1 // SPDX-License-Identifier: GPL-2.0
3 * PNI RM3100 3-axis geomagnetic sensor driver core.
7 * User Manual available at
8 * <https://www.pnicorp.com/download/rm3100-user-manual/>
10 * TODO: event generation, pm.
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/triggered_buffer.h>
23 #include <linux/iio/trigger_consumer.h>
25 #include <asm/unaligned.h>
29 /* Cycle Count Registers. */
30 #define RM3100_REG_CC_X 0x05
31 #define RM3100_REG_CC_Y 0x07
32 #define RM3100_REG_CC_Z 0x09
34 /* Poll Measurement Mode register. */
35 #define RM3100_REG_POLL 0x00
36 #define RM3100_POLL_X BIT(4)
37 #define RM3100_POLL_Y BIT(5)
38 #define RM3100_POLL_Z BIT(6)
40 /* Continuous Measurement Mode register. */
41 #define RM3100_REG_CMM 0x01
42 #define RM3100_CMM_START BIT(0)
43 #define RM3100_CMM_X BIT(4)
44 #define RM3100_CMM_Y BIT(5)
45 #define RM3100_CMM_Z BIT(6)
47 /* TiMe Rate Configuration register. */
48 #define RM3100_REG_TMRC 0x0B
49 #define RM3100_TMRC_OFFSET 0x92
51 /* Result Status register. */
52 #define RM3100_REG_STATUS 0x34
53 #define RM3100_STATUS_DRDY BIT(7)
55 /* Measurement result registers. */
56 #define RM3100_REG_MX2 0x24
57 #define RM3100_REG_MY2 0x27
58 #define RM3100_REG_MZ2 0x2a
60 #define RM3100_W_REG_START RM3100_REG_POLL
61 #define RM3100_W_REG_END RM3100_REG_TMRC
62 #define RM3100_R_REG_START RM3100_REG_POLL
63 #define RM3100_R_REG_END RM3100_REG_STATUS
64 #define RM3100_V_REG_START RM3100_REG_POLL
65 #define RM3100_V_REG_END RM3100_REG_STATUS
68 * This is computed by hand, is the sum of channel storage bits and padding
69 * bits, which is 4+4+4+12=24 in here.
71 #define RM3100_SCAN_BYTES 24
73 #define RM3100_CMM_AXIS_SHIFT 4
76 struct regmap *regmap;
77 struct completion measuring_done;
81 u8 buffer[RM3100_SCAN_BYTES];
82 struct iio_trigger *drdy_trig;
85 * This lock is for protecting the consistency of series of i2c
86 * operations, that is, to make sure a measurement process will
87 * not be interrupted by a set frequency operation, which should
88 * be taken where a series of i2c operation starts, released where
94 static const struct regmap_range rm3100_readable_ranges[] = {
95 regmap_reg_range(RM3100_R_REG_START, RM3100_R_REG_END),
98 const struct regmap_access_table rm3100_readable_table = {
99 .yes_ranges = rm3100_readable_ranges,
100 .n_yes_ranges = ARRAY_SIZE(rm3100_readable_ranges),
102 EXPORT_SYMBOL_GPL(rm3100_readable_table);
104 static const struct regmap_range rm3100_writable_ranges[] = {
105 regmap_reg_range(RM3100_W_REG_START, RM3100_W_REG_END),
108 const struct regmap_access_table rm3100_writable_table = {
109 .yes_ranges = rm3100_writable_ranges,
110 .n_yes_ranges = ARRAY_SIZE(rm3100_writable_ranges),
112 EXPORT_SYMBOL_GPL(rm3100_writable_table);
114 static const struct regmap_range rm3100_volatile_ranges[] = {
115 regmap_reg_range(RM3100_V_REG_START, RM3100_V_REG_END),
118 const struct regmap_access_table rm3100_volatile_table = {
119 .yes_ranges = rm3100_volatile_ranges,
120 .n_yes_ranges = ARRAY_SIZE(rm3100_volatile_ranges),
122 EXPORT_SYMBOL_GPL(rm3100_volatile_table);
124 static irqreturn_t rm3100_thread_fn(int irq, void *d)
126 struct iio_dev *indio_dev = d;
127 struct rm3100_data *data = iio_priv(indio_dev);
130 * Write operation to any register or read operation
131 * to first byte of results will clear the interrupt.
133 regmap_write(data->regmap, RM3100_REG_POLL, 0);
138 static irqreturn_t rm3100_irq_handler(int irq, void *d)
140 struct iio_dev *indio_dev = d;
141 struct rm3100_data *data = iio_priv(indio_dev);
143 switch (indio_dev->currentmode) {
144 case INDIO_DIRECT_MODE:
145 complete(&data->measuring_done);
147 case INDIO_BUFFER_TRIGGERED:
148 iio_trigger_poll(data->drdy_trig);
151 dev_err(indio_dev->dev.parent,
152 "device mode out of control, current mode: %d",
153 indio_dev->currentmode);
156 return IRQ_WAKE_THREAD;
159 static int rm3100_wait_measurement(struct rm3100_data *data)
161 struct regmap *regmap = data->regmap;
167 * A read cycle of 400kbits i2c bus is about 20us, plus the time
168 * used for scheduling, a read cycle of fast mode of this device
169 * can reach 1.7ms, it may be possible for data to arrive just
170 * after we check the RM3100_REG_STATUS. In this case, irq_handler is
171 * called before measuring_done is reinitialized, it will wait
172 * forever for data that has already been ready.
173 * Reinitialize measuring_done before looking up makes sure we
174 * will always capture interrupt no matter when it happens.
176 if (data->use_interrupt)
177 reinit_completion(&data->measuring_done);
179 ret = regmap_read(regmap, RM3100_REG_STATUS, &val);
183 if ((val & RM3100_STATUS_DRDY) != RM3100_STATUS_DRDY) {
184 if (data->use_interrupt) {
185 ret = wait_for_completion_timeout(&data->measuring_done,
186 msecs_to_jiffies(data->conversion_time));
191 usleep_range(1000, 5000);
193 ret = regmap_read(regmap, RM3100_REG_STATUS,
198 if (val & RM3100_STATUS_DRDY)
208 static int rm3100_read_mag(struct rm3100_data *data, int idx, int *val)
210 struct regmap *regmap = data->regmap;
214 mutex_lock(&data->lock);
215 ret = regmap_write(regmap, RM3100_REG_POLL, BIT(4 + idx));
219 ret = rm3100_wait_measurement(data);
223 ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * idx, buffer, 3);
226 mutex_unlock(&data->lock);
228 *val = sign_extend32(get_unaligned_be24(&buffer[0]), 23);
233 mutex_unlock(&data->lock);
237 #define RM3100_CHANNEL(axis, idx) \
241 .channel2 = IIO_MOD_##axis, \
242 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
243 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
244 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
251 .endianness = IIO_BE, \
255 static const struct iio_chan_spec rm3100_channels[] = {
256 RM3100_CHANNEL(X, 0),
257 RM3100_CHANNEL(Y, 1),
258 RM3100_CHANNEL(Z, 2),
259 IIO_CHAN_SOFT_TIMESTAMP(3),
262 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
263 "600 300 150 75 37 18 9 4.5 2.3 1.2 0.6 0.3 0.015 0.075"
266 static struct attribute *rm3100_attributes[] = {
267 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
271 static const struct attribute_group rm3100_attribute_group = {
272 .attrs = rm3100_attributes,
275 #define RM3100_SAMP_NUM 14
278 * Frequency : rm3100_samp_rates[][0].rm3100_samp_rates[][1]Hz.
279 * Time between reading: rm3100_sam_rates[][2]ms.
280 * The first one is actually 1.7ms.
282 static const int rm3100_samp_rates[RM3100_SAMP_NUM][3] = {
283 {600, 0, 2}, {300, 0, 3}, {150, 0, 7}, {75, 0, 13}, {37, 0, 27},
284 {18, 0, 55}, {9, 0, 110}, {4, 500000, 220}, {2, 300000, 440},
285 {1, 200000, 800}, {0, 600000, 1600}, {0, 300000, 3300},
286 {0, 15000, 6700}, {0, 75000, 13000}
289 static int rm3100_get_samp_freq(struct rm3100_data *data, int *val, int *val2)
294 mutex_lock(&data->lock);
295 ret = regmap_read(data->regmap, RM3100_REG_TMRC, &tmp);
296 mutex_unlock(&data->lock);
299 *val = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][0];
300 *val2 = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][1];
302 return IIO_VAL_INT_PLUS_MICRO;
305 static int rm3100_set_cycle_count(struct rm3100_data *data, int val)
310 for (i = 0; i < 3; i++) {
311 ret = regmap_write(data->regmap, RM3100_REG_CC_X + 2 * i, val);
317 * The scale of this sensor depends on the cycle count value, these
318 * three values are corresponding to the cycle count value 50, 100,
319 * 200. scale = output / gain * 10^4.
330 * This function will never be called by users' code, so here we
331 * assume that it will never get a wrong parameter.
340 static int rm3100_set_samp_freq(struct iio_dev *indio_dev, int val, int val2)
342 struct rm3100_data *data = iio_priv(indio_dev);
343 struct regmap *regmap = data->regmap;
344 unsigned int cycle_count;
348 mutex_lock(&data->lock);
349 /* All cycle count registers use the same value. */
350 ret = regmap_read(regmap, RM3100_REG_CC_X, &cycle_count);
354 for (i = 0; i < RM3100_SAMP_NUM; i++) {
355 if (val == rm3100_samp_rates[i][0] &&
356 val2 == rm3100_samp_rates[i][1])
359 if (i == RM3100_SAMP_NUM) {
364 ret = regmap_write(regmap, RM3100_REG_TMRC, i + RM3100_TMRC_OFFSET);
368 /* Checking if cycle count registers need changing. */
369 if (val == 600 && cycle_count == 200) {
370 ret = rm3100_set_cycle_count(data, 100);
373 } else if (val != 600 && cycle_count == 100) {
374 ret = rm3100_set_cycle_count(data, 200);
379 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
380 /* Writing TMRC registers requires CMM reset. */
381 ret = regmap_write(regmap, RM3100_REG_CMM, 0);
384 ret = regmap_write(data->regmap, RM3100_REG_CMM,
385 (*indio_dev->active_scan_mask & 0x7) <<
386 RM3100_CMM_AXIS_SHIFT | RM3100_CMM_START);
390 mutex_unlock(&data->lock);
392 data->conversion_time = rm3100_samp_rates[i][2] * 2;
396 mutex_unlock(&data->lock);
400 static int rm3100_read_raw(struct iio_dev *indio_dev,
401 const struct iio_chan_spec *chan,
402 int *val, int *val2, long mask)
404 struct rm3100_data *data = iio_priv(indio_dev);
408 case IIO_CHAN_INFO_RAW:
409 ret = iio_device_claim_direct_mode(indio_dev);
413 ret = rm3100_read_mag(data, chan->scan_index, val);
414 iio_device_release_direct_mode(indio_dev);
417 case IIO_CHAN_INFO_SCALE:
421 return IIO_VAL_INT_PLUS_MICRO;
422 case IIO_CHAN_INFO_SAMP_FREQ:
423 return rm3100_get_samp_freq(data, val, val2);
429 static int rm3100_write_raw(struct iio_dev *indio_dev,
430 struct iio_chan_spec const *chan,
431 int val, int val2, long mask)
434 case IIO_CHAN_INFO_SAMP_FREQ:
435 return rm3100_set_samp_freq(indio_dev, val, val2);
441 static const struct iio_info rm3100_info = {
442 .attrs = &rm3100_attribute_group,
443 .read_raw = rm3100_read_raw,
444 .write_raw = rm3100_write_raw,
447 static int rm3100_buffer_preenable(struct iio_dev *indio_dev)
449 struct rm3100_data *data = iio_priv(indio_dev);
451 /* Starting channels enabled. */
452 return regmap_write(data->regmap, RM3100_REG_CMM,
453 (*indio_dev->active_scan_mask & 0x7) << RM3100_CMM_AXIS_SHIFT |
457 static int rm3100_buffer_postdisable(struct iio_dev *indio_dev)
459 struct rm3100_data *data = iio_priv(indio_dev);
461 return regmap_write(data->regmap, RM3100_REG_CMM, 0);
464 static const struct iio_buffer_setup_ops rm3100_buffer_ops = {
465 .preenable = rm3100_buffer_preenable,
466 .postdisable = rm3100_buffer_postdisable,
469 static irqreturn_t rm3100_trigger_handler(int irq, void *p)
471 struct iio_poll_func *pf = p;
472 struct iio_dev *indio_dev = pf->indio_dev;
473 unsigned long scan_mask = *indio_dev->active_scan_mask;
474 unsigned int mask_len = indio_dev->masklength;
475 struct rm3100_data *data = iio_priv(indio_dev);
476 struct regmap *regmap = data->regmap;
479 mutex_lock(&data->lock);
481 case BIT(0) | BIT(1) | BIT(2):
482 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
483 mutex_unlock(&data->lock);
486 /* Convert XXXYYYZZZxxx to XXXxYYYxZZZx. x for paddings. */
487 for (i = 2; i > 0; i--)
488 memmove(data->buffer + i * 4, data->buffer + i * 3, 3);
490 case BIT(0) | BIT(1):
491 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 6);
492 mutex_unlock(&data->lock);
495 memmove(data->buffer + 4, data->buffer + 3, 3);
497 case BIT(1) | BIT(2):
498 ret = regmap_bulk_read(regmap, RM3100_REG_MY2, data->buffer, 6);
499 mutex_unlock(&data->lock);
502 memmove(data->buffer + 4, data->buffer + 3, 3);
504 case BIT(0) | BIT(2):
505 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
506 mutex_unlock(&data->lock);
509 memmove(data->buffer + 4, data->buffer + 6, 3);
512 for_each_set_bit(bit, &scan_mask, mask_len) {
513 ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * bit,
516 mutex_unlock(&data->lock);
520 mutex_unlock(&data->lock);
523 * Always using the same buffer so that we wouldn't need to set the
524 * paddings to 0 in case of leaking any data.
526 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
529 iio_trigger_notify_done(indio_dev->trig);
534 int rm3100_common_probe(struct device *dev, struct regmap *regmap, int irq)
536 struct iio_dev *indio_dev;
537 struct rm3100_data *data;
541 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
545 data = iio_priv(indio_dev);
546 data->regmap = regmap;
548 mutex_init(&data->lock);
550 indio_dev->name = "rm3100";
551 indio_dev->info = &rm3100_info;
552 indio_dev->channels = rm3100_channels;
553 indio_dev->num_channels = ARRAY_SIZE(rm3100_channels);
554 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_TRIGGERED;
555 indio_dev->currentmode = INDIO_DIRECT_MODE;
558 data->use_interrupt = false;
560 data->use_interrupt = true;
562 init_completion(&data->measuring_done);
563 ret = devm_request_threaded_irq(dev,
572 dev_err(dev, "request irq line failed.\n");
576 data->drdy_trig = devm_iio_trigger_alloc(dev, "%s-drdy%d",
579 if (!data->drdy_trig)
582 data->drdy_trig->dev.parent = dev;
583 ret = devm_iio_trigger_register(dev, data->drdy_trig);
588 ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
589 &iio_pollfunc_store_time,
590 rm3100_trigger_handler,
595 ret = regmap_read(regmap, RM3100_REG_TMRC, &tmp);
598 /* Initializing max wait time, which is double conversion time. */
599 data->conversion_time = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][2]
602 /* Cycle count values may not be what we want. */
603 if ((tmp - RM3100_TMRC_OFFSET) == 0)
604 rm3100_set_cycle_count(data, 100);
606 rm3100_set_cycle_count(data, 200);
608 return devm_iio_device_register(dev, indio_dev);
610 EXPORT_SYMBOL_GPL(rm3100_common_probe);
613 MODULE_DESCRIPTION("PNI RM3100 3-axis magnetometer i2c driver");
614 MODULE_LICENSE("GPL v2");