1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The User Datagram Protocol (UDP).
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
72 * James Chapman : Add L2TP encapsulation type.
75 #define pr_fmt(fmt) "UDP: " fmt
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115 #if IS_ENABLED(CONFIG_IPV6)
116 #include <net/ipv6_stubs.h>
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131 static int udp_lib_lport_inuse(struct net *net, __u16 num,
132 const struct udp_hslot *hslot,
133 unsigned long *bitmap,
134 struct sock *sk, unsigned int log)
137 kuid_t uid = sock_i_uid(sk);
139 sk_for_each(sk2, &hslot->head) {
140 if (net_eq(sock_net(sk2), net) &&
142 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
143 (!sk2->sk_reuse || !sk->sk_reuse) &&
144 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
145 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
146 inet_rcv_saddr_equal(sk, sk2, true)) {
147 if (sk2->sk_reuseport && sk->sk_reuseport &&
148 !rcu_access_pointer(sk->sk_reuseport_cb) &&
149 uid_eq(uid, sock_i_uid(sk2))) {
155 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
164 * Note: we still hold spinlock of primary hash chain, so no other writer
165 * can insert/delete a socket with local_port == num
167 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
168 struct udp_hslot *hslot2,
172 kuid_t uid = sock_i_uid(sk);
175 spin_lock(&hslot2->lock);
176 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
177 if (net_eq(sock_net(sk2), net) &&
179 (udp_sk(sk2)->udp_port_hash == num) &&
180 (!sk2->sk_reuse || !sk->sk_reuse) &&
181 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
182 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
183 inet_rcv_saddr_equal(sk, sk2, true)) {
184 if (sk2->sk_reuseport && sk->sk_reuseport &&
185 !rcu_access_pointer(sk->sk_reuseport_cb) &&
186 uid_eq(uid, sock_i_uid(sk2))) {
194 spin_unlock(&hslot2->lock);
198 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200 struct net *net = sock_net(sk);
201 kuid_t uid = sock_i_uid(sk);
204 sk_for_each(sk2, &hslot->head) {
205 if (net_eq(sock_net(sk2), net) &&
207 sk2->sk_family == sk->sk_family &&
208 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
209 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
210 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
211 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
212 inet_rcv_saddr_equal(sk, sk2, false)) {
213 return reuseport_add_sock(sk, sk2,
214 inet_rcv_saddr_any(sk));
218 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
222 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
224 * @sk: socket struct in question
225 * @snum: port number to look up
226 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
229 int udp_lib_get_port(struct sock *sk, unsigned short snum,
230 unsigned int hash2_nulladdr)
232 struct udp_hslot *hslot, *hslot2;
233 struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 struct net *net = sock_net(sk);
238 int low, high, remaining;
240 unsigned short first, last;
241 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243 inet_get_local_port_range(net, &low, &high);
244 remaining = (high - low) + 1;
246 rand = prandom_u32();
247 first = reciprocal_scale(rand, remaining) + low;
249 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251 rand = (rand | 1) * (udptable->mask + 1);
252 last = first + udptable->mask + 1;
254 hslot = udp_hashslot(udptable, net, first);
255 bitmap_zero(bitmap, PORTS_PER_CHAIN);
256 spin_lock_bh(&hslot->lock);
257 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
262 * Iterate on all possible values of snum for this hash.
263 * Using steps of an odd multiple of UDP_HTABLE_SIZE
264 * give us randomization and full range coverage.
267 if (low <= snum && snum <= high &&
268 !test_bit(snum >> udptable->log, bitmap) &&
269 !inet_is_local_reserved_port(net, snum))
272 } while (snum != first);
273 spin_unlock_bh(&hslot->lock);
275 } while (++first != last);
278 hslot = udp_hashslot(udptable, net, snum);
279 spin_lock_bh(&hslot->lock);
280 if (hslot->count > 10) {
282 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284 slot2 &= udptable->mask;
285 hash2_nulladdr &= udptable->mask;
287 hslot2 = udp_hashslot2(udptable, slot2);
288 if (hslot->count < hslot2->count)
289 goto scan_primary_hash;
291 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
292 if (!exist && (hash2_nulladdr != slot2)) {
293 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
294 exist = udp_lib_lport_inuse2(net, snum, hslot2,
303 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
307 inet_sk(sk)->inet_num = snum;
308 udp_sk(sk)->udp_port_hash = snum;
309 udp_sk(sk)->udp_portaddr_hash ^= snum;
310 if (sk_unhashed(sk)) {
311 if (sk->sk_reuseport &&
312 udp_reuseport_add_sock(sk, hslot)) {
313 inet_sk(sk)->inet_num = 0;
314 udp_sk(sk)->udp_port_hash = 0;
315 udp_sk(sk)->udp_portaddr_hash ^= snum;
319 sk_add_node_rcu(sk, &hslot->head);
321 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
323 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
324 spin_lock(&hslot2->lock);
325 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
326 sk->sk_family == AF_INET6)
327 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
330 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
333 spin_unlock(&hslot2->lock);
335 sock_set_flag(sk, SOCK_RCU_FREE);
338 spin_unlock_bh(&hslot->lock);
342 EXPORT_SYMBOL(udp_lib_get_port);
344 int udp_v4_get_port(struct sock *sk, unsigned short snum)
346 unsigned int hash2_nulladdr =
347 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
348 unsigned int hash2_partial =
349 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
351 /* precompute partial secondary hash */
352 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
353 return udp_lib_get_port(sk, snum, hash2_nulladdr);
356 static int compute_score(struct sock *sk, struct net *net,
357 __be32 saddr, __be16 sport,
358 __be32 daddr, unsigned short hnum,
362 struct inet_sock *inet;
365 if (!net_eq(sock_net(sk), net) ||
366 udp_sk(sk)->udp_port_hash != hnum ||
370 if (sk->sk_rcv_saddr != daddr)
373 score = (sk->sk_family == PF_INET) ? 2 : 1;
376 if (inet->inet_daddr) {
377 if (inet->inet_daddr != saddr)
382 if (inet->inet_dport) {
383 if (inet->inet_dport != sport)
388 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
394 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
399 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
400 const __u16 lport, const __be32 faddr,
403 static u32 udp_ehash_secret __read_mostly;
405 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
407 return __inet_ehashfn(laddr, lport, faddr, fport,
408 udp_ehash_secret + net_hash_mix(net));
411 /* called with rcu_read_lock() */
412 static struct sock *udp4_lib_lookup2(struct net *net,
413 __be32 saddr, __be16 sport,
414 __be32 daddr, unsigned int hnum,
416 struct udp_hslot *hslot2,
419 struct sock *sk, *result;
425 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
426 score = compute_score(sk, net, saddr, sport,
427 daddr, hnum, dif, sdif);
428 if (score > badness) {
429 if (sk->sk_reuseport &&
430 sk->sk_state != TCP_ESTABLISHED) {
431 hash = udp_ehashfn(net, daddr, hnum,
433 result = reuseport_select_sock(sk, hash, skb,
434 sizeof(struct udphdr));
435 if (result && !reuseport_has_conns(sk, false))
445 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
446 * harder than this. -DaveM
448 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
449 __be16 sport, __be32 daddr, __be16 dport, int dif,
450 int sdif, struct udp_table *udptable, struct sk_buff *skb)
453 unsigned short hnum = ntohs(dport);
454 unsigned int hash2, slot2;
455 struct udp_hslot *hslot2;
457 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
458 slot2 = hash2 & udptable->mask;
459 hslot2 = &udptable->hash2[slot2];
461 result = udp4_lib_lookup2(net, saddr, sport,
462 daddr, hnum, dif, sdif,
465 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
466 slot2 = hash2 & udptable->mask;
467 hslot2 = &udptable->hash2[slot2];
469 result = udp4_lib_lookup2(net, saddr, sport,
470 htonl(INADDR_ANY), hnum, dif, sdif,
477 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
479 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
480 __be16 sport, __be16 dport,
481 struct udp_table *udptable)
483 const struct iphdr *iph = ip_hdr(skb);
485 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
486 iph->daddr, dport, inet_iif(skb),
487 inet_sdif(skb), udptable, skb);
490 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
491 __be16 sport, __be16 dport)
493 const struct iphdr *iph = ip_hdr(skb);
495 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
496 iph->daddr, dport, inet_iif(skb),
497 inet_sdif(skb), &udp_table, NULL);
499 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
501 /* Must be called under rcu_read_lock().
502 * Does increment socket refcount.
504 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
505 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
506 __be32 daddr, __be16 dport, int dif)
510 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
511 dif, 0, &udp_table, NULL);
512 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
516 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
519 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
520 __be16 loc_port, __be32 loc_addr,
521 __be16 rmt_port, __be32 rmt_addr,
522 int dif, int sdif, unsigned short hnum)
524 struct inet_sock *inet = inet_sk(sk);
526 if (!net_eq(sock_net(sk), net) ||
527 udp_sk(sk)->udp_port_hash != hnum ||
528 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
529 (inet->inet_dport != rmt_port && inet->inet_dport) ||
530 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
531 ipv6_only_sock(sk) ||
532 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
534 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
539 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
540 void udp_encap_enable(void)
542 static_branch_inc(&udp_encap_needed_key);
544 EXPORT_SYMBOL(udp_encap_enable);
546 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
547 * through error handlers in encapsulations looking for a match.
549 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
553 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
554 int (*handler)(struct sk_buff *skb, u32 info);
555 const struct ip_tunnel_encap_ops *encap;
557 encap = rcu_dereference(iptun_encaps[i]);
560 handler = encap->err_handler;
561 if (handler && !handler(skb, info))
568 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
569 * reversing source and destination port: this will match tunnels that force the
570 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
571 * lwtunnels might actually break this assumption by being configured with
572 * different destination ports on endpoints, in this case we won't be able to
573 * trace ICMP messages back to them.
575 * If this doesn't match any socket, probe tunnels with arbitrary destination
576 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
577 * we've sent packets to won't necessarily match the local destination port.
579 * Then ask the tunnel implementation to match the error against a valid
582 * Return an error if we can't find a match, the socket if we need further
583 * processing, zero otherwise.
585 static struct sock *__udp4_lib_err_encap(struct net *net,
586 const struct iphdr *iph,
588 struct udp_table *udptable,
589 struct sk_buff *skb, u32 info)
591 int network_offset, transport_offset;
594 network_offset = skb_network_offset(skb);
595 transport_offset = skb_transport_offset(skb);
597 /* Network header needs to point to the outer IPv4 header inside ICMP */
598 skb_reset_network_header(skb);
600 /* Transport header needs to point to the UDP header */
601 skb_set_transport_header(skb, iph->ihl << 2);
603 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
604 iph->saddr, uh->dest, skb->dev->ifindex, 0,
607 int (*lookup)(struct sock *sk, struct sk_buff *skb);
608 struct udp_sock *up = udp_sk(sk);
610 lookup = READ_ONCE(up->encap_err_lookup);
611 if (!lookup || lookup(sk, skb))
616 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
618 skb_set_transport_header(skb, transport_offset);
619 skb_set_network_header(skb, network_offset);
625 * This routine is called by the ICMP module when it gets some
626 * sort of error condition. If err < 0 then the socket should
627 * be closed and the error returned to the user. If err > 0
628 * it's just the icmp type << 8 | icmp code.
629 * Header points to the ip header of the error packet. We move
630 * on past this. Then (as it used to claim before adjustment)
631 * header points to the first 8 bytes of the udp header. We need
632 * to find the appropriate port.
635 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
637 struct inet_sock *inet;
638 const struct iphdr *iph = (const struct iphdr *)skb->data;
639 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
640 const int type = icmp_hdr(skb)->type;
641 const int code = icmp_hdr(skb)->code;
646 struct net *net = dev_net(skb->dev);
648 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
649 iph->saddr, uh->source, skb->dev->ifindex,
650 inet_sdif(skb), udptable, NULL);
652 /* No socket for error: try tunnels before discarding */
653 sk = ERR_PTR(-ENOENT);
654 if (static_branch_unlikely(&udp_encap_needed_key)) {
655 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
662 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
675 case ICMP_TIME_EXCEEDED:
678 case ICMP_SOURCE_QUENCH:
680 case ICMP_PARAMETERPROB:
684 case ICMP_DEST_UNREACH:
685 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
686 ipv4_sk_update_pmtu(skb, sk, info);
687 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
695 if (code <= NR_ICMP_UNREACH) {
696 harderr = icmp_err_convert[code].fatal;
697 err = icmp_err_convert[code].errno;
701 ipv4_sk_redirect(skb, sk);
706 * RFC1122: OK. Passes ICMP errors back to application, as per
710 /* ...not for tunnels though: we don't have a sending socket */
713 if (!inet->recverr) {
714 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
717 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
720 sk->sk_error_report(sk);
725 int udp_err(struct sk_buff *skb, u32 info)
727 return __udp4_lib_err(skb, info, &udp_table);
731 * Throw away all pending data and cancel the corking. Socket is locked.
733 void udp_flush_pending_frames(struct sock *sk)
735 struct udp_sock *up = udp_sk(sk);
740 ip_flush_pending_frames(sk);
743 EXPORT_SYMBOL(udp_flush_pending_frames);
746 * udp4_hwcsum - handle outgoing HW checksumming
747 * @skb: sk_buff containing the filled-in UDP header
748 * (checksum field must be zeroed out)
749 * @src: source IP address
750 * @dst: destination IP address
752 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
754 struct udphdr *uh = udp_hdr(skb);
755 int offset = skb_transport_offset(skb);
756 int len = skb->len - offset;
760 if (!skb_has_frag_list(skb)) {
762 * Only one fragment on the socket.
764 skb->csum_start = skb_transport_header(skb) - skb->head;
765 skb->csum_offset = offsetof(struct udphdr, check);
766 uh->check = ~csum_tcpudp_magic(src, dst, len,
769 struct sk_buff *frags;
772 * HW-checksum won't work as there are two or more
773 * fragments on the socket so that all csums of sk_buffs
776 skb_walk_frags(skb, frags) {
777 csum = csum_add(csum, frags->csum);
781 csum = skb_checksum(skb, offset, hlen, csum);
782 skb->ip_summed = CHECKSUM_NONE;
784 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
786 uh->check = CSUM_MANGLED_0;
789 EXPORT_SYMBOL_GPL(udp4_hwcsum);
791 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
792 * for the simple case like when setting the checksum for a UDP tunnel.
794 void udp_set_csum(bool nocheck, struct sk_buff *skb,
795 __be32 saddr, __be32 daddr, int len)
797 struct udphdr *uh = udp_hdr(skb);
801 } else if (skb_is_gso(skb)) {
802 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
803 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
805 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
807 uh->check = CSUM_MANGLED_0;
809 skb->ip_summed = CHECKSUM_PARTIAL;
810 skb->csum_start = skb_transport_header(skb) - skb->head;
811 skb->csum_offset = offsetof(struct udphdr, check);
812 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
815 EXPORT_SYMBOL(udp_set_csum);
817 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
818 struct inet_cork *cork)
820 struct sock *sk = skb->sk;
821 struct inet_sock *inet = inet_sk(sk);
824 int is_udplite = IS_UDPLITE(sk);
825 int offset = skb_transport_offset(skb);
826 int len = skb->len - offset;
827 int datalen = len - sizeof(*uh);
831 * Create a UDP header
834 uh->source = inet->inet_sport;
835 uh->dest = fl4->fl4_dport;
836 uh->len = htons(len);
839 if (cork->gso_size) {
840 const int hlen = skb_network_header_len(skb) +
841 sizeof(struct udphdr);
843 if (hlen + cork->gso_size > cork->fragsize) {
847 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
851 if (sk->sk_no_check_tx) {
855 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
856 dst_xfrm(skb_dst(skb))) {
861 if (datalen > cork->gso_size) {
862 skb_shinfo(skb)->gso_size = cork->gso_size;
863 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
864 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
870 if (is_udplite) /* UDP-Lite */
871 csum = udplite_csum(skb);
873 else if (sk->sk_no_check_tx) { /* UDP csum off */
875 skb->ip_summed = CHECKSUM_NONE;
878 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
881 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
885 csum = udp_csum(skb);
887 /* add protocol-dependent pseudo-header */
888 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
889 sk->sk_protocol, csum);
891 uh->check = CSUM_MANGLED_0;
894 err = ip_send_skb(sock_net(sk), skb);
896 if (err == -ENOBUFS && !inet->recverr) {
897 UDP_INC_STATS(sock_net(sk),
898 UDP_MIB_SNDBUFERRORS, is_udplite);
902 UDP_INC_STATS(sock_net(sk),
903 UDP_MIB_OUTDATAGRAMS, is_udplite);
908 * Push out all pending data as one UDP datagram. Socket is locked.
910 int udp_push_pending_frames(struct sock *sk)
912 struct udp_sock *up = udp_sk(sk);
913 struct inet_sock *inet = inet_sk(sk);
914 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
918 skb = ip_finish_skb(sk, fl4);
922 err = udp_send_skb(skb, fl4, &inet->cork.base);
929 EXPORT_SYMBOL(udp_push_pending_frames);
931 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
933 switch (cmsg->cmsg_type) {
935 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
937 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
944 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
946 struct cmsghdr *cmsg;
947 bool need_ip = false;
950 for_each_cmsghdr(cmsg, msg) {
951 if (!CMSG_OK(msg, cmsg))
954 if (cmsg->cmsg_level != SOL_UDP) {
959 err = __udp_cmsg_send(cmsg, gso_size);
966 EXPORT_SYMBOL_GPL(udp_cmsg_send);
968 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
970 struct inet_sock *inet = inet_sk(sk);
971 struct udp_sock *up = udp_sk(sk);
972 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
973 struct flowi4 fl4_stack;
976 struct ipcm_cookie ipc;
977 struct rtable *rt = NULL;
980 __be32 daddr, faddr, saddr;
983 int err, is_udplite = IS_UDPLITE(sk);
984 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
985 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
987 struct ip_options_data opt_copy;
996 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
999 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1001 fl4 = &inet->cork.fl.u.ip4;
1004 * There are pending frames.
1005 * The socket lock must be held while it's corked.
1008 if (likely(up->pending)) {
1009 if (unlikely(up->pending != AF_INET)) {
1013 goto do_append_data;
1017 ulen += sizeof(struct udphdr);
1020 * Get and verify the address.
1023 if (msg->msg_namelen < sizeof(*usin))
1025 if (usin->sin_family != AF_INET) {
1026 if (usin->sin_family != AF_UNSPEC)
1027 return -EAFNOSUPPORT;
1030 daddr = usin->sin_addr.s_addr;
1031 dport = usin->sin_port;
1035 if (sk->sk_state != TCP_ESTABLISHED)
1036 return -EDESTADDRREQ;
1037 daddr = inet->inet_daddr;
1038 dport = inet->inet_dport;
1039 /* Open fast path for connected socket.
1040 Route will not be used, if at least one option is set.
1045 ipcm_init_sk(&ipc, inet);
1046 ipc.gso_size = up->gso_size;
1048 if (msg->msg_controllen) {
1049 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1051 err = ip_cmsg_send(sk, msg, &ipc,
1052 sk->sk_family == AF_INET6);
1053 if (unlikely(err < 0)) {
1062 struct ip_options_rcu *inet_opt;
1065 inet_opt = rcu_dereference(inet->inet_opt);
1067 memcpy(&opt_copy, inet_opt,
1068 sizeof(*inet_opt) + inet_opt->opt.optlen);
1069 ipc.opt = &opt_copy.opt;
1074 if (cgroup_bpf_enabled && !connected) {
1075 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1076 (struct sockaddr *)usin, &ipc.addr);
1080 if (usin->sin_port == 0) {
1081 /* BPF program set invalid port. Reject it. */
1085 daddr = usin->sin_addr.s_addr;
1086 dport = usin->sin_port;
1091 ipc.addr = faddr = daddr;
1093 if (ipc.opt && ipc.opt->opt.srr) {
1098 faddr = ipc.opt->opt.faddr;
1101 tos = get_rttos(&ipc, inet);
1102 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1103 (msg->msg_flags & MSG_DONTROUTE) ||
1104 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1109 if (ipv4_is_multicast(daddr)) {
1110 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1111 ipc.oif = inet->mc_index;
1113 saddr = inet->mc_addr;
1115 } else if (!ipc.oif) {
1116 ipc.oif = inet->uc_index;
1117 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1118 /* oif is set, packet is to local broadcast and
1119 * and uc_index is set. oif is most likely set
1120 * by sk_bound_dev_if. If uc_index != oif check if the
1121 * oif is an L3 master and uc_index is an L3 slave.
1122 * If so, we want to allow the send using the uc_index.
1124 if (ipc.oif != inet->uc_index &&
1125 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1127 ipc.oif = inet->uc_index;
1132 rt = (struct rtable *)sk_dst_check(sk, 0);
1135 struct net *net = sock_net(sk);
1136 __u8 flow_flags = inet_sk_flowi_flags(sk);
1140 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1141 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1143 faddr, saddr, dport, inet->inet_sport,
1146 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1147 rt = ip_route_output_flow(net, fl4, sk);
1151 if (err == -ENETUNREACH)
1152 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1157 if ((rt->rt_flags & RTCF_BROADCAST) &&
1158 !sock_flag(sk, SOCK_BROADCAST))
1161 sk_dst_set(sk, dst_clone(&rt->dst));
1164 if (msg->msg_flags&MSG_CONFIRM)
1170 daddr = ipc.addr = fl4->daddr;
1172 /* Lockless fast path for the non-corking case. */
1174 struct inet_cork cork;
1176 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1177 sizeof(struct udphdr), &ipc, &rt,
1178 &cork, msg->msg_flags);
1180 if (!IS_ERR_OR_NULL(skb))
1181 err = udp_send_skb(skb, fl4, &cork);
1186 if (unlikely(up->pending)) {
1187 /* The socket is already corked while preparing it. */
1188 /* ... which is an evident application bug. --ANK */
1191 net_dbg_ratelimited("socket already corked\n");
1196 * Now cork the socket to pend data.
1198 fl4 = &inet->cork.fl.u.ip4;
1201 fl4->fl4_dport = dport;
1202 fl4->fl4_sport = inet->inet_sport;
1203 up->pending = AF_INET;
1207 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1208 sizeof(struct udphdr), &ipc, &rt,
1209 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1211 udp_flush_pending_frames(sk);
1213 err = udp_push_pending_frames(sk);
1214 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1226 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1227 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1228 * we don't have a good statistic (IpOutDiscards but it can be too many
1229 * things). We could add another new stat but at least for now that
1230 * seems like overkill.
1232 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1233 UDP_INC_STATS(sock_net(sk),
1234 UDP_MIB_SNDBUFERRORS, is_udplite);
1239 if (msg->msg_flags & MSG_PROBE)
1240 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1241 if (!(msg->msg_flags&MSG_PROBE) || len)
1242 goto back_from_confirm;
1246 EXPORT_SYMBOL(udp_sendmsg);
1248 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1249 size_t size, int flags)
1251 struct inet_sock *inet = inet_sk(sk);
1252 struct udp_sock *up = udp_sk(sk);
1255 if (flags & MSG_SENDPAGE_NOTLAST)
1259 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1261 /* Call udp_sendmsg to specify destination address which
1262 * sendpage interface can't pass.
1263 * This will succeed only when the socket is connected.
1265 ret = udp_sendmsg(sk, &msg, 0);
1272 if (unlikely(!up->pending)) {
1275 net_dbg_ratelimited("cork failed\n");
1279 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1280 page, offset, size, flags);
1281 if (ret == -EOPNOTSUPP) {
1283 return sock_no_sendpage(sk->sk_socket, page, offset,
1287 udp_flush_pending_frames(sk);
1292 if (!(up->corkflag || (flags&MSG_MORE)))
1293 ret = udp_push_pending_frames(sk);
1301 #define UDP_SKB_IS_STATELESS 0x80000000
1303 /* all head states (dst, sk, nf conntrack) except skb extensions are
1304 * cleared by udp_rcv().
1306 * We need to preserve secpath, if present, to eventually process
1307 * IP_CMSG_PASSSEC at recvmsg() time.
1309 * Other extensions can be cleared.
1311 static bool udp_try_make_stateless(struct sk_buff *skb)
1313 if (!skb_has_extensions(skb))
1316 if (!secpath_exists(skb)) {
1324 static void udp_set_dev_scratch(struct sk_buff *skb)
1326 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1328 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1329 scratch->_tsize_state = skb->truesize;
1330 #if BITS_PER_LONG == 64
1331 scratch->len = skb->len;
1332 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1333 scratch->is_linear = !skb_is_nonlinear(skb);
1335 if (udp_try_make_stateless(skb))
1336 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1339 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1341 /* We come here after udp_lib_checksum_complete() returned 0.
1342 * This means that __skb_checksum_complete() might have
1343 * set skb->csum_valid to 1.
1344 * On 64bit platforms, we can set csum_unnecessary
1345 * to true, but only if the skb is not shared.
1347 #if BITS_PER_LONG == 64
1348 if (!skb_shared(skb))
1349 udp_skb_scratch(skb)->csum_unnecessary = true;
1353 static int udp_skb_truesize(struct sk_buff *skb)
1355 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1358 static bool udp_skb_has_head_state(struct sk_buff *skb)
1360 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1363 /* fully reclaim rmem/fwd memory allocated for skb */
1364 static void udp_rmem_release(struct sock *sk, int size, int partial,
1365 bool rx_queue_lock_held)
1367 struct udp_sock *up = udp_sk(sk);
1368 struct sk_buff_head *sk_queue;
1371 if (likely(partial)) {
1372 up->forward_deficit += size;
1373 size = up->forward_deficit;
1374 if (size < (sk->sk_rcvbuf >> 2) &&
1375 !skb_queue_empty(&up->reader_queue))
1378 size += up->forward_deficit;
1380 up->forward_deficit = 0;
1382 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1383 * if the called don't held it already
1385 sk_queue = &sk->sk_receive_queue;
1386 if (!rx_queue_lock_held)
1387 spin_lock(&sk_queue->lock);
1390 sk->sk_forward_alloc += size;
1391 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1392 sk->sk_forward_alloc -= amt;
1395 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1397 atomic_sub(size, &sk->sk_rmem_alloc);
1399 /* this can save us from acquiring the rx queue lock on next receive */
1400 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1402 if (!rx_queue_lock_held)
1403 spin_unlock(&sk_queue->lock);
1406 /* Note: called with reader_queue.lock held.
1407 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1408 * This avoids a cache line miss while receive_queue lock is held.
1409 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1411 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1413 prefetch(&skb->data);
1414 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1416 EXPORT_SYMBOL(udp_skb_destructor);
1418 /* as above, but the caller held the rx queue lock, too */
1419 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1421 prefetch(&skb->data);
1422 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1425 /* Idea of busylocks is to let producers grab an extra spinlock
1426 * to relieve pressure on the receive_queue spinlock shared by consumer.
1427 * Under flood, this means that only one producer can be in line
1428 * trying to acquire the receive_queue spinlock.
1429 * These busylock can be allocated on a per cpu manner, instead of a
1430 * per socket one (that would consume a cache line per socket)
1432 static int udp_busylocks_log __read_mostly;
1433 static spinlock_t *udp_busylocks __read_mostly;
1435 static spinlock_t *busylock_acquire(void *ptr)
1439 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1444 static void busylock_release(spinlock_t *busy)
1450 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1452 struct sk_buff_head *list = &sk->sk_receive_queue;
1453 int rmem, delta, amt, err = -ENOMEM;
1454 spinlock_t *busy = NULL;
1457 /* try to avoid the costly atomic add/sub pair when the receive
1458 * queue is full; always allow at least a packet
1460 rmem = atomic_read(&sk->sk_rmem_alloc);
1461 if (rmem > sk->sk_rcvbuf)
1464 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1465 * having linear skbs :
1466 * - Reduce memory overhead and thus increase receive queue capacity
1467 * - Less cache line misses at copyout() time
1468 * - Less work at consume_skb() (less alien page frag freeing)
1470 if (rmem > (sk->sk_rcvbuf >> 1)) {
1473 busy = busylock_acquire(sk);
1475 size = skb->truesize;
1476 udp_set_dev_scratch(skb);
1478 /* we drop only if the receive buf is full and the receive
1479 * queue contains some other skb
1481 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1482 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1485 spin_lock(&list->lock);
1486 if (size >= sk->sk_forward_alloc) {
1487 amt = sk_mem_pages(size);
1488 delta = amt << SK_MEM_QUANTUM_SHIFT;
1489 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1491 spin_unlock(&list->lock);
1495 sk->sk_forward_alloc += delta;
1498 sk->sk_forward_alloc -= size;
1500 /* no need to setup a destructor, we will explicitly release the
1501 * forward allocated memory on dequeue
1503 sock_skb_set_dropcount(sk, skb);
1505 __skb_queue_tail(list, skb);
1506 spin_unlock(&list->lock);
1508 if (!sock_flag(sk, SOCK_DEAD))
1509 sk->sk_data_ready(sk);
1511 busylock_release(busy);
1515 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1518 atomic_inc(&sk->sk_drops);
1519 busylock_release(busy);
1522 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1524 void udp_destruct_sock(struct sock *sk)
1526 /* reclaim completely the forward allocated memory */
1527 struct udp_sock *up = udp_sk(sk);
1528 unsigned int total = 0;
1529 struct sk_buff *skb;
1531 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1532 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1533 total += skb->truesize;
1536 udp_rmem_release(sk, total, 0, true);
1538 inet_sock_destruct(sk);
1540 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1542 int udp_init_sock(struct sock *sk)
1544 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1545 sk->sk_destruct = udp_destruct_sock;
1548 EXPORT_SYMBOL_GPL(udp_init_sock);
1550 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1552 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1553 bool slow = lock_sock_fast(sk);
1555 sk_peek_offset_bwd(sk, len);
1556 unlock_sock_fast(sk, slow);
1559 if (!skb_unref(skb))
1562 /* In the more common cases we cleared the head states previously,
1563 * see __udp_queue_rcv_skb().
1565 if (unlikely(udp_skb_has_head_state(skb)))
1566 skb_release_head_state(skb);
1567 __consume_stateless_skb(skb);
1569 EXPORT_SYMBOL_GPL(skb_consume_udp);
1571 static struct sk_buff *__first_packet_length(struct sock *sk,
1572 struct sk_buff_head *rcvq,
1575 struct sk_buff *skb;
1577 while ((skb = skb_peek(rcvq)) != NULL) {
1578 if (udp_lib_checksum_complete(skb)) {
1579 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1581 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1583 atomic_inc(&sk->sk_drops);
1584 __skb_unlink(skb, rcvq);
1585 *total += skb->truesize;
1588 udp_skb_csum_unnecessary_set(skb);
1596 * first_packet_length - return length of first packet in receive queue
1599 * Drops all bad checksum frames, until a valid one is found.
1600 * Returns the length of found skb, or -1 if none is found.
1602 static int first_packet_length(struct sock *sk)
1604 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1605 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1606 struct sk_buff *skb;
1610 spin_lock_bh(&rcvq->lock);
1611 skb = __first_packet_length(sk, rcvq, &total);
1612 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1613 spin_lock(&sk_queue->lock);
1614 skb_queue_splice_tail_init(sk_queue, rcvq);
1615 spin_unlock(&sk_queue->lock);
1617 skb = __first_packet_length(sk, rcvq, &total);
1619 res = skb ? skb->len : -1;
1621 udp_rmem_release(sk, total, 1, false);
1622 spin_unlock_bh(&rcvq->lock);
1627 * IOCTL requests applicable to the UDP protocol
1630 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1635 int amount = sk_wmem_alloc_get(sk);
1637 return put_user(amount, (int __user *)arg);
1642 int amount = max_t(int, 0, first_packet_length(sk));
1644 return put_user(amount, (int __user *)arg);
1648 return -ENOIOCTLCMD;
1653 EXPORT_SYMBOL(udp_ioctl);
1655 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1656 int noblock, int *off, int *err)
1658 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1659 struct sk_buff_head *queue;
1660 struct sk_buff *last;
1664 queue = &udp_sk(sk)->reader_queue;
1665 flags |= noblock ? MSG_DONTWAIT : 0;
1666 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1668 struct sk_buff *skb;
1670 error = sock_error(sk);
1676 spin_lock_bh(&queue->lock);
1677 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1680 if (!(flags & MSG_PEEK))
1681 udp_skb_destructor(sk, skb);
1682 spin_unlock_bh(&queue->lock);
1686 if (skb_queue_empty_lockless(sk_queue)) {
1687 spin_unlock_bh(&queue->lock);
1691 /* refill the reader queue and walk it again
1692 * keep both queues locked to avoid re-acquiring
1693 * the sk_receive_queue lock if fwd memory scheduling
1696 spin_lock(&sk_queue->lock);
1697 skb_queue_splice_tail_init(sk_queue, queue);
1699 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1701 if (skb && !(flags & MSG_PEEK))
1702 udp_skb_dtor_locked(sk, skb);
1703 spin_unlock(&sk_queue->lock);
1704 spin_unlock_bh(&queue->lock);
1709 if (!sk_can_busy_loop(sk))
1712 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1713 } while (!skb_queue_empty_lockless(sk_queue));
1715 /* sk_queue is empty, reader_queue may contain peeked packets */
1717 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1719 (struct sk_buff *)sk_queue));
1724 EXPORT_SYMBOL(__skb_recv_udp);
1727 * This should be easy, if there is something there we
1728 * return it, otherwise we block.
1731 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1732 int flags, int *addr_len)
1734 struct inet_sock *inet = inet_sk(sk);
1735 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1736 struct sk_buff *skb;
1737 unsigned int ulen, copied;
1738 int off, err, peeking = flags & MSG_PEEK;
1739 int is_udplite = IS_UDPLITE(sk);
1740 bool checksum_valid = false;
1742 if (flags & MSG_ERRQUEUE)
1743 return ip_recv_error(sk, msg, len, addr_len);
1746 off = sk_peek_offset(sk, flags);
1747 skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1751 ulen = udp_skb_len(skb);
1753 if (copied > ulen - off)
1754 copied = ulen - off;
1755 else if (copied < ulen)
1756 msg->msg_flags |= MSG_TRUNC;
1759 * If checksum is needed at all, try to do it while copying the
1760 * data. If the data is truncated, or if we only want a partial
1761 * coverage checksum (UDP-Lite), do it before the copy.
1764 if (copied < ulen || peeking ||
1765 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1766 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1767 !__udp_lib_checksum_complete(skb);
1768 if (!checksum_valid)
1772 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1773 if (udp_skb_is_linear(skb))
1774 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1776 err = skb_copy_datagram_msg(skb, off, msg, copied);
1778 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1784 if (unlikely(err)) {
1786 atomic_inc(&sk->sk_drops);
1787 UDP_INC_STATS(sock_net(sk),
1788 UDP_MIB_INERRORS, is_udplite);
1795 UDP_INC_STATS(sock_net(sk),
1796 UDP_MIB_INDATAGRAMS, is_udplite);
1798 sock_recv_ts_and_drops(msg, sk, skb);
1800 /* Copy the address. */
1802 sin->sin_family = AF_INET;
1803 sin->sin_port = udp_hdr(skb)->source;
1804 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1805 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1806 *addr_len = sizeof(*sin);
1808 if (cgroup_bpf_enabled)
1809 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1810 (struct sockaddr *)sin);
1813 if (udp_sk(sk)->gro_enabled)
1814 udp_cmsg_recv(msg, sk, skb);
1816 if (inet->cmsg_flags)
1817 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1820 if (flags & MSG_TRUNC)
1823 skb_consume_udp(sk, skb, peeking ? -err : err);
1827 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1828 udp_skb_destructor)) {
1829 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1830 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1834 /* starting over for a new packet, but check if we need to yield */
1836 msg->msg_flags &= ~MSG_TRUNC;
1840 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1842 /* This check is replicated from __ip4_datagram_connect() and
1843 * intended to prevent BPF program called below from accessing bytes
1844 * that are out of the bound specified by user in addr_len.
1846 if (addr_len < sizeof(struct sockaddr_in))
1849 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1851 EXPORT_SYMBOL(udp_pre_connect);
1853 int __udp_disconnect(struct sock *sk, int flags)
1855 struct inet_sock *inet = inet_sk(sk);
1857 * 1003.1g - break association.
1860 sk->sk_state = TCP_CLOSE;
1861 inet->inet_daddr = 0;
1862 inet->inet_dport = 0;
1863 sock_rps_reset_rxhash(sk);
1864 sk->sk_bound_dev_if = 0;
1865 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1866 inet_reset_saddr(sk);
1867 if (sk->sk_prot->rehash &&
1868 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1869 sk->sk_prot->rehash(sk);
1872 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1873 sk->sk_prot->unhash(sk);
1874 inet->inet_sport = 0;
1879 EXPORT_SYMBOL(__udp_disconnect);
1881 int udp_disconnect(struct sock *sk, int flags)
1884 __udp_disconnect(sk, flags);
1888 EXPORT_SYMBOL(udp_disconnect);
1890 void udp_lib_unhash(struct sock *sk)
1892 if (sk_hashed(sk)) {
1893 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1894 struct udp_hslot *hslot, *hslot2;
1896 hslot = udp_hashslot(udptable, sock_net(sk),
1897 udp_sk(sk)->udp_port_hash);
1898 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1900 spin_lock_bh(&hslot->lock);
1901 if (rcu_access_pointer(sk->sk_reuseport_cb))
1902 reuseport_detach_sock(sk);
1903 if (sk_del_node_init_rcu(sk)) {
1905 inet_sk(sk)->inet_num = 0;
1906 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1908 spin_lock(&hslot2->lock);
1909 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1911 spin_unlock(&hslot2->lock);
1913 spin_unlock_bh(&hslot->lock);
1916 EXPORT_SYMBOL(udp_lib_unhash);
1919 * inet_rcv_saddr was changed, we must rehash secondary hash
1921 void udp_lib_rehash(struct sock *sk, u16 newhash)
1923 if (sk_hashed(sk)) {
1924 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1925 struct udp_hslot *hslot, *hslot2, *nhslot2;
1927 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1928 nhslot2 = udp_hashslot2(udptable, newhash);
1929 udp_sk(sk)->udp_portaddr_hash = newhash;
1931 if (hslot2 != nhslot2 ||
1932 rcu_access_pointer(sk->sk_reuseport_cb)) {
1933 hslot = udp_hashslot(udptable, sock_net(sk),
1934 udp_sk(sk)->udp_port_hash);
1935 /* we must lock primary chain too */
1936 spin_lock_bh(&hslot->lock);
1937 if (rcu_access_pointer(sk->sk_reuseport_cb))
1938 reuseport_detach_sock(sk);
1940 if (hslot2 != nhslot2) {
1941 spin_lock(&hslot2->lock);
1942 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1944 spin_unlock(&hslot2->lock);
1946 spin_lock(&nhslot2->lock);
1947 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1950 spin_unlock(&nhslot2->lock);
1953 spin_unlock_bh(&hslot->lock);
1957 EXPORT_SYMBOL(udp_lib_rehash);
1959 void udp_v4_rehash(struct sock *sk)
1961 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1962 inet_sk(sk)->inet_rcv_saddr,
1963 inet_sk(sk)->inet_num);
1964 udp_lib_rehash(sk, new_hash);
1967 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1971 if (inet_sk(sk)->inet_daddr) {
1972 sock_rps_save_rxhash(sk, skb);
1973 sk_mark_napi_id(sk, skb);
1974 sk_incoming_cpu_update(sk);
1976 sk_mark_napi_id_once(sk, skb);
1979 rc = __udp_enqueue_schedule_skb(sk, skb);
1981 int is_udplite = IS_UDPLITE(sk);
1983 /* Note that an ENOMEM error is charged twice */
1985 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1987 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1989 trace_udp_fail_queue_rcv_skb(rc, sk);
1999 * >0: "udp encap" protocol resubmission
2001 * Note that in the success and error cases, the skb is assumed to
2002 * have either been requeued or freed.
2004 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2006 struct udp_sock *up = udp_sk(sk);
2007 int is_udplite = IS_UDPLITE(sk);
2010 * Charge it to the socket, dropping if the queue is full.
2012 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2016 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2017 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2020 * This is an encapsulation socket so pass the skb to
2021 * the socket's udp_encap_rcv() hook. Otherwise, just
2022 * fall through and pass this up the UDP socket.
2023 * up->encap_rcv() returns the following value:
2024 * =0 if skb was successfully passed to the encap
2025 * handler or was discarded by it.
2026 * >0 if skb should be passed on to UDP.
2027 * <0 if skb should be resubmitted as proto -N
2030 /* if we're overly short, let UDP handle it */
2031 encap_rcv = READ_ONCE(up->encap_rcv);
2035 /* Verify checksum before giving to encap */
2036 if (udp_lib_checksum_complete(skb))
2039 ret = encap_rcv(sk, skb);
2041 __UDP_INC_STATS(sock_net(sk),
2042 UDP_MIB_INDATAGRAMS,
2048 /* FALLTHROUGH -- it's a UDP Packet */
2052 * UDP-Lite specific tests, ignored on UDP sockets
2054 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2057 * MIB statistics other than incrementing the error count are
2058 * disabled for the following two types of errors: these depend
2059 * on the application settings, not on the functioning of the
2060 * protocol stack as such.
2062 * RFC 3828 here recommends (sec 3.3): "There should also be a
2063 * way ... to ... at least let the receiving application block
2064 * delivery of packets with coverage values less than a value
2065 * provided by the application."
2067 if (up->pcrlen == 0) { /* full coverage was set */
2068 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2069 UDP_SKB_CB(skb)->cscov, skb->len);
2072 /* The next case involves violating the min. coverage requested
2073 * by the receiver. This is subtle: if receiver wants x and x is
2074 * greater than the buffersize/MTU then receiver will complain
2075 * that it wants x while sender emits packets of smaller size y.
2076 * Therefore the above ...()->partial_cov statement is essential.
2078 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2079 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2080 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2085 prefetch(&sk->sk_rmem_alloc);
2086 if (rcu_access_pointer(sk->sk_filter) &&
2087 udp_lib_checksum_complete(skb))
2090 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2093 udp_csum_pull_header(skb);
2095 ipv4_pktinfo_prepare(sk, skb);
2096 return __udp_queue_rcv_skb(sk, skb);
2099 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2101 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2102 atomic_inc(&sk->sk_drops);
2107 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2109 struct sk_buff *next, *segs;
2112 if (likely(!udp_unexpected_gso(sk, skb)))
2113 return udp_queue_rcv_one_skb(sk, skb);
2115 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2116 __skb_push(skb, -skb_mac_offset(skb));
2117 segs = udp_rcv_segment(sk, skb, true);
2118 skb_list_walk_safe(segs, skb, next) {
2119 __skb_pull(skb, skb_transport_offset(skb));
2120 ret = udp_queue_rcv_one_skb(sk, skb);
2122 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2127 /* For TCP sockets, sk_rx_dst is protected by socket lock
2128 * For UDP, we use xchg() to guard against concurrent changes.
2130 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2132 struct dst_entry *old;
2134 if (dst_hold_safe(dst)) {
2135 old = xchg(&sk->sk_rx_dst, dst);
2141 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2144 * Multicasts and broadcasts go to each listener.
2146 * Note: called only from the BH handler context.
2148 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2150 __be32 saddr, __be32 daddr,
2151 struct udp_table *udptable,
2154 struct sock *sk, *first = NULL;
2155 unsigned short hnum = ntohs(uh->dest);
2156 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2157 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2158 unsigned int offset = offsetof(typeof(*sk), sk_node);
2159 int dif = skb->dev->ifindex;
2160 int sdif = inet_sdif(skb);
2161 struct hlist_node *node;
2162 struct sk_buff *nskb;
2165 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2167 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2169 hslot = &udptable->hash2[hash2];
2170 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2173 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2174 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2175 uh->source, saddr, dif, sdif, hnum))
2182 nskb = skb_clone(skb, GFP_ATOMIC);
2184 if (unlikely(!nskb)) {
2185 atomic_inc(&sk->sk_drops);
2186 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2188 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2192 if (udp_queue_rcv_skb(sk, nskb) > 0)
2196 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2197 if (use_hash2 && hash2 != hash2_any) {
2203 if (udp_queue_rcv_skb(first, skb) > 0)
2207 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2208 proto == IPPROTO_UDPLITE);
2213 /* Initialize UDP checksum. If exited with zero value (success),
2214 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2215 * Otherwise, csum completion requires checksumming packet body,
2216 * including udp header and folding it to skb->csum.
2218 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2223 UDP_SKB_CB(skb)->partial_cov = 0;
2224 UDP_SKB_CB(skb)->cscov = skb->len;
2226 if (proto == IPPROTO_UDPLITE) {
2227 err = udplite_checksum_init(skb, uh);
2231 if (UDP_SKB_CB(skb)->partial_cov) {
2232 skb->csum = inet_compute_pseudo(skb, proto);
2237 /* Note, we are only interested in != 0 or == 0, thus the
2240 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2241 inet_compute_pseudo);
2245 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2246 /* If SW calculated the value, we know it's bad */
2247 if (skb->csum_complete_sw)
2250 /* HW says the value is bad. Let's validate that.
2251 * skb->csum is no longer the full packet checksum,
2252 * so don't treat it as such.
2254 skb_checksum_complete_unset(skb);
2260 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2261 * return code conversion for ip layer consumption
2263 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2268 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2269 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2271 ret = udp_queue_rcv_skb(sk, skb);
2273 /* a return value > 0 means to resubmit the input, but
2274 * it wants the return to be -protocol, or 0
2282 * All we need to do is get the socket, and then do a checksum.
2285 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2290 unsigned short ulen;
2291 struct rtable *rt = skb_rtable(skb);
2292 __be32 saddr, daddr;
2293 struct net *net = dev_net(skb->dev);
2297 * Validate the packet.
2299 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2300 goto drop; /* No space for header. */
2303 ulen = ntohs(uh->len);
2304 saddr = ip_hdr(skb)->saddr;
2305 daddr = ip_hdr(skb)->daddr;
2307 if (ulen > skb->len)
2310 if (proto == IPPROTO_UDP) {
2311 /* UDP validates ulen. */
2312 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2317 if (udp4_csum_init(skb, uh, proto))
2320 sk = skb_steal_sock(skb, &refcounted);
2322 struct dst_entry *dst = skb_dst(skb);
2325 if (unlikely(sk->sk_rx_dst != dst))
2326 udp_sk_rx_dst_set(sk, dst);
2328 ret = udp_unicast_rcv_skb(sk, skb, uh);
2334 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2335 return __udp4_lib_mcast_deliver(net, skb, uh,
2336 saddr, daddr, udptable, proto);
2338 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2340 return udp_unicast_rcv_skb(sk, skb, uh);
2342 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2346 /* No socket. Drop packet silently, if checksum is wrong */
2347 if (udp_lib_checksum_complete(skb))
2350 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2351 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2354 * Hmm. We got an UDP packet to a port to which we
2355 * don't wanna listen. Ignore it.
2361 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2362 proto == IPPROTO_UDPLITE ? "Lite" : "",
2363 &saddr, ntohs(uh->source),
2365 &daddr, ntohs(uh->dest));
2370 * RFC1122: OK. Discards the bad packet silently (as far as
2371 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2373 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2374 proto == IPPROTO_UDPLITE ? "Lite" : "",
2375 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2377 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2379 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2384 /* We can only early demux multicast if there is a single matching socket.
2385 * If more than one socket found returns NULL
2387 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2388 __be16 loc_port, __be32 loc_addr,
2389 __be16 rmt_port, __be32 rmt_addr,
2392 struct sock *sk, *result;
2393 unsigned short hnum = ntohs(loc_port);
2394 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2395 struct udp_hslot *hslot = &udp_table.hash[slot];
2397 /* Do not bother scanning a too big list */
2398 if (hslot->count > 10)
2402 sk_for_each_rcu(sk, &hslot->head) {
2403 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2404 rmt_port, rmt_addr, dif, sdif, hnum)) {
2414 /* For unicast we should only early demux connected sockets or we can
2415 * break forwarding setups. The chains here can be long so only check
2416 * if the first socket is an exact match and if not move on.
2418 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2419 __be16 loc_port, __be32 loc_addr,
2420 __be16 rmt_port, __be32 rmt_addr,
2423 unsigned short hnum = ntohs(loc_port);
2424 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2425 unsigned int slot2 = hash2 & udp_table.mask;
2426 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2427 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2428 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2431 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2432 if (INET_MATCH(sk, net, acookie, rmt_addr,
2433 loc_addr, ports, dif, sdif))
2435 /* Only check first socket in chain */
2441 int udp_v4_early_demux(struct sk_buff *skb)
2443 struct net *net = dev_net(skb->dev);
2444 struct in_device *in_dev = NULL;
2445 const struct iphdr *iph;
2446 const struct udphdr *uh;
2447 struct sock *sk = NULL;
2448 struct dst_entry *dst;
2449 int dif = skb->dev->ifindex;
2450 int sdif = inet_sdif(skb);
2453 /* validate the packet */
2454 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2460 if (skb->pkt_type == PACKET_MULTICAST) {
2461 in_dev = __in_dev_get_rcu(skb->dev);
2466 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2471 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2472 uh->source, iph->saddr,
2474 } else if (skb->pkt_type == PACKET_HOST) {
2475 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2476 uh->source, iph->saddr, dif, sdif);
2479 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2483 skb->destructor = sock_efree;
2484 dst = READ_ONCE(sk->sk_rx_dst);
2487 dst = dst_check(dst, 0);
2491 /* set noref for now.
2492 * any place which wants to hold dst has to call
2495 skb_dst_set_noref(skb, dst);
2497 /* for unconnected multicast sockets we need to validate
2498 * the source on each packet
2500 if (!inet_sk(sk)->inet_daddr && in_dev)
2501 return ip_mc_validate_source(skb, iph->daddr,
2502 iph->saddr, iph->tos,
2503 skb->dev, in_dev, &itag);
2508 int udp_rcv(struct sk_buff *skb)
2510 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2513 void udp_destroy_sock(struct sock *sk)
2515 struct udp_sock *up = udp_sk(sk);
2516 bool slow = lock_sock_fast(sk);
2517 udp_flush_pending_frames(sk);
2518 unlock_sock_fast(sk, slow);
2519 if (static_branch_unlikely(&udp_encap_needed_key)) {
2520 if (up->encap_type) {
2521 void (*encap_destroy)(struct sock *sk);
2522 encap_destroy = READ_ONCE(up->encap_destroy);
2526 if (up->encap_enabled)
2527 static_branch_dec(&udp_encap_needed_key);
2532 * Socket option code for UDP
2534 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2535 char __user *optval, unsigned int optlen,
2536 int (*push_pending_frames)(struct sock *))
2538 struct udp_sock *up = udp_sk(sk);
2541 int is_udplite = IS_UDPLITE(sk);
2543 if (optlen < sizeof(int))
2546 if (get_user(val, (int __user *)optval))
2549 valbool = val ? 1 : 0;
2558 push_pending_frames(sk);
2567 case UDP_ENCAP_ESPINUDP:
2568 case UDP_ENCAP_ESPINUDP_NON_IKE:
2569 #if IS_ENABLED(CONFIG_IPV6)
2570 if (sk->sk_family == AF_INET6)
2571 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2574 up->encap_rcv = xfrm4_udp_encap_rcv;
2577 case UDP_ENCAP_L2TPINUDP:
2578 up->encap_type = val;
2580 udp_tunnel_encap_enable(sk->sk_socket);
2589 case UDP_NO_CHECK6_TX:
2590 up->no_check6_tx = valbool;
2593 case UDP_NO_CHECK6_RX:
2594 up->no_check6_rx = valbool;
2598 if (val < 0 || val > USHRT_MAX)
2606 udp_tunnel_encap_enable(sk->sk_socket);
2607 up->gro_enabled = valbool;
2612 * UDP-Lite's partial checksum coverage (RFC 3828).
2614 /* The sender sets actual checksum coverage length via this option.
2615 * The case coverage > packet length is handled by send module. */
2616 case UDPLITE_SEND_CSCOV:
2617 if (!is_udplite) /* Disable the option on UDP sockets */
2618 return -ENOPROTOOPT;
2619 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2621 else if (val > USHRT_MAX)
2624 up->pcflag |= UDPLITE_SEND_CC;
2627 /* The receiver specifies a minimum checksum coverage value. To make
2628 * sense, this should be set to at least 8 (as done below). If zero is
2629 * used, this again means full checksum coverage. */
2630 case UDPLITE_RECV_CSCOV:
2631 if (!is_udplite) /* Disable the option on UDP sockets */
2632 return -ENOPROTOOPT;
2633 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2635 else if (val > USHRT_MAX)
2638 up->pcflag |= UDPLITE_RECV_CC;
2648 EXPORT_SYMBOL(udp_lib_setsockopt);
2650 int udp_setsockopt(struct sock *sk, int level, int optname,
2651 char __user *optval, unsigned int optlen)
2653 if (level == SOL_UDP || level == SOL_UDPLITE)
2654 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2655 udp_push_pending_frames);
2656 return ip_setsockopt(sk, level, optname, optval, optlen);
2659 #ifdef CONFIG_COMPAT
2660 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2661 char __user *optval, unsigned int optlen)
2663 if (level == SOL_UDP || level == SOL_UDPLITE)
2664 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2665 udp_push_pending_frames);
2666 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2670 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2671 char __user *optval, int __user *optlen)
2673 struct udp_sock *up = udp_sk(sk);
2676 if (get_user(len, optlen))
2679 len = min_t(unsigned int, len, sizeof(int));
2690 val = up->encap_type;
2693 case UDP_NO_CHECK6_TX:
2694 val = up->no_check6_tx;
2697 case UDP_NO_CHECK6_RX:
2698 val = up->no_check6_rx;
2705 /* The following two cannot be changed on UDP sockets, the return is
2706 * always 0 (which corresponds to the full checksum coverage of UDP). */
2707 case UDPLITE_SEND_CSCOV:
2711 case UDPLITE_RECV_CSCOV:
2716 return -ENOPROTOOPT;
2719 if (put_user(len, optlen))
2721 if (copy_to_user(optval, &val, len))
2725 EXPORT_SYMBOL(udp_lib_getsockopt);
2727 int udp_getsockopt(struct sock *sk, int level, int optname,
2728 char __user *optval, int __user *optlen)
2730 if (level == SOL_UDP || level == SOL_UDPLITE)
2731 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2732 return ip_getsockopt(sk, level, optname, optval, optlen);
2735 #ifdef CONFIG_COMPAT
2736 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2737 char __user *optval, int __user *optlen)
2739 if (level == SOL_UDP || level == SOL_UDPLITE)
2740 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2741 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2745 * udp_poll - wait for a UDP event.
2746 * @file - file struct
2748 * @wait - poll table
2750 * This is same as datagram poll, except for the special case of
2751 * blocking sockets. If application is using a blocking fd
2752 * and a packet with checksum error is in the queue;
2753 * then it could get return from select indicating data available
2754 * but then block when reading it. Add special case code
2755 * to work around these arguably broken applications.
2757 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2759 __poll_t mask = datagram_poll(file, sock, wait);
2760 struct sock *sk = sock->sk;
2762 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2763 mask |= EPOLLIN | EPOLLRDNORM;
2765 /* Check for false positives due to checksum errors */
2766 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2767 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2768 mask &= ~(EPOLLIN | EPOLLRDNORM);
2773 EXPORT_SYMBOL(udp_poll);
2775 int udp_abort(struct sock *sk, int err)
2780 sk->sk_error_report(sk);
2781 __udp_disconnect(sk, 0);
2787 EXPORT_SYMBOL_GPL(udp_abort);
2789 struct proto udp_prot = {
2791 .owner = THIS_MODULE,
2792 .close = udp_lib_close,
2793 .pre_connect = udp_pre_connect,
2794 .connect = ip4_datagram_connect,
2795 .disconnect = udp_disconnect,
2797 .init = udp_init_sock,
2798 .destroy = udp_destroy_sock,
2799 .setsockopt = udp_setsockopt,
2800 .getsockopt = udp_getsockopt,
2801 .sendmsg = udp_sendmsg,
2802 .recvmsg = udp_recvmsg,
2803 .sendpage = udp_sendpage,
2804 .release_cb = ip4_datagram_release_cb,
2805 .hash = udp_lib_hash,
2806 .unhash = udp_lib_unhash,
2807 .rehash = udp_v4_rehash,
2808 .get_port = udp_v4_get_port,
2809 .memory_allocated = &udp_memory_allocated,
2810 .sysctl_mem = sysctl_udp_mem,
2811 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2812 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2813 .obj_size = sizeof(struct udp_sock),
2814 .h.udp_table = &udp_table,
2815 #ifdef CONFIG_COMPAT
2816 .compat_setsockopt = compat_udp_setsockopt,
2817 .compat_getsockopt = compat_udp_getsockopt,
2819 .diag_destroy = udp_abort,
2821 EXPORT_SYMBOL(udp_prot);
2823 /* ------------------------------------------------------------------------ */
2824 #ifdef CONFIG_PROC_FS
2826 static struct sock *udp_get_first(struct seq_file *seq, int start)
2829 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2830 struct udp_iter_state *state = seq->private;
2831 struct net *net = seq_file_net(seq);
2833 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2835 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2837 if (hlist_empty(&hslot->head))
2840 spin_lock_bh(&hslot->lock);
2841 sk_for_each(sk, &hslot->head) {
2842 if (!net_eq(sock_net(sk), net))
2844 if (sk->sk_family == afinfo->family)
2847 spin_unlock_bh(&hslot->lock);
2854 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2856 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2857 struct udp_iter_state *state = seq->private;
2858 struct net *net = seq_file_net(seq);
2862 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2865 if (state->bucket <= afinfo->udp_table->mask)
2866 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2867 return udp_get_first(seq, state->bucket + 1);
2872 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2874 struct sock *sk = udp_get_first(seq, 0);
2877 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2879 return pos ? NULL : sk;
2882 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2884 struct udp_iter_state *state = seq->private;
2885 state->bucket = MAX_UDP_PORTS;
2887 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2889 EXPORT_SYMBOL(udp_seq_start);
2891 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2895 if (v == SEQ_START_TOKEN)
2896 sk = udp_get_idx(seq, 0);
2898 sk = udp_get_next(seq, v);
2903 EXPORT_SYMBOL(udp_seq_next);
2905 void udp_seq_stop(struct seq_file *seq, void *v)
2907 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2908 struct udp_iter_state *state = seq->private;
2910 if (state->bucket <= afinfo->udp_table->mask)
2911 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2913 EXPORT_SYMBOL(udp_seq_stop);
2915 /* ------------------------------------------------------------------------ */
2916 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2919 struct inet_sock *inet = inet_sk(sp);
2920 __be32 dest = inet->inet_daddr;
2921 __be32 src = inet->inet_rcv_saddr;
2922 __u16 destp = ntohs(inet->inet_dport);
2923 __u16 srcp = ntohs(inet->inet_sport);
2925 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2926 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2927 bucket, src, srcp, dest, destp, sp->sk_state,
2928 sk_wmem_alloc_get(sp),
2931 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2933 refcount_read(&sp->sk_refcnt), sp,
2934 atomic_read(&sp->sk_drops));
2937 int udp4_seq_show(struct seq_file *seq, void *v)
2939 seq_setwidth(seq, 127);
2940 if (v == SEQ_START_TOKEN)
2941 seq_puts(seq, " sl local_address rem_address st tx_queue "
2942 "rx_queue tr tm->when retrnsmt uid timeout "
2943 "inode ref pointer drops");
2945 struct udp_iter_state *state = seq->private;
2947 udp4_format_sock(v, seq, state->bucket);
2953 const struct seq_operations udp_seq_ops = {
2954 .start = udp_seq_start,
2955 .next = udp_seq_next,
2956 .stop = udp_seq_stop,
2957 .show = udp4_seq_show,
2959 EXPORT_SYMBOL(udp_seq_ops);
2961 static struct udp_seq_afinfo udp4_seq_afinfo = {
2963 .udp_table = &udp_table,
2966 static int __net_init udp4_proc_init_net(struct net *net)
2968 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2969 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2974 static void __net_exit udp4_proc_exit_net(struct net *net)
2976 remove_proc_entry("udp", net->proc_net);
2979 static struct pernet_operations udp4_net_ops = {
2980 .init = udp4_proc_init_net,
2981 .exit = udp4_proc_exit_net,
2984 int __init udp4_proc_init(void)
2986 return register_pernet_subsys(&udp4_net_ops);
2989 void udp4_proc_exit(void)
2991 unregister_pernet_subsys(&udp4_net_ops);
2993 #endif /* CONFIG_PROC_FS */
2995 static __initdata unsigned long uhash_entries;
2996 static int __init set_uhash_entries(char *str)
3003 ret = kstrtoul(str, 0, &uhash_entries);
3007 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3008 uhash_entries = UDP_HTABLE_SIZE_MIN;
3011 __setup("uhash_entries=", set_uhash_entries);
3013 void __init udp_table_init(struct udp_table *table, const char *name)
3017 table->hash = alloc_large_system_hash(name,
3018 2 * sizeof(struct udp_hslot),
3020 21, /* one slot per 2 MB */
3024 UDP_HTABLE_SIZE_MIN,
3027 table->hash2 = table->hash + (table->mask + 1);
3028 for (i = 0; i <= table->mask; i++) {
3029 INIT_HLIST_HEAD(&table->hash[i].head);
3030 table->hash[i].count = 0;
3031 spin_lock_init(&table->hash[i].lock);
3033 for (i = 0; i <= table->mask; i++) {
3034 INIT_HLIST_HEAD(&table->hash2[i].head);
3035 table->hash2[i].count = 0;
3036 spin_lock_init(&table->hash2[i].lock);
3040 u32 udp_flow_hashrnd(void)
3042 static u32 hashrnd __read_mostly;
3044 net_get_random_once(&hashrnd, sizeof(hashrnd));
3048 EXPORT_SYMBOL(udp_flow_hashrnd);
3050 static void __udp_sysctl_init(struct net *net)
3052 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3053 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3055 #ifdef CONFIG_NET_L3_MASTER_DEV
3056 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3060 static int __net_init udp_sysctl_init(struct net *net)
3062 __udp_sysctl_init(net);
3066 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3067 .init = udp_sysctl_init,
3070 void __init udp_init(void)
3072 unsigned long limit;
3075 udp_table_init(&udp_table, "UDP");
3076 limit = nr_free_buffer_pages() / 8;
3077 limit = max(limit, 128UL);
3078 sysctl_udp_mem[0] = limit / 4 * 3;
3079 sysctl_udp_mem[1] = limit;
3080 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3082 __udp_sysctl_init(&init_net);
3084 /* 16 spinlocks per cpu */
3085 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3086 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3089 panic("UDP: failed to alloc udp_busylocks\n");
3090 for (i = 0; i < (1U << udp_busylocks_log); i++)
3091 spin_lock_init(udp_busylocks + i);
3093 if (register_pernet_subsys(&udp_sysctl_ops))
3094 panic("UDP: failed to init sysctl parameters.\n");