1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
30 struct follow_page_context {
31 struct dev_pagemap *pgmap;
32 unsigned int page_mask;
35 static inline void sanity_check_pinned_pages(struct page **pages,
38 if (!IS_ENABLED(CONFIG_DEBUG_VM))
42 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 * can no longer turn them possibly shared and PageAnonExclusive() will
44 * stick around until the page is freed.
46 * We'd like to verify that our pinned anonymous pages are still mapped
47 * exclusively. The issue with anon THP is that we don't know how
48 * they are/were mapped when pinning them. However, for anon
49 * THP we can assume that either the given page (PTE-mapped THP) or
50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 * neither is the case, there is certainly something wrong.
53 for (; npages; npages--, pages++) {
54 struct page *page = *pages;
55 struct folio *folio = page_folio(page);
57 if (is_zero_page(page) ||
58 !folio_test_anon(folio))
60 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
63 /* Either a PTE-mapped or a PMD-mapped THP. */
64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
65 !PageAnonExclusive(page), page);
70 * Return the folio with ref appropriately incremented,
71 * or NULL if that failed.
73 static inline struct folio *try_get_folio(struct page *page, int refs)
78 folio = page_folio(page);
79 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
81 if (unlikely(!folio_ref_try_add(folio, refs)))
85 * At this point we have a stable reference to the folio; but it
86 * could be that between calling page_folio() and the refcount
87 * increment, the folio was split, in which case we'd end up
88 * holding a reference on a folio that has nothing to do with the page
89 * we were given anymore.
90 * So now that the folio is stable, recheck that the page still
91 * belongs to this folio.
93 if (unlikely(page_folio(page) != folio)) {
94 if (!put_devmap_managed_folio_refs(folio, refs))
95 folio_put_refs(folio, refs);
102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
104 if (flags & FOLL_PIN) {
105 if (is_zero_folio(folio))
107 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108 if (folio_test_large(folio))
109 atomic_sub(refs, &folio->_pincount);
111 refs *= GUP_PIN_COUNTING_BIAS;
114 if (!put_devmap_managed_folio_refs(folio, refs))
115 folio_put_refs(folio, refs);
119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
120 * @folio: pointer to folio to be grabbed
121 * @refs: the value to (effectively) add to the folio's refcount
122 * @flags: gup flags: these are the FOLL_* flag values
124 * This might not do anything at all, depending on the flags argument.
126 * "grab" names in this file mean, "look at flags to decide whether to use
127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
133 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
138 * It is called when we have a stable reference for the folio, typically in
141 int __must_check try_grab_folio(struct folio *folio, int refs,
144 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
147 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
150 if (flags & FOLL_GET)
151 folio_ref_add(folio, refs);
152 else if (flags & FOLL_PIN) {
154 * Don't take a pin on the zero page - it's not going anywhere
155 * and it is used in a *lot* of places.
157 if (is_zero_folio(folio))
161 * Increment the normal page refcount field at least once,
162 * so that the page really is pinned.
164 if (folio_test_large(folio)) {
165 folio_ref_add(folio, refs);
166 atomic_add(refs, &folio->_pincount);
168 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
178 * unpin_user_page() - release a dma-pinned page
179 * @page: pointer to page to be released
181 * Pages that were pinned via pin_user_pages*() must be released via either
182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
183 * that such pages can be separately tracked and uniquely handled. In
184 * particular, interactions with RDMA and filesystems need special handling.
186 void unpin_user_page(struct page *page)
188 sanity_check_pinned_pages(&page, 1);
189 gup_put_folio(page_folio(page), 1, FOLL_PIN);
191 EXPORT_SYMBOL(unpin_user_page);
194 * unpin_folio() - release a dma-pinned folio
195 * @folio: pointer to folio to be released
197 * Folios that were pinned via memfd_pin_folios() or other similar routines
198 * must be released either using unpin_folio() or unpin_folios().
200 void unpin_folio(struct folio *folio)
202 gup_put_folio(folio, 1, FOLL_PIN);
204 EXPORT_SYMBOL_GPL(unpin_folio);
207 * folio_add_pin - Try to get an additional pin on a pinned folio
208 * @folio: The folio to be pinned
210 * Get an additional pin on a folio we already have a pin on. Makes no change
211 * if the folio is a zero_page.
213 void folio_add_pin(struct folio *folio)
215 if (is_zero_folio(folio))
219 * Similar to try_grab_folio(): be sure to *also* increment the normal
220 * page refcount field at least once, so that the page really is
223 if (folio_test_large(folio)) {
224 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
225 folio_ref_inc(folio);
226 atomic_inc(&folio->_pincount);
228 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
233 static inline struct folio *gup_folio_range_next(struct page *start,
234 unsigned long npages, unsigned long i, unsigned int *ntails)
236 struct page *next = nth_page(start, i);
237 struct folio *folio = page_folio(next);
240 if (folio_test_large(folio))
241 nr = min_t(unsigned int, npages - i,
242 folio_nr_pages(folio) - folio_page_idx(folio, next));
248 static inline struct folio *gup_folio_next(struct page **list,
249 unsigned long npages, unsigned long i, unsigned int *ntails)
251 struct folio *folio = page_folio(list[i]);
254 for (nr = i + 1; nr < npages; nr++) {
255 if (page_folio(list[nr]) != folio)
264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
265 * @pages: array of pages to be maybe marked dirty, and definitely released.
266 * @npages: number of pages in the @pages array.
267 * @make_dirty: whether to mark the pages dirty
269 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
270 * variants called on that page.
272 * For each page in the @pages array, make that page (or its head page, if a
273 * compound page) dirty, if @make_dirty is true, and if the page was previously
274 * listed as clean. In any case, releases all pages using unpin_user_page(),
275 * possibly via unpin_user_pages(), for the non-dirty case.
277 * Please see the unpin_user_page() documentation for details.
279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
280 * required, then the caller should a) verify that this is really correct,
281 * because _lock() is usually required, and b) hand code it:
282 * set_page_dirty_lock(), unpin_user_page().
285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
293 unpin_user_pages(pages, npages);
297 sanity_check_pinned_pages(pages, npages);
298 for (i = 0; i < npages; i += nr) {
299 folio = gup_folio_next(pages, npages, i, &nr);
301 * Checking PageDirty at this point may race with
302 * clear_page_dirty_for_io(), but that's OK. Two key
305 * 1) This code sees the page as already dirty, so it
306 * skips the call to set_page_dirty(). That could happen
307 * because clear_page_dirty_for_io() called
308 * folio_mkclean(), followed by set_page_dirty().
309 * However, now the page is going to get written back,
310 * which meets the original intention of setting it
311 * dirty, so all is well: clear_page_dirty_for_io() goes
312 * on to call TestClearPageDirty(), and write the page
315 * 2) This code sees the page as clean, so it calls
316 * set_page_dirty(). The page stays dirty, despite being
317 * written back, so it gets written back again in the
318 * next writeback cycle. This is harmless.
320 if (!folio_test_dirty(folio)) {
322 folio_mark_dirty(folio);
325 gup_put_folio(folio, nr, FOLL_PIN);
328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
331 * unpin_user_page_range_dirty_lock() - release and optionally dirty
332 * gup-pinned page range
334 * @page: the starting page of a range maybe marked dirty, and definitely released.
335 * @npages: number of consecutive pages to release.
336 * @make_dirty: whether to mark the pages dirty
338 * "gup-pinned page range" refers to a range of pages that has had one of the
339 * pin_user_pages() variants called on that page.
341 * For the page ranges defined by [page .. page+npages], make that range (or
342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343 * page range was previously listed as clean.
345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346 * required, then the caller should a) verify that this is really correct,
347 * because _lock() is usually required, and b) hand code it:
348 * set_page_dirty_lock(), unpin_user_page().
351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
358 for (i = 0; i < npages; i += nr) {
359 folio = gup_folio_range_next(page, npages, i, &nr);
360 if (make_dirty && !folio_test_dirty(folio)) {
362 folio_mark_dirty(folio);
365 gup_put_folio(folio, nr, FOLL_PIN);
368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
377 * Don't perform any sanity checks because we might have raced with
378 * fork() and some anonymous pages might now actually be shared --
379 * which is why we're unpinning after all.
381 for (i = 0; i < npages; i += nr) {
382 folio = gup_folio_next(pages, npages, i, &nr);
383 gup_put_folio(folio, nr, FOLL_PIN);
388 * unpin_user_pages() - release an array of gup-pinned pages.
389 * @pages: array of pages to be marked dirty and released.
390 * @npages: number of pages in the @pages array.
392 * For each page in the @pages array, release the page using unpin_user_page().
394 * Please see the unpin_user_page() documentation for details.
396 void unpin_user_pages(struct page **pages, unsigned long npages)
403 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 * leaving them pinned), but probably not. More likely, gup/pup returned
405 * a hard -ERRNO error to the caller, who erroneously passed it here.
407 if (WARN_ON(IS_ERR_VALUE(npages)))
410 sanity_check_pinned_pages(pages, npages);
411 for (i = 0; i < npages; i += nr) {
412 folio = gup_folio_next(pages, npages, i, &nr);
413 gup_put_folio(folio, nr, FOLL_PIN);
416 EXPORT_SYMBOL(unpin_user_pages);
419 * unpin_folios() - release an array of gup-pinned folios.
420 * @folios: array of folios to be marked dirty and released.
421 * @nfolios: number of folios in the @folios array.
423 * For each folio in the @folios array, release the folio using gup_put_folio.
425 * Please see the unpin_folio() documentation for details.
427 void unpin_folios(struct folio **folios, unsigned long nfolios)
429 unsigned long i = 0, j;
432 * If this WARN_ON() fires, then the system *might* be leaking folios
433 * (by leaving them pinned), but probably not. More likely, gup/pup
434 * returned a hard -ERRNO error to the caller, who erroneously passed
437 if (WARN_ON(IS_ERR_VALUE(nfolios)))
440 while (i < nfolios) {
441 for (j = i + 1; j < nfolios; j++)
442 if (folios[i] != folios[j])
446 gup_put_folio(folios[i], j - i, FOLL_PIN);
450 EXPORT_SYMBOL_GPL(unpin_folios);
453 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
454 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
455 * cache bouncing on large SMP machines for concurrent pinned gups.
457 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
459 if (!test_bit(MMF_HAS_PINNED, mm_flags))
460 set_bit(MMF_HAS_PINNED, mm_flags);
465 #ifdef CONFIG_HAVE_GUP_FAST
466 static int record_subpages(struct page *page, unsigned long sz,
467 unsigned long addr, unsigned long end,
470 struct page *start_page;
473 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
474 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
475 pages[nr] = nth_page(start_page, nr);
481 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
482 * @page: pointer to page to be grabbed
483 * @refs: the value to (effectively) add to the folio's refcount
484 * @flags: gup flags: these are the FOLL_* flag values.
486 * "grab" names in this file mean, "look at flags to decide whether to use
487 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
489 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
490 * same time. (That's true throughout the get_user_pages*() and
491 * pin_user_pages*() APIs.) Cases:
493 * FOLL_GET: folio's refcount will be incremented by @refs.
495 * FOLL_PIN on large folios: folio's refcount will be incremented by
496 * @refs, and its pincount will be incremented by @refs.
498 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
499 * @refs * GUP_PIN_COUNTING_BIAS.
501 * Return: The folio containing @page (with refcount appropriately
502 * incremented) for success, or NULL upon failure. If neither FOLL_GET
503 * nor FOLL_PIN was set, that's considered failure, and furthermore,
504 * a likely bug in the caller, so a warning is also emitted.
506 * It uses add ref unless zero to elevate the folio refcount and must be called
509 static struct folio *try_grab_folio_fast(struct page *page, int refs,
514 /* Raise warn if it is not called in fast GUP */
515 VM_WARN_ON_ONCE(!irqs_disabled());
517 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
520 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
523 if (flags & FOLL_GET)
524 return try_get_folio(page, refs);
526 /* FOLL_PIN is set */
529 * Don't take a pin on the zero page - it's not going anywhere
530 * and it is used in a *lot* of places.
532 if (is_zero_page(page))
533 return page_folio(page);
535 folio = try_get_folio(page, refs);
540 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
541 * right zone, so fail and let the caller fall back to the slow
544 if (unlikely((flags & FOLL_LONGTERM) &&
545 !folio_is_longterm_pinnable(folio))) {
546 if (!put_devmap_managed_folio_refs(folio, refs))
547 folio_put_refs(folio, refs);
552 * When pinning a large folio, use an exact count to track it.
554 * However, be sure to *also* increment the normal folio
555 * refcount field at least once, so that the folio really
556 * is pinned. That's why the refcount from the earlier
557 * try_get_folio() is left intact.
559 if (folio_test_large(folio))
560 atomic_add(refs, &folio->_pincount);
563 refs * (GUP_PIN_COUNTING_BIAS - 1));
565 * Adjust the pincount before re-checking the PTE for changes.
566 * This is essentially a smp_mb() and is paired with a memory
567 * barrier in folio_try_share_anon_rmap_*().
569 smp_mb__after_atomic();
571 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
575 #endif /* CONFIG_HAVE_GUP_FAST */
577 static struct page *no_page_table(struct vm_area_struct *vma,
578 unsigned int flags, unsigned long address)
580 if (!(flags & FOLL_DUMP))
584 * When core dumping, we don't want to allocate unnecessary pages or
585 * page tables. Return error instead of NULL to skip handle_mm_fault,
586 * then get_dump_page() will return NULL to leave a hole in the dump.
587 * But we can only make this optimization where a hole would surely
588 * be zero-filled if handle_mm_fault() actually did handle it.
590 if (is_vm_hugetlb_page(vma)) {
591 struct hstate *h = hstate_vma(vma);
593 if (!hugetlbfs_pagecache_present(h, vma, address))
594 return ERR_PTR(-EFAULT);
595 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
596 return ERR_PTR(-EFAULT);
602 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
603 static struct page *follow_huge_pud(struct vm_area_struct *vma,
604 unsigned long addr, pud_t *pudp,
605 int flags, struct follow_page_context *ctx)
607 struct mm_struct *mm = vma->vm_mm;
610 unsigned long pfn = pud_pfn(pud);
613 assert_spin_locked(pud_lockptr(mm, pudp));
615 if ((flags & FOLL_WRITE) && !pud_write(pud))
618 if (!pud_present(pud))
621 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
623 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
626 * device mapped pages can only be returned if the caller
627 * will manage the page reference count.
629 * At least one of FOLL_GET | FOLL_PIN must be set, so
632 if (!(flags & (FOLL_GET | FOLL_PIN)))
633 return ERR_PTR(-EEXIST);
635 if (flags & FOLL_TOUCH)
636 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
638 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
640 return ERR_PTR(-EFAULT);
643 page = pfn_to_page(pfn);
645 if (!pud_devmap(pud) && !pud_write(pud) &&
646 gup_must_unshare(vma, flags, page))
647 return ERR_PTR(-EMLINK);
649 ret = try_grab_folio(page_folio(page), 1, flags);
653 ctx->page_mask = HPAGE_PUD_NR - 1;
658 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
659 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
660 struct vm_area_struct *vma,
663 /* If the pmd is writable, we can write to the page. */
667 /* Maybe FOLL_FORCE is set to override it? */
668 if (!(flags & FOLL_FORCE))
671 /* But FOLL_FORCE has no effect on shared mappings */
672 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
675 /* ... or read-only private ones */
676 if (!(vma->vm_flags & VM_MAYWRITE))
679 /* ... or already writable ones that just need to take a write fault */
680 if (vma->vm_flags & VM_WRITE)
684 * See can_change_pte_writable(): we broke COW and could map the page
685 * writable if we have an exclusive anonymous page ...
687 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
690 /* ... and a write-fault isn't required for other reasons. */
691 if (pmd_needs_soft_dirty_wp(vma, pmd))
693 return !userfaultfd_huge_pmd_wp(vma, pmd);
696 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
697 unsigned long addr, pmd_t *pmd,
699 struct follow_page_context *ctx)
701 struct mm_struct *mm = vma->vm_mm;
706 assert_spin_locked(pmd_lockptr(mm, pmd));
708 page = pmd_page(pmdval);
709 if ((flags & FOLL_WRITE) &&
710 !can_follow_write_pmd(pmdval, page, vma, flags))
713 /* Avoid dumping huge zero page */
714 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
715 return ERR_PTR(-EFAULT);
717 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
720 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
721 return ERR_PTR(-EMLINK);
723 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
724 !PageAnonExclusive(page), page);
726 ret = try_grab_folio(page_folio(page), 1, flags);
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
732 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
733 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
735 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
736 ctx->page_mask = HPAGE_PMD_NR - 1;
741 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
742 static struct page *follow_huge_pud(struct vm_area_struct *vma,
743 unsigned long addr, pud_t *pudp,
744 int flags, struct follow_page_context *ctx)
749 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
750 unsigned long addr, pmd_t *pmd,
752 struct follow_page_context *ctx)
756 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
758 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
759 pte_t *pte, unsigned int flags)
761 if (flags & FOLL_TOUCH) {
762 pte_t orig_entry = ptep_get(pte);
763 pte_t entry = orig_entry;
765 if (flags & FOLL_WRITE)
766 entry = pte_mkdirty(entry);
767 entry = pte_mkyoung(entry);
769 if (!pte_same(orig_entry, entry)) {
770 set_pte_at(vma->vm_mm, address, pte, entry);
771 update_mmu_cache(vma, address, pte);
775 /* Proper page table entry exists, but no corresponding struct page */
779 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
780 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
781 struct vm_area_struct *vma,
784 /* If the pte is writable, we can write to the page. */
788 /* Maybe FOLL_FORCE is set to override it? */
789 if (!(flags & FOLL_FORCE))
792 /* But FOLL_FORCE has no effect on shared mappings */
793 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
796 /* ... or read-only private ones */
797 if (!(vma->vm_flags & VM_MAYWRITE))
800 /* ... or already writable ones that just need to take a write fault */
801 if (vma->vm_flags & VM_WRITE)
805 * See can_change_pte_writable(): we broke COW and could map the page
806 * writable if we have an exclusive anonymous page ...
808 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
811 /* ... and a write-fault isn't required for other reasons. */
812 if (pte_needs_soft_dirty_wp(vma, pte))
814 return !userfaultfd_pte_wp(vma, pte);
817 static struct page *follow_page_pte(struct vm_area_struct *vma,
818 unsigned long address, pmd_t *pmd, unsigned int flags,
819 struct dev_pagemap **pgmap)
821 struct mm_struct *mm = vma->vm_mm;
827 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
828 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
829 (FOLL_PIN | FOLL_GET)))
830 return ERR_PTR(-EINVAL);
832 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
834 return no_page_table(vma, flags, address);
835 pte = ptep_get(ptep);
836 if (!pte_present(pte))
838 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
841 page = vm_normal_page(vma, address, pte);
844 * We only care about anon pages in can_follow_write_pte() and don't
845 * have to worry about pte_devmap() because they are never anon.
847 if ((flags & FOLL_WRITE) &&
848 !can_follow_write_pte(pte, page, vma, flags)) {
853 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
855 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
856 * case since they are only valid while holding the pgmap
859 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
861 page = pte_page(pte);
864 } else if (unlikely(!page)) {
865 if (flags & FOLL_DUMP) {
866 /* Avoid special (like zero) pages in core dumps */
867 page = ERR_PTR(-EFAULT);
871 if (is_zero_pfn(pte_pfn(pte))) {
872 page = pte_page(pte);
874 ret = follow_pfn_pte(vma, address, ptep, flags);
880 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
881 page = ERR_PTR(-EMLINK);
885 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
886 !PageAnonExclusive(page), page);
888 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
889 ret = try_grab_folio(page_folio(page), 1, flags);
896 * We need to make the page accessible if and only if we are going
897 * to access its content (the FOLL_PIN case). Please see
898 * Documentation/core-api/pin_user_pages.rst for details.
900 if (flags & FOLL_PIN) {
901 ret = arch_make_page_accessible(page);
903 unpin_user_page(page);
908 if (flags & FOLL_TOUCH) {
909 if ((flags & FOLL_WRITE) &&
910 !pte_dirty(pte) && !PageDirty(page))
911 set_page_dirty(page);
913 * pte_mkyoung() would be more correct here, but atomic care
914 * is needed to avoid losing the dirty bit: it is easier to use
915 * mark_page_accessed().
917 mark_page_accessed(page);
920 pte_unmap_unlock(ptep, ptl);
923 pte_unmap_unlock(ptep, ptl);
926 return no_page_table(vma, flags, address);
929 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
930 unsigned long address, pud_t *pudp,
932 struct follow_page_context *ctx)
937 struct mm_struct *mm = vma->vm_mm;
939 pmd = pmd_offset(pudp, address);
940 pmdval = pmdp_get_lockless(pmd);
941 if (pmd_none(pmdval))
942 return no_page_table(vma, flags, address);
943 if (!pmd_present(pmdval))
944 return no_page_table(vma, flags, address);
945 if (pmd_devmap(pmdval)) {
946 ptl = pmd_lock(mm, pmd);
947 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
951 return no_page_table(vma, flags, address);
953 if (likely(!pmd_leaf(pmdval)))
954 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
956 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
957 return no_page_table(vma, flags, address);
959 ptl = pmd_lock(mm, pmd);
961 if (unlikely(!pmd_present(pmdval))) {
963 return no_page_table(vma, flags, address);
965 if (unlikely(!pmd_leaf(pmdval))) {
967 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
969 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
971 split_huge_pmd(vma, pmd, address);
972 /* If pmd was left empty, stuff a page table in there quickly */
973 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
974 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
976 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
981 static struct page *follow_pud_mask(struct vm_area_struct *vma,
982 unsigned long address, p4d_t *p4dp,
984 struct follow_page_context *ctx)
989 struct mm_struct *mm = vma->vm_mm;
991 pudp = pud_offset(p4dp, address);
992 pud = READ_ONCE(*pudp);
993 if (!pud_present(pud))
994 return no_page_table(vma, flags, address);
996 ptl = pud_lock(mm, pudp);
997 page = follow_huge_pud(vma, address, pudp, flags, ctx);
1001 return no_page_table(vma, flags, address);
1003 if (unlikely(pud_bad(pud)))
1004 return no_page_table(vma, flags, address);
1006 return follow_pmd_mask(vma, address, pudp, flags, ctx);
1009 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1010 unsigned long address, pgd_t *pgdp,
1012 struct follow_page_context *ctx)
1016 p4dp = p4d_offset(pgdp, address);
1017 p4d = READ_ONCE(*p4dp);
1018 BUILD_BUG_ON(p4d_leaf(p4d));
1020 if (!p4d_present(p4d) || p4d_bad(p4d))
1021 return no_page_table(vma, flags, address);
1023 return follow_pud_mask(vma, address, p4dp, flags, ctx);
1027 * follow_page_mask - look up a page descriptor from a user-virtual address
1028 * @vma: vm_area_struct mapping @address
1029 * @address: virtual address to look up
1030 * @flags: flags modifying lookup behaviour
1031 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1032 * pointer to output page_mask
1034 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1036 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1037 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1039 * When getting an anonymous page and the caller has to trigger unsharing
1040 * of a shared anonymous page first, -EMLINK is returned. The caller should
1041 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1042 * relevant with FOLL_PIN and !FOLL_WRITE.
1044 * On output, the @ctx->page_mask is set according to the size of the page.
1046 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1047 * an error pointer if there is a mapping to something not represented
1048 * by a page descriptor (see also vm_normal_page()).
1050 static struct page *follow_page_mask(struct vm_area_struct *vma,
1051 unsigned long address, unsigned int flags,
1052 struct follow_page_context *ctx)
1055 struct mm_struct *mm = vma->vm_mm;
1058 vma_pgtable_walk_begin(vma);
1061 pgd = pgd_offset(mm, address);
1063 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1064 page = no_page_table(vma, flags, address);
1066 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1068 vma_pgtable_walk_end(vma);
1073 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1074 unsigned int foll_flags)
1076 struct follow_page_context ctx = { NULL };
1079 if (vma_is_secretmem(vma))
1082 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
1086 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
1087 * to fail on PROT_NONE-mapped pages.
1089 page = follow_page_mask(vma, address, foll_flags, &ctx);
1091 put_dev_pagemap(ctx.pgmap);
1095 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1096 unsigned int gup_flags, struct vm_area_struct **vma,
1107 /* user gate pages are read-only */
1108 if (gup_flags & FOLL_WRITE)
1110 if (address > TASK_SIZE)
1111 pgd = pgd_offset_k(address);
1113 pgd = pgd_offset_gate(mm, address);
1116 p4d = p4d_offset(pgd, address);
1119 pud = pud_offset(p4d, address);
1122 pmd = pmd_offset(pud, address);
1123 if (!pmd_present(*pmd))
1125 pte = pte_offset_map(pmd, address);
1128 entry = ptep_get(pte);
1129 if (pte_none(entry))
1131 *vma = get_gate_vma(mm);
1134 *page = vm_normal_page(*vma, address, entry);
1136 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1138 *page = pte_page(entry);
1140 ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1151 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1152 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1153 * to 0 and -EBUSY returned.
1155 static int faultin_page(struct vm_area_struct *vma,
1156 unsigned long address, unsigned int *flags, bool unshare,
1159 unsigned int fault_flags = 0;
1162 if (*flags & FOLL_NOFAULT)
1164 if (*flags & FOLL_WRITE)
1165 fault_flags |= FAULT_FLAG_WRITE;
1166 if (*flags & FOLL_REMOTE)
1167 fault_flags |= FAULT_FLAG_REMOTE;
1168 if (*flags & FOLL_UNLOCKABLE) {
1169 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1171 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1172 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1173 * That's because some callers may not be prepared to
1174 * handle early exits caused by non-fatal signals.
1176 if (*flags & FOLL_INTERRUPTIBLE)
1177 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1179 if (*flags & FOLL_NOWAIT)
1180 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1181 if (*flags & FOLL_TRIED) {
1183 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1186 fault_flags |= FAULT_FLAG_TRIED;
1189 fault_flags |= FAULT_FLAG_UNSHARE;
1190 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1191 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1194 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1196 if (ret & VM_FAULT_COMPLETED) {
1198 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1199 * mmap lock in the page fault handler. Sanity check this.
1201 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1205 * We should do the same as VM_FAULT_RETRY, but let's not
1206 * return -EBUSY since that's not reflecting the reality of
1207 * what has happened - we've just fully completed a page
1208 * fault, with the mmap lock released. Use -EAGAIN to show
1209 * that we want to take the mmap lock _again_.
1214 if (ret & VM_FAULT_ERROR) {
1215 int err = vm_fault_to_errno(ret, *flags);
1222 if (ret & VM_FAULT_RETRY) {
1223 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1232 * Writing to file-backed mappings which require folio dirty tracking using GUP
1233 * is a fundamentally broken operation, as kernel write access to GUP mappings
1234 * do not adhere to the semantics expected by a file system.
1236 * Consider the following scenario:-
1238 * 1. A folio is written to via GUP which write-faults the memory, notifying
1239 * the file system and dirtying the folio.
1240 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1241 * the PTE being marked read-only.
1242 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1244 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1245 * (though it does not have to).
1247 * This results in both data being written to a folio without writenotify, and
1248 * the folio being dirtied unexpectedly (if the caller decides to do so).
1250 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1251 unsigned long gup_flags)
1254 * If we aren't pinning then no problematic write can occur. A long term
1255 * pin is the most egregious case so this is the case we disallow.
1257 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1258 (FOLL_PIN | FOLL_LONGTERM))
1262 * If the VMA does not require dirty tracking then no problematic write
1265 return !vma_needs_dirty_tracking(vma);
1268 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1270 vm_flags_t vm_flags = vma->vm_flags;
1271 int write = (gup_flags & FOLL_WRITE);
1272 int foreign = (gup_flags & FOLL_REMOTE);
1273 bool vma_anon = vma_is_anonymous(vma);
1275 if (vm_flags & (VM_IO | VM_PFNMAP))
1278 if ((gup_flags & FOLL_ANON) && !vma_anon)
1281 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1284 if (vma_is_secretmem(vma))
1289 !writable_file_mapping_allowed(vma, gup_flags))
1292 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1293 if (!(gup_flags & FOLL_FORCE))
1295 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1296 if (is_vm_hugetlb_page(vma))
1299 * We used to let the write,force case do COW in a
1300 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1301 * set a breakpoint in a read-only mapping of an
1302 * executable, without corrupting the file (yet only
1303 * when that file had been opened for writing!).
1304 * Anon pages in shared mappings are surprising: now
1307 if (!is_cow_mapping(vm_flags))
1310 } else if (!(vm_flags & VM_READ)) {
1311 if (!(gup_flags & FOLL_FORCE))
1314 * Is there actually any vma we can reach here which does not
1315 * have VM_MAYREAD set?
1317 if (!(vm_flags & VM_MAYREAD))
1321 * gups are always data accesses, not instruction
1322 * fetches, so execute=false here
1324 if (!arch_vma_access_permitted(vma, write, false, foreign))
1330 * This is "vma_lookup()", but with a warning if we would have
1331 * historically expanded the stack in the GUP code.
1333 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1336 #ifdef CONFIG_STACK_GROWSUP
1337 return vma_lookup(mm, addr);
1339 static volatile unsigned long next_warn;
1340 struct vm_area_struct *vma;
1341 unsigned long now, next;
1343 vma = find_vma(mm, addr);
1344 if (!vma || (addr >= vma->vm_start))
1347 /* Only warn for half-way relevant accesses */
1348 if (!(vma->vm_flags & VM_GROWSDOWN))
1350 if (vma->vm_start - addr > 65536)
1353 /* Let's not warn more than once an hour.. */
1354 now = jiffies; next = next_warn;
1355 if (next && time_before(now, next))
1357 next_warn = now + 60*60*HZ;
1359 /* Let people know things may have changed. */
1360 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1361 current->comm, task_pid_nr(current),
1362 vma->vm_start, vma->vm_end, addr);
1369 * __get_user_pages() - pin user pages in memory
1370 * @mm: mm_struct of target mm
1371 * @start: starting user address
1372 * @nr_pages: number of pages from start to pin
1373 * @gup_flags: flags modifying pin behaviour
1374 * @pages: array that receives pointers to the pages pinned.
1375 * Should be at least nr_pages long. Or NULL, if caller
1376 * only intends to ensure the pages are faulted in.
1377 * @locked: whether we're still with the mmap_lock held
1379 * Returns either number of pages pinned (which may be less than the
1380 * number requested), or an error. Details about the return value:
1382 * -- If nr_pages is 0, returns 0.
1383 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1384 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1385 * pages pinned. Again, this may be less than nr_pages.
1386 * -- 0 return value is possible when the fault would need to be retried.
1388 * The caller is responsible for releasing returned @pages, via put_page().
1390 * Must be called with mmap_lock held. It may be released. See below.
1392 * __get_user_pages walks a process's page tables and takes a reference to
1393 * each struct page that each user address corresponds to at a given
1394 * instant. That is, it takes the page that would be accessed if a user
1395 * thread accesses the given user virtual address at that instant.
1397 * This does not guarantee that the page exists in the user mappings when
1398 * __get_user_pages returns, and there may even be a completely different
1399 * page there in some cases (eg. if mmapped pagecache has been invalidated
1400 * and subsequently re-faulted). However it does guarantee that the page
1401 * won't be freed completely. And mostly callers simply care that the page
1402 * contains data that was valid *at some point in time*. Typically, an IO
1403 * or similar operation cannot guarantee anything stronger anyway because
1404 * locks can't be held over the syscall boundary.
1406 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1407 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1408 * appropriate) must be called after the page is finished with, and
1409 * before put_page is called.
1411 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1412 * be released. If this happens *@locked will be set to 0 on return.
1414 * A caller using such a combination of @gup_flags must therefore hold the
1415 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1416 * it must be held for either reading or writing and will not be released.
1418 * In most cases, get_user_pages or get_user_pages_fast should be used
1419 * instead of __get_user_pages. __get_user_pages should be used only if
1420 * you need some special @gup_flags.
1422 static long __get_user_pages(struct mm_struct *mm,
1423 unsigned long start, unsigned long nr_pages,
1424 unsigned int gup_flags, struct page **pages,
1427 long ret = 0, i = 0;
1428 struct vm_area_struct *vma = NULL;
1429 struct follow_page_context ctx = { NULL };
1434 start = untagged_addr_remote(mm, start);
1436 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1440 unsigned int foll_flags = gup_flags;
1441 unsigned int page_increm;
1443 /* first iteration or cross vma bound */
1444 if (!vma || start >= vma->vm_end) {
1446 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1447 * lookups+error reporting differently.
1449 if (gup_flags & FOLL_MADV_POPULATE) {
1450 vma = vma_lookup(mm, start);
1455 if (check_vma_flags(vma, gup_flags)) {
1461 vma = gup_vma_lookup(mm, start);
1462 if (!vma && in_gate_area(mm, start)) {
1463 ret = get_gate_page(mm, start & PAGE_MASK,
1465 pages ? &page : NULL);
1476 ret = check_vma_flags(vma, gup_flags);
1482 * If we have a pending SIGKILL, don't keep faulting pages and
1483 * potentially allocating memory.
1485 if (fatal_signal_pending(current)) {
1491 page = follow_page_mask(vma, start, foll_flags, &ctx);
1492 if (!page || PTR_ERR(page) == -EMLINK) {
1493 ret = faultin_page(vma, start, &foll_flags,
1494 PTR_ERR(page) == -EMLINK, locked);
1508 } else if (PTR_ERR(page) == -EEXIST) {
1510 * Proper page table entry exists, but no corresponding
1511 * struct page. If the caller expects **pages to be
1512 * filled in, bail out now, because that can't be done
1516 ret = PTR_ERR(page);
1519 } else if (IS_ERR(page)) {
1520 ret = PTR_ERR(page);
1524 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1525 if (page_increm > nr_pages)
1526 page_increm = nr_pages;
1529 struct page *subpage;
1533 * This must be a large folio (and doesn't need to
1534 * be the whole folio; it can be part of it), do
1535 * the refcount work for all the subpages too.
1537 * NOTE: here the page may not be the head page
1538 * e.g. when start addr is not thp-size aligned.
1539 * try_grab_folio() should have taken care of tail
1542 if (page_increm > 1) {
1543 struct folio *folio = page_folio(page);
1546 * Since we already hold refcount on the
1547 * large folio, this should never fail.
1549 if (try_grab_folio(folio, page_increm - 1,
1552 * Release the 1st page ref if the
1553 * folio is problematic, fail hard.
1555 gup_put_folio(folio, 1,
1562 for (j = 0; j < page_increm; j++) {
1563 subpage = nth_page(page, j);
1564 pages[i + j] = subpage;
1565 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1566 flush_dcache_page(subpage);
1571 start += page_increm * PAGE_SIZE;
1572 nr_pages -= page_increm;
1576 put_dev_pagemap(ctx.pgmap);
1580 static bool vma_permits_fault(struct vm_area_struct *vma,
1581 unsigned int fault_flags)
1583 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1584 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1585 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1587 if (!(vm_flags & vma->vm_flags))
1591 * The architecture might have a hardware protection
1592 * mechanism other than read/write that can deny access.
1594 * gup always represents data access, not instruction
1595 * fetches, so execute=false here:
1597 if (!arch_vma_access_permitted(vma, write, false, foreign))
1604 * fixup_user_fault() - manually resolve a user page fault
1605 * @mm: mm_struct of target mm
1606 * @address: user address
1607 * @fault_flags:flags to pass down to handle_mm_fault()
1608 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1609 * does not allow retry. If NULL, the caller must guarantee
1610 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1612 * This is meant to be called in the specific scenario where for locking reasons
1613 * we try to access user memory in atomic context (within a pagefault_disable()
1614 * section), this returns -EFAULT, and we want to resolve the user fault before
1617 * Typically this is meant to be used by the futex code.
1619 * The main difference with get_user_pages() is that this function will
1620 * unconditionally call handle_mm_fault() which will in turn perform all the
1621 * necessary SW fixup of the dirty and young bits in the PTE, while
1622 * get_user_pages() only guarantees to update these in the struct page.
1624 * This is important for some architectures where those bits also gate the
1625 * access permission to the page because they are maintained in software. On
1626 * such architectures, gup() will not be enough to make a subsequent access
1629 * This function will not return with an unlocked mmap_lock. So it has not the
1630 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1632 int fixup_user_fault(struct mm_struct *mm,
1633 unsigned long address, unsigned int fault_flags,
1636 struct vm_area_struct *vma;
1639 address = untagged_addr_remote(mm, address);
1642 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1645 vma = gup_vma_lookup(mm, address);
1649 if (!vma_permits_fault(vma, fault_flags))
1652 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1653 fatal_signal_pending(current))
1656 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1658 if (ret & VM_FAULT_COMPLETED) {
1660 * NOTE: it's a pity that we need to retake the lock here
1661 * to pair with the unlock() in the callers. Ideally we
1662 * could tell the callers so they do not need to unlock.
1669 if (ret & VM_FAULT_ERROR) {
1670 int err = vm_fault_to_errno(ret, 0);
1677 if (ret & VM_FAULT_RETRY) {
1680 fault_flags |= FAULT_FLAG_TRIED;
1686 EXPORT_SYMBOL_GPL(fixup_user_fault);
1689 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1690 * specified, it'll also respond to generic signals. The caller of GUP
1691 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1693 static bool gup_signal_pending(unsigned int flags)
1695 if (fatal_signal_pending(current))
1698 if (!(flags & FOLL_INTERRUPTIBLE))
1701 return signal_pending(current);
1705 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1706 * the caller. This function may drop the mmap_lock. If it does so, then it will
1707 * set (*locked = 0).
1709 * (*locked == 0) means that the caller expects this function to acquire and
1710 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1711 * the function returns, even though it may have changed temporarily during
1712 * function execution.
1714 * Please note that this function, unlike __get_user_pages(), will not return 0
1715 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1717 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1718 unsigned long start,
1719 unsigned long nr_pages,
1720 struct page **pages,
1724 long ret, pages_done;
1725 bool must_unlock = false;
1731 * The internal caller expects GUP to manage the lock internally and the
1732 * lock must be released when this returns.
1735 if (mmap_read_lock_killable(mm))
1741 mmap_assert_locked(mm);
1743 if (flags & FOLL_PIN)
1744 mm_set_has_pinned_flag(&mm->flags);
1747 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1748 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1749 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1750 * for FOLL_GET, not for the newer FOLL_PIN.
1752 * FOLL_PIN always expects pages to be non-null, but no need to assert
1753 * that here, as any failures will be obvious enough.
1755 if (pages && !(flags & FOLL_PIN))
1760 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1762 if (!(flags & FOLL_UNLOCKABLE)) {
1763 /* VM_FAULT_RETRY couldn't trigger, bypass */
1768 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1771 BUG_ON(ret >= nr_pages);
1782 * VM_FAULT_RETRY didn't trigger or it was a
1790 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1791 * For the prefault case (!pages) we only update counts.
1795 start += ret << PAGE_SHIFT;
1797 /* The lock was temporarily dropped, so we must unlock later */
1802 * Repeat on the address that fired VM_FAULT_RETRY
1803 * with both FAULT_FLAG_ALLOW_RETRY and
1804 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1805 * by fatal signals of even common signals, depending on
1806 * the caller's request. So we need to check it before we
1807 * start trying again otherwise it can loop forever.
1809 if (gup_signal_pending(flags)) {
1811 pages_done = -EINTR;
1815 ret = mmap_read_lock_killable(mm);
1824 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1827 /* Continue to retry until we succeeded */
1845 if (must_unlock && *locked) {
1847 * We either temporarily dropped the lock, or the caller
1848 * requested that we both acquire and drop the lock. Either way,
1849 * we must now unlock, and notify the caller of that state.
1851 mmap_read_unlock(mm);
1856 * Failing to pin anything implies something has gone wrong (except when
1857 * FOLL_NOWAIT is specified).
1859 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1866 * populate_vma_page_range() - populate a range of pages in the vma.
1868 * @start: start address
1870 * @locked: whether the mmap_lock is still held
1872 * This takes care of mlocking the pages too if VM_LOCKED is set.
1874 * Return either number of pages pinned in the vma, or a negative error
1877 * vma->vm_mm->mmap_lock must be held.
1879 * If @locked is NULL, it may be held for read or write and will
1882 * If @locked is non-NULL, it must held for read only and may be
1883 * released. If it's released, *@locked will be set to 0.
1885 long populate_vma_page_range(struct vm_area_struct *vma,
1886 unsigned long start, unsigned long end, int *locked)
1888 struct mm_struct *mm = vma->vm_mm;
1889 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1890 int local_locked = 1;
1894 VM_BUG_ON(!PAGE_ALIGNED(start));
1895 VM_BUG_ON(!PAGE_ALIGNED(end));
1896 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1897 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1898 mmap_assert_locked(mm);
1901 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1902 * faultin_page() to break COW, so it has no work to do here.
1904 if (vma->vm_flags & VM_LOCKONFAULT)
1907 /* ... similarly, we've never faulted in PROT_NONE pages */
1908 if (!vma_is_accessible(vma))
1911 gup_flags = FOLL_TOUCH;
1913 * We want to touch writable mappings with a write fault in order
1914 * to break COW, except for shared mappings because these don't COW
1915 * and we would not want to dirty them for nothing.
1917 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1918 * readable (ie write-only or executable).
1920 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1921 gup_flags |= FOLL_WRITE;
1923 gup_flags |= FOLL_FORCE;
1926 gup_flags |= FOLL_UNLOCKABLE;
1929 * We made sure addr is within a VMA, so the following will
1930 * not result in a stack expansion that recurses back here.
1932 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1933 NULL, locked ? locked : &local_locked);
1939 * faultin_page_range() - populate (prefault) page tables inside the
1940 * given range readable/writable
1942 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1944 * @mm: the mm to populate page tables in
1945 * @start: start address
1947 * @write: whether to prefault readable or writable
1948 * @locked: whether the mmap_lock is still held
1950 * Returns either number of processed pages in the MM, or a negative error
1951 * code on error (see __get_user_pages()). Note that this function reports
1952 * errors related to VMAs, such as incompatible mappings, as expected by
1953 * MADV_POPULATE_(READ|WRITE).
1955 * The range must be page-aligned.
1957 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1959 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1960 unsigned long end, bool write, int *locked)
1962 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1966 VM_BUG_ON(!PAGE_ALIGNED(start));
1967 VM_BUG_ON(!PAGE_ALIGNED(end));
1968 mmap_assert_locked(mm);
1971 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1972 * the page dirty with FOLL_WRITE -- which doesn't make a
1973 * difference with !FOLL_FORCE, because the page is writable
1974 * in the page table.
1975 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1977 * !FOLL_FORCE: Require proper access permissions.
1979 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1982 gup_flags |= FOLL_WRITE;
1984 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1991 * __mm_populate - populate and/or mlock pages within a range of address space.
1993 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1994 * flags. VMAs must be already marked with the desired vm_flags, and
1995 * mmap_lock must not be held.
1997 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1999 struct mm_struct *mm = current->mm;
2000 unsigned long end, nstart, nend;
2001 struct vm_area_struct *vma = NULL;
2007 for (nstart = start; nstart < end; nstart = nend) {
2009 * We want to fault in pages for [nstart; end) address range.
2010 * Find first corresponding VMA.
2015 vma = find_vma_intersection(mm, nstart, end);
2016 } else if (nstart >= vma->vm_end)
2017 vma = find_vma_intersection(mm, vma->vm_end, end);
2022 * Set [nstart; nend) to intersection of desired address
2023 * range with the first VMA. Also, skip undesirable VMA types.
2025 nend = min(end, vma->vm_end);
2026 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2028 if (nstart < vma->vm_start)
2029 nstart = vma->vm_start;
2031 * Now fault in a range of pages. populate_vma_page_range()
2032 * double checks the vma flags, so that it won't mlock pages
2033 * if the vma was already munlocked.
2035 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2037 if (ignore_errors) {
2039 continue; /* continue at next VMA */
2043 nend = nstart + ret * PAGE_SIZE;
2047 mmap_read_unlock(mm);
2048 return ret; /* 0 or negative error code */
2050 #else /* CONFIG_MMU */
2051 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2052 unsigned long nr_pages, struct page **pages,
2053 int *locked, unsigned int foll_flags)
2055 struct vm_area_struct *vma;
2056 bool must_unlock = false;
2057 unsigned long vm_flags;
2064 * The internal caller expects GUP to manage the lock internally and the
2065 * lock must be released when this returns.
2068 if (mmap_read_lock_killable(mm))
2074 /* calculate required read or write permissions.
2075 * If FOLL_FORCE is set, we only require the "MAY" flags.
2077 vm_flags = (foll_flags & FOLL_WRITE) ?
2078 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2079 vm_flags &= (foll_flags & FOLL_FORCE) ?
2080 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2082 for (i = 0; i < nr_pages; i++) {
2083 vma = find_vma(mm, start);
2087 /* protect what we can, including chardevs */
2088 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2089 !(vm_flags & vma->vm_flags))
2093 pages[i] = virt_to_page((void *)start);
2098 start = (start + PAGE_SIZE) & PAGE_MASK;
2101 if (must_unlock && *locked) {
2102 mmap_read_unlock(mm);
2106 return i ? : -EFAULT;
2108 #endif /* !CONFIG_MMU */
2111 * fault_in_writeable - fault in userspace address range for writing
2112 * @uaddr: start of address range
2113 * @size: size of address range
2115 * Returns the number of bytes not faulted in (like copy_to_user() and
2116 * copy_from_user()).
2118 size_t fault_in_writeable(char __user *uaddr, size_t size)
2120 char __user *start = uaddr, *end;
2122 if (unlikely(size == 0))
2124 if (!user_write_access_begin(uaddr, size))
2126 if (!PAGE_ALIGNED(uaddr)) {
2127 unsafe_put_user(0, uaddr, out);
2128 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2130 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2131 if (unlikely(end < start))
2133 while (uaddr != end) {
2134 unsafe_put_user(0, uaddr, out);
2139 user_write_access_end();
2140 if (size > uaddr - start)
2141 return size - (uaddr - start);
2144 EXPORT_SYMBOL(fault_in_writeable);
2147 * fault_in_subpage_writeable - fault in an address range for writing
2148 * @uaddr: start of address range
2149 * @size: size of address range
2151 * Fault in a user address range for writing while checking for permissions at
2152 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2153 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2155 * Returns the number of bytes not faulted in (like copy_to_user() and
2156 * copy_from_user()).
2158 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2163 * Attempt faulting in at page granularity first for page table
2164 * permission checking. The arch-specific probe_subpage_writeable()
2165 * functions may not check for this.
2167 faulted_in = size - fault_in_writeable(uaddr, size);
2169 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2171 return size - faulted_in;
2173 EXPORT_SYMBOL(fault_in_subpage_writeable);
2176 * fault_in_safe_writeable - fault in an address range for writing
2177 * @uaddr: start of address range
2178 * @size: length of address range
2180 * Faults in an address range for writing. This is primarily useful when we
2181 * already know that some or all of the pages in the address range aren't in
2184 * Unlike fault_in_writeable(), this function is non-destructive.
2186 * Note that we don't pin or otherwise hold the pages referenced that we fault
2187 * in. There's no guarantee that they'll stay in memory for any duration of
2190 * Returns the number of bytes not faulted in, like copy_to_user() and
2193 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2195 unsigned long start = (unsigned long)uaddr, end;
2196 struct mm_struct *mm = current->mm;
2197 bool unlocked = false;
2199 if (unlikely(size == 0))
2201 end = PAGE_ALIGN(start + size);
2207 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2209 start = (start + PAGE_SIZE) & PAGE_MASK;
2210 } while (start != end);
2211 mmap_read_unlock(mm);
2213 if (size > (unsigned long)uaddr - start)
2214 return size - ((unsigned long)uaddr - start);
2217 EXPORT_SYMBOL(fault_in_safe_writeable);
2220 * fault_in_readable - fault in userspace address range for reading
2221 * @uaddr: start of user address range
2222 * @size: size of user address range
2224 * Returns the number of bytes not faulted in (like copy_to_user() and
2225 * copy_from_user()).
2227 size_t fault_in_readable(const char __user *uaddr, size_t size)
2229 const char __user *start = uaddr, *end;
2232 if (unlikely(size == 0))
2234 if (!user_read_access_begin(uaddr, size))
2236 if (!PAGE_ALIGNED(uaddr)) {
2237 unsafe_get_user(c, uaddr, out);
2238 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2240 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2241 if (unlikely(end < start))
2243 while (uaddr != end) {
2244 unsafe_get_user(c, uaddr, out);
2249 user_read_access_end();
2251 if (size > uaddr - start)
2252 return size - (uaddr - start);
2255 EXPORT_SYMBOL(fault_in_readable);
2258 * get_dump_page() - pin user page in memory while writing it to core dump
2259 * @addr: user address
2261 * Returns struct page pointer of user page pinned for dump,
2262 * to be freed afterwards by put_page().
2264 * Returns NULL on any kind of failure - a hole must then be inserted into
2265 * the corefile, to preserve alignment with its headers; and also returns
2266 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2267 * allowing a hole to be left in the corefile to save disk space.
2269 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2271 #ifdef CONFIG_ELF_CORE
2272 struct page *get_dump_page(unsigned long addr)
2278 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2279 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2280 return (ret == 1) ? page : NULL;
2282 #endif /* CONFIG_ELF_CORE */
2284 #ifdef CONFIG_MIGRATION
2286 * Returns the number of collected folios. Return value is always >= 0.
2288 static unsigned long collect_longterm_unpinnable_folios(
2289 struct list_head *movable_folio_list,
2290 unsigned long nr_folios,
2291 struct folio **folios)
2293 unsigned long i, collected = 0;
2294 struct folio *prev_folio = NULL;
2295 bool drain_allow = true;
2297 for (i = 0; i < nr_folios; i++) {
2298 struct folio *folio = folios[i];
2300 if (folio == prev_folio)
2304 if (folio_is_longterm_pinnable(folio))
2309 if (folio_is_device_coherent(folio))
2312 if (folio_test_hugetlb(folio)) {
2313 isolate_hugetlb(folio, movable_folio_list);
2317 if (!folio_test_lru(folio) && drain_allow) {
2318 lru_add_drain_all();
2319 drain_allow = false;
2322 if (!folio_isolate_lru(folio))
2325 list_add_tail(&folio->lru, movable_folio_list);
2326 node_stat_mod_folio(folio,
2327 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2328 folio_nr_pages(folio));
2335 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2336 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2337 * failure (or partial success).
2339 static int migrate_longterm_unpinnable_folios(
2340 struct list_head *movable_folio_list,
2341 unsigned long nr_folios,
2342 struct folio **folios)
2347 for (i = 0; i < nr_folios; i++) {
2348 struct folio *folio = folios[i];
2350 if (folio_is_device_coherent(folio)) {
2352 * Migration will fail if the folio is pinned, so
2353 * convert the pin on the source folio to a normal
2358 gup_put_folio(folio, 1, FOLL_PIN);
2360 if (migrate_device_coherent_page(&folio->page)) {
2369 * We can't migrate folios with unexpected references, so drop
2370 * the reference obtained by __get_user_pages_locked().
2371 * Migrating folios have been added to movable_folio_list after
2372 * calling folio_isolate_lru() which takes a reference so the
2373 * folio won't be freed if it's migrating.
2375 unpin_folio(folios[i]);
2379 if (!list_empty(movable_folio_list)) {
2380 struct migration_target_control mtc = {
2381 .nid = NUMA_NO_NODE,
2382 .gfp_mask = GFP_USER | __GFP_NOWARN,
2383 .reason = MR_LONGTERM_PIN,
2386 if (migrate_pages(movable_folio_list, alloc_migration_target,
2387 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2388 MR_LONGTERM_PIN, NULL)) {
2394 putback_movable_pages(movable_folio_list);
2399 unpin_folios(folios, nr_folios);
2400 putback_movable_pages(movable_folio_list);
2406 * Check whether all folios are *allowed* to be pinned indefinitely (longterm).
2407 * Rather confusingly, all folios in the range are required to be pinned via
2408 * FOLL_PIN, before calling this routine.
2410 * If any folios in the range are not allowed to be pinned, then this routine
2411 * will migrate those folios away, unpin all the folios in the range and return
2412 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2413 * call this routine again.
2415 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2416 * The caller should give up, and propagate the error back up the call stack.
2418 * If everything is OK and all folios in the range are allowed to be pinned,
2419 * then this routine leaves all folios pinned and returns zero for success.
2421 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2422 struct folio **folios)
2424 unsigned long collected;
2425 LIST_HEAD(movable_folio_list);
2427 collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2432 return migrate_longterm_unpinnable_folios(&movable_folio_list,
2437 * This routine just converts all the pages in the @pages array to folios and
2438 * calls check_and_migrate_movable_folios() to do the heavy lifting.
2440 * Please see the check_and_migrate_movable_folios() documentation for details.
2442 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2443 struct page **pages)
2445 struct folio **folios;
2448 folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL);
2452 for (i = 0; i < nr_pages; i++)
2453 folios[i] = page_folio(pages[i]);
2455 ret = check_and_migrate_movable_folios(nr_pages, folios);
2461 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2462 struct page **pages)
2467 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2468 struct folio **folios)
2472 #endif /* CONFIG_MIGRATION */
2475 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2476 * allows us to process the FOLL_LONGTERM flag.
2478 static long __gup_longterm_locked(struct mm_struct *mm,
2479 unsigned long start,
2480 unsigned long nr_pages,
2481 struct page **pages,
2483 unsigned int gup_flags)
2486 long rc, nr_pinned_pages;
2488 if (!(gup_flags & FOLL_LONGTERM))
2489 return __get_user_pages_locked(mm, start, nr_pages, pages,
2492 flags = memalloc_pin_save();
2494 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2497 if (nr_pinned_pages <= 0) {
2498 rc = nr_pinned_pages;
2502 /* FOLL_LONGTERM implies FOLL_PIN */
2503 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2504 } while (rc == -EAGAIN);
2505 memalloc_pin_restore(flags);
2506 return rc ? rc : nr_pinned_pages;
2510 * Check that the given flags are valid for the exported gup/pup interface, and
2511 * update them with the required flags that the caller must have set.
2513 static bool is_valid_gup_args(struct page **pages, int *locked,
2514 unsigned int *gup_flags_p, unsigned int to_set)
2516 unsigned int gup_flags = *gup_flags_p;
2519 * These flags not allowed to be specified externally to the gup
2521 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2522 * - FOLL_REMOTE is internal only and used on follow_page()
2523 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2525 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2528 gup_flags |= to_set;
2530 /* At the external interface locked must be set */
2531 if (WARN_ON_ONCE(*locked != 1))
2534 gup_flags |= FOLL_UNLOCKABLE;
2537 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2538 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2539 (FOLL_PIN | FOLL_GET)))
2542 /* LONGTERM can only be specified when pinning */
2543 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2546 /* Pages input must be given if using GET/PIN */
2547 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2550 /* We want to allow the pgmap to be hot-unplugged at all times */
2551 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2552 (gup_flags & FOLL_PCI_P2PDMA)))
2555 *gup_flags_p = gup_flags;
2561 * get_user_pages_remote() - pin user pages in memory
2562 * @mm: mm_struct of target mm
2563 * @start: starting user address
2564 * @nr_pages: number of pages from start to pin
2565 * @gup_flags: flags modifying lookup behaviour
2566 * @pages: array that receives pointers to the pages pinned.
2567 * Should be at least nr_pages long. Or NULL, if caller
2568 * only intends to ensure the pages are faulted in.
2569 * @locked: pointer to lock flag indicating whether lock is held and
2570 * subsequently whether VM_FAULT_RETRY functionality can be
2571 * utilised. Lock must initially be held.
2573 * Returns either number of pages pinned (which may be less than the
2574 * number requested), or an error. Details about the return value:
2576 * -- If nr_pages is 0, returns 0.
2577 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2578 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2579 * pages pinned. Again, this may be less than nr_pages.
2581 * The caller is responsible for releasing returned @pages, via put_page().
2583 * Must be called with mmap_lock held for read or write.
2585 * get_user_pages_remote walks a process's page tables and takes a reference
2586 * to each struct page that each user address corresponds to at a given
2587 * instant. That is, it takes the page that would be accessed if a user
2588 * thread accesses the given user virtual address at that instant.
2590 * This does not guarantee that the page exists in the user mappings when
2591 * get_user_pages_remote returns, and there may even be a completely different
2592 * page there in some cases (eg. if mmapped pagecache has been invalidated
2593 * and subsequently re-faulted). However it does guarantee that the page
2594 * won't be freed completely. And mostly callers simply care that the page
2595 * contains data that was valid *at some point in time*. Typically, an IO
2596 * or similar operation cannot guarantee anything stronger anyway because
2597 * locks can't be held over the syscall boundary.
2599 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2600 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2601 * be called after the page is finished with, and before put_page is called.
2603 * get_user_pages_remote is typically used for fewer-copy IO operations,
2604 * to get a handle on the memory by some means other than accesses
2605 * via the user virtual addresses. The pages may be submitted for
2606 * DMA to devices or accessed via their kernel linear mapping (via the
2607 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2609 * See also get_user_pages_fast, for performance critical applications.
2611 * get_user_pages_remote should be phased out in favor of
2612 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2613 * should use get_user_pages_remote because it cannot pass
2614 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2616 long get_user_pages_remote(struct mm_struct *mm,
2617 unsigned long start, unsigned long nr_pages,
2618 unsigned int gup_flags, struct page **pages,
2621 int local_locked = 1;
2623 if (!is_valid_gup_args(pages, locked, &gup_flags,
2624 FOLL_TOUCH | FOLL_REMOTE))
2627 return __get_user_pages_locked(mm, start, nr_pages, pages,
2628 locked ? locked : &local_locked,
2631 EXPORT_SYMBOL(get_user_pages_remote);
2633 #else /* CONFIG_MMU */
2634 long get_user_pages_remote(struct mm_struct *mm,
2635 unsigned long start, unsigned long nr_pages,
2636 unsigned int gup_flags, struct page **pages,
2641 #endif /* !CONFIG_MMU */
2644 * get_user_pages() - pin user pages in memory
2645 * @start: starting user address
2646 * @nr_pages: number of pages from start to pin
2647 * @gup_flags: flags modifying lookup behaviour
2648 * @pages: array that receives pointers to the pages pinned.
2649 * Should be at least nr_pages long. Or NULL, if caller
2650 * only intends to ensure the pages are faulted in.
2652 * This is the same as get_user_pages_remote(), just with a less-flexible
2653 * calling convention where we assume that the mm being operated on belongs to
2654 * the current task, and doesn't allow passing of a locked parameter. We also
2655 * obviously don't pass FOLL_REMOTE in here.
2657 long get_user_pages(unsigned long start, unsigned long nr_pages,
2658 unsigned int gup_flags, struct page **pages)
2662 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2665 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2666 &locked, gup_flags);
2668 EXPORT_SYMBOL(get_user_pages);
2671 * get_user_pages_unlocked() is suitable to replace the form:
2673 * mmap_read_lock(mm);
2674 * get_user_pages(mm, ..., pages, NULL);
2675 * mmap_read_unlock(mm);
2679 * get_user_pages_unlocked(mm, ..., pages);
2681 * It is functionally equivalent to get_user_pages_fast so
2682 * get_user_pages_fast should be used instead if specific gup_flags
2683 * (e.g. FOLL_FORCE) are not required.
2685 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2686 struct page **pages, unsigned int gup_flags)
2690 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2691 FOLL_TOUCH | FOLL_UNLOCKABLE))
2694 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2695 &locked, gup_flags);
2697 EXPORT_SYMBOL(get_user_pages_unlocked);
2702 * get_user_pages_fast attempts to pin user pages by walking the page
2703 * tables directly and avoids taking locks. Thus the walker needs to be
2704 * protected from page table pages being freed from under it, and should
2705 * block any THP splits.
2707 * One way to achieve this is to have the walker disable interrupts, and
2708 * rely on IPIs from the TLB flushing code blocking before the page table
2709 * pages are freed. This is unsuitable for architectures that do not need
2710 * to broadcast an IPI when invalidating TLBs.
2712 * Another way to achieve this is to batch up page table containing pages
2713 * belonging to more than one mm_user, then rcu_sched a callback to free those
2714 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2715 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2716 * (which is a relatively rare event). The code below adopts this strategy.
2718 * Before activating this code, please be aware that the following assumptions
2719 * are currently made:
2721 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2722 * free pages containing page tables or TLB flushing requires IPI broadcast.
2724 * *) ptes can be read atomically by the architecture.
2726 * *) access_ok is sufficient to validate userspace address ranges.
2728 * The last two assumptions can be relaxed by the addition of helper functions.
2730 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2732 #ifdef CONFIG_HAVE_GUP_FAST
2734 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2737 * This call assumes the caller has pinned the folio, that the lowest page table
2738 * level still points to this folio, and that interrupts have been disabled.
2740 * GUP-fast must reject all secretmem folios.
2742 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2743 * (see comment describing the writable_file_mapping_allowed() function). We
2744 * therefore try to avoid the most egregious case of a long-term mapping doing
2747 * This function cannot be as thorough as that one as the VMA is not available
2748 * in the fast path, so instead we whitelist known good cases and if in doubt,
2749 * fall back to the slow path.
2751 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2753 bool reject_file_backed = false;
2754 struct address_space *mapping;
2755 bool check_secretmem = false;
2756 unsigned long mapping_flags;
2759 * If we aren't pinning then no problematic write can occur. A long term
2760 * pin is the most egregious case so this is the one we disallow.
2762 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2763 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2764 reject_file_backed = true;
2766 /* We hold a folio reference, so we can safely access folio fields. */
2768 /* secretmem folios are always order-0 folios. */
2769 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2770 check_secretmem = true;
2772 if (!reject_file_backed && !check_secretmem)
2775 if (WARN_ON_ONCE(folio_test_slab(folio)))
2778 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2779 if (folio_test_hugetlb(folio))
2783 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2784 * cannot proceed, which means no actions performed under RCU can
2787 * inodes and thus their mappings are freed under RCU, which means the
2788 * mapping cannot be freed beneath us and thus we can safely dereference
2791 lockdep_assert_irqs_disabled();
2794 * However, there may be operations which _alter_ the mapping, so ensure
2795 * we read it once and only once.
2797 mapping = READ_ONCE(folio->mapping);
2800 * The mapping may have been truncated, in any case we cannot determine
2801 * if this mapping is safe - fall back to slow path to determine how to
2807 /* Anonymous folios pose no problem. */
2808 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2810 return mapping_flags & PAGE_MAPPING_ANON;
2813 * At this point, we know the mapping is non-null and points to an
2814 * address_space object.
2816 if (check_secretmem && secretmem_mapping(mapping))
2818 /* The only remaining allowed file system is shmem. */
2819 return !reject_file_backed || shmem_mapping(mapping);
2822 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2823 unsigned int flags, struct page **pages)
2825 while ((*nr) - nr_start) {
2826 struct folio *folio = page_folio(pages[--(*nr)]);
2828 folio_clear_referenced(folio);
2829 gup_put_folio(folio, 1, flags);
2833 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2835 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2838 * To pin the page, GUP-fast needs to do below in order:
2839 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2841 * For the rest of pgtable operations where pgtable updates can be racy
2842 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2845 * Above will work for all pte-level operations, including THP split.
2847 * For THP collapse, it's a bit more complicated because GUP-fast may be
2848 * walking a pgtable page that is being freed (pte is still valid but pmd
2849 * can be cleared already). To avoid race in such condition, we need to
2850 * also check pmd here to make sure pmd doesn't change (corresponds to
2851 * pmdp_collapse_flush() in the THP collapse code path).
2853 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2854 unsigned long end, unsigned int flags, struct page **pages,
2857 struct dev_pagemap *pgmap = NULL;
2858 int nr_start = *nr, ret = 0;
2861 ptem = ptep = pte_offset_map(&pmd, addr);
2865 pte_t pte = ptep_get_lockless(ptep);
2867 struct folio *folio;
2870 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2871 * pte_access_permitted() better should reject these pages
2872 * either way: otherwise, GUP-fast might succeed in
2873 * cases where ordinary GUP would fail due to VMA access
2876 if (pte_protnone(pte))
2879 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2882 if (pte_devmap(pte)) {
2883 if (unlikely(flags & FOLL_LONGTERM))
2886 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2887 if (unlikely(!pgmap)) {
2888 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2891 } else if (pte_special(pte))
2894 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2895 page = pte_page(pte);
2897 folio = try_grab_folio_fast(page, 1, flags);
2901 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2902 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2903 gup_put_folio(folio, 1, flags);
2907 if (!gup_fast_folio_allowed(folio, flags)) {
2908 gup_put_folio(folio, 1, flags);
2912 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2913 gup_put_folio(folio, 1, flags);
2918 * We need to make the page accessible if and only if we are
2919 * going to access its content (the FOLL_PIN case). Please
2920 * see Documentation/core-api/pin_user_pages.rst for
2923 if (flags & FOLL_PIN) {
2924 ret = arch_make_page_accessible(page);
2926 gup_put_folio(folio, 1, flags);
2930 folio_set_referenced(folio);
2933 } while (ptep++, addr += PAGE_SIZE, addr != end);
2939 put_dev_pagemap(pgmap);
2946 * If we can't determine whether or not a pte is special, then fail immediately
2947 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2950 * For a futex to be placed on a THP tail page, get_futex_key requires a
2951 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2952 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2954 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2955 unsigned long end, unsigned int flags, struct page **pages,
2960 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2962 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2963 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2964 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2967 struct dev_pagemap *pgmap = NULL;
2970 struct folio *folio;
2971 struct page *page = pfn_to_page(pfn);
2973 pgmap = get_dev_pagemap(pfn, pgmap);
2974 if (unlikely(!pgmap)) {
2975 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2979 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2980 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2984 folio = try_grab_folio_fast(page, 1, flags);
2986 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2989 folio_set_referenced(folio);
2993 } while (addr += PAGE_SIZE, addr != end);
2995 put_dev_pagemap(pgmap);
2999 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3000 unsigned long end, unsigned int flags, struct page **pages,
3003 unsigned long fault_pfn;
3006 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3007 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3010 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3011 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3017 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3018 unsigned long end, unsigned int flags, struct page **pages,
3021 unsigned long fault_pfn;
3024 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3025 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3028 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3029 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3035 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3036 unsigned long end, unsigned int flags, struct page **pages,
3043 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3044 unsigned long end, unsigned int flags, struct page **pages,
3052 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3053 unsigned long end, unsigned int flags, struct page **pages,
3057 struct folio *folio;
3060 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3063 if (pmd_devmap(orig)) {
3064 if (unlikely(flags & FOLL_LONGTERM))
3066 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3070 page = pmd_page(orig);
3071 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3073 folio = try_grab_folio_fast(page, refs, flags);
3077 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3078 gup_put_folio(folio, refs, flags);
3082 if (!gup_fast_folio_allowed(folio, flags)) {
3083 gup_put_folio(folio, refs, flags);
3086 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3087 gup_put_folio(folio, refs, flags);
3092 folio_set_referenced(folio);
3096 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3097 unsigned long end, unsigned int flags, struct page **pages,
3101 struct folio *folio;
3104 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3107 if (pud_devmap(orig)) {
3108 if (unlikely(flags & FOLL_LONGTERM))
3110 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3114 page = pud_page(orig);
3115 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3117 folio = try_grab_folio_fast(page, refs, flags);
3121 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3122 gup_put_folio(folio, refs, flags);
3126 if (!gup_fast_folio_allowed(folio, flags)) {
3127 gup_put_folio(folio, refs, flags);
3131 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3132 gup_put_folio(folio, refs, flags);
3137 folio_set_referenced(folio);
3141 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3142 unsigned long end, unsigned int flags, struct page **pages,
3147 struct folio *folio;
3149 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3152 BUILD_BUG_ON(pgd_devmap(orig));
3154 page = pgd_page(orig);
3155 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3157 folio = try_grab_folio_fast(page, refs, flags);
3161 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3162 gup_put_folio(folio, refs, flags);
3166 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3167 gup_put_folio(folio, refs, flags);
3171 if (!gup_fast_folio_allowed(folio, flags)) {
3172 gup_put_folio(folio, refs, flags);
3177 folio_set_referenced(folio);
3181 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3182 unsigned long end, unsigned int flags, struct page **pages,
3188 pmdp = pmd_offset_lockless(pudp, pud, addr);
3190 pmd_t pmd = pmdp_get_lockless(pmdp);
3192 next = pmd_addr_end(addr, end);
3193 if (!pmd_present(pmd))
3196 if (unlikely(pmd_leaf(pmd))) {
3197 /* See gup_fast_pte_range() */
3198 if (pmd_protnone(pmd))
3201 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3205 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3208 } while (pmdp++, addr = next, addr != end);
3213 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3214 unsigned long end, unsigned int flags, struct page **pages,
3220 pudp = pud_offset_lockless(p4dp, p4d, addr);
3222 pud_t pud = READ_ONCE(*pudp);
3224 next = pud_addr_end(addr, end);
3225 if (unlikely(!pud_present(pud)))
3227 if (unlikely(pud_leaf(pud))) {
3228 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3231 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3234 } while (pudp++, addr = next, addr != end);
3239 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3240 unsigned long end, unsigned int flags, struct page **pages,
3246 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3248 p4d_t p4d = READ_ONCE(*p4dp);
3250 next = p4d_addr_end(addr, end);
3251 if (!p4d_present(p4d))
3253 BUILD_BUG_ON(p4d_leaf(p4d));
3254 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3257 } while (p4dp++, addr = next, addr != end);
3262 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3263 unsigned int flags, struct page **pages, int *nr)
3268 pgdp = pgd_offset(current->mm, addr);
3270 pgd_t pgd = READ_ONCE(*pgdp);
3272 next = pgd_addr_end(addr, end);
3275 if (unlikely(pgd_leaf(pgd))) {
3276 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3279 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3282 } while (pgdp++, addr = next, addr != end);
3285 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3286 unsigned int flags, struct page **pages, int *nr)
3289 #endif /* CONFIG_HAVE_GUP_FAST */
3291 #ifndef gup_fast_permitted
3293 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3294 * we need to fall back to the slow version:
3296 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3302 static unsigned long gup_fast(unsigned long start, unsigned long end,
3303 unsigned int gup_flags, struct page **pages)
3305 unsigned long flags;
3309 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3310 !gup_fast_permitted(start, end))
3313 if (gup_flags & FOLL_PIN) {
3314 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
3320 * Disable interrupts. The nested form is used, in order to allow full,
3321 * general purpose use of this routine.
3323 * With interrupts disabled, we block page table pages from being freed
3324 * from under us. See struct mmu_table_batch comments in
3325 * include/asm-generic/tlb.h for more details.
3327 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3328 * that come from THPs splitting.
3330 local_irq_save(flags);
3331 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3332 local_irq_restore(flags);
3335 * When pinning pages for DMA there could be a concurrent write protect
3336 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3338 if (gup_flags & FOLL_PIN) {
3339 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3340 gup_fast_unpin_user_pages(pages, nr_pinned);
3343 sanity_check_pinned_pages(pages, nr_pinned);
3349 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3350 unsigned int gup_flags, struct page **pages)
3352 unsigned long len, end;
3353 unsigned long nr_pinned;
3357 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3358 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3359 FOLL_FAST_ONLY | FOLL_NOFAULT |
3360 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3363 if (gup_flags & FOLL_PIN)
3364 mm_set_has_pinned_flag(¤t->mm->flags);
3366 if (!(gup_flags & FOLL_FAST_ONLY))
3367 might_lock_read(¤t->mm->mmap_lock);
3369 start = untagged_addr(start) & PAGE_MASK;
3370 len = nr_pages << PAGE_SHIFT;
3371 if (check_add_overflow(start, len, &end))
3373 if (end > TASK_SIZE_MAX)
3375 if (unlikely(!access_ok((void __user *)start, len)))
3378 nr_pinned = gup_fast(start, end, gup_flags, pages);
3379 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3382 /* Slow path: try to get the remaining pages with get_user_pages */
3383 start += nr_pinned << PAGE_SHIFT;
3385 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3387 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3390 * The caller has to unpin the pages we already pinned so
3391 * returning -errno is not an option
3397 return ret + nr_pinned;
3401 * get_user_pages_fast_only() - pin user pages in memory
3402 * @start: starting user address
3403 * @nr_pages: number of pages from start to pin
3404 * @gup_flags: flags modifying pin behaviour
3405 * @pages: array that receives pointers to the pages pinned.
3406 * Should be at least nr_pages long.
3408 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3411 * If the architecture does not support this function, simply return with no
3414 * Careful, careful! COW breaking can go either way, so a non-write
3415 * access can get ambiguous page results. If you call this function without
3416 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3418 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3419 unsigned int gup_flags, struct page **pages)
3422 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3423 * because gup fast is always a "pin with a +1 page refcount" request.
3425 * FOLL_FAST_ONLY is required in order to match the API description of
3426 * this routine: no fall back to regular ("slow") GUP.
3428 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3429 FOLL_GET | FOLL_FAST_ONLY))
3432 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3434 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3437 * get_user_pages_fast() - pin user pages in memory
3438 * @start: starting user address
3439 * @nr_pages: number of pages from start to pin
3440 * @gup_flags: flags modifying pin behaviour
3441 * @pages: array that receives pointers to the pages pinned.
3442 * Should be at least nr_pages long.
3444 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3445 * If not successful, it will fall back to taking the lock and
3446 * calling get_user_pages().
3448 * Returns number of pages pinned. This may be fewer than the number requested.
3449 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3452 int get_user_pages_fast(unsigned long start, int nr_pages,
3453 unsigned int gup_flags, struct page **pages)
3456 * The caller may or may not have explicitly set FOLL_GET; either way is
3457 * OK. However, internally (within mm/gup.c), gup fast variants must set
3458 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3461 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3463 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3465 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3468 * pin_user_pages_fast() - pin user pages in memory without taking locks
3470 * @start: starting user address
3471 * @nr_pages: number of pages from start to pin
3472 * @gup_flags: flags modifying pin behaviour
3473 * @pages: array that receives pointers to the pages pinned.
3474 * Should be at least nr_pages long.
3476 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3477 * get_user_pages_fast() for documentation on the function arguments, because
3478 * the arguments here are identical.
3480 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3481 * see Documentation/core-api/pin_user_pages.rst for further details.
3483 * Note that if a zero_page is amongst the returned pages, it will not have
3484 * pins in it and unpin_user_page() will not remove pins from it.
3486 int pin_user_pages_fast(unsigned long start, int nr_pages,
3487 unsigned int gup_flags, struct page **pages)
3489 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3491 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3493 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3496 * pin_user_pages_remote() - pin pages of a remote process
3498 * @mm: mm_struct of target mm
3499 * @start: starting user address
3500 * @nr_pages: number of pages from start to pin
3501 * @gup_flags: flags modifying lookup behaviour
3502 * @pages: array that receives pointers to the pages pinned.
3503 * Should be at least nr_pages long.
3504 * @locked: pointer to lock flag indicating whether lock is held and
3505 * subsequently whether VM_FAULT_RETRY functionality can be
3506 * utilised. Lock must initially be held.
3508 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3509 * get_user_pages_remote() for documentation on the function arguments, because
3510 * the arguments here are identical.
3512 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3513 * see Documentation/core-api/pin_user_pages.rst for details.
3515 * Note that if a zero_page is amongst the returned pages, it will not have
3516 * pins in it and unpin_user_page*() will not remove pins from it.
3518 long pin_user_pages_remote(struct mm_struct *mm,
3519 unsigned long start, unsigned long nr_pages,
3520 unsigned int gup_flags, struct page **pages,
3523 int local_locked = 1;
3525 if (!is_valid_gup_args(pages, locked, &gup_flags,
3526 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3528 return __gup_longterm_locked(mm, start, nr_pages, pages,
3529 locked ? locked : &local_locked,
3532 EXPORT_SYMBOL(pin_user_pages_remote);
3535 * pin_user_pages() - pin user pages in memory for use by other devices
3537 * @start: starting user address
3538 * @nr_pages: number of pages from start to pin
3539 * @gup_flags: flags modifying lookup behaviour
3540 * @pages: array that receives pointers to the pages pinned.
3541 * Should be at least nr_pages long.
3543 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3546 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3547 * see Documentation/core-api/pin_user_pages.rst for details.
3549 * Note that if a zero_page is amongst the returned pages, it will not have
3550 * pins in it and unpin_user_page*() will not remove pins from it.
3552 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3553 unsigned int gup_flags, struct page **pages)
3557 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3559 return __gup_longterm_locked(current->mm, start, nr_pages,
3560 pages, &locked, gup_flags);
3562 EXPORT_SYMBOL(pin_user_pages);
3565 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3566 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3567 * FOLL_PIN and rejects FOLL_GET.
3569 * Note that if a zero_page is amongst the returned pages, it will not have
3570 * pins in it and unpin_user_page*() will not remove pins from it.
3572 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3573 struct page **pages, unsigned int gup_flags)
3577 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3578 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3581 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3582 &locked, gup_flags);
3584 EXPORT_SYMBOL(pin_user_pages_unlocked);
3587 * memfd_pin_folios() - pin folios associated with a memfd
3588 * @memfd: the memfd whose folios are to be pinned
3589 * @start: the first memfd offset
3590 * @end: the last memfd offset (inclusive)
3591 * @folios: array that receives pointers to the folios pinned
3592 * @max_folios: maximum number of entries in @folios
3593 * @offset: the offset into the first folio
3595 * Attempt to pin folios associated with a memfd in the contiguous range
3596 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3597 * the folios can either be found in the page cache or need to be allocated
3598 * if necessary. Once the folios are located, they are all pinned via
3599 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3600 * And, eventually, these pinned folios must be released either using
3601 * unpin_folios() or unpin_folio().
3603 * It must be noted that the folios may be pinned for an indefinite amount
3604 * of time. And, in most cases, the duration of time they may stay pinned
3605 * would be controlled by the userspace. This behavior is effectively the
3606 * same as using FOLL_LONGTERM with other GUP APIs.
3608 * Returns number of folios pinned, which could be less than @max_folios
3609 * as it depends on the folio sizes that cover the range [start, end].
3610 * If no folios were pinned, it returns -errno.
3612 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3613 struct folio **folios, unsigned int max_folios,
3616 unsigned int flags, nr_folios, nr_found;
3617 unsigned int i, pgshift = PAGE_SHIFT;
3618 pgoff_t start_idx, end_idx, next_idx;
3619 struct folio *folio = NULL;
3620 struct folio_batch fbatch;
3624 if (start < 0 || start > end || !max_folios)
3630 if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3633 if (end >= i_size_read(file_inode(memfd)))
3636 if (is_file_hugepages(memfd)) {
3637 h = hstate_file(memfd);
3638 pgshift = huge_page_shift(h);
3641 flags = memalloc_pin_save();
3644 start_idx = start >> pgshift;
3645 end_idx = end >> pgshift;
3646 if (is_file_hugepages(memfd)) {
3647 start_idx <<= huge_page_order(h);
3648 end_idx <<= huge_page_order(h);
3651 folio_batch_init(&fbatch);
3652 while (start_idx <= end_idx && nr_folios < max_folios) {
3654 * In most cases, we should be able to find the folios
3655 * in the page cache. If we cannot find them for some
3656 * reason, we try to allocate them and add them to the
3659 nr_found = filemap_get_folios_contig(memfd->f_mapping,
3669 for (i = 0; i < nr_found; i++) {
3671 * As there can be multiple entries for a
3672 * given folio in the batch returned by
3673 * filemap_get_folios_contig(), the below
3674 * check is to ensure that we pin and return a
3675 * unique set of folios between start and end.
3678 next_idx != folio_index(fbatch.folios[i]))
3681 folio = page_folio(&fbatch.folios[i]->page);
3683 if (try_grab_folio(folio, 1, FOLL_PIN)) {
3684 folio_batch_release(&fbatch);
3690 *offset = offset_in_folio(folio, start);
3692 folios[nr_folios] = folio;
3693 next_idx = folio_next_index(folio);
3694 if (++nr_folios == max_folios)
3699 folio_batch_release(&fbatch);
3701 folio = memfd_alloc_folio(memfd, start_idx);
3702 if (IS_ERR(folio)) {
3703 ret = PTR_ERR(folio);
3710 ret = check_and_migrate_movable_folios(nr_folios, folios);
3711 } while (ret == -EAGAIN);
3713 memalloc_pin_restore(flags);
3714 return ret ? ret : nr_folios;
3716 memalloc_pin_restore(flags);
3717 unpin_folios(folios, nr_folios);
3721 EXPORT_SYMBOL_GPL(memfd_pin_folios);