          * a steady state so that it's easy to distinguish an idle or saturated
110          * machine from a hung one.
111          *
112          * This gives us :
113          *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
114          *     (10ms ON, 90ms OFF)
115          *   - below target :
116          *      ON_ms  = 10
117          *      OFF_ms = 90 + (1 - usage/target) * 900
118          *   - above target :
119          *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
120          *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
121          *
122          * In order to keep a good responsiveness, we cap the sleep time to
123          * 100 ms and keep track of the sleep time left. This allows us to
124          * quickly change it if needed.
125          */
126
127         activity_data->time_left -= 100;
128         if (activity_data->time_left <= 0) {
129                 activity_data->time_left = 0;
130                 activity_data->state = !activity_data->state;
131                 led_set_brightness_nosleep(led_cdev,
132                         (activity_data->state ^ activity_data->invert) ?
133                         led_cdev->blink_brightness : LED_OFF);
134         }
135
136         target = (cpus > 1) ? (100 / cpus) : 50;
137
138         if (usage < target)
139                 delay = activity_data->state ?
140                         10 :                        /* ON  */
141                         990 - 900 * usage / target; /* OFF */
142         else
143                 delay = activity_data->state ?
144                         10 + 80 * (usage - target) / (100 - target) : /* ON  */
145                         90 - 80 * (usage - target) / (100 - target);  /* OFF */
146
147
148         if (!activity_data->time_left || delay <= activity_data->time_left)
149                 activity_data->time_left = delay;
150
151         delay = min_t(int, activity_data->time_left, 100);
152         mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
153 }
154
155 static ssize_t led_invert_show(struct device *dev,
156                                struct device_attribute *attr, char *buf)
157 {
158         struct led_classdev *led_cdev = dev_get_drvdata(dev);
159         struct activity_data *activity_data = led_cdev->trigger_data;
160
161         return sprintf(buf, "%u\n", activity_data->invert);
162 }
163
164 static ssize_t led_invert_store(struct device *dev,
165                                 struct device_attribute *attr,
166                                 const char *buf, size_t size)
167 {
168         struct led_classdev *led_cdev = dev_get_drvdata(dev);
169         struct activity_data *activity_data = led_cdev->trigger_data;
170         unsigned long state;
171         int ret;
172
173         ret = kstrtoul(buf, 0, &state);
174         if (ret)
175                 return ret;
176
177         activity_data->invert = !!state;
178
179         return size;
180 }
181
182 static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
183
184 static void activity_activate(struct led_classdev *led_cdev)
185 {
186         struct activity_data *activity_data;
187         int rc;
188
189         activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
190         if (!activity_data)
191                 return;
192
193         led_cdev->trigger_data = activity_data;
194         rc = device_create_file(led_cdev->dev, &dev_attr_invert);
195         if (rc) {
196                 kfree(led_cdev->trigger_data);
197                 return;
198         }
199
200         activity_data->led_cdev = led_cdev;
201         timer_setup(&activity_data->timer, led_activity_function, 0);
202         if (!led_cdev->blink_brightness)
203                 led_cdev->blink_brightness = led_cdev->max_brightness;
204         led_activity_function(&activity_data->timer);
205         set_bit(LED_BLINK_SW, &led_cdev->work_flags);
206         led_cdev->activated = true;
207 }
208
209 static void activity_deactivate(struct led_classdev *led_cdev)
210 {
211         struct activity_data *activity_data = led_cdev->trigger_data;
212
213         if (led_cdev->activated) {
214                 del_timer_sync(&activity_data->timer);
215                 device_remove_file(led_cdev->dev, &dev_attr_invert);
216                 kfree(activity_data);
217                 clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
218                 led_cdev->activated = false;
219         }
220 }
221
222 static struct led_trigger activity_led_trigger = {
223         .name       = "activity",
224         .activate   = activity_activate,
225         .deactivate = activity_deactivate,
226 };
227
228 static int activity_reboot_notifier(struct notifier_block *nb,
229                                     unsigned long code, void *unused)
230 {
231         led_trigger_unregister(&activity_led_trigger);
232         return NOTIFY_DONE;
233 }
234
235 static int activity_panic_notifier(struct notifier_block *nb,
236                                    unsigned long code, void *unused)
237 {
238         panic_detected = 1;
239         return NOTIFY_DONE;
240 }
241
242 static struct notifier_block activity_reboot_nb = {
243         .notifier_call = activity_reboot_notifier,
244 };
245
246 static struct notifier_block activity_panic_nb = {
247         .notifier_call = activity_panic_notifier,
248 };
249
250 static int __init activity_init(void)
251 {
252         int rc = led_trigger_register(&activity_led_trigger);
253
254         if (!rc) {
255                 atomic_notifier_chain_register(&panic_notifier_list,
256                                                &activity_panic_nb);
257                 register_reboot_notifier(&activity_reboot_nb);
258         }
259         return rc;
260 }
261
262 static void __exit activity_exit(void)
263 {
264         unregister_reboot_notifier(&activity_reboot_nb);
265         atomic_notifier_chain_unregister(&panic_notifier_list,
266                                          &activity_panic_nb);
267         led_trigger_unregister(&activity_led_trigger);
268 }
269
270 module_init(activity_init);
271 module_exit(activity_exit);
272
273 MODULE_AUTHOR("Willy Tarreau <[email protected]>");
274 MODULE_DESCRIPTION("Activity LED trigger");
275 MODULE_LICENSE("GPL");
This page took 0.052352 seconds and 4 git commands to generate.