1 // SPDX-License-Identifier: GPL-2.0
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
22 #ifdef HAVE_LIBBPF_SUPPORT
23 #include <bpf/libbpf.h>
25 #include <perf/cpumap.h>
30 #include "util/evsel_fprintf.h"
33 #include "trace-event.h"
43 #include <api/fs/fs.h>
46 #include "time-utils.h"
48 #include "util/util.h" // perf_exe()
50 #include "bpf-event.h"
53 #include <linux/ctype.h>
54 #include <internal/lib.h>
58 * must be a numerical value to let the endianness
59 * determine the memory layout. That way we are able
60 * to detect endianness when reading the perf.data file
63 * we check for legacy (PERFFILE) format.
65 static const char *__perf_magic1 = "PERFFILE";
66 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
67 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
69 #define PERF_MAGIC __perf_magic2
71 const char perf_version_string[] = PERF_VERSION;
73 struct perf_file_attr {
74 struct perf_event_attr attr;
75 struct perf_file_section ids;
78 void perf_header__set_feat(struct perf_header *header, int feat)
80 set_bit(feat, header->adds_features);
83 void perf_header__clear_feat(struct perf_header *header, int feat)
85 clear_bit(feat, header->adds_features);
88 bool perf_header__has_feat(const struct perf_header *header, int feat)
90 return test_bit(feat, header->adds_features);
93 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
95 ssize_t ret = writen(ff->fd, buf, size);
97 if (ret != (ssize_t)size)
98 return ret < 0 ? (int)ret : -1;
102 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
104 /* struct perf_event_header::size is u16 */
105 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
106 size_t new_size = ff->size;
109 if (size + ff->offset > max_size)
112 while (size > (new_size - ff->offset))
114 new_size = min(max_size, new_size);
116 if (ff->size < new_size) {
117 addr = realloc(ff->buf, new_size);
124 memcpy(ff->buf + ff->offset, buf, size);
130 /* Return: 0 if succeded, -ERR if failed. */
131 int do_write(struct feat_fd *ff, const void *buf, size_t size)
134 return __do_write_fd(ff, buf, size);
135 return __do_write_buf(ff, buf, size);
138 /* Return: 0 if succeded, -ERR if failed. */
139 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
141 u64 *p = (u64 *) set;
144 ret = do_write(ff, &size, sizeof(size));
148 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
149 ret = do_write(ff, p + i, sizeof(*p));
157 /* Return: 0 if succeded, -ERR if failed. */
158 int write_padded(struct feat_fd *ff, const void *bf,
159 size_t count, size_t count_aligned)
161 static const char zero_buf[NAME_ALIGN];
162 int err = do_write(ff, bf, count);
165 err = do_write(ff, zero_buf, count_aligned - count);
170 #define string_size(str) \
171 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
173 /* Return: 0 if succeded, -ERR if failed. */
174 static int do_write_string(struct feat_fd *ff, const char *str)
179 olen = strlen(str) + 1;
180 len = PERF_ALIGN(olen, NAME_ALIGN);
182 /* write len, incl. \0 */
183 ret = do_write(ff, &len, sizeof(len));
187 return write_padded(ff, str, olen, len);
190 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
192 ssize_t ret = readn(ff->fd, addr, size);
195 return ret < 0 ? (int)ret : -1;
199 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
201 if (size > (ssize_t)ff->size - ff->offset)
204 memcpy(addr, ff->buf + ff->offset, size);
211 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
214 return __do_read_fd(ff, addr, size);
215 return __do_read_buf(ff, addr, size);
218 static int do_read_u32(struct feat_fd *ff, u32 *addr)
222 ret = __do_read(ff, addr, sizeof(*addr));
226 if (ff->ph->needs_swap)
227 *addr = bswap_32(*addr);
231 static int do_read_u64(struct feat_fd *ff, u64 *addr)
235 ret = __do_read(ff, addr, sizeof(*addr));
239 if (ff->ph->needs_swap)
240 *addr = bswap_64(*addr);
244 static char *do_read_string(struct feat_fd *ff)
249 if (do_read_u32(ff, &len))
256 if (!__do_read(ff, buf, len)) {
258 * strings are padded by zeroes
259 * thus the actual strlen of buf
260 * may be less than len
269 /* Return: 0 if succeded, -ERR if failed. */
270 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
276 ret = do_read_u64(ff, &size);
280 set = bitmap_alloc(size);
286 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
287 ret = do_read_u64(ff, p + i);
299 static int write_tracing_data(struct feat_fd *ff,
300 struct evlist *evlist)
302 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
305 return read_tracing_data(ff->fd, &evlist->core.entries);
308 static int write_build_id(struct feat_fd *ff,
309 struct evlist *evlist __maybe_unused)
311 struct perf_session *session;
314 session = container_of(ff->ph, struct perf_session, header);
316 if (!perf_session__read_build_ids(session, true))
319 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
322 err = perf_session__write_buildid_table(session, ff);
324 pr_debug("failed to write buildid table\n");
327 perf_session__cache_build_ids(session);
332 static int write_hostname(struct feat_fd *ff,
333 struct evlist *evlist __maybe_unused)
342 return do_write_string(ff, uts.nodename);
345 static int write_osrelease(struct feat_fd *ff,
346 struct evlist *evlist __maybe_unused)
355 return do_write_string(ff, uts.release);
358 static int write_arch(struct feat_fd *ff,
359 struct evlist *evlist __maybe_unused)
368 return do_write_string(ff, uts.machine);
371 static int write_version(struct feat_fd *ff,
372 struct evlist *evlist __maybe_unused)
374 return do_write_string(ff, perf_version_string);
377 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
382 const char *search = cpuinfo_proc;
389 file = fopen("/proc/cpuinfo", "r");
393 while (getline(&buf, &len, file) > 0) {
394 ret = strncmp(buf, search, strlen(search));
406 p = strchr(buf, ':');
407 if (p && *(p+1) == ' ' && *(p+2))
413 /* squash extra space characters (branding string) */
418 char *q = skip_spaces(r);
421 while ((*r++ = *q++));
425 ret = do_write_string(ff, s);
432 static int write_cpudesc(struct feat_fd *ff,
433 struct evlist *evlist __maybe_unused)
435 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
436 #define CPUINFO_PROC { "cpu", }
437 #elif defined(__s390__)
438 #define CPUINFO_PROC { "vendor_id", }
439 #elif defined(__sh__)
440 #define CPUINFO_PROC { "cpu type", }
441 #elif defined(__alpha__) || defined(__mips__)
442 #define CPUINFO_PROC { "cpu model", }
443 #elif defined(__arm__)
444 #define CPUINFO_PROC { "model name", "Processor", }
445 #elif defined(__arc__)
446 #define CPUINFO_PROC { "Processor", }
447 #elif defined(__xtensa__)
448 #define CPUINFO_PROC { "core ID", }
450 #define CPUINFO_PROC { "model name", }
452 const char *cpuinfo_procs[] = CPUINFO_PROC;
456 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
458 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
466 static int write_nrcpus(struct feat_fd *ff,
467 struct evlist *evlist __maybe_unused)
473 nrc = cpu__max_present_cpu();
475 nr = sysconf(_SC_NPROCESSORS_ONLN);
479 nra = (u32)(nr & UINT_MAX);
481 ret = do_write(ff, &nrc, sizeof(nrc));
485 return do_write(ff, &nra, sizeof(nra));
488 static int write_event_desc(struct feat_fd *ff,
489 struct evlist *evlist)
495 nre = evlist->core.nr_entries;
498 * write number of events
500 ret = do_write(ff, &nre, sizeof(nre));
505 * size of perf_event_attr struct
507 sz = (u32)sizeof(evsel->core.attr);
508 ret = do_write(ff, &sz, sizeof(sz));
512 evlist__for_each_entry(evlist, evsel) {
513 ret = do_write(ff, &evsel->core.attr, sz);
517 * write number of unique id per event
518 * there is one id per instance of an event
520 * copy into an nri to be independent of the
523 nri = evsel->core.ids;
524 ret = do_write(ff, &nri, sizeof(nri));
529 * write event string as passed on cmdline
531 ret = do_write_string(ff, evsel__name(evsel));
535 * write unique ids for this event
537 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
544 static int write_cmdline(struct feat_fd *ff,
545 struct evlist *evlist __maybe_unused)
547 char pbuf[MAXPATHLEN], *buf;
550 /* actual path to perf binary */
551 buf = perf_exe(pbuf, MAXPATHLEN);
553 /* account for binary path */
554 n = perf_env.nr_cmdline + 1;
556 ret = do_write(ff, &n, sizeof(n));
560 ret = do_write_string(ff, buf);
564 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
565 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
573 static int write_cpu_topology(struct feat_fd *ff,
574 struct evlist *evlist __maybe_unused)
576 struct cpu_topology *tp;
580 tp = cpu_topology__new();
584 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
588 for (i = 0; i < tp->core_sib; i++) {
589 ret = do_write_string(ff, tp->core_siblings[i]);
593 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
597 for (i = 0; i < tp->thread_sib; i++) {
598 ret = do_write_string(ff, tp->thread_siblings[i]);
603 ret = perf_env__read_cpu_topology_map(&perf_env);
607 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
608 ret = do_write(ff, &perf_env.cpu[j].core_id,
609 sizeof(perf_env.cpu[j].core_id));
612 ret = do_write(ff, &perf_env.cpu[j].socket_id,
613 sizeof(perf_env.cpu[j].socket_id));
621 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
625 for (i = 0; i < tp->die_sib; i++) {
626 ret = do_write_string(ff, tp->die_siblings[i]);
631 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
632 ret = do_write(ff, &perf_env.cpu[j].die_id,
633 sizeof(perf_env.cpu[j].die_id));
639 cpu_topology__delete(tp);
645 static int write_total_mem(struct feat_fd *ff,
646 struct evlist *evlist __maybe_unused)
654 fp = fopen("/proc/meminfo", "r");
658 while (getline(&buf, &len, fp) > 0) {
659 ret = strncmp(buf, "MemTotal:", 9);
664 n = sscanf(buf, "%*s %"PRIu64, &mem);
666 ret = do_write(ff, &mem, sizeof(mem));
674 static int write_numa_topology(struct feat_fd *ff,
675 struct evlist *evlist __maybe_unused)
677 struct numa_topology *tp;
681 tp = numa_topology__new();
685 ret = do_write(ff, &tp->nr, sizeof(u32));
689 for (i = 0; i < tp->nr; i++) {
690 struct numa_topology_node *n = &tp->nodes[i];
692 ret = do_write(ff, &n->node, sizeof(u32));
696 ret = do_write(ff, &n->mem_total, sizeof(u64));
700 ret = do_write(ff, &n->mem_free, sizeof(u64));
704 ret = do_write_string(ff, n->cpus);
712 numa_topology__delete(tp);
719 * struct pmu_mappings {
728 static int write_pmu_mappings(struct feat_fd *ff,
729 struct evlist *evlist __maybe_unused)
731 struct perf_pmu *pmu = NULL;
736 * Do a first pass to count number of pmu to avoid lseek so this
737 * works in pipe mode as well.
739 while ((pmu = perf_pmu__scan(pmu))) {
745 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
749 while ((pmu = perf_pmu__scan(pmu))) {
753 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
757 ret = do_write_string(ff, pmu->name);
768 * struct group_descs {
770 * struct group_desc {
777 static int write_group_desc(struct feat_fd *ff,
778 struct evlist *evlist)
780 u32 nr_groups = evlist->nr_groups;
784 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
788 evlist__for_each_entry(evlist, evsel) {
789 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
790 const char *name = evsel->group_name ?: "{anon_group}";
791 u32 leader_idx = evsel->idx;
792 u32 nr_members = evsel->core.nr_members;
794 ret = do_write_string(ff, name);
798 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
802 ret = do_write(ff, &nr_members, sizeof(nr_members));
811 * Return the CPU id as a raw string.
813 * Each architecture should provide a more precise id string that
814 * can be use to match the architecture's "mapfile".
816 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
821 /* Return zero when the cpuid from the mapfile.csv matches the
822 * cpuid string generated on this platform.
823 * Otherwise return non-zero.
825 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
828 regmatch_t pmatch[1];
831 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
832 /* Warn unable to generate match particular string. */
833 pr_info("Invalid regular expression %s\n", mapcpuid);
837 match = !regexec(&re, cpuid, 1, pmatch, 0);
840 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
842 /* Verify the entire string matched. */
843 if (match_len == strlen(cpuid))
850 * default get_cpuid(): nothing gets recorded
851 * actual implementation must be in arch/$(SRCARCH)/util/header.c
853 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
855 return ENOSYS; /* Not implemented */
858 static int write_cpuid(struct feat_fd *ff,
859 struct evlist *evlist __maybe_unused)
864 ret = get_cpuid(buffer, sizeof(buffer));
868 return do_write_string(ff, buffer);
871 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
872 struct evlist *evlist __maybe_unused)
877 static int write_auxtrace(struct feat_fd *ff,
878 struct evlist *evlist __maybe_unused)
880 struct perf_session *session;
883 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
886 session = container_of(ff->ph, struct perf_session, header);
888 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
890 pr_err("Failed to write auxtrace index\n");
894 static int write_clockid(struct feat_fd *ff,
895 struct evlist *evlist __maybe_unused)
897 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
898 sizeof(ff->ph->env.clock.clockid_res_ns));
901 static int write_clock_data(struct feat_fd *ff,
902 struct evlist *evlist __maybe_unused)
911 ret = do_write(ff, &data32, sizeof(data32));
916 data32 = ff->ph->env.clock.clockid;
918 ret = do_write(ff, &data32, sizeof(data32));
923 data64 = &ff->ph->env.clock.tod_ns;
925 ret = do_write(ff, data64, sizeof(*data64));
929 /* clockid ref time */
930 data64 = &ff->ph->env.clock.clockid_ns;
932 return do_write(ff, data64, sizeof(*data64));
935 static int write_dir_format(struct feat_fd *ff,
936 struct evlist *evlist __maybe_unused)
938 struct perf_session *session;
939 struct perf_data *data;
941 session = container_of(ff->ph, struct perf_session, header);
942 data = session->data;
944 if (WARN_ON(!perf_data__is_dir(data)))
947 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
950 #ifdef HAVE_LIBBPF_SUPPORT
951 static int write_bpf_prog_info(struct feat_fd *ff,
952 struct evlist *evlist __maybe_unused)
954 struct perf_env *env = &ff->ph->env;
955 struct rb_root *root;
956 struct rb_node *next;
959 down_read(&env->bpf_progs.lock);
961 ret = do_write(ff, &env->bpf_progs.infos_cnt,
962 sizeof(env->bpf_progs.infos_cnt));
966 root = &env->bpf_progs.infos;
967 next = rb_first(root);
969 struct bpf_prog_info_node *node;
972 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
973 next = rb_next(&node->rb_node);
974 len = sizeof(struct bpf_prog_info_linear) +
975 node->info_linear->data_len;
977 /* before writing to file, translate address to offset */
978 bpf_program__bpil_addr_to_offs(node->info_linear);
979 ret = do_write(ff, node->info_linear, len);
981 * translate back to address even when do_write() fails,
982 * so that this function never changes the data.
984 bpf_program__bpil_offs_to_addr(node->info_linear);
989 up_read(&env->bpf_progs.lock);
993 static int write_bpf_btf(struct feat_fd *ff,
994 struct evlist *evlist __maybe_unused)
996 struct perf_env *env = &ff->ph->env;
997 struct rb_root *root;
998 struct rb_node *next;
1001 down_read(&env->bpf_progs.lock);
1003 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1004 sizeof(env->bpf_progs.btfs_cnt));
1009 root = &env->bpf_progs.btfs;
1010 next = rb_first(root);
1012 struct btf_node *node;
1014 node = rb_entry(next, struct btf_node, rb_node);
1015 next = rb_next(&node->rb_node);
1016 ret = do_write(ff, &node->id,
1017 sizeof(u32) * 2 + node->data_size);
1022 up_read(&env->bpf_progs.lock);
1025 #endif // HAVE_LIBBPF_SUPPORT
1027 static int cpu_cache_level__sort(const void *a, const void *b)
1029 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1030 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1032 return cache_a->level - cache_b->level;
1035 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1037 if (a->level != b->level)
1040 if (a->line_size != b->line_size)
1043 if (a->sets != b->sets)
1046 if (a->ways != b->ways)
1049 if (strcmp(a->type, b->type))
1052 if (strcmp(a->size, b->size))
1055 if (strcmp(a->map, b->map))
1061 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1063 char path[PATH_MAX], file[PATH_MAX];
1067 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1068 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1070 if (stat(file, &st))
1073 scnprintf(file, PATH_MAX, "%s/level", path);
1074 if (sysfs__read_int(file, (int *) &cache->level))
1077 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1078 if (sysfs__read_int(file, (int *) &cache->line_size))
1081 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1082 if (sysfs__read_int(file, (int *) &cache->sets))
1085 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1086 if (sysfs__read_int(file, (int *) &cache->ways))
1089 scnprintf(file, PATH_MAX, "%s/type", path);
1090 if (sysfs__read_str(file, &cache->type, &len))
1093 cache->type[len] = 0;
1094 cache->type = strim(cache->type);
1096 scnprintf(file, PATH_MAX, "%s/size", path);
1097 if (sysfs__read_str(file, &cache->size, &len)) {
1098 zfree(&cache->type);
1102 cache->size[len] = 0;
1103 cache->size = strim(cache->size);
1105 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1106 if (sysfs__read_str(file, &cache->map, &len)) {
1107 zfree(&cache->size);
1108 zfree(&cache->type);
1112 cache->map[len] = 0;
1113 cache->map = strim(cache->map);
1117 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1119 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1122 #define MAX_CACHE_LVL 4
1124 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1130 nr = cpu__max_cpu();
1132 for (cpu = 0; cpu < nr; cpu++) {
1133 for (level = 0; level < MAX_CACHE_LVL; level++) {
1134 struct cpu_cache_level c;
1137 err = cpu_cache_level__read(&c, cpu, level);
1144 for (i = 0; i < cnt; i++) {
1145 if (cpu_cache_level__cmp(&c, &caches[i]))
1152 cpu_cache_level__free(&c);
1159 static int write_cache(struct feat_fd *ff,
1160 struct evlist *evlist __maybe_unused)
1162 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1163 struct cpu_cache_level caches[max_caches];
1164 u32 cnt = 0, i, version = 1;
1167 ret = build_caches(caches, &cnt);
1171 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1173 ret = do_write(ff, &version, sizeof(u32));
1177 ret = do_write(ff, &cnt, sizeof(u32));
1181 for (i = 0; i < cnt; i++) {
1182 struct cpu_cache_level *c = &caches[i];
1185 ret = do_write(ff, &c->v, sizeof(u32)); \
1196 ret = do_write_string(ff, (const char *) c->v); \
1207 for (i = 0; i < cnt; i++)
1208 cpu_cache_level__free(&caches[i]);
1212 static int write_stat(struct feat_fd *ff __maybe_unused,
1213 struct evlist *evlist __maybe_unused)
1218 static int write_sample_time(struct feat_fd *ff,
1219 struct evlist *evlist)
1223 ret = do_write(ff, &evlist->first_sample_time,
1224 sizeof(evlist->first_sample_time));
1228 return do_write(ff, &evlist->last_sample_time,
1229 sizeof(evlist->last_sample_time));
1233 static int memory_node__read(struct memory_node *n, unsigned long idx)
1235 unsigned int phys, size = 0;
1236 char path[PATH_MAX];
1240 #define for_each_memory(mem, dir) \
1241 while ((ent = readdir(dir))) \
1242 if (strcmp(ent->d_name, ".") && \
1243 strcmp(ent->d_name, "..") && \
1244 sscanf(ent->d_name, "memory%u", &mem) == 1)
1246 scnprintf(path, PATH_MAX,
1247 "%s/devices/system/node/node%lu",
1248 sysfs__mountpoint(), idx);
1250 dir = opendir(path);
1252 pr_warning("failed: cant' open memory sysfs data\n");
1256 for_each_memory(phys, dir) {
1257 size = max(phys, size);
1262 n->set = bitmap_alloc(size);
1273 for_each_memory(phys, dir) {
1274 set_bit(phys, n->set);
1281 static int memory_node__sort(const void *a, const void *b)
1283 const struct memory_node *na = a;
1284 const struct memory_node *nb = b;
1286 return na->node - nb->node;
1289 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1291 char path[PATH_MAX];
1297 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1298 sysfs__mountpoint());
1300 dir = opendir(path);
1302 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1307 while (!ret && (ent = readdir(dir))) {
1311 if (!strcmp(ent->d_name, ".") ||
1312 !strcmp(ent->d_name, ".."))
1315 r = sscanf(ent->d_name, "node%u", &idx);
1319 if (WARN_ONCE(cnt >= size,
1320 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1325 ret = memory_node__read(&nodes[cnt++], idx);
1332 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1337 #define MAX_MEMORY_NODES 2000
1340 * The MEM_TOPOLOGY holds physical memory map for every
1341 * node in system. The format of data is as follows:
1343 * 0 - version | for future changes
1344 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1345 * 16 - count | number of nodes
1347 * For each node we store map of physical indexes for
1350 * 32 - node id | node index
1351 * 40 - size | size of bitmap
1352 * 48 - bitmap | bitmap of memory indexes that belongs to node
1354 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1355 struct evlist *evlist __maybe_unused)
1357 static struct memory_node nodes[MAX_MEMORY_NODES];
1358 u64 bsize, version = 1, i, nr;
1361 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1362 (unsigned long long *) &bsize);
1366 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1370 ret = do_write(ff, &version, sizeof(version));
1374 ret = do_write(ff, &bsize, sizeof(bsize));
1378 ret = do_write(ff, &nr, sizeof(nr));
1382 for (i = 0; i < nr; i++) {
1383 struct memory_node *n = &nodes[i];
1386 ret = do_write(ff, &n->v, sizeof(n->v)); \
1395 ret = do_write_bitmap(ff, n->set, n->size);
1404 static int write_compressed(struct feat_fd *ff __maybe_unused,
1405 struct evlist *evlist __maybe_unused)
1409 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1413 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1417 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1421 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1425 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1428 static int write_cpu_pmu_caps(struct feat_fd *ff,
1429 struct evlist *evlist __maybe_unused)
1431 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1432 struct perf_pmu_caps *caps = NULL;
1439 nr_caps = perf_pmu__caps_parse(cpu_pmu);
1443 ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1447 list_for_each_entry(caps, &cpu_pmu->caps, list) {
1448 ret = do_write_string(ff, caps->name);
1452 ret = do_write_string(ff, caps->value);
1460 static void print_hostname(struct feat_fd *ff, FILE *fp)
1462 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1465 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1467 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1470 static void print_arch(struct feat_fd *ff, FILE *fp)
1472 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1475 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1477 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1480 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1482 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1483 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1486 static void print_version(struct feat_fd *ff, FILE *fp)
1488 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1491 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1495 nr = ff->ph->env.nr_cmdline;
1497 fprintf(fp, "# cmdline : ");
1499 for (i = 0; i < nr; i++) {
1500 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1502 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1506 char *quote = strchr(argv_i, '\'');
1510 fprintf(fp, "%s\\\'", argv_i);
1513 fprintf(fp, "%s ", argv_i);
1520 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1522 struct perf_header *ph = ff->ph;
1523 int cpu_nr = ph->env.nr_cpus_avail;
1527 nr = ph->env.nr_sibling_cores;
1528 str = ph->env.sibling_cores;
1530 for (i = 0; i < nr; i++) {
1531 fprintf(fp, "# sibling sockets : %s\n", str);
1532 str += strlen(str) + 1;
1535 if (ph->env.nr_sibling_dies) {
1536 nr = ph->env.nr_sibling_dies;
1537 str = ph->env.sibling_dies;
1539 for (i = 0; i < nr; i++) {
1540 fprintf(fp, "# sibling dies : %s\n", str);
1541 str += strlen(str) + 1;
1545 nr = ph->env.nr_sibling_threads;
1546 str = ph->env.sibling_threads;
1548 for (i = 0; i < nr; i++) {
1549 fprintf(fp, "# sibling threads : %s\n", str);
1550 str += strlen(str) + 1;
1553 if (ph->env.nr_sibling_dies) {
1554 if (ph->env.cpu != NULL) {
1555 for (i = 0; i < cpu_nr; i++)
1556 fprintf(fp, "# CPU %d: Core ID %d, "
1557 "Die ID %d, Socket ID %d\n",
1558 i, ph->env.cpu[i].core_id,
1559 ph->env.cpu[i].die_id,
1560 ph->env.cpu[i].socket_id);
1562 fprintf(fp, "# Core ID, Die ID and Socket ID "
1563 "information is not available\n");
1565 if (ph->env.cpu != NULL) {
1566 for (i = 0; i < cpu_nr; i++)
1567 fprintf(fp, "# CPU %d: Core ID %d, "
1569 i, ph->env.cpu[i].core_id,
1570 ph->env.cpu[i].socket_id);
1572 fprintf(fp, "# Core ID and Socket ID "
1573 "information is not available\n");
1577 static void print_clockid(struct feat_fd *ff, FILE *fp)
1579 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1580 ff->ph->env.clock.clockid_res_ns * 1000);
1583 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1585 struct timespec clockid_ns;
1586 char tstr[64], date[64];
1587 struct timeval tod_ns;
1592 if (!ff->ph->env.clock.enabled) {
1593 fprintf(fp, "# reference time disabled\n");
1597 /* Compute TOD time. */
1598 ref = ff->ph->env.clock.tod_ns;
1599 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1600 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1601 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1603 /* Compute clockid time. */
1604 ref = ff->ph->env.clock.clockid_ns;
1605 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1606 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1607 clockid_ns.tv_nsec = ref;
1609 clockid = ff->ph->env.clock.clockid;
1611 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1612 snprintf(tstr, sizeof(tstr), "<error>");
1614 strftime(date, sizeof(date), "%F %T", <ime);
1615 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1616 date, (int) tod_ns.tv_usec);
1619 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1620 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1621 tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
1622 clockid_ns.tv_sec, clockid_ns.tv_nsec,
1623 clockid_name(clockid));
1626 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1628 struct perf_session *session;
1629 struct perf_data *data;
1631 session = container_of(ff->ph, struct perf_session, header);
1632 data = session->data;
1634 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1637 #ifdef HAVE_LIBBPF_SUPPORT
1638 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1640 struct perf_env *env = &ff->ph->env;
1641 struct rb_root *root;
1642 struct rb_node *next;
1644 down_read(&env->bpf_progs.lock);
1646 root = &env->bpf_progs.infos;
1647 next = rb_first(root);
1650 struct bpf_prog_info_node *node;
1652 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1653 next = rb_next(&node->rb_node);
1655 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1659 up_read(&env->bpf_progs.lock);
1662 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1664 struct perf_env *env = &ff->ph->env;
1665 struct rb_root *root;
1666 struct rb_node *next;
1668 down_read(&env->bpf_progs.lock);
1670 root = &env->bpf_progs.btfs;
1671 next = rb_first(root);
1674 struct btf_node *node;
1676 node = rb_entry(next, struct btf_node, rb_node);
1677 next = rb_next(&node->rb_node);
1678 fprintf(fp, "# btf info of id %u\n", node->id);
1681 up_read(&env->bpf_progs.lock);
1683 #endif // HAVE_LIBBPF_SUPPORT
1685 static void free_event_desc(struct evsel *events)
1687 struct evsel *evsel;
1692 for (evsel = events; evsel->core.attr.size; evsel++) {
1693 zfree(&evsel->name);
1694 zfree(&evsel->core.id);
1700 static bool perf_attr_check(struct perf_event_attr *attr)
1702 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1703 pr_warning("Reserved bits are set unexpectedly. "
1704 "Please update perf tool.\n");
1708 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1709 pr_warning("Unknown sample type (0x%llx) is detected. "
1710 "Please update perf tool.\n",
1715 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1716 pr_warning("Unknown read format (0x%llx) is detected. "
1717 "Please update perf tool.\n",
1722 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1723 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1724 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1725 "Please update perf tool.\n",
1726 attr->branch_sample_type);
1734 static struct evsel *read_event_desc(struct feat_fd *ff)
1736 struct evsel *evsel, *events = NULL;
1739 u32 nre, sz, nr, i, j;
1742 /* number of events */
1743 if (do_read_u32(ff, &nre))
1746 if (do_read_u32(ff, &sz))
1749 /* buffer to hold on file attr struct */
1754 /* the last event terminates with evsel->core.attr.size == 0: */
1755 events = calloc(nre + 1, sizeof(*events));
1759 msz = sizeof(evsel->core.attr);
1763 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1767 * must read entire on-file attr struct to
1768 * sync up with layout.
1770 if (__do_read(ff, buf, sz))
1773 if (ff->ph->needs_swap)
1774 perf_event__attr_swap(buf);
1776 memcpy(&evsel->core.attr, buf, msz);
1778 if (!perf_attr_check(&evsel->core.attr))
1781 if (do_read_u32(ff, &nr))
1784 if (ff->ph->needs_swap)
1785 evsel->needs_swap = true;
1787 evsel->name = do_read_string(ff);
1794 id = calloc(nr, sizeof(*id));
1797 evsel->core.ids = nr;
1798 evsel->core.id = id;
1800 for (j = 0 ; j < nr; j++) {
1801 if (do_read_u64(ff, id))
1810 free_event_desc(events);
1815 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1816 void *priv __maybe_unused)
1818 return fprintf(fp, ", %s = %s", name, val);
1821 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1823 struct evsel *evsel, *events;
1828 events = ff->events;
1830 events = read_event_desc(ff);
1833 fprintf(fp, "# event desc: not available or unable to read\n");
1837 for (evsel = events; evsel->core.attr.size; evsel++) {
1838 fprintf(fp, "# event : name = %s, ", evsel->name);
1840 if (evsel->core.ids) {
1841 fprintf(fp, ", id = {");
1842 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845 fprintf(fp, " %"PRIu64, *id);
1850 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1855 free_event_desc(events);
1859 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1861 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867 struct numa_node *n;
1869 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1870 n = &ff->ph->env.numa_nodes[i];
1872 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1873 " free = %"PRIu64" kB\n",
1874 n->node, n->mem_total, n->mem_free);
1876 fprintf(fp, "# node%u cpu list : ", n->node);
1877 cpu_map__fprintf(n->map, fp);
1881 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1883 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1888 fprintf(fp, "# contains samples with branch stack\n");
1891 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1893 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1896 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1898 fprintf(fp, "# contains stat data\n");
1901 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1905 fprintf(fp, "# CPU cache info:\n");
1906 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1908 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1912 static void print_compressed(struct feat_fd *ff, FILE *fp)
1914 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1915 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1916 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1919 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1921 const char *delimiter = "# cpu pmu capabilities: ";
1922 u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1926 fprintf(fp, "# cpu pmu capabilities: not available\n");
1930 str = ff->ph->env.cpu_pmu_caps;
1932 fprintf(fp, "%s%s", delimiter, str);
1934 str += strlen(str) + 1;
1940 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1942 const char *delimiter = "# pmu mappings: ";
1947 pmu_num = ff->ph->env.nr_pmu_mappings;
1949 fprintf(fp, "# pmu mappings: not available\n");
1953 str = ff->ph->env.pmu_mappings;
1956 type = strtoul(str, &tmp, 0);
1961 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964 str += strlen(str) + 1;
1973 fprintf(fp, "# pmu mappings: unable to read\n");
1976 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1978 struct perf_session *session;
1979 struct evsel *evsel;
1982 session = container_of(ff->ph, struct perf_session, header);
1984 evlist__for_each_entry(session->evlist, evsel) {
1985 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1986 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1988 nr = evsel->core.nr_members - 1;
1990 fprintf(fp, ",%s", evsel__name(evsel));
1998 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2000 struct perf_session *session;
2004 session = container_of(ff->ph, struct perf_session, header);
2006 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2007 time_buf, sizeof(time_buf));
2008 fprintf(fp, "# time of first sample : %s\n", time_buf);
2010 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2011 time_buf, sizeof(time_buf));
2012 fprintf(fp, "# time of last sample : %s\n", time_buf);
2014 d = (double)(session->evlist->last_sample_time -
2015 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2017 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2020 static void memory_node__fprintf(struct memory_node *n,
2021 unsigned long long bsize, FILE *fp)
2023 char buf_map[100], buf_size[50];
2024 unsigned long long size;
2026 size = bsize * bitmap_weight(n->set, n->size);
2027 unit_number__scnprintf(buf_size, 50, size);
2029 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2030 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2033 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2035 struct memory_node *nodes;
2038 nodes = ff->ph->env.memory_nodes;
2039 nr = ff->ph->env.nr_memory_nodes;
2041 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2042 nr, ff->ph->env.memory_bsize);
2044 for (i = 0; i < nr; i++) {
2045 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2049 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2051 struct perf_session *session)
2054 struct machine *machine;
2057 enum dso_space_type dso_space;
2059 machine = perf_session__findnew_machine(session, bev->pid);
2063 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066 case PERF_RECORD_MISC_KERNEL:
2067 dso_space = DSO_SPACE__KERNEL;
2069 case PERF_RECORD_MISC_GUEST_KERNEL:
2070 dso_space = DSO_SPACE__KERNEL_GUEST;
2072 case PERF_RECORD_MISC_USER:
2073 case PERF_RECORD_MISC_GUEST_USER:
2074 dso_space = DSO_SPACE__USER;
2080 dso = machine__findnew_dso(machine, filename);
2082 char sbuild_id[SBUILD_ID_SIZE];
2083 struct build_id bid;
2084 size_t size = BUILD_ID_SIZE;
2086 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2089 build_id__init(&bid, bev->data, size);
2090 dso__set_build_id(dso, &bid);
2092 if (dso_space != DSO_SPACE__USER) {
2093 struct kmod_path m = { .name = NULL, };
2095 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2096 dso__set_module_info(dso, &m, machine);
2098 dso->kernel = dso_space;
2102 build_id__sprintf(&dso->bid, sbuild_id);
2103 pr_debug("build id event received for %s: %s [%zu]\n",
2104 dso->long_name, sbuild_id, size);
2113 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2114 int input, u64 offset, u64 size)
2116 struct perf_session *session = container_of(header, struct perf_session, header);
2118 struct perf_event_header header;
2119 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2122 struct perf_record_header_build_id bev;
2123 char filename[PATH_MAX];
2124 u64 limit = offset + size;
2126 while (offset < limit) {
2129 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2132 if (header->needs_swap)
2133 perf_event_header__bswap(&old_bev.header);
2135 len = old_bev.header.size - sizeof(old_bev);
2136 if (readn(input, filename, len) != len)
2139 bev.header = old_bev.header;
2142 * As the pid is the missing value, we need to fill
2143 * it properly. The header.misc value give us nice hint.
2145 bev.pid = HOST_KERNEL_ID;
2146 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2147 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2148 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2150 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2151 __event_process_build_id(&bev, filename, session);
2153 offset += bev.header.size;
2159 static int perf_header__read_build_ids(struct perf_header *header,
2160 int input, u64 offset, u64 size)
2162 struct perf_session *session = container_of(header, struct perf_session, header);
2163 struct perf_record_header_build_id bev;
2164 char filename[PATH_MAX];
2165 u64 limit = offset + size, orig_offset = offset;
2168 while (offset < limit) {
2171 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2174 if (header->needs_swap)
2175 perf_event_header__bswap(&bev.header);
2177 len = bev.header.size - sizeof(bev);
2178 if (readn(input, filename, len) != len)
2181 * The a1645ce1 changeset:
2183 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2185 * Added a field to struct perf_record_header_build_id that broke the file
2188 * Since the kernel build-id is the first entry, process the
2189 * table using the old format if the well known
2190 * '[kernel.kallsyms]' string for the kernel build-id has the
2191 * first 4 characters chopped off (where the pid_t sits).
2193 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2194 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2196 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2199 __event_process_build_id(&bev, filename, session);
2201 offset += bev.header.size;
2208 /* Macro for features that simply need to read and store a string. */
2209 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2210 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2212 ff->ph->env.__feat_env = do_read_string(ff); \
2213 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2216 FEAT_PROCESS_STR_FUN(hostname, hostname);
2217 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2218 FEAT_PROCESS_STR_FUN(version, version);
2219 FEAT_PROCESS_STR_FUN(arch, arch);
2220 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2221 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2223 static int process_tracing_data(struct feat_fd *ff, void *data)
2225 ssize_t ret = trace_report(ff->fd, data, false);
2227 return ret < 0 ? -1 : 0;
2230 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2232 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2233 pr_debug("Failed to read buildids, continuing...\n");
2237 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2240 u32 nr_cpus_avail, nr_cpus_online;
2242 ret = do_read_u32(ff, &nr_cpus_avail);
2246 ret = do_read_u32(ff, &nr_cpus_online);
2249 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2250 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2254 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2259 ret = do_read_u64(ff, &total_mem);
2262 ff->ph->env.total_mem = (unsigned long long)total_mem;
2266 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2268 struct evsel *evsel;
2270 evlist__for_each_entry(evlist, evsel) {
2271 if (evsel->idx == idx)
2278 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2280 struct evsel *evsel;
2285 evsel = evlist__find_by_index(evlist, event->idx);
2292 evsel->name = strdup(event->name);
2296 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2298 struct perf_session *session;
2299 struct evsel *evsel, *events = read_event_desc(ff);
2304 session = container_of(ff->ph, struct perf_session, header);
2306 if (session->data->is_pipe) {
2307 /* Save events for reading later by print_event_desc,
2308 * since they can't be read again in pipe mode. */
2309 ff->events = events;
2312 for (evsel = events; evsel->core.attr.size; evsel++)
2313 evlist__set_event_name(session->evlist, evsel);
2315 if (!session->data->is_pipe)
2316 free_event_desc(events);
2321 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2323 char *str, *cmdline = NULL, **argv = NULL;
2326 if (do_read_u32(ff, &nr))
2329 ff->ph->env.nr_cmdline = nr;
2331 cmdline = zalloc(ff->size + nr + 1);
2335 argv = zalloc(sizeof(char *) * (nr + 1));
2339 for (i = 0; i < nr; i++) {
2340 str = do_read_string(ff);
2344 argv[i] = cmdline + len;
2345 memcpy(argv[i], str, strlen(str) + 1);
2346 len += strlen(str) + 1;
2349 ff->ph->env.cmdline = cmdline;
2350 ff->ph->env.cmdline_argv = (const char **) argv;
2359 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2364 int cpu_nr = ff->ph->env.nr_cpus_avail;
2366 struct perf_header *ph = ff->ph;
2367 bool do_core_id_test = true;
2369 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2373 if (do_read_u32(ff, &nr))
2376 ph->env.nr_sibling_cores = nr;
2377 size += sizeof(u32);
2378 if (strbuf_init(&sb, 128) < 0)
2381 for (i = 0; i < nr; i++) {
2382 str = do_read_string(ff);
2386 /* include a NULL character at the end */
2387 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2389 size += string_size(str);
2392 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2394 if (do_read_u32(ff, &nr))
2397 ph->env.nr_sibling_threads = nr;
2398 size += sizeof(u32);
2400 for (i = 0; i < nr; i++) {
2401 str = do_read_string(ff);
2405 /* include a NULL character at the end */
2406 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2408 size += string_size(str);
2411 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2414 * The header may be from old perf,
2415 * which doesn't include core id and socket id information.
2417 if (ff->size <= size) {
2418 zfree(&ph->env.cpu);
2422 /* On s390 the socket_id number is not related to the numbers of cpus.
2423 * The socket_id number might be higher than the numbers of cpus.
2424 * This depends on the configuration.
2425 * AArch64 is the same.
2427 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2428 || !strncmp(ph->env.arch, "aarch64", 7)))
2429 do_core_id_test = false;
2431 for (i = 0; i < (u32)cpu_nr; i++) {
2432 if (do_read_u32(ff, &nr))
2435 ph->env.cpu[i].core_id = nr;
2436 size += sizeof(u32);
2438 if (do_read_u32(ff, &nr))
2441 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2442 pr_debug("socket_id number is too big."
2443 "You may need to upgrade the perf tool.\n");
2447 ph->env.cpu[i].socket_id = nr;
2448 size += sizeof(u32);
2452 * The header may be from old perf,
2453 * which doesn't include die information.
2455 if (ff->size <= size)
2458 if (do_read_u32(ff, &nr))
2461 ph->env.nr_sibling_dies = nr;
2462 size += sizeof(u32);
2464 for (i = 0; i < nr; i++) {
2465 str = do_read_string(ff);
2469 /* include a NULL character at the end */
2470 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2472 size += string_size(str);
2475 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2477 for (i = 0; i < (u32)cpu_nr; i++) {
2478 if (do_read_u32(ff, &nr))
2481 ph->env.cpu[i].die_id = nr;
2487 strbuf_release(&sb);
2489 zfree(&ph->env.cpu);
2493 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2495 struct numa_node *nodes, *n;
2500 if (do_read_u32(ff, &nr))
2503 nodes = zalloc(sizeof(*nodes) * nr);
2507 for (i = 0; i < nr; i++) {
2511 if (do_read_u32(ff, &n->node))
2514 if (do_read_u64(ff, &n->mem_total))
2517 if (do_read_u64(ff, &n->mem_free))
2520 str = do_read_string(ff);
2524 n->map = perf_cpu_map__new(str);
2530 ff->ph->env.nr_numa_nodes = nr;
2531 ff->ph->env.numa_nodes = nodes;
2539 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2546 if (do_read_u32(ff, &pmu_num))
2550 pr_debug("pmu mappings not available\n");
2554 ff->ph->env.nr_pmu_mappings = pmu_num;
2555 if (strbuf_init(&sb, 128) < 0)
2559 if (do_read_u32(ff, &type))
2562 name = do_read_string(ff);
2566 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2568 /* include a NULL character at the end */
2569 if (strbuf_add(&sb, "", 1) < 0)
2572 if (!strcmp(name, "msr"))
2573 ff->ph->env.msr_pmu_type = type;
2578 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2582 strbuf_release(&sb);
2586 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2589 u32 i, nr, nr_groups;
2590 struct perf_session *session;
2591 struct evsel *evsel, *leader = NULL;
2598 if (do_read_u32(ff, &nr_groups))
2601 ff->ph->env.nr_groups = nr_groups;
2603 pr_debug("group desc not available\n");
2607 desc = calloc(nr_groups, sizeof(*desc));
2611 for (i = 0; i < nr_groups; i++) {
2612 desc[i].name = do_read_string(ff);
2616 if (do_read_u32(ff, &desc[i].leader_idx))
2619 if (do_read_u32(ff, &desc[i].nr_members))
2624 * Rebuild group relationship based on the group_desc
2626 session = container_of(ff->ph, struct perf_session, header);
2627 session->evlist->nr_groups = nr_groups;
2630 evlist__for_each_entry(session->evlist, evsel) {
2631 if (evsel->idx == (int) desc[i].leader_idx) {
2632 evsel->leader = evsel;
2633 /* {anon_group} is a dummy name */
2634 if (strcmp(desc[i].name, "{anon_group}")) {
2635 evsel->group_name = desc[i].name;
2636 desc[i].name = NULL;
2638 evsel->core.nr_members = desc[i].nr_members;
2640 if (i >= nr_groups || nr > 0) {
2641 pr_debug("invalid group desc\n");
2646 nr = evsel->core.nr_members - 1;
2649 /* This is a group member */
2650 evsel->leader = leader;
2656 if (i != nr_groups || nr != 0) {
2657 pr_debug("invalid group desc\n");
2663 for (i = 0; i < nr_groups; i++)
2664 zfree(&desc[i].name);
2670 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2672 struct perf_session *session;
2675 session = container_of(ff->ph, struct perf_session, header);
2677 err = auxtrace_index__process(ff->fd, ff->size, session,
2678 ff->ph->needs_swap);
2680 pr_err("Failed to process auxtrace index\n");
2684 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2686 struct cpu_cache_level *caches;
2687 u32 cnt, i, version;
2689 if (do_read_u32(ff, &version))
2695 if (do_read_u32(ff, &cnt))
2698 caches = zalloc(sizeof(*caches) * cnt);
2702 for (i = 0; i < cnt; i++) {
2703 struct cpu_cache_level c;
2706 if (do_read_u32(ff, &c.v))\
2707 goto out_free_caches; \
2716 c.v = do_read_string(ff); \
2718 goto out_free_caches;
2728 ff->ph->env.caches = caches;
2729 ff->ph->env.caches_cnt = cnt;
2736 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2738 struct perf_session *session;
2739 u64 first_sample_time, last_sample_time;
2742 session = container_of(ff->ph, struct perf_session, header);
2744 ret = do_read_u64(ff, &first_sample_time);
2748 ret = do_read_u64(ff, &last_sample_time);
2752 session->evlist->first_sample_time = first_sample_time;
2753 session->evlist->last_sample_time = last_sample_time;
2757 static int process_mem_topology(struct feat_fd *ff,
2758 void *data __maybe_unused)
2760 struct memory_node *nodes;
2761 u64 version, i, nr, bsize;
2764 if (do_read_u64(ff, &version))
2770 if (do_read_u64(ff, &bsize))
2773 if (do_read_u64(ff, &nr))
2776 nodes = zalloc(sizeof(*nodes) * nr);
2780 for (i = 0; i < nr; i++) {
2781 struct memory_node n;
2784 if (do_read_u64(ff, &n.v)) \
2792 if (do_read_bitmap(ff, &n.set, &n.size))
2798 ff->ph->env.memory_bsize = bsize;
2799 ff->ph->env.memory_nodes = nodes;
2800 ff->ph->env.nr_memory_nodes = nr;
2809 static int process_clockid(struct feat_fd *ff,
2810 void *data __maybe_unused)
2812 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2818 static int process_clock_data(struct feat_fd *ff,
2819 void *_data __maybe_unused)
2825 if (do_read_u32(ff, &data32))
2832 if (do_read_u32(ff, &data32))
2835 ff->ph->env.clock.clockid = data32;
2838 if (do_read_u64(ff, &data64))
2841 ff->ph->env.clock.tod_ns = data64;
2843 /* clockid ref time */
2844 if (do_read_u64(ff, &data64))
2847 ff->ph->env.clock.clockid_ns = data64;
2848 ff->ph->env.clock.enabled = true;
2852 static int process_dir_format(struct feat_fd *ff,
2853 void *_data __maybe_unused)
2855 struct perf_session *session;
2856 struct perf_data *data;
2858 session = container_of(ff->ph, struct perf_session, header);
2859 data = session->data;
2861 if (WARN_ON(!perf_data__is_dir(data)))
2864 return do_read_u64(ff, &data->dir.version);
2867 #ifdef HAVE_LIBBPF_SUPPORT
2868 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2870 struct bpf_prog_info_linear *info_linear;
2871 struct bpf_prog_info_node *info_node;
2872 struct perf_env *env = &ff->ph->env;
2876 if (ff->ph->needs_swap) {
2877 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2881 if (do_read_u32(ff, &count))
2884 down_write(&env->bpf_progs.lock);
2886 for (i = 0; i < count; ++i) {
2887 u32 info_len, data_len;
2891 if (do_read_u32(ff, &info_len))
2893 if (do_read_u32(ff, &data_len))
2896 if (info_len > sizeof(struct bpf_prog_info)) {
2897 pr_warning("detected invalid bpf_prog_info\n");
2901 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2905 info_linear->info_len = sizeof(struct bpf_prog_info);
2906 info_linear->data_len = data_len;
2907 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2909 if (__do_read(ff, &info_linear->info, info_len))
2911 if (info_len < sizeof(struct bpf_prog_info))
2912 memset(((void *)(&info_linear->info)) + info_len, 0,
2913 sizeof(struct bpf_prog_info) - info_len);
2915 if (__do_read(ff, info_linear->data, data_len))
2918 info_node = malloc(sizeof(struct bpf_prog_info_node));
2922 /* after reading from file, translate offset to address */
2923 bpf_program__bpil_offs_to_addr(info_linear);
2924 info_node->info_linear = info_linear;
2925 perf_env__insert_bpf_prog_info(env, info_node);
2928 up_write(&env->bpf_progs.lock);
2933 up_write(&env->bpf_progs.lock);
2937 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2939 struct perf_env *env = &ff->ph->env;
2940 struct btf_node *node = NULL;
2944 if (ff->ph->needs_swap) {
2945 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2949 if (do_read_u32(ff, &count))
2952 down_write(&env->bpf_progs.lock);
2954 for (i = 0; i < count; ++i) {
2957 if (do_read_u32(ff, &id))
2959 if (do_read_u32(ff, &data_size))
2962 node = malloc(sizeof(struct btf_node) + data_size);
2967 node->data_size = data_size;
2969 if (__do_read(ff, node->data, data_size))
2972 perf_env__insert_btf(env, node);
2978 up_write(&env->bpf_progs.lock);
2982 #endif // HAVE_LIBBPF_SUPPORT
2984 static int process_compressed(struct feat_fd *ff,
2985 void *data __maybe_unused)
2987 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2990 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2993 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2996 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2999 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3005 static int process_cpu_pmu_caps(struct feat_fd *ff,
3006 void *data __maybe_unused)
3012 if (do_read_u32(ff, &nr_caps))
3016 pr_debug("cpu pmu capabilities not available\n");
3020 ff->ph->env.nr_cpu_pmu_caps = nr_caps;
3022 if (strbuf_init(&sb, 128) < 0)
3026 name = do_read_string(ff);
3030 value = do_read_string(ff);
3034 if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3037 /* include a NULL character at the end */
3038 if (strbuf_add(&sb, "", 1) < 0)
3041 if (!strcmp(name, "branches"))
3042 ff->ph->env.max_branches = atoi(value);
3047 ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
3055 strbuf_release(&sb);
3059 #define FEAT_OPR(n, func, __full_only) \
3061 .name = __stringify(n), \
3062 .write = write_##func, \
3063 .print = print_##func, \
3064 .full_only = __full_only, \
3065 .process = process_##func, \
3066 .synthesize = true \
3069 #define FEAT_OPN(n, func, __full_only) \
3071 .name = __stringify(n), \
3072 .write = write_##func, \
3073 .print = print_##func, \
3074 .full_only = __full_only, \
3075 .process = process_##func \
3078 /* feature_ops not implemented: */
3079 #define print_tracing_data NULL
3080 #define print_build_id NULL
3082 #define process_branch_stack NULL
3083 #define process_stat NULL
3085 // Only used in util/synthetic-events.c
3086 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3088 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3089 FEAT_OPN(TRACING_DATA, tracing_data, false),
3090 FEAT_OPN(BUILD_ID, build_id, false),
3091 FEAT_OPR(HOSTNAME, hostname, false),
3092 FEAT_OPR(OSRELEASE, osrelease, false),
3093 FEAT_OPR(VERSION, version, false),
3094 FEAT_OPR(ARCH, arch, false),
3095 FEAT_OPR(NRCPUS, nrcpus, false),
3096 FEAT_OPR(CPUDESC, cpudesc, false),
3097 FEAT_OPR(CPUID, cpuid, false),
3098 FEAT_OPR(TOTAL_MEM, total_mem, false),
3099 FEAT_OPR(EVENT_DESC, event_desc, false),
3100 FEAT_OPR(CMDLINE, cmdline, false),
3101 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3102 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3103 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3104 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3105 FEAT_OPR(GROUP_DESC, group_desc, false),
3106 FEAT_OPN(AUXTRACE, auxtrace, false),
3107 FEAT_OPN(STAT, stat, false),
3108 FEAT_OPN(CACHE, cache, true),
3109 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3110 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3111 FEAT_OPR(CLOCKID, clockid, false),
3112 FEAT_OPN(DIR_FORMAT, dir_format, false),
3113 #ifdef HAVE_LIBBPF_SUPPORT
3114 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3115 FEAT_OPR(BPF_BTF, bpf_btf, false),
3117 FEAT_OPR(COMPRESSED, compressed, false),
3118 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3119 FEAT_OPR(CLOCK_DATA, clock_data, false),
3122 struct header_print_data {
3124 bool full; /* extended list of headers */
3127 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3128 struct perf_header *ph,
3129 int feat, int fd, void *data)
3131 struct header_print_data *hd = data;
3134 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3135 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3136 "%d, continuing...\n", section->offset, feat);
3139 if (feat >= HEADER_LAST_FEATURE) {
3140 pr_warning("unknown feature %d\n", feat);
3143 if (!feat_ops[feat].print)
3146 ff = (struct feat_fd) {
3151 if (!feat_ops[feat].full_only || hd->full)
3152 feat_ops[feat].print(&ff, hd->fp);
3154 fprintf(hd->fp, "# %s info available, use -I to display\n",
3155 feat_ops[feat].name);
3160 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3162 struct header_print_data hd;
3163 struct perf_header *header = &session->header;
3164 int fd = perf_data__fd(session->data);
3172 ret = fstat(fd, &st);
3176 stctime = st.st_mtime;
3177 fprintf(fp, "# captured on : %s", ctime(&stctime));
3179 fprintf(fp, "# header version : %u\n", header->version);
3180 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3181 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3182 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3184 perf_header__process_sections(header, fd, &hd,
3185 perf_file_section__fprintf_info);
3187 if (session->data->is_pipe)
3190 fprintf(fp, "# missing features: ");
3191 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3193 fprintf(fp, "%s ", feat_ops[bit].name);
3200 static int do_write_feat(struct feat_fd *ff, int type,
3201 struct perf_file_section **p,
3202 struct evlist *evlist)
3207 if (perf_header__has_feat(ff->ph, type)) {
3208 if (!feat_ops[type].write)
3211 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3214 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3216 err = feat_ops[type].write(ff, evlist);
3218 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3220 /* undo anything written */
3221 lseek(ff->fd, (*p)->offset, SEEK_SET);
3225 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3231 static int perf_header__adds_write(struct perf_header *header,
3232 struct evlist *evlist, int fd)
3236 struct perf_file_section *feat_sec, *p;
3242 ff = (struct feat_fd){
3247 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3251 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3252 if (feat_sec == NULL)
3255 sec_size = sizeof(*feat_sec) * nr_sections;
3257 sec_start = header->feat_offset;
3258 lseek(fd, sec_start + sec_size, SEEK_SET);
3260 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3261 if (do_write_feat(&ff, feat, &p, evlist))
3262 perf_header__clear_feat(header, feat);
3265 lseek(fd, sec_start, SEEK_SET);
3267 * may write more than needed due to dropped feature, but
3268 * this is okay, reader will skip the missing entries
3270 err = do_write(&ff, feat_sec, sec_size);
3272 pr_debug("failed to write feature section\n");
3277 int perf_header__write_pipe(int fd)
3279 struct perf_pipe_file_header f_header;
3283 ff = (struct feat_fd){ .fd = fd };
3285 f_header = (struct perf_pipe_file_header){
3286 .magic = PERF_MAGIC,
3287 .size = sizeof(f_header),
3290 err = do_write(&ff, &f_header, sizeof(f_header));
3292 pr_debug("failed to write perf pipe header\n");
3299 int perf_session__write_header(struct perf_session *session,
3300 struct evlist *evlist,
3301 int fd, bool at_exit)
3303 struct perf_file_header f_header;
3304 struct perf_file_attr f_attr;
3305 struct perf_header *header = &session->header;
3306 struct evsel *evsel;
3311 ff = (struct feat_fd){ .fd = fd};
3312 lseek(fd, sizeof(f_header), SEEK_SET);
3314 evlist__for_each_entry(session->evlist, evsel) {
3315 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3316 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3318 pr_debug("failed to write perf header\n");
3323 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3325 evlist__for_each_entry(evlist, evsel) {
3326 f_attr = (struct perf_file_attr){
3327 .attr = evsel->core.attr,
3329 .offset = evsel->id_offset,
3330 .size = evsel->core.ids * sizeof(u64),
3333 err = do_write(&ff, &f_attr, sizeof(f_attr));
3335 pr_debug("failed to write perf header attribute\n");
3340 if (!header->data_offset)
3341 header->data_offset = lseek(fd, 0, SEEK_CUR);
3342 header->feat_offset = header->data_offset + header->data_size;
3345 err = perf_header__adds_write(header, evlist, fd);
3350 f_header = (struct perf_file_header){
3351 .magic = PERF_MAGIC,
3352 .size = sizeof(f_header),
3353 .attr_size = sizeof(f_attr),
3355 .offset = attr_offset,
3356 .size = evlist->core.nr_entries * sizeof(f_attr),
3359 .offset = header->data_offset,
3360 .size = header->data_size,
3362 /* event_types is ignored, store zeros */
3365 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3367 lseek(fd, 0, SEEK_SET);
3368 err = do_write(&ff, &f_header, sizeof(f_header));
3370 pr_debug("failed to write perf header\n");
3373 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3378 static int perf_header__getbuffer64(struct perf_header *header,
3379 int fd, void *buf, size_t size)
3381 if (readn(fd, buf, size) <= 0)
3384 if (header->needs_swap)
3385 mem_bswap_64(buf, size);
3390 int perf_header__process_sections(struct perf_header *header, int fd,
3392 int (*process)(struct perf_file_section *section,
3393 struct perf_header *ph,
3394 int feat, int fd, void *data))
3396 struct perf_file_section *feat_sec, *sec;
3402 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3406 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3410 sec_size = sizeof(*feat_sec) * nr_sections;
3412 lseek(fd, header->feat_offset, SEEK_SET);
3414 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3418 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3419 err = process(sec++, header, feat, fd, data);
3429 static const int attr_file_abi_sizes[] = {
3430 [0] = PERF_ATTR_SIZE_VER0,
3431 [1] = PERF_ATTR_SIZE_VER1,
3432 [2] = PERF_ATTR_SIZE_VER2,
3433 [3] = PERF_ATTR_SIZE_VER3,
3434 [4] = PERF_ATTR_SIZE_VER4,
3439 * In the legacy file format, the magic number is not used to encode endianness.
3440 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3441 * on ABI revisions, we need to try all combinations for all endianness to
3442 * detect the endianness.
3444 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3446 uint64_t ref_size, attr_size;
3449 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3450 ref_size = attr_file_abi_sizes[i]
3451 + sizeof(struct perf_file_section);
3452 if (hdr_sz != ref_size) {
3453 attr_size = bswap_64(hdr_sz);
3454 if (attr_size != ref_size)
3457 ph->needs_swap = true;
3459 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3464 /* could not determine endianness */
3468 #define PERF_PIPE_HDR_VER0 16
3470 static const size_t attr_pipe_abi_sizes[] = {
3471 [0] = PERF_PIPE_HDR_VER0,
3476 * In the legacy pipe format, there is an implicit assumption that endiannesss
3477 * between host recording the samples, and host parsing the samples is the
3478 * same. This is not always the case given that the pipe output may always be
3479 * redirected into a file and analyzed on a different machine with possibly a
3480 * different endianness and perf_event ABI revsions in the perf tool itself.
3482 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3487 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3488 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3489 attr_size = bswap_64(hdr_sz);
3490 if (attr_size != hdr_sz)
3493 ph->needs_swap = true;
3495 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3501 bool is_perf_magic(u64 magic)
3503 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3504 || magic == __perf_magic2
3505 || magic == __perf_magic2_sw)
3511 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3512 bool is_pipe, struct perf_header *ph)
3516 /* check for legacy format */
3517 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3519 ph->version = PERF_HEADER_VERSION_1;
3520 pr_debug("legacy perf.data format\n");
3522 return try_all_pipe_abis(hdr_sz, ph);
3524 return try_all_file_abis(hdr_sz, ph);
3527 * the new magic number serves two purposes:
3528 * - unique number to identify actual perf.data files
3529 * - encode endianness of file
3531 ph->version = PERF_HEADER_VERSION_2;
3533 /* check magic number with one endianness */
3534 if (magic == __perf_magic2)
3537 /* check magic number with opposite endianness */
3538 if (magic != __perf_magic2_sw)
3541 ph->needs_swap = true;
3546 int perf_file_header__read(struct perf_file_header *header,
3547 struct perf_header *ph, int fd)
3551 lseek(fd, 0, SEEK_SET);
3553 ret = readn(fd, header, sizeof(*header));
3557 if (check_magic_endian(header->magic,
3558 header->attr_size, false, ph) < 0) {
3559 pr_debug("magic/endian check failed\n");
3563 if (ph->needs_swap) {
3564 mem_bswap_64(header, offsetof(struct perf_file_header,
3568 if (header->size != sizeof(*header)) {
3569 /* Support the previous format */
3570 if (header->size == offsetof(typeof(*header), adds_features))
3571 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3574 } else if (ph->needs_swap) {
3576 * feature bitmap is declared as an array of unsigned longs --
3577 * not good since its size can differ between the host that
3578 * generated the data file and the host analyzing the file.
3580 * We need to handle endianness, but we don't know the size of
3581 * the unsigned long where the file was generated. Take a best
3582 * guess at determining it: try 64-bit swap first (ie., file
3583 * created on a 64-bit host), and check if the hostname feature
3584 * bit is set (this feature bit is forced on as of fbe96f2).
3585 * If the bit is not, undo the 64-bit swap and try a 32-bit
3586 * swap. If the hostname bit is still not set (e.g., older data
3587 * file), punt and fallback to the original behavior --
3588 * clearing all feature bits and setting buildid.
3590 mem_bswap_64(&header->adds_features,
3591 BITS_TO_U64(HEADER_FEAT_BITS));
3593 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3595 mem_bswap_64(&header->adds_features,
3596 BITS_TO_U64(HEADER_FEAT_BITS));
3599 mem_bswap_32(&header->adds_features,
3600 BITS_TO_U32(HEADER_FEAT_BITS));
3603 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3604 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3605 set_bit(HEADER_BUILD_ID, header->adds_features);
3609 memcpy(&ph->adds_features, &header->adds_features,
3610 sizeof(ph->adds_features));
3612 ph->data_offset = header->data.offset;
3613 ph->data_size = header->data.size;
3614 ph->feat_offset = header->data.offset + header->data.size;
3618 static int perf_file_section__process(struct perf_file_section *section,
3619 struct perf_header *ph,
3620 int feat, int fd, void *data)
3622 struct feat_fd fdd = {
3625 .size = section->size,
3626 .offset = section->offset,
3629 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3630 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3631 "%d, continuing...\n", section->offset, feat);
3635 if (feat >= HEADER_LAST_FEATURE) {
3636 pr_debug("unknown feature %d, continuing...\n", feat);
3640 if (!feat_ops[feat].process)
3643 return feat_ops[feat].process(&fdd, data);
3646 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3647 struct perf_header *ph,
3648 struct perf_data* data,
3651 struct feat_fd ff = {
3652 .fd = STDOUT_FILENO,
3657 ret = perf_data__read(data, header, sizeof(*header));
3661 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3662 pr_debug("endian/magic failed\n");
3667 header->size = bswap_64(header->size);
3669 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3675 static int perf_header__read_pipe(struct perf_session *session)
3677 struct perf_header *header = &session->header;
3678 struct perf_pipe_file_header f_header;
3680 if (perf_file_header__read_pipe(&f_header, header, session->data,
3681 session->repipe) < 0) {
3682 pr_debug("incompatible file format\n");
3686 return f_header.size == sizeof(f_header) ? 0 : -1;
3689 static int read_attr(int fd, struct perf_header *ph,
3690 struct perf_file_attr *f_attr)
3692 struct perf_event_attr *attr = &f_attr->attr;
3694 size_t our_sz = sizeof(f_attr->attr);
3697 memset(f_attr, 0, sizeof(*f_attr));
3699 /* read minimal guaranteed structure */
3700 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3702 pr_debug("cannot read %d bytes of header attr\n",
3703 PERF_ATTR_SIZE_VER0);
3707 /* on file perf_event_attr size */
3715 sz = PERF_ATTR_SIZE_VER0;
3716 } else if (sz > our_sz) {
3717 pr_debug("file uses a more recent and unsupported ABI"
3718 " (%zu bytes extra)\n", sz - our_sz);
3721 /* what we have not yet read and that we know about */
3722 left = sz - PERF_ATTR_SIZE_VER0;
3725 ptr += PERF_ATTR_SIZE_VER0;
3727 ret = readn(fd, ptr, left);
3729 /* read perf_file_section, ids are read in caller */
3730 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3732 return ret <= 0 ? -1 : 0;
3735 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
3737 struct tep_event *event;
3740 /* already prepared */
3741 if (evsel->tp_format)
3744 if (pevent == NULL) {
3745 pr_debug("broken or missing trace data\n");
3749 event = tep_find_event(pevent, evsel->core.attr.config);
3750 if (event == NULL) {
3751 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3756 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3757 evsel->name = strdup(bf);
3758 if (evsel->name == NULL)
3762 evsel->tp_format = event;
3766 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
3770 evlist__for_each_entry(evlist, pos) {
3771 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3772 evsel__prepare_tracepoint_event(pos, pevent))
3779 int perf_session__read_header(struct perf_session *session)
3781 struct perf_data *data = session->data;
3782 struct perf_header *header = &session->header;
3783 struct perf_file_header f_header;
3784 struct perf_file_attr f_attr;
3786 int nr_attrs, nr_ids, i, j, err;
3787 int fd = perf_data__fd(data);
3789 session->evlist = evlist__new();
3790 if (session->evlist == NULL)
3793 session->evlist->env = &header->env;
3794 session->machines.host.env = &header->env;
3797 * We can read 'pipe' data event from regular file,
3798 * check for the pipe header regardless of source.
3800 err = perf_header__read_pipe(session);
3801 if (!err || (err && perf_data__is_pipe(data))) {
3802 data->is_pipe = true;
3806 if (perf_file_header__read(&f_header, header, fd) < 0)
3810 * Sanity check that perf.data was written cleanly; data size is
3811 * initialized to 0 and updated only if the on_exit function is run.
3812 * If data size is still 0 then the file contains only partial
3813 * information. Just warn user and process it as much as it can.
3815 if (f_header.data.size == 0) {
3816 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3817 "Was the 'perf record' command properly terminated?\n",
3821 if (f_header.attr_size == 0) {
3822 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3823 "Was the 'perf record' command properly terminated?\n",
3828 nr_attrs = f_header.attrs.size / f_header.attr_size;
3829 lseek(fd, f_header.attrs.offset, SEEK_SET);
3831 for (i = 0; i < nr_attrs; i++) {
3832 struct evsel *evsel;
3835 if (read_attr(fd, header, &f_attr) < 0)
3838 if (header->needs_swap) {
3839 f_attr.ids.size = bswap_64(f_attr.ids.size);
3840 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3841 perf_event__attr_swap(&f_attr.attr);
3844 tmp = lseek(fd, 0, SEEK_CUR);
3845 evsel = evsel__new(&f_attr.attr);
3848 goto out_delete_evlist;
3850 evsel->needs_swap = header->needs_swap;
3852 * Do it before so that if perf_evsel__alloc_id fails, this
3853 * entry gets purged too at evlist__delete().
3855 evlist__add(session->evlist, evsel);
3857 nr_ids = f_attr.ids.size / sizeof(u64);
3859 * We don't have the cpu and thread maps on the header, so
3860 * for allocating the perf_sample_id table we fake 1 cpu and
3861 * hattr->ids threads.
3863 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3864 goto out_delete_evlist;
3866 lseek(fd, f_attr.ids.offset, SEEK_SET);
3868 for (j = 0; j < nr_ids; j++) {
3869 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3872 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3875 lseek(fd, tmp, SEEK_SET);
3878 perf_header__process_sections(header, fd, &session->tevent,
3879 perf_file_section__process);
3881 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
3882 goto out_delete_evlist;
3889 evlist__delete(session->evlist);
3890 session->evlist = NULL;
3894 int perf_event__process_feature(struct perf_session *session,
3895 union perf_event *event)
3897 struct perf_tool *tool = session->tool;
3898 struct feat_fd ff = { .fd = 0 };
3899 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3900 int type = fe->header.type;
3901 u64 feat = fe->feat_id;
3903 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3904 pr_warning("invalid record type %d in pipe-mode\n", type);
3907 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3908 pr_warning("invalid record type %d in pipe-mode\n", type);
3912 if (!feat_ops[feat].process)
3915 ff.buf = (void *)fe->data;
3916 ff.size = event->header.size - sizeof(*fe);
3917 ff.ph = &session->header;
3919 if (feat_ops[feat].process(&ff, NULL))
3922 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3925 if (!feat_ops[feat].full_only ||
3926 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3927 feat_ops[feat].print(&ff, stdout);
3929 fprintf(stdout, "# %s info available, use -I to display\n",
3930 feat_ops[feat].name);
3936 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3938 struct perf_record_event_update *ev = &event->event_update;
3939 struct perf_record_event_update_scale *ev_scale;
3940 struct perf_record_event_update_cpus *ev_cpus;
3941 struct perf_cpu_map *map;
3944 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
3947 case PERF_EVENT_UPDATE__SCALE:
3948 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3949 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3951 case PERF_EVENT_UPDATE__UNIT:
3952 ret += fprintf(fp, "... unit: %s\n", ev->data);
3954 case PERF_EVENT_UPDATE__NAME:
3955 ret += fprintf(fp, "... name: %s\n", ev->data);
3957 case PERF_EVENT_UPDATE__CPUS:
3958 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3959 ret += fprintf(fp, "... ");
3961 map = cpu_map__new_data(&ev_cpus->cpus);
3963 ret += cpu_map__fprintf(map, fp);
3965 ret += fprintf(fp, "failed to get cpus\n");
3968 ret += fprintf(fp, "... unknown type\n");
3975 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3976 union perf_event *event,
3977 struct evlist **pevlist)
3980 struct evsel *evsel;
3981 struct evlist *evlist = *pevlist;
3983 if (evlist == NULL) {
3984 *pevlist = evlist = evlist__new();
3989 evsel = evsel__new(&event->attr.attr);
3993 evlist__add(evlist, evsel);
3995 ids = event->header.size;
3996 ids -= (void *)&event->attr.id - (void *)event;
3997 n_ids = ids / sizeof(u64);
3999 * We don't have the cpu and thread maps on the header, so
4000 * for allocating the perf_sample_id table we fake 1 cpu and
4001 * hattr->ids threads.
4003 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4006 for (i = 0; i < n_ids; i++) {
4007 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4013 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4014 union perf_event *event,
4015 struct evlist **pevlist)
4017 struct perf_record_event_update *ev = &event->event_update;
4018 struct perf_record_event_update_scale *ev_scale;
4019 struct perf_record_event_update_cpus *ev_cpus;
4020 struct evlist *evlist;
4021 struct evsel *evsel;
4022 struct perf_cpu_map *map;
4024 if (!pevlist || *pevlist == NULL)
4029 evsel = evlist__id2evsel(evlist, ev->id);
4034 case PERF_EVENT_UPDATE__UNIT:
4035 evsel->unit = strdup(ev->data);
4037 case PERF_EVENT_UPDATE__NAME:
4038 evsel->name = strdup(ev->data);
4040 case PERF_EVENT_UPDATE__SCALE:
4041 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4042 evsel->scale = ev_scale->scale;
4044 case PERF_EVENT_UPDATE__CPUS:
4045 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4047 map = cpu_map__new_data(&ev_cpus->cpus);
4049 evsel->core.own_cpus = map;
4051 pr_err("failed to get event_update cpus\n");
4059 int perf_event__process_tracing_data(struct perf_session *session,
4060 union perf_event *event)
4062 ssize_t size_read, padding, size = event->tracing_data.size;
4063 int fd = perf_data__fd(session->data);
4067 * The pipe fd is already in proper place and in any case
4068 * we can't move it, and we'd screw the case where we read
4069 * 'pipe' data from regular file. The trace_report reads
4070 * data from 'fd' so we need to set it directly behind the
4071 * event, where the tracing data starts.
4073 if (!perf_data__is_pipe(session->data)) {
4074 off_t offset = lseek(fd, 0, SEEK_CUR);
4076 /* setup for reading amidst mmap */
4077 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4081 size_read = trace_report(fd, &session->tevent,
4083 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4085 if (readn(fd, buf, padding) < 0) {
4086 pr_err("%s: reading input file", __func__);
4089 if (session->repipe) {
4090 int retw = write(STDOUT_FILENO, buf, padding);
4091 if (retw <= 0 || retw != padding) {
4092 pr_err("%s: repiping tracing data padding", __func__);
4097 if (size_read + padding != size) {
4098 pr_err("%s: tracing data size mismatch", __func__);
4102 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4104 return size_read + padding;
4107 int perf_event__process_build_id(struct perf_session *session,
4108 union perf_event *event)
4110 __event_process_build_id(&event->build_id,
4111 event->build_id.filename,