]> Git Repo - linux.git/blob - drivers/iio/magnetometer/rm3100-core.c
KVM: x86: fix CPUID entries returned by KVM_GET_CPUID2 ioctl
[linux.git] / drivers / iio / magnetometer / rm3100-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PNI RM3100 3-axis geomagnetic sensor driver core.
4  *
5  * Copyright (C) 2018 Song Qiang <[email protected]>
6  *
7  * User Manual available at
8  * <https://www.pnicorp.com/download/rm3100-user-manual/>
9  *
10  * TODO: event generation, pm.
11  */
12
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/triggered_buffer.h>
23 #include <linux/iio/trigger_consumer.h>
24
25 #include <asm/unaligned.h>
26
27 #include "rm3100.h"
28
29 /* Cycle Count Registers. */
30 #define RM3100_REG_CC_X                 0x05
31 #define RM3100_REG_CC_Y                 0x07
32 #define RM3100_REG_CC_Z                 0x09
33
34 /* Poll Measurement Mode register. */
35 #define RM3100_REG_POLL                 0x00
36 #define         RM3100_POLL_X           BIT(4)
37 #define         RM3100_POLL_Y           BIT(5)
38 #define         RM3100_POLL_Z           BIT(6)
39
40 /* Continuous Measurement Mode register. */
41 #define RM3100_REG_CMM                  0x01
42 #define         RM3100_CMM_START        BIT(0)
43 #define         RM3100_CMM_X            BIT(4)
44 #define         RM3100_CMM_Y            BIT(5)
45 #define         RM3100_CMM_Z            BIT(6)
46
47 /* TiMe Rate Configuration register. */
48 #define RM3100_REG_TMRC                 0x0B
49 #define RM3100_TMRC_OFFSET              0x92
50
51 /* Result Status register. */
52 #define RM3100_REG_STATUS               0x34
53 #define         RM3100_STATUS_DRDY      BIT(7)
54
55 /* Measurement result registers. */
56 #define RM3100_REG_MX2                  0x24
57 #define RM3100_REG_MY2                  0x27
58 #define RM3100_REG_MZ2                  0x2a
59
60 #define RM3100_W_REG_START              RM3100_REG_POLL
61 #define RM3100_W_REG_END                RM3100_REG_TMRC
62 #define RM3100_R_REG_START              RM3100_REG_POLL
63 #define RM3100_R_REG_END                RM3100_REG_STATUS
64 #define RM3100_V_REG_START              RM3100_REG_POLL
65 #define RM3100_V_REG_END                RM3100_REG_STATUS
66
67 /*
68  * This is computed by hand, is the sum of channel storage bits and padding
69  * bits, which is 4+4+4+12=24 in here.
70  */
71 #define RM3100_SCAN_BYTES               24
72
73 #define RM3100_CMM_AXIS_SHIFT           4
74
75 struct rm3100_data {
76         struct regmap *regmap;
77         struct completion measuring_done;
78         bool use_interrupt;
79         int conversion_time;
80         int scale;
81         u8 buffer[RM3100_SCAN_BYTES];
82         struct iio_trigger *drdy_trig;
83
84         /*
85          * This lock is for protecting the consistency of series of i2c
86          * operations, that is, to make sure a measurement process will
87          * not be interrupted by a set frequency operation, which should
88          * be taken where a series of i2c operation starts, released where
89          * the operation ends.
90          */
91         struct mutex lock;
92 };
93
94 static const struct regmap_range rm3100_readable_ranges[] = {
95         regmap_reg_range(RM3100_R_REG_START, RM3100_R_REG_END),
96 };
97
98 const struct regmap_access_table rm3100_readable_table = {
99         .yes_ranges = rm3100_readable_ranges,
100         .n_yes_ranges = ARRAY_SIZE(rm3100_readable_ranges),
101 };
102 EXPORT_SYMBOL_GPL(rm3100_readable_table);
103
104 static const struct regmap_range rm3100_writable_ranges[] = {
105         regmap_reg_range(RM3100_W_REG_START, RM3100_W_REG_END),
106 };
107
108 const struct regmap_access_table rm3100_writable_table = {
109         .yes_ranges = rm3100_writable_ranges,
110         .n_yes_ranges = ARRAY_SIZE(rm3100_writable_ranges),
111 };
112 EXPORT_SYMBOL_GPL(rm3100_writable_table);
113
114 static const struct regmap_range rm3100_volatile_ranges[] = {
115         regmap_reg_range(RM3100_V_REG_START, RM3100_V_REG_END),
116 };
117
118 const struct regmap_access_table rm3100_volatile_table = {
119         .yes_ranges = rm3100_volatile_ranges,
120         .n_yes_ranges = ARRAY_SIZE(rm3100_volatile_ranges),
121 };
122 EXPORT_SYMBOL_GPL(rm3100_volatile_table);
123
124 static irqreturn_t rm3100_thread_fn(int irq, void *d)
125 {
126         struct iio_dev *indio_dev = d;
127         struct rm3100_data *data = iio_priv(indio_dev);
128
129         /*
130          * Write operation to any register or read operation
131          * to first byte of results will clear the interrupt.
132          */
133         regmap_write(data->regmap, RM3100_REG_POLL, 0);
134
135         return IRQ_HANDLED;
136 }
137
138 static irqreturn_t rm3100_irq_handler(int irq, void *d)
139 {
140         struct iio_dev *indio_dev = d;
141         struct rm3100_data *data = iio_priv(indio_dev);
142
143         switch (indio_dev->currentmode) {
144         case INDIO_DIRECT_MODE:
145                 complete(&data->measuring_done);
146                 break;
147         case INDIO_BUFFER_TRIGGERED:
148                 iio_trigger_poll(data->drdy_trig);
149                 break;
150         default:
151                 dev_err(indio_dev->dev.parent,
152                         "device mode out of control, current mode: %d",
153                         indio_dev->currentmode);
154         }
155
156         return IRQ_WAKE_THREAD;
157 }
158
159 static int rm3100_wait_measurement(struct rm3100_data *data)
160 {
161         struct regmap *regmap = data->regmap;
162         unsigned int val;
163         int tries = 20;
164         int ret;
165
166         /*
167          * A read cycle of 400kbits i2c bus is about 20us, plus the time
168          * used for scheduling, a read cycle of fast mode of this device
169          * can reach 1.7ms, it may be possible for data to arrive just
170          * after we check the RM3100_REG_STATUS. In this case, irq_handler is
171          * called before measuring_done is reinitialized, it will wait
172          * forever for data that has already been ready.
173          * Reinitialize measuring_done before looking up makes sure we
174          * will always capture interrupt no matter when it happens.
175          */
176         if (data->use_interrupt)
177                 reinit_completion(&data->measuring_done);
178
179         ret = regmap_read(regmap, RM3100_REG_STATUS, &val);
180         if (ret < 0)
181                 return ret;
182
183         if ((val & RM3100_STATUS_DRDY) != RM3100_STATUS_DRDY) {
184                 if (data->use_interrupt) {
185                         ret = wait_for_completion_timeout(&data->measuring_done,
186                                 msecs_to_jiffies(data->conversion_time));
187                         if (!ret)
188                                 return -ETIMEDOUT;
189                 } else {
190                         do {
191                                 usleep_range(1000, 5000);
192
193                                 ret = regmap_read(regmap, RM3100_REG_STATUS,
194                                                   &val);
195                                 if (ret < 0)
196                                         return ret;
197
198                                 if (val & RM3100_STATUS_DRDY)
199                                         break;
200                         } while (--tries);
201                         if (!tries)
202                                 return -ETIMEDOUT;
203                 }
204         }
205         return 0;
206 }
207
208 static int rm3100_read_mag(struct rm3100_data *data, int idx, int *val)
209 {
210         struct regmap *regmap = data->regmap;
211         u8 buffer[3];
212         int ret;
213
214         mutex_lock(&data->lock);
215         ret = regmap_write(regmap, RM3100_REG_POLL, BIT(4 + idx));
216         if (ret < 0)
217                 goto unlock_return;
218
219         ret = rm3100_wait_measurement(data);
220         if (ret < 0)
221                 goto unlock_return;
222
223         ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * idx, buffer, 3);
224         if (ret < 0)
225                 goto unlock_return;
226         mutex_unlock(&data->lock);
227
228         *val = sign_extend32(get_unaligned_be24(&buffer[0]), 23);
229
230         return IIO_VAL_INT;
231
232 unlock_return:
233         mutex_unlock(&data->lock);
234         return ret;
235 }
236
237 #define RM3100_CHANNEL(axis, idx)                                       \
238         {                                                               \
239                 .type = IIO_MAGN,                                       \
240                 .modified = 1,                                          \
241                 .channel2 = IIO_MOD_##axis,                             \
242                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),           \
243                 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |  \
244                         BIT(IIO_CHAN_INFO_SAMP_FREQ),                   \
245                 .scan_index = idx,                                      \
246                 .scan_type = {                                          \
247                         .sign = 's',                                    \
248                         .realbits = 24,                                 \
249                         .storagebits = 32,                              \
250                         .shift = 8,                                     \
251                         .endianness = IIO_BE,                           \
252                 },                                                      \
253         }
254
255 static const struct iio_chan_spec rm3100_channels[] = {
256         RM3100_CHANNEL(X, 0),
257         RM3100_CHANNEL(Y, 1),
258         RM3100_CHANNEL(Z, 2),
259         IIO_CHAN_SOFT_TIMESTAMP(3),
260 };
261
262 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
263         "600 300 150 75 37 18 9 4.5 2.3 1.2 0.6 0.3 0.015 0.075"
264 );
265
266 static struct attribute *rm3100_attributes[] = {
267         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
268         NULL,
269 };
270
271 static const struct attribute_group rm3100_attribute_group = {
272         .attrs = rm3100_attributes,
273 };
274
275 #define RM3100_SAMP_NUM                 14
276
277 /*
278  * Frequency : rm3100_samp_rates[][0].rm3100_samp_rates[][1]Hz.
279  * Time between reading: rm3100_sam_rates[][2]ms.
280  * The first one is actually 1.7ms.
281  */
282 static const int rm3100_samp_rates[RM3100_SAMP_NUM][3] = {
283         {600, 0, 2}, {300, 0, 3}, {150, 0, 7}, {75, 0, 13}, {37, 0, 27},
284         {18, 0, 55}, {9, 0, 110}, {4, 500000, 220}, {2, 300000, 440},
285         {1, 200000, 800}, {0, 600000, 1600}, {0, 300000, 3300},
286         {0, 15000, 6700},  {0, 75000, 13000}
287 };
288
289 static int rm3100_get_samp_freq(struct rm3100_data *data, int *val, int *val2)
290 {
291         unsigned int tmp;
292         int ret;
293
294         mutex_lock(&data->lock);
295         ret = regmap_read(data->regmap, RM3100_REG_TMRC, &tmp);
296         mutex_unlock(&data->lock);
297         if (ret < 0)
298                 return ret;
299         *val = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][0];
300         *val2 = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][1];
301
302         return IIO_VAL_INT_PLUS_MICRO;
303 }
304
305 static int rm3100_set_cycle_count(struct rm3100_data *data, int val)
306 {
307         int ret;
308         u8 i;
309
310         for (i = 0; i < 3; i++) {
311                 ret = regmap_write(data->regmap, RM3100_REG_CC_X + 2 * i, val);
312                 if (ret < 0)
313                         return ret;
314         }
315
316         /*
317          * The scale of this sensor depends on the cycle count value, these
318          * three values are corresponding to the cycle count value 50, 100,
319          * 200. scale = output / gain * 10^4.
320          */
321         switch (val) {
322         case 50:
323                 data->scale = 500;
324                 break;
325         case 100:
326                 data->scale = 263;
327                 break;
328         /*
329          * case 200:
330          * This function will never be called by users' code, so here we
331          * assume that it will never get a wrong parameter.
332          */
333         default:
334                 data->scale = 133;
335         }
336
337         return 0;
338 }
339
340 static int rm3100_set_samp_freq(struct iio_dev *indio_dev, int val, int val2)
341 {
342         struct rm3100_data *data = iio_priv(indio_dev);
343         struct regmap *regmap = data->regmap;
344         unsigned int cycle_count;
345         int ret;
346         int i;
347
348         mutex_lock(&data->lock);
349         /* All cycle count registers use the same value. */
350         ret = regmap_read(regmap, RM3100_REG_CC_X, &cycle_count);
351         if (ret < 0)
352                 goto unlock_return;
353
354         for (i = 0; i < RM3100_SAMP_NUM; i++) {
355                 if (val == rm3100_samp_rates[i][0] &&
356                     val2 == rm3100_samp_rates[i][1])
357                         break;
358         }
359         if (i == RM3100_SAMP_NUM) {
360                 ret = -EINVAL;
361                 goto unlock_return;
362         }
363
364         ret = regmap_write(regmap, RM3100_REG_TMRC, i + RM3100_TMRC_OFFSET);
365         if (ret < 0)
366                 goto unlock_return;
367
368         /* Checking if cycle count registers need changing. */
369         if (val == 600 && cycle_count == 200) {
370                 ret = rm3100_set_cycle_count(data, 100);
371                 if (ret < 0)
372                         goto unlock_return;
373         } else if (val != 600 && cycle_count == 100) {
374                 ret = rm3100_set_cycle_count(data, 200);
375                 if (ret < 0)
376                         goto unlock_return;
377         }
378
379         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
380                 /* Writing TMRC registers requires CMM reset. */
381                 ret = regmap_write(regmap, RM3100_REG_CMM, 0);
382                 if (ret < 0)
383                         goto unlock_return;
384                 ret = regmap_write(data->regmap, RM3100_REG_CMM,
385                         (*indio_dev->active_scan_mask & 0x7) <<
386                         RM3100_CMM_AXIS_SHIFT | RM3100_CMM_START);
387                 if (ret < 0)
388                         goto unlock_return;
389         }
390         mutex_unlock(&data->lock);
391
392         data->conversion_time = rm3100_samp_rates[i][2] * 2;
393         return 0;
394
395 unlock_return:
396         mutex_unlock(&data->lock);
397         return ret;
398 }
399
400 static int rm3100_read_raw(struct iio_dev *indio_dev,
401                            const struct iio_chan_spec *chan,
402                            int *val, int *val2, long mask)
403 {
404         struct rm3100_data *data = iio_priv(indio_dev);
405         int ret;
406
407         switch (mask) {
408         case IIO_CHAN_INFO_RAW:
409                 ret = iio_device_claim_direct_mode(indio_dev);
410                 if (ret < 0)
411                         return ret;
412
413                 ret = rm3100_read_mag(data, chan->scan_index, val);
414                 iio_device_release_direct_mode(indio_dev);
415
416                 return ret;
417         case IIO_CHAN_INFO_SCALE:
418                 *val = 0;
419                 *val2 = data->scale;
420
421                 return IIO_VAL_INT_PLUS_MICRO;
422         case IIO_CHAN_INFO_SAMP_FREQ:
423                 return rm3100_get_samp_freq(data, val, val2);
424         default:
425                 return -EINVAL;
426         }
427 }
428
429 static int rm3100_write_raw(struct iio_dev *indio_dev,
430                             struct iio_chan_spec const *chan,
431                             int val, int val2, long mask)
432 {
433         switch (mask) {
434         case IIO_CHAN_INFO_SAMP_FREQ:
435                 return rm3100_set_samp_freq(indio_dev, val, val2);
436         default:
437                 return -EINVAL;
438         }
439 }
440
441 static const struct iio_info rm3100_info = {
442         .attrs = &rm3100_attribute_group,
443         .read_raw = rm3100_read_raw,
444         .write_raw = rm3100_write_raw,
445 };
446
447 static int rm3100_buffer_preenable(struct iio_dev *indio_dev)
448 {
449         struct rm3100_data *data = iio_priv(indio_dev);
450
451         /* Starting channels enabled. */
452         return regmap_write(data->regmap, RM3100_REG_CMM,
453                 (*indio_dev->active_scan_mask & 0x7) << RM3100_CMM_AXIS_SHIFT |
454                 RM3100_CMM_START);
455 }
456
457 static int rm3100_buffer_postdisable(struct iio_dev *indio_dev)
458 {
459         struct rm3100_data *data = iio_priv(indio_dev);
460
461         return regmap_write(data->regmap, RM3100_REG_CMM, 0);
462 }
463
464 static const struct iio_buffer_setup_ops rm3100_buffer_ops = {
465         .preenable = rm3100_buffer_preenable,
466         .postdisable = rm3100_buffer_postdisable,
467 };
468
469 static irqreturn_t rm3100_trigger_handler(int irq, void *p)
470 {
471         struct iio_poll_func *pf = p;
472         struct iio_dev *indio_dev = pf->indio_dev;
473         unsigned long scan_mask = *indio_dev->active_scan_mask;
474         unsigned int mask_len = indio_dev->masklength;
475         struct rm3100_data *data = iio_priv(indio_dev);
476         struct regmap *regmap = data->regmap;
477         int ret, i, bit;
478
479         mutex_lock(&data->lock);
480         switch (scan_mask) {
481         case BIT(0) | BIT(1) | BIT(2):
482                 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
483                 mutex_unlock(&data->lock);
484                 if (ret < 0)
485                         goto done;
486                 /* Convert XXXYYYZZZxxx to XXXxYYYxZZZx. x for paddings. */
487                 for (i = 2; i > 0; i--)
488                         memmove(data->buffer + i * 4, data->buffer + i * 3, 3);
489                 break;
490         case BIT(0) | BIT(1):
491                 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 6);
492                 mutex_unlock(&data->lock);
493                 if (ret < 0)
494                         goto done;
495                 memmove(data->buffer + 4, data->buffer + 3, 3);
496                 break;
497         case BIT(1) | BIT(2):
498                 ret = regmap_bulk_read(regmap, RM3100_REG_MY2, data->buffer, 6);
499                 mutex_unlock(&data->lock);
500                 if (ret < 0)
501                         goto done;
502                 memmove(data->buffer + 4, data->buffer + 3, 3);
503                 break;
504         case BIT(0) | BIT(2):
505                 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
506                 mutex_unlock(&data->lock);
507                 if (ret < 0)
508                         goto done;
509                 memmove(data->buffer + 4, data->buffer + 6, 3);
510                 break;
511         default:
512                 for_each_set_bit(bit, &scan_mask, mask_len) {
513                         ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * bit,
514                                                data->buffer, 3);
515                         if (ret < 0) {
516                                 mutex_unlock(&data->lock);
517                                 goto done;
518                         }
519                 }
520                 mutex_unlock(&data->lock);
521         }
522         /*
523          * Always using the same buffer so that we wouldn't need to set the
524          * paddings to 0 in case of leaking any data.
525          */
526         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
527                                            pf->timestamp);
528 done:
529         iio_trigger_notify_done(indio_dev->trig);
530
531         return IRQ_HANDLED;
532 }
533
534 int rm3100_common_probe(struct device *dev, struct regmap *regmap, int irq)
535 {
536         struct iio_dev *indio_dev;
537         struct rm3100_data *data;
538         unsigned int tmp;
539         int ret;
540
541         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
542         if (!indio_dev)
543                 return -ENOMEM;
544
545         data = iio_priv(indio_dev);
546         data->regmap = regmap;
547
548         mutex_init(&data->lock);
549
550         indio_dev->name = "rm3100";
551         indio_dev->info = &rm3100_info;
552         indio_dev->channels = rm3100_channels;
553         indio_dev->num_channels = ARRAY_SIZE(rm3100_channels);
554         indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_TRIGGERED;
555         indio_dev->currentmode = INDIO_DIRECT_MODE;
556
557         if (!irq)
558                 data->use_interrupt = false;
559         else {
560                 data->use_interrupt = true;
561
562                 init_completion(&data->measuring_done);
563                 ret = devm_request_threaded_irq(dev,
564                                                 irq,
565                                                 rm3100_irq_handler,
566                                                 rm3100_thread_fn,
567                                                 IRQF_TRIGGER_HIGH |
568                                                 IRQF_ONESHOT,
569                                                 indio_dev->name,
570                                                 indio_dev);
571                 if (ret < 0) {
572                         dev_err(dev, "request irq line failed.\n");
573                         return ret;
574                 }
575
576                 data->drdy_trig = devm_iio_trigger_alloc(dev, "%s-drdy%d",
577                                                          indio_dev->name,
578                                                          indio_dev->id);
579                 if (!data->drdy_trig)
580                         return -ENOMEM;
581
582                 data->drdy_trig->dev.parent = dev;
583                 ret = devm_iio_trigger_register(dev, data->drdy_trig);
584                 if (ret < 0)
585                         return ret;
586         }
587
588         ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
589                                               &iio_pollfunc_store_time,
590                                               rm3100_trigger_handler,
591                                               &rm3100_buffer_ops);
592         if (ret < 0)
593                 return ret;
594
595         ret = regmap_read(regmap, RM3100_REG_TMRC, &tmp);
596         if (ret < 0)
597                 return ret;
598         /* Initializing max wait time, which is double conversion time. */
599         data->conversion_time = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][2]
600                                 * 2;
601
602         /* Cycle count values may not be what we want. */
603         if ((tmp - RM3100_TMRC_OFFSET) == 0)
604                 rm3100_set_cycle_count(data, 100);
605         else
606                 rm3100_set_cycle_count(data, 200);
607
608         return devm_iio_device_register(dev, indio_dev);
609 }
610 EXPORT_SYMBOL_GPL(rm3100_common_probe);
611
612 MODULE_AUTHOR("Song Qiang <[email protected]>");
613 MODULE_DESCRIPTION("PNI RM3100 3-axis magnetometer i2c driver");
614 MODULE_LICENSE("GPL v2");
This page took 0.071096 seconds and 4 git commands to generate.