2 * POSIX message queues filesystem for Linux.
8 * Lockless receive & send, fd based notify:
13 * This file is released under the GPL.
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/netlink.h>
28 #include <linux/syscalls.h>
29 #include <linux/audit.h>
30 #include <linux/signal.h>
31 #include <linux/mutex.h>
32 #include <linux/nsproxy.h>
33 #include <linux/pid.h>
34 #include <linux/ipc_namespace.h>
35 #include <linux/user_namespace.h>
36 #include <linux/slab.h>
41 #define MQUEUE_MAGIC 0x19800202
42 #define DIRENT_SIZE 20
43 #define FILENT_SIZE 80
49 #define STATE_PENDING 1
52 struct ext_wait_queue { /* queue of sleeping tasks */
53 struct task_struct *task;
54 struct list_head list;
55 struct msg_msg *msg; /* ptr of loaded message */
56 int state; /* one of STATE_* values */
59 struct mqueue_inode_info {
61 struct inode vfs_inode;
62 wait_queue_head_t wait_q;
64 struct msg_msg **messages;
67 struct sigevent notify;
68 struct pid* notify_owner;
69 struct user_struct *user; /* user who created, for accounting */
70 struct sock *notify_sock;
71 struct sk_buff *notify_cookie;
73 /* for tasks waiting for free space and messages, respectively */
74 struct ext_wait_queue e_wait_q[2];
76 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
79 static const struct inode_operations mqueue_dir_inode_operations;
80 static const struct file_operations mqueue_file_operations;
81 static const struct super_operations mqueue_super_ops;
82 static void remove_notification(struct mqueue_inode_info *info);
84 static struct kmem_cache *mqueue_inode_cachep;
86 static struct ctl_table_header * mq_sysctl_table;
88 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
90 return container_of(inode, struct mqueue_inode_info, vfs_inode);
94 * This routine should be called with the mq_lock held.
96 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
98 return get_ipc_ns(inode->i_sb->s_fs_info);
101 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
103 struct ipc_namespace *ns;
106 ns = __get_ns_from_inode(inode);
107 spin_unlock(&mq_lock);
111 static struct inode *mqueue_get_inode(struct super_block *sb,
112 struct ipc_namespace *ipc_ns, umode_t mode,
113 struct mq_attr *attr)
115 struct user_struct *u = current_user();
119 inode = new_inode(sb);
123 inode->i_ino = get_next_ino();
124 inode->i_mode = mode;
125 inode->i_uid = current_fsuid();
126 inode->i_gid = current_fsgid();
127 inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
130 struct mqueue_inode_info *info;
131 unsigned long mq_bytes, mq_msg_tblsz;
133 inode->i_fop = &mqueue_file_operations;
134 inode->i_size = FILENT_SIZE;
135 /* mqueue specific info */
136 info = MQUEUE_I(inode);
137 spin_lock_init(&info->lock);
138 init_waitqueue_head(&info->wait_q);
139 INIT_LIST_HEAD(&info->e_wait_q[0].list);
140 INIT_LIST_HEAD(&info->e_wait_q[1].list);
141 info->notify_owner = NULL;
143 info->user = NULL; /* set when all is ok */
144 memset(&info->attr, 0, sizeof(info->attr));
145 info->attr.mq_maxmsg = ipc_ns->mq_msg_max;
146 info->attr.mq_msgsize = ipc_ns->mq_msgsize_max;
148 info->attr.mq_maxmsg = attr->mq_maxmsg;
149 info->attr.mq_msgsize = attr->mq_msgsize;
151 mq_msg_tblsz = info->attr.mq_maxmsg * sizeof(struct msg_msg *);
152 info->messages = kmalloc(mq_msg_tblsz, GFP_KERNEL);
156 mq_bytes = (mq_msg_tblsz +
157 (info->attr.mq_maxmsg * info->attr.mq_msgsize));
160 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
161 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
162 spin_unlock(&mq_lock);
163 /* mqueue_evict_inode() releases info->messages */
167 u->mq_bytes += mq_bytes;
168 spin_unlock(&mq_lock);
171 info->user = get_uid(u);
172 } else if (S_ISDIR(mode)) {
174 /* Some things misbehave if size == 0 on a directory */
175 inode->i_size = 2 * DIRENT_SIZE;
176 inode->i_op = &mqueue_dir_inode_operations;
177 inode->i_fop = &simple_dir_operations;
187 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
190 struct ipc_namespace *ns = data;
193 sb->s_blocksize = PAGE_CACHE_SIZE;
194 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
195 sb->s_magic = MQUEUE_MAGIC;
196 sb->s_op = &mqueue_super_ops;
198 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO,
201 error = PTR_ERR(inode);
205 sb->s_root = d_alloc_root(inode);
217 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
218 int flags, const char *dev_name,
221 if (!(flags & MS_KERNMOUNT))
222 data = current->nsproxy->ipc_ns;
223 return mount_ns(fs_type, flags, data, mqueue_fill_super);
226 static void init_once(void *foo)
228 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
230 inode_init_once(&p->vfs_inode);
233 static struct inode *mqueue_alloc_inode(struct super_block *sb)
235 struct mqueue_inode_info *ei;
237 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
240 return &ei->vfs_inode;
243 static void mqueue_i_callback(struct rcu_head *head)
245 struct inode *inode = container_of(head, struct inode, i_rcu);
246 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
249 static void mqueue_destroy_inode(struct inode *inode)
251 call_rcu(&inode->i_rcu, mqueue_i_callback);
254 static void mqueue_evict_inode(struct inode *inode)
256 struct mqueue_inode_info *info;
257 struct user_struct *user;
258 unsigned long mq_bytes;
260 struct ipc_namespace *ipc_ns;
262 end_writeback(inode);
264 if (S_ISDIR(inode->i_mode))
267 ipc_ns = get_ns_from_inode(inode);
268 info = MQUEUE_I(inode);
269 spin_lock(&info->lock);
270 for (i = 0; i < info->attr.mq_curmsgs; i++)
271 free_msg(info->messages[i]);
272 kfree(info->messages);
273 spin_unlock(&info->lock);
275 /* Total amount of bytes accounted for the mqueue */
276 mq_bytes = info->attr.mq_maxmsg * (sizeof(struct msg_msg *)
277 + info->attr.mq_msgsize);
281 user->mq_bytes -= mq_bytes;
283 * get_ns_from_inode() ensures that the
284 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
285 * to which we now hold a reference, or it is NULL.
286 * We can't put it here under mq_lock, though.
289 ipc_ns->mq_queues_count--;
290 spin_unlock(&mq_lock);
297 static int mqueue_create(struct inode *dir, struct dentry *dentry,
298 umode_t mode, struct nameidata *nd)
301 struct mq_attr *attr = dentry->d_fsdata;
303 struct ipc_namespace *ipc_ns;
306 ipc_ns = __get_ns_from_inode(dir);
311 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
312 !capable(CAP_SYS_RESOURCE)) {
316 ipc_ns->mq_queues_count++;
317 spin_unlock(&mq_lock);
319 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
321 error = PTR_ERR(inode);
323 ipc_ns->mq_queues_count--;
328 dir->i_size += DIRENT_SIZE;
329 dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
331 d_instantiate(dentry, inode);
335 spin_unlock(&mq_lock);
341 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
343 struct inode *inode = dentry->d_inode;
345 dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
346 dir->i_size -= DIRENT_SIZE;
353 * This is routine for system read from queue file.
354 * To avoid mess with doing here some sort of mq_receive we allow
355 * to read only queue size & notification info (the only values
356 * that are interesting from user point of view and aren't accessible
357 * through std routines)
359 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
360 size_t count, loff_t *off)
362 struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
363 char buffer[FILENT_SIZE];
366 spin_lock(&info->lock);
367 snprintf(buffer, sizeof(buffer),
368 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
370 info->notify_owner ? info->notify.sigev_notify : 0,
371 (info->notify_owner &&
372 info->notify.sigev_notify == SIGEV_SIGNAL) ?
373 info->notify.sigev_signo : 0,
374 pid_vnr(info->notify_owner));
375 spin_unlock(&info->lock);
376 buffer[sizeof(buffer)-1] = '\0';
378 ret = simple_read_from_buffer(u_data, count, off, buffer,
383 filp->f_path.dentry->d_inode->i_atime = filp->f_path.dentry->d_inode->i_ctime = CURRENT_TIME;
387 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
389 struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
391 spin_lock(&info->lock);
392 if (task_tgid(current) == info->notify_owner)
393 remove_notification(info);
395 spin_unlock(&info->lock);
399 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
401 struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
404 poll_wait(filp, &info->wait_q, poll_tab);
406 spin_lock(&info->lock);
407 if (info->attr.mq_curmsgs)
408 retval = POLLIN | POLLRDNORM;
410 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
411 retval |= POLLOUT | POLLWRNORM;
412 spin_unlock(&info->lock);
417 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
418 static void wq_add(struct mqueue_inode_info *info, int sr,
419 struct ext_wait_queue *ewp)
421 struct ext_wait_queue *walk;
425 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
426 if (walk->task->static_prio <= current->static_prio) {
427 list_add_tail(&ewp->list, &walk->list);
431 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
435 * Puts current task to sleep. Caller must hold queue lock. After return
439 static int wq_sleep(struct mqueue_inode_info *info, int sr,
440 ktime_t *timeout, struct ext_wait_queue *ewp)
445 wq_add(info, sr, ewp);
448 set_current_state(TASK_INTERRUPTIBLE);
450 spin_unlock(&info->lock);
451 time = schedule_hrtimeout_range_clock(timeout, 0,
452 HRTIMER_MODE_ABS, CLOCK_REALTIME);
454 while (ewp->state == STATE_PENDING)
457 if (ewp->state == STATE_READY) {
461 spin_lock(&info->lock);
462 if (ewp->state == STATE_READY) {
466 if (signal_pending(current)) {
467 retval = -ERESTARTSYS;
475 list_del(&ewp->list);
477 spin_unlock(&info->lock);
483 * Returns waiting task that should be serviced first or NULL if none exists
485 static struct ext_wait_queue *wq_get_first_waiter(
486 struct mqueue_inode_info *info, int sr)
488 struct list_head *ptr;
490 ptr = info->e_wait_q[sr].list.prev;
491 if (ptr == &info->e_wait_q[sr].list)
493 return list_entry(ptr, struct ext_wait_queue, list);
496 /* Auxiliary functions to manipulate messages' list */
497 static void msg_insert(struct msg_msg *ptr, struct mqueue_inode_info *info)
501 k = info->attr.mq_curmsgs - 1;
502 while (k >= 0 && info->messages[k]->m_type >= ptr->m_type) {
503 info->messages[k + 1] = info->messages[k];
506 info->attr.mq_curmsgs++;
507 info->qsize += ptr->m_ts;
508 info->messages[k + 1] = ptr;
511 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
513 info->qsize -= info->messages[--info->attr.mq_curmsgs]->m_ts;
514 return info->messages[info->attr.mq_curmsgs];
517 static inline void set_cookie(struct sk_buff *skb, char code)
519 ((char*)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
523 * The next function is only to split too long sys_mq_timedsend
525 static void __do_notify(struct mqueue_inode_info *info)
528 * invoked when there is registered process and there isn't process
529 * waiting synchronously for message AND state of queue changed from
530 * empty to not empty. Here we are sure that no one is waiting
532 if (info->notify_owner &&
533 info->attr.mq_curmsgs == 1) {
534 struct siginfo sig_i;
535 switch (info->notify.sigev_notify) {
541 sig_i.si_signo = info->notify.sigev_signo;
543 sig_i.si_code = SI_MESGQ;
544 sig_i.si_value = info->notify.sigev_value;
545 /* map current pid/uid into info->owner's namespaces */
547 sig_i.si_pid = task_tgid_nr_ns(current,
548 ns_of_pid(info->notify_owner));
549 sig_i.si_uid = user_ns_map_uid(info->user->user_ns,
550 current_cred(), current_uid());
553 kill_pid_info(info->notify.sigev_signo,
554 &sig_i, info->notify_owner);
557 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
558 netlink_sendskb(info->notify_sock, info->notify_cookie);
561 /* after notification unregisters process */
562 put_pid(info->notify_owner);
563 info->notify_owner = NULL;
565 wake_up(&info->wait_q);
568 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
569 ktime_t *expires, struct timespec *ts)
571 if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
573 if (!timespec_valid(ts))
576 *expires = timespec_to_ktime(*ts);
580 static void remove_notification(struct mqueue_inode_info *info)
582 if (info->notify_owner != NULL &&
583 info->notify.sigev_notify == SIGEV_THREAD) {
584 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
585 netlink_sendskb(info->notify_sock, info->notify_cookie);
587 put_pid(info->notify_owner);
588 info->notify_owner = NULL;
591 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
593 if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
595 if (capable(CAP_SYS_RESOURCE)) {
596 if (attr->mq_maxmsg > HARD_MSGMAX)
599 if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
600 attr->mq_msgsize > ipc_ns->mq_msgsize_max)
603 /* check for overflow */
604 if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
606 if ((unsigned long)(attr->mq_maxmsg * (attr->mq_msgsize
607 + sizeof (struct msg_msg *))) <
608 (unsigned long)(attr->mq_maxmsg * attr->mq_msgsize))
614 * Invoked when creating a new queue via sys_mq_open
616 static struct file *do_create(struct ipc_namespace *ipc_ns, struct dentry *dir,
617 struct dentry *dentry, int oflag, umode_t mode,
618 struct mq_attr *attr)
620 const struct cred *cred = current_cred();
625 if (!mq_attr_ok(ipc_ns, attr)) {
629 /* store for use during create */
630 dentry->d_fsdata = attr;
633 mode &= ~current_umask();
634 ret = mnt_want_write(ipc_ns->mq_mnt);
637 ret = vfs_create(dir->d_inode, dentry, mode, NULL);
638 dentry->d_fsdata = NULL;
642 result = dentry_open(dentry, ipc_ns->mq_mnt, oflag, cred);
644 * dentry_open() took a persistent mnt_want_write(),
645 * so we can now drop this one.
647 mnt_drop_write(ipc_ns->mq_mnt);
651 mnt_drop_write(ipc_ns->mq_mnt);
654 mntput(ipc_ns->mq_mnt);
658 /* Opens existing queue */
659 static struct file *do_open(struct ipc_namespace *ipc_ns,
660 struct dentry *dentry, int oflag)
663 const struct cred *cred = current_cred();
665 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
666 MAY_READ | MAY_WRITE };
668 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) {
673 if (inode_permission(dentry->d_inode, oflag2acc[oflag & O_ACCMODE])) {
678 return dentry_open(dentry, ipc_ns->mq_mnt, oflag, cred);
682 mntput(ipc_ns->mq_mnt);
686 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
687 struct mq_attr __user *, u_attr)
689 struct dentry *dentry;
694 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
696 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
699 audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
701 if (IS_ERR(name = getname(u_name)))
702 return PTR_ERR(name);
704 fd = get_unused_fd_flags(O_CLOEXEC);
708 mutex_lock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
709 dentry = lookup_one_len(name, ipc_ns->mq_mnt->mnt_root, strlen(name));
710 if (IS_ERR(dentry)) {
711 error = PTR_ERR(dentry);
714 mntget(ipc_ns->mq_mnt);
716 if (oflag & O_CREAT) {
717 if (dentry->d_inode) { /* entry already exists */
718 audit_inode(name, dentry);
719 if (oflag & O_EXCL) {
723 filp = do_open(ipc_ns, dentry, oflag);
725 filp = do_create(ipc_ns, ipc_ns->mq_mnt->mnt_root,
727 u_attr ? &attr : NULL);
730 if (!dentry->d_inode) {
734 audit_inode(name, dentry);
735 filp = do_open(ipc_ns, dentry, oflag);
739 error = PTR_ERR(filp);
743 fd_install(fd, filp);
748 mntput(ipc_ns->mq_mnt);
753 mutex_unlock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
759 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
763 struct dentry *dentry;
764 struct inode *inode = NULL;
765 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
767 name = getname(u_name);
769 return PTR_ERR(name);
771 mutex_lock_nested(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex,
773 dentry = lookup_one_len(name, ipc_ns->mq_mnt->mnt_root, strlen(name));
774 if (IS_ERR(dentry)) {
775 err = PTR_ERR(dentry);
779 if (!dentry->d_inode) {
784 inode = dentry->d_inode;
787 err = mnt_want_write(ipc_ns->mq_mnt);
790 err = vfs_unlink(dentry->d_parent->d_inode, dentry);
791 mnt_drop_write(ipc_ns->mq_mnt);
796 mutex_unlock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
804 /* Pipelined send and receive functions.
806 * If a receiver finds no waiting message, then it registers itself in the
807 * list of waiting receivers. A sender checks that list before adding the new
808 * message into the message array. If there is a waiting receiver, then it
809 * bypasses the message array and directly hands the message over to the
811 * The receiver accepts the message and returns without grabbing the queue
812 * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
813 * are necessary. The same algorithm is used for sysv semaphores, see
814 * ipc/sem.c for more details.
816 * The same algorithm is used for senders.
819 /* pipelined_send() - send a message directly to the task waiting in
820 * sys_mq_timedreceive() (without inserting message into a queue).
822 static inline void pipelined_send(struct mqueue_inode_info *info,
823 struct msg_msg *message,
824 struct ext_wait_queue *receiver)
826 receiver->msg = message;
827 list_del(&receiver->list);
828 receiver->state = STATE_PENDING;
829 wake_up_process(receiver->task);
831 receiver->state = STATE_READY;
834 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
835 * gets its message and put to the queue (we have one free place for sure). */
836 static inline void pipelined_receive(struct mqueue_inode_info *info)
838 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
842 wake_up_interruptible(&info->wait_q);
845 msg_insert(sender->msg, info);
846 list_del(&sender->list);
847 sender->state = STATE_PENDING;
848 wake_up_process(sender->task);
850 sender->state = STATE_READY;
853 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
854 size_t, msg_len, unsigned int, msg_prio,
855 const struct timespec __user *, u_abs_timeout)
859 struct ext_wait_queue wait;
860 struct ext_wait_queue *receiver;
861 struct msg_msg *msg_ptr;
862 struct mqueue_inode_info *info;
863 ktime_t expires, *timeout = NULL;
868 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
874 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
877 audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
880 if (unlikely(!filp)) {
885 inode = filp->f_path.dentry->d_inode;
886 if (unlikely(filp->f_op != &mqueue_file_operations)) {
890 info = MQUEUE_I(inode);
891 audit_inode(NULL, filp->f_path.dentry);
893 if (unlikely(!(filp->f_mode & FMODE_WRITE))) {
898 if (unlikely(msg_len > info->attr.mq_msgsize)) {
903 /* First try to allocate memory, before doing anything with
904 * existing queues. */
905 msg_ptr = load_msg(u_msg_ptr, msg_len);
906 if (IS_ERR(msg_ptr)) {
907 ret = PTR_ERR(msg_ptr);
910 msg_ptr->m_ts = msg_len;
911 msg_ptr->m_type = msg_prio;
913 spin_lock(&info->lock);
915 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
916 if (filp->f_flags & O_NONBLOCK) {
917 spin_unlock(&info->lock);
921 wait.msg = (void *) msg_ptr;
922 wait.state = STATE_NONE;
923 ret = wq_sleep(info, SEND, timeout, &wait);
928 receiver = wq_get_first_waiter(info, RECV);
930 pipelined_send(info, msg_ptr, receiver);
932 /* adds message to the queue */
933 msg_insert(msg_ptr, info);
936 inode->i_atime = inode->i_mtime = inode->i_ctime =
938 spin_unlock(&info->lock);
947 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
948 size_t, msg_len, unsigned int __user *, u_msg_prio,
949 const struct timespec __user *, u_abs_timeout)
952 struct msg_msg *msg_ptr;
955 struct mqueue_inode_info *info;
956 struct ext_wait_queue wait;
957 ktime_t expires, *timeout = NULL;
961 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
967 audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
970 if (unlikely(!filp)) {
975 inode = filp->f_path.dentry->d_inode;
976 if (unlikely(filp->f_op != &mqueue_file_operations)) {
980 info = MQUEUE_I(inode);
981 audit_inode(NULL, filp->f_path.dentry);
983 if (unlikely(!(filp->f_mode & FMODE_READ))) {
988 /* checks if buffer is big enough */
989 if (unlikely(msg_len < info->attr.mq_msgsize)) {
994 spin_lock(&info->lock);
995 if (info->attr.mq_curmsgs == 0) {
996 if (filp->f_flags & O_NONBLOCK) {
997 spin_unlock(&info->lock);
1000 wait.task = current;
1001 wait.state = STATE_NONE;
1002 ret = wq_sleep(info, RECV, timeout, &wait);
1006 msg_ptr = msg_get(info);
1008 inode->i_atime = inode->i_mtime = inode->i_ctime =
1011 /* There is now free space in queue. */
1012 pipelined_receive(info);
1013 spin_unlock(&info->lock);
1017 ret = msg_ptr->m_ts;
1019 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1020 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1032 * Notes: the case when user wants us to deregister (with NULL as pointer)
1033 * and he isn't currently owner of notification, will be silently discarded.
1034 * It isn't explicitly defined in the POSIX.
1036 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1037 const struct sigevent __user *, u_notification)
1042 struct inode *inode;
1043 struct sigevent notification;
1044 struct mqueue_inode_info *info;
1047 if (u_notification) {
1048 if (copy_from_user(¬ification, u_notification,
1049 sizeof(struct sigevent)))
1053 audit_mq_notify(mqdes, u_notification ? ¬ification : NULL);
1057 if (u_notification != NULL) {
1058 if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1059 notification.sigev_notify != SIGEV_SIGNAL &&
1060 notification.sigev_notify != SIGEV_THREAD))
1062 if (notification.sigev_notify == SIGEV_SIGNAL &&
1063 !valid_signal(notification.sigev_signo)) {
1066 if (notification.sigev_notify == SIGEV_THREAD) {
1069 /* create the notify skb */
1070 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1075 if (copy_from_user(nc->data,
1076 notification.sigev_value.sival_ptr,
1077 NOTIFY_COOKIE_LEN)) {
1082 /* TODO: add a header? */
1083 skb_put(nc, NOTIFY_COOKIE_LEN);
1084 /* and attach it to the socket */
1086 filp = fget(notification.sigev_signo);
1091 sock = netlink_getsockbyfilp(filp);
1094 ret = PTR_ERR(sock);
1099 timeo = MAX_SCHEDULE_TIMEOUT;
1100 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1117 inode = filp->f_path.dentry->d_inode;
1118 if (unlikely(filp->f_op != &mqueue_file_operations)) {
1122 info = MQUEUE_I(inode);
1125 spin_lock(&info->lock);
1126 if (u_notification == NULL) {
1127 if (info->notify_owner == task_tgid(current)) {
1128 remove_notification(info);
1129 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1131 } else if (info->notify_owner != NULL) {
1134 switch (notification.sigev_notify) {
1136 info->notify.sigev_notify = SIGEV_NONE;
1139 info->notify_sock = sock;
1140 info->notify_cookie = nc;
1143 info->notify.sigev_notify = SIGEV_THREAD;
1146 info->notify.sigev_signo = notification.sigev_signo;
1147 info->notify.sigev_value = notification.sigev_value;
1148 info->notify.sigev_notify = SIGEV_SIGNAL;
1152 info->notify_owner = get_pid(task_tgid(current));
1153 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1155 spin_unlock(&info->lock);
1160 netlink_detachskb(sock, nc);
1167 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1168 const struct mq_attr __user *, u_mqstat,
1169 struct mq_attr __user *, u_omqstat)
1172 struct mq_attr mqstat, omqstat;
1174 struct inode *inode;
1175 struct mqueue_inode_info *info;
1177 if (u_mqstat != NULL) {
1178 if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1180 if (mqstat.mq_flags & (~O_NONBLOCK))
1190 inode = filp->f_path.dentry->d_inode;
1191 if (unlikely(filp->f_op != &mqueue_file_operations)) {
1195 info = MQUEUE_I(inode);
1197 spin_lock(&info->lock);
1199 omqstat = info->attr;
1200 omqstat.mq_flags = filp->f_flags & O_NONBLOCK;
1202 audit_mq_getsetattr(mqdes, &mqstat);
1203 spin_lock(&filp->f_lock);
1204 if (mqstat.mq_flags & O_NONBLOCK)
1205 filp->f_flags |= O_NONBLOCK;
1207 filp->f_flags &= ~O_NONBLOCK;
1208 spin_unlock(&filp->f_lock);
1210 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1213 spin_unlock(&info->lock);
1216 if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1217 sizeof(struct mq_attr)))
1226 static const struct inode_operations mqueue_dir_inode_operations = {
1227 .lookup = simple_lookup,
1228 .create = mqueue_create,
1229 .unlink = mqueue_unlink,
1232 static const struct file_operations mqueue_file_operations = {
1233 .flush = mqueue_flush_file,
1234 .poll = mqueue_poll_file,
1235 .read = mqueue_read_file,
1236 .llseek = default_llseek,
1239 static const struct super_operations mqueue_super_ops = {
1240 .alloc_inode = mqueue_alloc_inode,
1241 .destroy_inode = mqueue_destroy_inode,
1242 .evict_inode = mqueue_evict_inode,
1243 .statfs = simple_statfs,
1246 static struct file_system_type mqueue_fs_type = {
1248 .mount = mqueue_mount,
1249 .kill_sb = kill_litter_super,
1252 int mq_init_ns(struct ipc_namespace *ns)
1254 ns->mq_queues_count = 0;
1255 ns->mq_queues_max = DFLT_QUEUESMAX;
1256 ns->mq_msg_max = DFLT_MSGMAX;
1257 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1259 ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1260 if (IS_ERR(ns->mq_mnt)) {
1261 int err = PTR_ERR(ns->mq_mnt);
1268 void mq_clear_sbinfo(struct ipc_namespace *ns)
1270 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1273 void mq_put_mnt(struct ipc_namespace *ns)
1275 kern_unmount(ns->mq_mnt);
1278 static int __init init_mqueue_fs(void)
1282 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1283 sizeof(struct mqueue_inode_info), 0,
1284 SLAB_HWCACHE_ALIGN, init_once);
1285 if (mqueue_inode_cachep == NULL)
1288 /* ignore failures - they are not fatal */
1289 mq_sysctl_table = mq_register_sysctl_table();
1291 error = register_filesystem(&mqueue_fs_type);
1295 spin_lock_init(&mq_lock);
1297 error = mq_init_ns(&init_ipc_ns);
1299 goto out_filesystem;
1304 unregister_filesystem(&mqueue_fs_type);
1306 if (mq_sysctl_table)
1307 unregister_sysctl_table(mq_sysctl_table);
1308 kmem_cache_destroy(mqueue_inode_cachep);
1312 __initcall(init_mqueue_fs);