]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_process.c
drm/amdkfd: Fix memory leak in create_process failure
[linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_process.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38
39 struct mm_struct;
40
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53
54 DEFINE_SRCU(kfd_processes_srcu);
55
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66
67 static struct kfd_process *find_process(const struct task_struct *thread,
68                                         bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77 struct kfd_procfs_tree {
78         struct kobject *kobj;
79 };
80
81 static struct kfd_procfs_tree procfs;
82
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87         struct work_struct sdma_activity_work;
88         struct kfd_process_device *pdd;
89         uint64_t sdma_activity_counter;
90 };
91
92 struct temp_sdma_queue_list {
93         uint64_t __user *rptr;
94         uint64_t sdma_val;
95         unsigned int queue_id;
96         struct list_head list;
97 };
98
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101         struct kfd_sdma_activity_handler_workarea *workarea;
102         struct kfd_process_device *pdd;
103         uint64_t val;
104         struct mm_struct *mm;
105         struct queue *q;
106         struct qcm_process_device *qpd;
107         struct device_queue_manager *dqm;
108         int ret = 0;
109         struct temp_sdma_queue_list sdma_q_list;
110         struct temp_sdma_queue_list *sdma_q, *next;
111
112         workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113                                 sdma_activity_work);
114
115         pdd = workarea->pdd;
116         if (!pdd)
117                 return;
118         dqm = pdd->dev->dqm;
119         qpd = &pdd->qpd;
120         if (!dqm || !qpd)
121                 return;
122         /*
123          * Total SDMA activity is current SDMA activity + past SDMA activity
124          * Past SDMA count is stored in pdd.
125          * To get the current activity counters for all active SDMA queues,
126          * we loop over all SDMA queues and get their counts from user-space.
127          *
128          * We cannot call get_user() with dqm_lock held as it can cause
129          * a circular lock dependency situation. To read the SDMA stats,
130          * we need to do the following:
131          *
132          * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133          *    with dqm_lock/dqm_unlock().
134          * 2. Call get_user() for each node in temporary list without dqm_lock.
135          *    Save the SDMA count for each node and also add the count to the total
136          *    SDMA count counter.
137          *    Its possible, during this step, a few SDMA queue nodes got deleted
138          *    from the qpd->queues_list.
139          * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140          *    If any node got deleted, its SDMA count would be captured in the sdma
141          *    past activity counter. So subtract the SDMA counter stored in step 2
142          *    for this node from the total SDMA count.
143          */
144         INIT_LIST_HEAD(&sdma_q_list.list);
145
146         /*
147          * Create the temp list of all SDMA queues
148          */
149         dqm_lock(dqm);
150
151         list_for_each_entry(q, &qpd->queues_list, list) {
152                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154                         continue;
155
156                 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157                 if (!sdma_q) {
158                         dqm_unlock(dqm);
159                         goto cleanup;
160                 }
161
162                 INIT_LIST_HEAD(&sdma_q->list);
163                 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164                 sdma_q->queue_id = q->properties.queue_id;
165                 list_add_tail(&sdma_q->list, &sdma_q_list.list);
166         }
167
168         /*
169          * If the temp list is empty, then no SDMA queues nodes were found in
170          * qpd->queues_list. Return the past activity count as the total sdma
171          * count
172          */
173         if (list_empty(&sdma_q_list.list)) {
174                 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175                 dqm_unlock(dqm);
176                 return;
177         }
178
179         dqm_unlock(dqm);
180
181         /*
182          * Get the usage count for each SDMA queue in temp_list.
183          */
184         mm = get_task_mm(pdd->process->lead_thread);
185         if (!mm)
186                 goto cleanup;
187
188         kthread_use_mm(mm);
189
190         list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191                 val = 0;
192                 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193                 if (ret) {
194                         pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195                                  sdma_q->queue_id);
196                 } else {
197                         sdma_q->sdma_val = val;
198                         workarea->sdma_activity_counter += val;
199                 }
200         }
201
202         kthread_unuse_mm(mm);
203         mmput(mm);
204
205         /*
206          * Do a second iteration over qpd_queues_list to check if any SDMA
207          * nodes got deleted while fetching SDMA counter.
208          */
209         dqm_lock(dqm);
210
211         workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213         list_for_each_entry(q, &qpd->queues_list, list) {
214                 if (list_empty(&sdma_q_list.list))
215                         break;
216
217                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219                         continue;
220
221                 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222                         if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223                              (sdma_q->queue_id == q->properties.queue_id)) {
224                                 list_del(&sdma_q->list);
225                                 kfree(sdma_q);
226                                 break;
227                         }
228                 }
229         }
230
231         dqm_unlock(dqm);
232
233         /*
234          * If temp list is not empty, it implies some queues got deleted
235          * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236          * count for each node from the total SDMA count.
237          */
238         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239                 workarea->sdma_activity_counter -= sdma_q->sdma_val;
240                 list_del(&sdma_q->list);
241                 kfree(sdma_q);
242         }
243
244         return;
245
246 cleanup:
247         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248                 list_del(&sdma_q->list);
249                 kfree(sdma_q);
250         }
251 }
252
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267         int cu_cnt;
268         int wave_cnt;
269         int max_waves_per_cu;
270         struct kfd_node *dev = NULL;
271         struct kfd_process *proc = NULL;
272         struct kfd_process_device *pdd = NULL;
273
274         pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275         dev = pdd->dev;
276         if (dev->kfd2kgd->get_cu_occupancy == NULL)
277                 return -EINVAL;
278
279         cu_cnt = 0;
280         proc = pdd->process;
281         if (pdd->qpd.queue_count == 0) {
282                 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283                          dev->id, proc->pasid);
284                 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285         }
286
287         /* Collect wave count from device if it supports */
288         wave_cnt = 0;
289         max_waves_per_cu = 0;
290         dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291                         &max_waves_per_cu, 0);
292
293         /* Translate wave count to number of compute units */
294         cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295         return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296 }
297
298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299                                char *buffer)
300 {
301         if (strcmp(attr->name, "pasid") == 0) {
302                 struct kfd_process *p = container_of(attr, struct kfd_process,
303                                                      attr_pasid);
304
305                 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306         } else if (strncmp(attr->name, "vram_", 5) == 0) {
307                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308                                                               attr_vram);
309                 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310         } else if (strncmp(attr->name, "sdma_", 5) == 0) {
311                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312                                                               attr_sdma);
313                 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314
315                 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316                                         kfd_sdma_activity_worker);
317
318                 sdma_activity_work_handler.pdd = pdd;
319                 sdma_activity_work_handler.sdma_activity_counter = 0;
320
321                 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322
323                 flush_work(&sdma_activity_work_handler.sdma_activity_work);
324
325                 return snprintf(buffer, PAGE_SIZE, "%llu\n",
326                                 (sdma_activity_work_handler.sdma_activity_counter)/
327                                  SDMA_ACTIVITY_DIVISOR);
328         } else {
329                 pr_err("Invalid attribute");
330                 return -EINVAL;
331         }
332
333         return 0;
334 }
335
336 static void kfd_procfs_kobj_release(struct kobject *kobj)
337 {
338         kfree(kobj);
339 }
340
341 static const struct sysfs_ops kfd_procfs_ops = {
342         .show = kfd_procfs_show,
343 };
344
345 static const struct kobj_type procfs_type = {
346         .release = kfd_procfs_kobj_release,
347         .sysfs_ops = &kfd_procfs_ops,
348 };
349
350 void kfd_procfs_init(void)
351 {
352         int ret = 0;
353
354         procfs.kobj = kfd_alloc_struct(procfs.kobj);
355         if (!procfs.kobj)
356                 return;
357
358         ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359                                    &kfd_device->kobj, "proc");
360         if (ret) {
361                 pr_warn("Could not create procfs proc folder");
362                 /* If we fail to create the procfs, clean up */
363                 kfd_procfs_shutdown();
364         }
365 }
366
367 void kfd_procfs_shutdown(void)
368 {
369         if (procfs.kobj) {
370                 kobject_del(procfs.kobj);
371                 kobject_put(procfs.kobj);
372                 procfs.kobj = NULL;
373         }
374 }
375
376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377                                      struct attribute *attr, char *buffer)
378 {
379         struct queue *q = container_of(kobj, struct queue, kobj);
380
381         if (!strcmp(attr->name, "size"))
382                 return snprintf(buffer, PAGE_SIZE, "%llu",
383                                 q->properties.queue_size);
384         else if (!strcmp(attr->name, "type"))
385                 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386         else if (!strcmp(attr->name, "gpuid"))
387                 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388         else
389                 pr_err("Invalid attribute");
390
391         return 0;
392 }
393
394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395                                      struct attribute *attr, char *buffer)
396 {
397         if (strcmp(attr->name, "evicted_ms") == 0) {
398                 struct kfd_process_device *pdd = container_of(attr,
399                                 struct kfd_process_device,
400                                 attr_evict);
401                 uint64_t evict_jiffies;
402
403                 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404
405                 return snprintf(buffer,
406                                 PAGE_SIZE,
407                                 "%llu\n",
408                                 jiffies64_to_msecs(evict_jiffies));
409
410         /* Sysfs handle that gets CU occupancy is per device */
411         } else if (strcmp(attr->name, "cu_occupancy") == 0) {
412                 return kfd_get_cu_occupancy(attr, buffer);
413         } else {
414                 pr_err("Invalid attribute");
415         }
416
417         return 0;
418 }
419
420 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421                                        struct attribute *attr, char *buf)
422 {
423         struct kfd_process_device *pdd;
424
425         if (!strcmp(attr->name, "faults")) {
426                 pdd = container_of(attr, struct kfd_process_device,
427                                    attr_faults);
428                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429         }
430         if (!strcmp(attr->name, "page_in")) {
431                 pdd = container_of(attr, struct kfd_process_device,
432                                    attr_page_in);
433                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434         }
435         if (!strcmp(attr->name, "page_out")) {
436                 pdd = container_of(attr, struct kfd_process_device,
437                                    attr_page_out);
438                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439         }
440         return 0;
441 }
442
443 static struct attribute attr_queue_size = {
444         .name = "size",
445         .mode = KFD_SYSFS_FILE_MODE
446 };
447
448 static struct attribute attr_queue_type = {
449         .name = "type",
450         .mode = KFD_SYSFS_FILE_MODE
451 };
452
453 static struct attribute attr_queue_gpuid = {
454         .name = "gpuid",
455         .mode = KFD_SYSFS_FILE_MODE
456 };
457
458 static struct attribute *procfs_queue_attrs[] = {
459         &attr_queue_size,
460         &attr_queue_type,
461         &attr_queue_gpuid,
462         NULL
463 };
464 ATTRIBUTE_GROUPS(procfs_queue);
465
466 static const struct sysfs_ops procfs_queue_ops = {
467         .show = kfd_procfs_queue_show,
468 };
469
470 static const struct kobj_type procfs_queue_type = {
471         .sysfs_ops = &procfs_queue_ops,
472         .default_groups = procfs_queue_groups,
473 };
474
475 static const struct sysfs_ops procfs_stats_ops = {
476         .show = kfd_procfs_stats_show,
477 };
478
479 static const struct kobj_type procfs_stats_type = {
480         .sysfs_ops = &procfs_stats_ops,
481         .release = kfd_procfs_kobj_release,
482 };
483
484 static const struct sysfs_ops sysfs_counters_ops = {
485         .show = kfd_sysfs_counters_show,
486 };
487
488 static const struct kobj_type sysfs_counters_type = {
489         .sysfs_ops = &sysfs_counters_ops,
490         .release = kfd_procfs_kobj_release,
491 };
492
493 int kfd_procfs_add_queue(struct queue *q)
494 {
495         struct kfd_process *proc;
496         int ret;
497
498         if (!q || !q->process)
499                 return -EINVAL;
500         proc = q->process;
501
502         /* Create proc/<pid>/queues/<queue id> folder */
503         if (!proc->kobj_queues)
504                 return -EFAULT;
505         ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506                         proc->kobj_queues, "%u", q->properties.queue_id);
507         if (ret < 0) {
508                 pr_warn("Creating proc/<pid>/queues/%u failed",
509                         q->properties.queue_id);
510                 kobject_put(&q->kobj);
511                 return ret;
512         }
513
514         return 0;
515 }
516
517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518                                  char *name)
519 {
520         int ret;
521
522         if (!kobj || !attr || !name)
523                 return;
524
525         attr->name = name;
526         attr->mode = KFD_SYSFS_FILE_MODE;
527         sysfs_attr_init(attr);
528
529         ret = sysfs_create_file(kobj, attr);
530         if (ret)
531                 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532 }
533
534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535 {
536         int ret;
537         int i;
538         char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539
540         if (!p || !p->kobj)
541                 return;
542
543         /*
544          * Create sysfs files for each GPU:
545          * - proc/<pid>/stats_<gpuid>/
546          * - proc/<pid>/stats_<gpuid>/evicted_ms
547          * - proc/<pid>/stats_<gpuid>/cu_occupancy
548          */
549         for (i = 0; i < p->n_pdds; i++) {
550                 struct kfd_process_device *pdd = p->pdds[i];
551
552                 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553                                 "stats_%u", pdd->dev->id);
554                 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555                 if (!pdd->kobj_stats)
556                         return;
557
558                 ret = kobject_init_and_add(pdd->kobj_stats,
559                                            &procfs_stats_type,
560                                            p->kobj,
561                                            stats_dir_filename);
562
563                 if (ret) {
564                         pr_warn("Creating KFD proc/stats_%s folder failed",
565                                 stats_dir_filename);
566                         kobject_put(pdd->kobj_stats);
567                         pdd->kobj_stats = NULL;
568                         return;
569                 }
570
571                 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572                                       "evicted_ms");
573                 /* Add sysfs file to report compute unit occupancy */
574                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
575                         kfd_sysfs_create_file(pdd->kobj_stats,
576                                               &pdd->attr_cu_occupancy,
577                                               "cu_occupancy");
578         }
579 }
580
581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582 {
583         int ret = 0;
584         int i;
585         char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586
587         if (!p || !p->kobj)
588                 return;
589
590         /*
591          * Create sysfs files for each GPU which supports SVM
592          * - proc/<pid>/counters_<gpuid>/
593          * - proc/<pid>/counters_<gpuid>/faults
594          * - proc/<pid>/counters_<gpuid>/page_in
595          * - proc/<pid>/counters_<gpuid>/page_out
596          */
597         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598                 struct kfd_process_device *pdd = p->pdds[i];
599                 struct kobject *kobj_counters;
600
601                 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602                         "counters_%u", pdd->dev->id);
603                 kobj_counters = kfd_alloc_struct(kobj_counters);
604                 if (!kobj_counters)
605                         return;
606
607                 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608                                            p->kobj, counters_dir_filename);
609                 if (ret) {
610                         pr_warn("Creating KFD proc/%s folder failed",
611                                 counters_dir_filename);
612                         kobject_put(kobj_counters);
613                         return;
614                 }
615
616                 pdd->kobj_counters = kobj_counters;
617                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618                                       "faults");
619                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620                                       "page_in");
621                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622                                       "page_out");
623         }
624 }
625
626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627 {
628         int i;
629
630         if (!p || !p->kobj)
631                 return;
632
633         /*
634          * Create sysfs files for each GPU:
635          * - proc/<pid>/vram_<gpuid>
636          * - proc/<pid>/sdma_<gpuid>
637          */
638         for (i = 0; i < p->n_pdds; i++) {
639                 struct kfd_process_device *pdd = p->pdds[i];
640
641                 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642                          pdd->dev->id);
643                 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644                                       pdd->vram_filename);
645
646                 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647                          pdd->dev->id);
648                 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649                                             pdd->sdma_filename);
650         }
651 }
652
653 void kfd_procfs_del_queue(struct queue *q)
654 {
655         if (!q)
656                 return;
657
658         kobject_del(&q->kobj);
659         kobject_put(&q->kobj);
660 }
661
662 int kfd_process_create_wq(void)
663 {
664         if (!kfd_process_wq)
665                 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666         if (!kfd_restore_wq)
667                 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
668                                                          WQ_FREEZABLE);
669
670         if (!kfd_process_wq || !kfd_restore_wq) {
671                 kfd_process_destroy_wq();
672                 return -ENOMEM;
673         }
674
675         return 0;
676 }
677
678 void kfd_process_destroy_wq(void)
679 {
680         if (kfd_process_wq) {
681                 destroy_workqueue(kfd_process_wq);
682                 kfd_process_wq = NULL;
683         }
684         if (kfd_restore_wq) {
685                 destroy_workqueue(kfd_restore_wq);
686                 kfd_restore_wq = NULL;
687         }
688 }
689
690 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691                         struct kfd_process_device *pdd, void **kptr)
692 {
693         struct kfd_node *dev = pdd->dev;
694
695         if (kptr && *kptr) {
696                 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
697                 *kptr = NULL;
698         }
699
700         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702                                                NULL);
703 }
704
705 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706  *      This function should be only called right after the process
707  *      is created and when kfd_processes_mutex is still being held
708  *      to avoid concurrency. Because of that exclusiveness, we do
709  *      not need to take p->mutex.
710  */
711 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712                                    uint64_t gpu_va, uint32_t size,
713                                    uint32_t flags, struct kgd_mem **mem, void **kptr)
714 {
715         struct kfd_node *kdev = pdd->dev;
716         int err;
717
718         err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719                                                  pdd->drm_priv, mem, NULL,
720                                                  flags, false);
721         if (err)
722                 goto err_alloc_mem;
723
724         err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725                         pdd->drm_priv);
726         if (err)
727                 goto err_map_mem;
728
729         err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730         if (err) {
731                 pr_debug("Sync memory failed, wait interrupted by user signal\n");
732                 goto sync_memory_failed;
733         }
734
735         if (kptr) {
736                 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
737                                 (struct kgd_mem *)*mem, kptr, NULL);
738                 if (err) {
739                         pr_debug("Map GTT BO to kernel failed\n");
740                         goto sync_memory_failed;
741                 }
742         }
743
744         return err;
745
746 sync_memory_failed:
747         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748
749 err_map_mem:
750         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751                                                NULL);
752 err_alloc_mem:
753         *mem = NULL;
754         *kptr = NULL;
755         return err;
756 }
757
758 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759  *      process for IB usage The memory reserved is for KFD to submit
760  *      IB to AMDGPU from kernel.  If the memory is reserved
761  *      successfully, ib_kaddr will have the CPU/kernel
762  *      address. Check ib_kaddr before accessing the memory.
763  */
764 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765 {
766         struct qcm_process_device *qpd = &pdd->qpd;
767         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768                         KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769                         KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770                         KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771         struct kgd_mem *mem;
772         void *kaddr;
773         int ret;
774
775         if (qpd->ib_kaddr || !qpd->ib_base)
776                 return 0;
777
778         /* ib_base is only set for dGPU */
779         ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780                                       &mem, &kaddr);
781         if (ret)
782                 return ret;
783
784         qpd->ib_mem = mem;
785         qpd->ib_kaddr = kaddr;
786
787         return 0;
788 }
789
790 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791 {
792         struct qcm_process_device *qpd = &pdd->qpd;
793
794         if (!qpd->ib_kaddr || !qpd->ib_base)
795                 return;
796
797         kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
798 }
799
800 struct kfd_process *kfd_create_process(struct task_struct *thread)
801 {
802         struct kfd_process *process;
803         int ret;
804
805         if (!(thread->mm && mmget_not_zero(thread->mm)))
806                 return ERR_PTR(-EINVAL);
807
808         /* Only the pthreads threading model is supported. */
809         if (thread->group_leader->mm != thread->mm) {
810                 mmput(thread->mm);
811                 return ERR_PTR(-EINVAL);
812         }
813
814         /*
815          * take kfd processes mutex before starting of process creation
816          * so there won't be a case where two threads of the same process
817          * create two kfd_process structures
818          */
819         mutex_lock(&kfd_processes_mutex);
820
821         if (kfd_is_locked()) {
822                 pr_debug("KFD is locked! Cannot create process");
823                 process = ERR_PTR(-EINVAL);
824                 goto out;
825         }
826
827         /* A prior open of /dev/kfd could have already created the process. */
828         process = find_process(thread, false);
829         if (process) {
830                 pr_debug("Process already found\n");
831         } else {
832                 process = create_process(thread);
833                 if (IS_ERR(process))
834                         goto out;
835
836                 if (!procfs.kobj)
837                         goto out;
838
839                 process->kobj = kfd_alloc_struct(process->kobj);
840                 if (!process->kobj) {
841                         pr_warn("Creating procfs kobject failed");
842                         goto out;
843                 }
844                 ret = kobject_init_and_add(process->kobj, &procfs_type,
845                                            procfs.kobj, "%d",
846                                            (int)process->lead_thread->pid);
847                 if (ret) {
848                         pr_warn("Creating procfs pid directory failed");
849                         kobject_put(process->kobj);
850                         goto out;
851                 }
852
853                 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
854                                       "pasid");
855
856                 process->kobj_queues = kobject_create_and_add("queues",
857                                                         process->kobj);
858                 if (!process->kobj_queues)
859                         pr_warn("Creating KFD proc/queues folder failed");
860
861                 kfd_procfs_add_sysfs_stats(process);
862                 kfd_procfs_add_sysfs_files(process);
863                 kfd_procfs_add_sysfs_counters(process);
864
865                 init_waitqueue_head(&process->wait_irq_drain);
866         }
867 out:
868         if (!IS_ERR(process))
869                 kref_get(&process->ref);
870         mutex_unlock(&kfd_processes_mutex);
871         mmput(thread->mm);
872
873         return process;
874 }
875
876 struct kfd_process *kfd_get_process(const struct task_struct *thread)
877 {
878         struct kfd_process *process;
879
880         if (!thread->mm)
881                 return ERR_PTR(-EINVAL);
882
883         /* Only the pthreads threading model is supported. */
884         if (thread->group_leader->mm != thread->mm)
885                 return ERR_PTR(-EINVAL);
886
887         process = find_process(thread, false);
888         if (!process)
889                 return ERR_PTR(-EINVAL);
890
891         return process;
892 }
893
894 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
895 {
896         struct kfd_process *process;
897
898         hash_for_each_possible_rcu(kfd_processes_table, process,
899                                         kfd_processes, (uintptr_t)mm)
900                 if (process->mm == mm)
901                         return process;
902
903         return NULL;
904 }
905
906 static struct kfd_process *find_process(const struct task_struct *thread,
907                                         bool ref)
908 {
909         struct kfd_process *p;
910         int idx;
911
912         idx = srcu_read_lock(&kfd_processes_srcu);
913         p = find_process_by_mm(thread->mm);
914         if (p && ref)
915                 kref_get(&p->ref);
916         srcu_read_unlock(&kfd_processes_srcu, idx);
917
918         return p;
919 }
920
921 void kfd_unref_process(struct kfd_process *p)
922 {
923         kref_put(&p->ref, kfd_process_ref_release);
924 }
925
926 /* This increments the process->ref counter. */
927 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
928 {
929         struct task_struct *task = NULL;
930         struct kfd_process *p    = NULL;
931
932         if (!pid) {
933                 task = current;
934                 get_task_struct(task);
935         } else {
936                 task = get_pid_task(pid, PIDTYPE_PID);
937         }
938
939         if (task) {
940                 p = find_process(task, true);
941                 put_task_struct(task);
942         }
943
944         return p;
945 }
946
947 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
948 {
949         struct kfd_process *p = pdd->process;
950         void *mem;
951         int id;
952         int i;
953
954         /*
955          * Remove all handles from idr and release appropriate
956          * local memory object
957          */
958         idr_for_each_entry(&pdd->alloc_idr, mem, id) {
959
960                 for (i = 0; i < p->n_pdds; i++) {
961                         struct kfd_process_device *peer_pdd = p->pdds[i];
962
963                         if (!peer_pdd->drm_priv)
964                                 continue;
965                         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
966                                 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
967                 }
968
969                 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
970                                                        pdd->drm_priv, NULL);
971                 kfd_process_device_remove_obj_handle(pdd, id);
972         }
973 }
974
975 /*
976  * Just kunmap and unpin signal BO here. It will be freed in
977  * kfd_process_free_outstanding_kfd_bos()
978  */
979 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
980 {
981         struct kfd_process_device *pdd;
982         struct kfd_node *kdev;
983         void *mem;
984
985         kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
986         if (!kdev)
987                 return;
988
989         mutex_lock(&p->mutex);
990
991         pdd = kfd_get_process_device_data(kdev, p);
992         if (!pdd)
993                 goto out;
994
995         mem = kfd_process_device_translate_handle(
996                 pdd, GET_IDR_HANDLE(p->signal_handle));
997         if (!mem)
998                 goto out;
999
1000         amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1001
1002 out:
1003         mutex_unlock(&p->mutex);
1004 }
1005
1006 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1007 {
1008         int i;
1009
1010         for (i = 0; i < p->n_pdds; i++)
1011                 kfd_process_device_free_bos(p->pdds[i]);
1012 }
1013
1014 static void kfd_process_destroy_pdds(struct kfd_process *p)
1015 {
1016         int i;
1017
1018         for (i = 0; i < p->n_pdds; i++) {
1019                 struct kfd_process_device *pdd = p->pdds[i];
1020
1021                 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1022                                 pdd->dev->id, p->pasid);
1023
1024                 kfd_process_device_destroy_cwsr_dgpu(pdd);
1025                 kfd_process_device_destroy_ib_mem(pdd);
1026
1027                 if (pdd->drm_file) {
1028                         amdgpu_amdkfd_gpuvm_release_process_vm(
1029                                         pdd->dev->adev, pdd->drm_priv);
1030                         fput(pdd->drm_file);
1031                 }
1032
1033                 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1034                         free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1035                                 get_order(KFD_CWSR_TBA_TMA_SIZE));
1036
1037                 idr_destroy(&pdd->alloc_idr);
1038
1039                 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1040
1041                 if (pdd->dev->kfd->shared_resources.enable_mes)
1042                         amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1043                                                    pdd->proc_ctx_bo);
1044                 /*
1045                  * before destroying pdd, make sure to report availability
1046                  * for auto suspend
1047                  */
1048                 if (pdd->runtime_inuse) {
1049                         pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1050                         pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1051                         pdd->runtime_inuse = false;
1052                 }
1053
1054                 kfree(pdd);
1055                 p->pdds[i] = NULL;
1056         }
1057         p->n_pdds = 0;
1058 }
1059
1060 static void kfd_process_remove_sysfs(struct kfd_process *p)
1061 {
1062         struct kfd_process_device *pdd;
1063         int i;
1064
1065         if (!p->kobj)
1066                 return;
1067
1068         sysfs_remove_file(p->kobj, &p->attr_pasid);
1069         kobject_del(p->kobj_queues);
1070         kobject_put(p->kobj_queues);
1071         p->kobj_queues = NULL;
1072
1073         for (i = 0; i < p->n_pdds; i++) {
1074                 pdd = p->pdds[i];
1075
1076                 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1077                 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1078
1079                 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1080                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1081                         sysfs_remove_file(pdd->kobj_stats,
1082                                           &pdd->attr_cu_occupancy);
1083                 kobject_del(pdd->kobj_stats);
1084                 kobject_put(pdd->kobj_stats);
1085                 pdd->kobj_stats = NULL;
1086         }
1087
1088         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1089                 pdd = p->pdds[i];
1090
1091                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1092                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1093                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1094                 kobject_del(pdd->kobj_counters);
1095                 kobject_put(pdd->kobj_counters);
1096                 pdd->kobj_counters = NULL;
1097         }
1098
1099         kobject_del(p->kobj);
1100         kobject_put(p->kobj);
1101         p->kobj = NULL;
1102 }
1103
1104 /* No process locking is needed in this function, because the process
1105  * is not findable any more. We must assume that no other thread is
1106  * using it any more, otherwise we couldn't safely free the process
1107  * structure in the end.
1108  */
1109 static void kfd_process_wq_release(struct work_struct *work)
1110 {
1111         struct kfd_process *p = container_of(work, struct kfd_process,
1112                                              release_work);
1113         struct dma_fence *ef;
1114
1115         kfd_process_dequeue_from_all_devices(p);
1116         pqm_uninit(&p->pqm);
1117
1118         /* Signal the eviction fence after user mode queues are
1119          * destroyed. This allows any BOs to be freed without
1120          * triggering pointless evictions or waiting for fences.
1121          */
1122         synchronize_rcu();
1123         ef = rcu_access_pointer(p->ef);
1124         dma_fence_signal(ef);
1125
1126         kfd_process_remove_sysfs(p);
1127
1128         kfd_process_kunmap_signal_bo(p);
1129         kfd_process_free_outstanding_kfd_bos(p);
1130         svm_range_list_fini(p);
1131
1132         kfd_process_destroy_pdds(p);
1133         dma_fence_put(ef);
1134
1135         kfd_event_free_process(p);
1136
1137         kfd_pasid_free(p->pasid);
1138         mutex_destroy(&p->mutex);
1139
1140         put_task_struct(p->lead_thread);
1141
1142         kfree(p);
1143 }
1144
1145 static void kfd_process_ref_release(struct kref *ref)
1146 {
1147         struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1148
1149         INIT_WORK(&p->release_work, kfd_process_wq_release);
1150         queue_work(kfd_process_wq, &p->release_work);
1151 }
1152
1153 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1154 {
1155         int idx = srcu_read_lock(&kfd_processes_srcu);
1156         struct kfd_process *p = find_process_by_mm(mm);
1157
1158         srcu_read_unlock(&kfd_processes_srcu, idx);
1159
1160         return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1161 }
1162
1163 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1164 {
1165         kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1166 }
1167
1168 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1169 {
1170         int i;
1171
1172         cancel_delayed_work_sync(&p->eviction_work);
1173         cancel_delayed_work_sync(&p->restore_work);
1174
1175         for (i = 0; i < p->n_pdds; i++) {
1176                 struct kfd_process_device *pdd = p->pdds[i];
1177
1178                 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1179                 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1180                         amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1181         }
1182
1183         /* Indicate to other users that MM is no longer valid */
1184         p->mm = NULL;
1185         kfd_dbg_trap_disable(p);
1186
1187         if (atomic_read(&p->debugged_process_count) > 0) {
1188                 struct kfd_process *target;
1189                 unsigned int temp;
1190                 int idx = srcu_read_lock(&kfd_processes_srcu);
1191
1192                 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1193                         if (target->debugger_process && target->debugger_process == p) {
1194                                 mutex_lock_nested(&target->mutex, 1);
1195                                 kfd_dbg_trap_disable(target);
1196                                 mutex_unlock(&target->mutex);
1197                                 if (atomic_read(&p->debugged_process_count) == 0)
1198                                         break;
1199                         }
1200                 }
1201
1202                 srcu_read_unlock(&kfd_processes_srcu, idx);
1203         }
1204
1205         mmu_notifier_put(&p->mmu_notifier);
1206 }
1207
1208 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1209                                         struct mm_struct *mm)
1210 {
1211         struct kfd_process *p;
1212
1213         /*
1214          * The kfd_process structure can not be free because the
1215          * mmu_notifier srcu is read locked
1216          */
1217         p = container_of(mn, struct kfd_process, mmu_notifier);
1218         if (WARN_ON(p->mm != mm))
1219                 return;
1220
1221         mutex_lock(&kfd_processes_mutex);
1222         /*
1223          * Do early return if table is empty.
1224          *
1225          * This could potentially happen if this function is called concurrently
1226          * by mmu_notifier and by kfd_cleanup_pocesses.
1227          *
1228          */
1229         if (hash_empty(kfd_processes_table)) {
1230                 mutex_unlock(&kfd_processes_mutex);
1231                 return;
1232         }
1233         hash_del_rcu(&p->kfd_processes);
1234         mutex_unlock(&kfd_processes_mutex);
1235         synchronize_srcu(&kfd_processes_srcu);
1236
1237         kfd_process_notifier_release_internal(p);
1238 }
1239
1240 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1241         .release = kfd_process_notifier_release,
1242         .alloc_notifier = kfd_process_alloc_notifier,
1243         .free_notifier = kfd_process_free_notifier,
1244 };
1245
1246 /*
1247  * This code handles the case when driver is being unloaded before all
1248  * mm_struct are released.  We need to safely free the kfd_process and
1249  * avoid race conditions with mmu_notifier that might try to free them.
1250  *
1251  */
1252 void kfd_cleanup_processes(void)
1253 {
1254         struct kfd_process *p;
1255         struct hlist_node *p_temp;
1256         unsigned int temp;
1257         HLIST_HEAD(cleanup_list);
1258
1259         /*
1260          * Move all remaining kfd_process from the process table to a
1261          * temp list for processing.   Once done, callback from mmu_notifier
1262          * release will not see the kfd_process in the table and do early return,
1263          * avoiding double free issues.
1264          */
1265         mutex_lock(&kfd_processes_mutex);
1266         hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1267                 hash_del_rcu(&p->kfd_processes);
1268                 synchronize_srcu(&kfd_processes_srcu);
1269                 hlist_add_head(&p->kfd_processes, &cleanup_list);
1270         }
1271         mutex_unlock(&kfd_processes_mutex);
1272
1273         hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1274                 kfd_process_notifier_release_internal(p);
1275
1276         /*
1277          * Ensures that all outstanding free_notifier get called, triggering
1278          * the release of the kfd_process struct.
1279          */
1280         mmu_notifier_synchronize();
1281 }
1282
1283 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1284 {
1285         unsigned long  offset;
1286         int i;
1287
1288         if (p->has_cwsr)
1289                 return 0;
1290
1291         for (i = 0; i < p->n_pdds; i++) {
1292                 struct kfd_node *dev = p->pdds[i]->dev;
1293                 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1294
1295                 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1296                         continue;
1297
1298                 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1299                 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1300                         KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1301                         MAP_SHARED, offset);
1302
1303                 if (IS_ERR_VALUE(qpd->tba_addr)) {
1304                         int err = qpd->tba_addr;
1305
1306                         pr_err("Failure to set tba address. error %d.\n", err);
1307                         qpd->tba_addr = 0;
1308                         qpd->cwsr_kaddr = NULL;
1309                         return err;
1310                 }
1311
1312                 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1313
1314                 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1315
1316                 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1317                 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1318                         qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1319         }
1320
1321         p->has_cwsr = true;
1322
1323         return 0;
1324 }
1325
1326 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1327 {
1328         struct kfd_node *dev = pdd->dev;
1329         struct qcm_process_device *qpd = &pdd->qpd;
1330         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1331                         | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1332                         | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1333         struct kgd_mem *mem;
1334         void *kaddr;
1335         int ret;
1336
1337         if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1338                 return 0;
1339
1340         /* cwsr_base is only set for dGPU */
1341         ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1342                                       KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1343         if (ret)
1344                 return ret;
1345
1346         qpd->cwsr_mem = mem;
1347         qpd->cwsr_kaddr = kaddr;
1348         qpd->tba_addr = qpd->cwsr_base;
1349
1350         memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1351
1352         kfd_process_set_trap_debug_flag(&pdd->qpd,
1353                                         pdd->process->debug_trap_enabled);
1354
1355         qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1356         pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1357                  qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1358
1359         return 0;
1360 }
1361
1362 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1363 {
1364         struct kfd_node *dev = pdd->dev;
1365         struct qcm_process_device *qpd = &pdd->qpd;
1366
1367         if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1368                 return;
1369
1370         kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1371 }
1372
1373 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1374                                   uint64_t tba_addr,
1375                                   uint64_t tma_addr)
1376 {
1377         if (qpd->cwsr_kaddr) {
1378                 /* KFD trap handler is bound, record as second-level TBA/TMA
1379                  * in first-level TMA. First-level trap will jump to second.
1380                  */
1381                 uint64_t *tma =
1382                         (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1383                 tma[0] = tba_addr;
1384                 tma[1] = tma_addr;
1385         } else {
1386                 /* No trap handler bound, bind as first-level TBA/TMA. */
1387                 qpd->tba_addr = tba_addr;
1388                 qpd->tma_addr = tma_addr;
1389         }
1390 }
1391
1392 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1393 {
1394         int i;
1395
1396         /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1397          * boot time retry setting. Mixing processes with different
1398          * XNACK/retry settings can hang the GPU.
1399          *
1400          * Different GPUs can have different noretry settings depending
1401          * on HW bugs or limitations. We need to find at least one
1402          * XNACK mode for this process that's compatible with all GPUs.
1403          * Fortunately GPUs with retry enabled (noretry=0) can run code
1404          * built for XNACK-off. On GFXv9 it may perform slower.
1405          *
1406          * Therefore applications built for XNACK-off can always be
1407          * supported and will be our fallback if any GPU does not
1408          * support retry.
1409          */
1410         for (i = 0; i < p->n_pdds; i++) {
1411                 struct kfd_node *dev = p->pdds[i]->dev;
1412
1413                 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1414                  * support the SVM APIs and don't need to be considered
1415                  * for the XNACK mode selection.
1416                  */
1417                 if (!KFD_IS_SOC15(dev))
1418                         continue;
1419                 /* Aldebaran can always support XNACK because it can support
1420                  * per-process XNACK mode selection. But let the dev->noretry
1421                  * setting still influence the default XNACK mode.
1422                  */
1423                 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1424                         if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1425                                 pr_debug("SRIOV platform xnack not supported\n");
1426                                 return false;
1427                         }
1428                         continue;
1429                 }
1430
1431                 /* GFXv10 and later GPUs do not support shader preemption
1432                  * during page faults. This can lead to poor QoS for queue
1433                  * management and memory-manager-related preemptions or
1434                  * even deadlocks.
1435                  */
1436                 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1437                         return false;
1438
1439                 if (dev->kfd->noretry)
1440                         return false;
1441         }
1442
1443         return true;
1444 }
1445
1446 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1447                                      bool enabled)
1448 {
1449         if (qpd->cwsr_kaddr) {
1450                 uint64_t *tma =
1451                         (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1452                 tma[2] = enabled;
1453         }
1454 }
1455
1456 /*
1457  * On return the kfd_process is fully operational and will be freed when the
1458  * mm is released
1459  */
1460 static struct kfd_process *create_process(const struct task_struct *thread)
1461 {
1462         struct kfd_process *process;
1463         struct mmu_notifier *mn;
1464         int err = -ENOMEM;
1465
1466         process = kzalloc(sizeof(*process), GFP_KERNEL);
1467         if (!process)
1468                 goto err_alloc_process;
1469
1470         kref_init(&process->ref);
1471         mutex_init(&process->mutex);
1472         process->mm = thread->mm;
1473         process->lead_thread = thread->group_leader;
1474         process->n_pdds = 0;
1475         process->queues_paused = false;
1476         INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1477         INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1478         process->last_restore_timestamp = get_jiffies_64();
1479         err = kfd_event_init_process(process);
1480         if (err)
1481                 goto err_event_init;
1482         process->is_32bit_user_mode = in_compat_syscall();
1483         process->debug_trap_enabled = false;
1484         process->debugger_process = NULL;
1485         process->exception_enable_mask = 0;
1486         atomic_set(&process->debugged_process_count, 0);
1487         sema_init(&process->runtime_enable_sema, 0);
1488
1489         process->pasid = kfd_pasid_alloc();
1490         if (process->pasid == 0) {
1491                 err = -ENOSPC;
1492                 goto err_alloc_pasid;
1493         }
1494
1495         err = pqm_init(&process->pqm, process);
1496         if (err != 0)
1497                 goto err_process_pqm_init;
1498
1499         /* init process apertures*/
1500         err = kfd_init_apertures(process);
1501         if (err != 0)
1502                 goto err_init_apertures;
1503
1504         /* Check XNACK support after PDDs are created in kfd_init_apertures */
1505         process->xnack_enabled = kfd_process_xnack_mode(process, false);
1506
1507         err = svm_range_list_init(process);
1508         if (err)
1509                 goto err_init_svm_range_list;
1510
1511         /* alloc_notifier needs to find the process in the hash table */
1512         hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1513                         (uintptr_t)process->mm);
1514
1515         /* Avoid free_notifier to start kfd_process_wq_release if
1516          * mmu_notifier_get failed because of pending signal.
1517          */
1518         kref_get(&process->ref);
1519
1520         /* MMU notifier registration must be the last call that can fail
1521          * because after this point we cannot unwind the process creation.
1522          * After this point, mmu_notifier_put will trigger the cleanup by
1523          * dropping the last process reference in the free_notifier.
1524          */
1525         mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1526         if (IS_ERR(mn)) {
1527                 err = PTR_ERR(mn);
1528                 goto err_register_notifier;
1529         }
1530         BUG_ON(mn != &process->mmu_notifier);
1531
1532         kfd_unref_process(process);
1533         get_task_struct(process->lead_thread);
1534
1535         INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1536
1537         return process;
1538
1539 err_register_notifier:
1540         hash_del_rcu(&process->kfd_processes);
1541         svm_range_list_fini(process);
1542 err_init_svm_range_list:
1543         kfd_process_free_outstanding_kfd_bos(process);
1544         kfd_process_destroy_pdds(process);
1545 err_init_apertures:
1546         pqm_uninit(&process->pqm);
1547 err_process_pqm_init:
1548         kfd_pasid_free(process->pasid);
1549 err_alloc_pasid:
1550         kfd_event_free_process(process);
1551 err_event_init:
1552         mutex_destroy(&process->mutex);
1553         kfree(process);
1554 err_alloc_process:
1555         return ERR_PTR(err);
1556 }
1557
1558 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1559                                                         struct kfd_process *p)
1560 {
1561         int i;
1562
1563         for (i = 0; i < p->n_pdds; i++)
1564                 if (p->pdds[i]->dev == dev)
1565                         return p->pdds[i];
1566
1567         return NULL;
1568 }
1569
1570 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1571                                                         struct kfd_process *p)
1572 {
1573         struct kfd_process_device *pdd = NULL;
1574         int retval = 0;
1575
1576         if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1577                 return NULL;
1578         pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1579         if (!pdd)
1580                 return NULL;
1581
1582         pdd->dev = dev;
1583         INIT_LIST_HEAD(&pdd->qpd.queues_list);
1584         INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1585         pdd->qpd.dqm = dev->dqm;
1586         pdd->qpd.pqm = &p->pqm;
1587         pdd->qpd.evicted = 0;
1588         pdd->qpd.mapped_gws_queue = false;
1589         pdd->process = p;
1590         pdd->bound = PDD_UNBOUND;
1591         pdd->already_dequeued = false;
1592         pdd->runtime_inuse = false;
1593         pdd->vram_usage = 0;
1594         pdd->sdma_past_activity_counter = 0;
1595         pdd->user_gpu_id = dev->id;
1596         atomic64_set(&pdd->evict_duration_counter, 0);
1597
1598         if (dev->kfd->shared_resources.enable_mes) {
1599                 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1600                                                 AMDGPU_MES_PROC_CTX_SIZE,
1601                                                 &pdd->proc_ctx_bo,
1602                                                 &pdd->proc_ctx_gpu_addr,
1603                                                 &pdd->proc_ctx_cpu_ptr,
1604                                                 false);
1605                 if (retval) {
1606                         pr_err("failed to allocate process context bo\n");
1607                         goto err_free_pdd;
1608                 }
1609                 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1610         }
1611
1612         p->pdds[p->n_pdds++] = pdd;
1613         if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1614                 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1615                                                         pdd->dev->adev,
1616                                                         false,
1617                                                         0);
1618
1619         /* Init idr used for memory handle translation */
1620         idr_init(&pdd->alloc_idr);
1621
1622         return pdd;
1623
1624 err_free_pdd:
1625         kfree(pdd);
1626         return NULL;
1627 }
1628
1629 /**
1630  * kfd_process_device_init_vm - Initialize a VM for a process-device
1631  *
1632  * @pdd: The process-device
1633  * @drm_file: Optional pointer to a DRM file descriptor
1634  *
1635  * If @drm_file is specified, it will be used to acquire the VM from
1636  * that file descriptor. If successful, the @pdd takes ownership of
1637  * the file descriptor.
1638  *
1639  * If @drm_file is NULL, a new VM is created.
1640  *
1641  * Returns 0 on success, -errno on failure.
1642  */
1643 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1644                                struct file *drm_file)
1645 {
1646         struct amdgpu_fpriv *drv_priv;
1647         struct amdgpu_vm *avm;
1648         struct kfd_process *p;
1649         struct dma_fence *ef;
1650         struct kfd_node *dev;
1651         int ret;
1652
1653         if (!drm_file)
1654                 return -EINVAL;
1655
1656         if (pdd->drm_priv)
1657                 return -EBUSY;
1658
1659         ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1660         if (ret)
1661                 return ret;
1662         avm = &drv_priv->vm;
1663
1664         p = pdd->process;
1665         dev = pdd->dev;
1666
1667         ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1668                                                      &p->kgd_process_info,
1669                                                      &ef);
1670         if (ret) {
1671                 pr_err("Failed to create process VM object\n");
1672                 return ret;
1673         }
1674         RCU_INIT_POINTER(p->ef, ef);
1675         pdd->drm_priv = drm_file->private_data;
1676
1677         ret = kfd_process_device_reserve_ib_mem(pdd);
1678         if (ret)
1679                 goto err_reserve_ib_mem;
1680         ret = kfd_process_device_init_cwsr_dgpu(pdd);
1681         if (ret)
1682                 goto err_init_cwsr;
1683
1684         ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1685         if (ret)
1686                 goto err_set_pasid;
1687
1688         pdd->drm_file = drm_file;
1689
1690         return 0;
1691
1692 err_set_pasid:
1693         kfd_process_device_destroy_cwsr_dgpu(pdd);
1694 err_init_cwsr:
1695         kfd_process_device_destroy_ib_mem(pdd);
1696 err_reserve_ib_mem:
1697         pdd->drm_priv = NULL;
1698         amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1699
1700         return ret;
1701 }
1702
1703 /*
1704  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1705  * to the device.
1706  * Unbinding occurs when the process dies or the device is removed.
1707  *
1708  * Assumes that the process lock is held.
1709  */
1710 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1711                                                         struct kfd_process *p)
1712 {
1713         struct kfd_process_device *pdd;
1714         int err;
1715
1716         pdd = kfd_get_process_device_data(dev, p);
1717         if (!pdd) {
1718                 pr_err("Process device data doesn't exist\n");
1719                 return ERR_PTR(-ENOMEM);
1720         }
1721
1722         if (!pdd->drm_priv)
1723                 return ERR_PTR(-ENODEV);
1724
1725         /*
1726          * signal runtime-pm system to auto resume and prevent
1727          * further runtime suspend once device pdd is created until
1728          * pdd is destroyed.
1729          */
1730         if (!pdd->runtime_inuse) {
1731                 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1732                 if (err < 0) {
1733                         pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1734                         return ERR_PTR(err);
1735                 }
1736         }
1737
1738         /*
1739          * make sure that runtime_usage counter is incremented just once
1740          * per pdd
1741          */
1742         pdd->runtime_inuse = true;
1743
1744         return pdd;
1745 }
1746
1747 /* Create specific handle mapped to mem from process local memory idr
1748  * Assumes that the process lock is held.
1749  */
1750 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1751                                         void *mem)
1752 {
1753         return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1754 }
1755
1756 /* Translate specific handle from process local memory idr
1757  * Assumes that the process lock is held.
1758  */
1759 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1760                                         int handle)
1761 {
1762         if (handle < 0)
1763                 return NULL;
1764
1765         return idr_find(&pdd->alloc_idr, handle);
1766 }
1767
1768 /* Remove specific handle from process local memory idr
1769  * Assumes that the process lock is held.
1770  */
1771 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1772                                         int handle)
1773 {
1774         if (handle >= 0)
1775                 idr_remove(&pdd->alloc_idr, handle);
1776 }
1777
1778 /* This increments the process->ref counter. */
1779 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1780 {
1781         struct kfd_process *p, *ret_p = NULL;
1782         unsigned int temp;
1783
1784         int idx = srcu_read_lock(&kfd_processes_srcu);
1785
1786         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1787                 if (p->pasid == pasid) {
1788                         kref_get(&p->ref);
1789                         ret_p = p;
1790                         break;
1791                 }
1792         }
1793
1794         srcu_read_unlock(&kfd_processes_srcu, idx);
1795
1796         return ret_p;
1797 }
1798
1799 /* This increments the process->ref counter. */
1800 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1801 {
1802         struct kfd_process *p;
1803
1804         int idx = srcu_read_lock(&kfd_processes_srcu);
1805
1806         p = find_process_by_mm(mm);
1807         if (p)
1808                 kref_get(&p->ref);
1809
1810         srcu_read_unlock(&kfd_processes_srcu, idx);
1811
1812         return p;
1813 }
1814
1815 /* kfd_process_evict_queues - Evict all user queues of a process
1816  *
1817  * Eviction is reference-counted per process-device. This means multiple
1818  * evictions from different sources can be nested safely.
1819  */
1820 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1821 {
1822         int r = 0;
1823         int i;
1824         unsigned int n_evicted = 0;
1825
1826         for (i = 0; i < p->n_pdds; i++) {
1827                 struct kfd_process_device *pdd = p->pdds[i];
1828
1829                 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1830                                              trigger);
1831
1832                 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1833                                                             &pdd->qpd);
1834                 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1835                  * we would like to set all the queues to be in evicted state to prevent
1836                  * them been add back since they actually not be saved right now.
1837                  */
1838                 if (r && r != -EIO) {
1839                         pr_err("Failed to evict process queues\n");
1840                         goto fail;
1841                 }
1842                 n_evicted++;
1843         }
1844
1845         return r;
1846
1847 fail:
1848         /* To keep state consistent, roll back partial eviction by
1849          * restoring queues
1850          */
1851         for (i = 0; i < p->n_pdds; i++) {
1852                 struct kfd_process_device *pdd = p->pdds[i];
1853
1854                 if (n_evicted == 0)
1855                         break;
1856
1857                 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1858
1859                 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1860                                                               &pdd->qpd))
1861                         pr_err("Failed to restore queues\n");
1862
1863                 n_evicted--;
1864         }
1865
1866         return r;
1867 }
1868
1869 /* kfd_process_restore_queues - Restore all user queues of a process */
1870 int kfd_process_restore_queues(struct kfd_process *p)
1871 {
1872         int r, ret = 0;
1873         int i;
1874
1875         for (i = 0; i < p->n_pdds; i++) {
1876                 struct kfd_process_device *pdd = p->pdds[i];
1877
1878                 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1879
1880                 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1881                                                               &pdd->qpd);
1882                 if (r) {
1883                         pr_err("Failed to restore process queues\n");
1884                         if (!ret)
1885                                 ret = r;
1886                 }
1887         }
1888
1889         return ret;
1890 }
1891
1892 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1893 {
1894         int i;
1895
1896         for (i = 0; i < p->n_pdds; i++)
1897                 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1898                         return i;
1899         return -EINVAL;
1900 }
1901
1902 int
1903 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1904                             uint32_t *gpuid, uint32_t *gpuidx)
1905 {
1906         int i;
1907
1908         for (i = 0; i < p->n_pdds; i++)
1909                 if (p->pdds[i] && p->pdds[i]->dev == node) {
1910                         *gpuid = p->pdds[i]->user_gpu_id;
1911                         *gpuidx = i;
1912                         return 0;
1913                 }
1914         return -EINVAL;
1915 }
1916
1917 static int signal_eviction_fence(struct kfd_process *p)
1918 {
1919         struct dma_fence *ef;
1920         int ret;
1921
1922         rcu_read_lock();
1923         ef = dma_fence_get_rcu_safe(&p->ef);
1924         rcu_read_unlock();
1925
1926         ret = dma_fence_signal(ef);
1927         dma_fence_put(ef);
1928
1929         return ret;
1930 }
1931
1932 static void evict_process_worker(struct work_struct *work)
1933 {
1934         int ret;
1935         struct kfd_process *p;
1936         struct delayed_work *dwork;
1937
1938         dwork = to_delayed_work(work);
1939
1940         /* Process termination destroys this worker thread. So during the
1941          * lifetime of this thread, kfd_process p will be valid
1942          */
1943         p = container_of(dwork, struct kfd_process, eviction_work);
1944
1945         pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1946         ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1947         if (!ret) {
1948                 /* If another thread already signaled the eviction fence,
1949                  * they are responsible stopping the queues and scheduling
1950                  * the restore work.
1951                  */
1952                 if (!signal_eviction_fence(p))
1953                         queue_delayed_work(kfd_restore_wq, &p->restore_work,
1954                                 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1955                 else
1956                         kfd_process_restore_queues(p);
1957
1958                 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1959         } else
1960                 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1961 }
1962
1963 static int restore_process_helper(struct kfd_process *p)
1964 {
1965         int ret = 0;
1966
1967         /* VMs may not have been acquired yet during debugging. */
1968         if (p->kgd_process_info) {
1969                 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1970                         p->kgd_process_info, &p->ef);
1971                 if (ret)
1972                         return ret;
1973         }
1974
1975         ret = kfd_process_restore_queues(p);
1976         if (!ret)
1977                 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1978         else
1979                 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1980
1981         return ret;
1982 }
1983
1984 static void restore_process_worker(struct work_struct *work)
1985 {
1986         struct delayed_work *dwork;
1987         struct kfd_process *p;
1988         int ret = 0;
1989
1990         dwork = to_delayed_work(work);
1991
1992         /* Process termination destroys this worker thread. So during the
1993          * lifetime of this thread, kfd_process p will be valid
1994          */
1995         p = container_of(dwork, struct kfd_process, restore_work);
1996         pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1997
1998         /* Setting last_restore_timestamp before successful restoration.
1999          * Otherwise this would have to be set by KGD (restore_process_bos)
2000          * before KFD BOs are unreserved. If not, the process can be evicted
2001          * again before the timestamp is set.
2002          * If restore fails, the timestamp will be set again in the next
2003          * attempt. This would mean that the minimum GPU quanta would be
2004          * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2005          * functions)
2006          */
2007
2008         p->last_restore_timestamp = get_jiffies_64();
2009
2010         ret = restore_process_helper(p);
2011         if (ret) {
2012                 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2013                          p->pasid, PROCESS_BACK_OFF_TIME_MS);
2014                 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
2015                                 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
2016                 WARN(!ret, "reschedule restore work failed\n");
2017         }
2018 }
2019
2020 void kfd_suspend_all_processes(void)
2021 {
2022         struct kfd_process *p;
2023         unsigned int temp;
2024         int idx = srcu_read_lock(&kfd_processes_srcu);
2025
2026         WARN(debug_evictions, "Evicting all processes");
2027         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2028                 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2029                         pr_err("Failed to suspend process 0x%x\n", p->pasid);
2030                 signal_eviction_fence(p);
2031         }
2032         srcu_read_unlock(&kfd_processes_srcu, idx);
2033 }
2034
2035 int kfd_resume_all_processes(void)
2036 {
2037         struct kfd_process *p;
2038         unsigned int temp;
2039         int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2040
2041         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2042                 if (restore_process_helper(p)) {
2043                         pr_err("Restore process %d failed during resume\n",
2044                                p->pasid);
2045                         ret = -EFAULT;
2046                 }
2047         }
2048         srcu_read_unlock(&kfd_processes_srcu, idx);
2049         return ret;
2050 }
2051
2052 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2053                           struct vm_area_struct *vma)
2054 {
2055         struct kfd_process_device *pdd;
2056         struct qcm_process_device *qpd;
2057
2058         if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2059                 pr_err("Incorrect CWSR mapping size.\n");
2060                 return -EINVAL;
2061         }
2062
2063         pdd = kfd_get_process_device_data(dev, process);
2064         if (!pdd)
2065                 return -EINVAL;
2066         qpd = &pdd->qpd;
2067
2068         qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2069                                         get_order(KFD_CWSR_TBA_TMA_SIZE));
2070         if (!qpd->cwsr_kaddr) {
2071                 pr_err("Error allocating per process CWSR buffer.\n");
2072                 return -ENOMEM;
2073         }
2074
2075         vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2076                 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2077         /* Mapping pages to user process */
2078         return remap_pfn_range(vma, vma->vm_start,
2079                                PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2080                                KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2081 }
2082
2083 /* assumes caller holds process lock. */
2084 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2085 {
2086         uint32_t irq_drain_fence[8];
2087         uint8_t node_id = 0;
2088         int r = 0;
2089
2090         if (!KFD_IS_SOC15(pdd->dev))
2091                 return 0;
2092
2093         pdd->process->irq_drain_is_open = true;
2094
2095         memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2096         irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2097                                                         KFD_IRQ_FENCE_CLIENTID;
2098         irq_drain_fence[3] = pdd->process->pasid;
2099
2100         /*
2101          * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2102          */
2103         if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2104                 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2105                 irq_drain_fence[3] |= node_id << 16;
2106         }
2107
2108         /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2109         if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2110                                                      irq_drain_fence)) {
2111                 pdd->process->irq_drain_is_open = false;
2112                 return 0;
2113         }
2114
2115         r = wait_event_interruptible(pdd->process->wait_irq_drain,
2116                                      !READ_ONCE(pdd->process->irq_drain_is_open));
2117         if (r)
2118                 pdd->process->irq_drain_is_open = false;
2119
2120         return r;
2121 }
2122
2123 void kfd_process_close_interrupt_drain(unsigned int pasid)
2124 {
2125         struct kfd_process *p;
2126
2127         p = kfd_lookup_process_by_pasid(pasid);
2128
2129         if (!p)
2130                 return;
2131
2132         WRITE_ONCE(p->irq_drain_is_open, false);
2133         wake_up_all(&p->wait_irq_drain);
2134         kfd_unref_process(p);
2135 }
2136
2137 struct send_exception_work_handler_workarea {
2138         struct work_struct work;
2139         struct kfd_process *p;
2140         unsigned int queue_id;
2141         uint64_t error_reason;
2142 };
2143
2144 static void send_exception_work_handler(struct work_struct *work)
2145 {
2146         struct send_exception_work_handler_workarea *workarea;
2147         struct kfd_process *p;
2148         struct queue *q;
2149         struct mm_struct *mm;
2150         struct kfd_context_save_area_header __user *csa_header;
2151         uint64_t __user *err_payload_ptr;
2152         uint64_t cur_err;
2153         uint32_t ev_id;
2154
2155         workarea = container_of(work,
2156                                 struct send_exception_work_handler_workarea,
2157                                 work);
2158         p = workarea->p;
2159
2160         mm = get_task_mm(p->lead_thread);
2161
2162         if (!mm)
2163                 return;
2164
2165         kthread_use_mm(mm);
2166
2167         q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2168
2169         if (!q)
2170                 goto out;
2171
2172         csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2173
2174         get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2175         get_user(cur_err, err_payload_ptr);
2176         cur_err |= workarea->error_reason;
2177         put_user(cur_err, err_payload_ptr);
2178         get_user(ev_id, &csa_header->err_event_id);
2179
2180         kfd_set_event(p, ev_id);
2181
2182 out:
2183         kthread_unuse_mm(mm);
2184         mmput(mm);
2185 }
2186
2187 int kfd_send_exception_to_runtime(struct kfd_process *p,
2188                         unsigned int queue_id,
2189                         uint64_t error_reason)
2190 {
2191         struct send_exception_work_handler_workarea worker;
2192
2193         INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2194
2195         worker.p = p;
2196         worker.queue_id = queue_id;
2197         worker.error_reason = error_reason;
2198
2199         schedule_work(&worker.work);
2200         flush_work(&worker.work);
2201         destroy_work_on_stack(&worker.work);
2202
2203         return 0;
2204 }
2205
2206 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2207 {
2208         int i;
2209
2210         if (gpu_id) {
2211                 for (i = 0; i < p->n_pdds; i++) {
2212                         struct kfd_process_device *pdd = p->pdds[i];
2213
2214                         if (pdd->user_gpu_id == gpu_id)
2215                                 return pdd;
2216                 }
2217         }
2218         return NULL;
2219 }
2220
2221 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2222 {
2223         int i;
2224
2225         if (!actual_gpu_id)
2226                 return 0;
2227
2228         for (i = 0; i < p->n_pdds; i++) {
2229                 struct kfd_process_device *pdd = p->pdds[i];
2230
2231                 if (pdd->dev->id == actual_gpu_id)
2232                         return pdd->user_gpu_id;
2233         }
2234         return -EINVAL;
2235 }
2236
2237 #if defined(CONFIG_DEBUG_FS)
2238
2239 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2240 {
2241         struct kfd_process *p;
2242         unsigned int temp;
2243         int r = 0;
2244
2245         int idx = srcu_read_lock(&kfd_processes_srcu);
2246
2247         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2248                 seq_printf(m, "Process %d PASID 0x%x:\n",
2249                            p->lead_thread->tgid, p->pasid);
2250
2251                 mutex_lock(&p->mutex);
2252                 r = pqm_debugfs_mqds(m, &p->pqm);
2253                 mutex_unlock(&p->mutex);
2254
2255                 if (r)
2256                         break;
2257         }
2258
2259         srcu_read_unlock(&kfd_processes_srcu, idx);
2260
2261         return r;
2262 }
2263
2264 #endif
This page took 0.180748 seconds and 4 git commands to generate.