4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/inet.h>
16 #include <linux/kthread.h>
17 #include <linux/list.h>
18 #include <linux/radix-tree.h>
19 #include <linux/module.h>
20 #include <linux/semaphore.h>
21 #include <linux/wait.h>
23 #include <net/inet_common.h>
24 #include <net/inet_connection_sock.h>
25 #include <net/request_sock.h>
27 #include <xen/events.h>
28 #include <xen/grant_table.h>
30 #include <xen/xenbus.h>
31 #include <xen/interface/io/pvcalls.h>
33 #define PVCALLS_VERSIONS "1"
34 #define MAX_RING_ORDER XENBUS_MAX_RING_GRANT_ORDER
36 struct pvcalls_back_global {
37 struct list_head frontends;
38 struct semaphore frontends_lock;
39 } pvcalls_back_global;
42 * Per-frontend data structure. It contains pointers to the command
43 * ring, its event channel, a list of active sockets and a tree of
46 struct pvcalls_fedata {
47 struct list_head list;
48 struct xenbus_device *dev;
49 struct xen_pvcalls_sring *sring;
50 struct xen_pvcalls_back_ring ring;
52 struct list_head socket_mappings;
53 struct radix_tree_root socketpass_mappings;
54 struct semaphore socket_lock;
57 struct pvcalls_ioworker {
58 struct work_struct register_work;
59 struct workqueue_struct *wq;
63 struct list_head list;
64 struct pvcalls_fedata *fedata;
65 struct sockpass_mapping *sockpass;
69 struct pvcalls_data_intf *ring;
71 struct pvcalls_data data;
78 void (*saved_data_ready)(struct sock *sk);
79 struct pvcalls_ioworker ioworker;
82 struct sockpass_mapping {
83 struct list_head list;
84 struct pvcalls_fedata *fedata;
87 struct xen_pvcalls_request reqcopy;
89 struct workqueue_struct *wq;
90 struct work_struct register_work;
91 void (*saved_data_ready)(struct sock *sk);
94 static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map);
95 static int pvcalls_back_release_active(struct xenbus_device *dev,
96 struct pvcalls_fedata *fedata,
97 struct sock_mapping *map);
99 static void pvcalls_conn_back_read(void *opaque)
101 struct sock_mapping *map = (struct sock_mapping *)opaque;
104 RING_IDX cons, prod, size, wanted, array_size, masked_prod, masked_cons;
106 struct pvcalls_data_intf *intf = map->ring;
107 struct pvcalls_data *data = &map->data;
111 array_size = XEN_FLEX_RING_SIZE(map->ring_order);
112 cons = intf->in_cons;
113 prod = intf->in_prod;
114 error = intf->in_error;
115 /* read the indexes first, then deal with the data */
121 size = pvcalls_queued(prod, cons, array_size);
122 if (size >= array_size)
124 spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
125 if (skb_queue_empty(&map->sock->sk->sk_receive_queue)) {
126 atomic_set(&map->read, 0);
127 spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock,
131 spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
132 wanted = array_size - size;
133 masked_prod = pvcalls_mask(prod, array_size);
134 masked_cons = pvcalls_mask(cons, array_size);
136 memset(&msg, 0, sizeof(msg));
137 if (masked_prod < masked_cons) {
138 vec[0].iov_base = data->in + masked_prod;
139 vec[0].iov_len = wanted;
140 iov_iter_kvec(&msg.msg_iter, ITER_KVEC|WRITE, vec, 1, wanted);
142 vec[0].iov_base = data->in + masked_prod;
143 vec[0].iov_len = array_size - masked_prod;
144 vec[1].iov_base = data->in;
145 vec[1].iov_len = wanted - vec[0].iov_len;
146 iov_iter_kvec(&msg.msg_iter, ITER_KVEC|WRITE, vec, 2, wanted);
149 atomic_set(&map->read, 0);
150 ret = inet_recvmsg(map->sock, &msg, wanted, MSG_DONTWAIT);
151 WARN_ON(ret > wanted);
152 if (ret == -EAGAIN) /* shouldn't happen */
156 spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
157 if (ret > 0 && !skb_queue_empty(&map->sock->sk->sk_receive_queue))
158 atomic_inc(&map->read);
159 spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
161 /* write the data, then modify the indexes */
164 intf->in_error = ret;
166 intf->in_prod = prod + ret;
167 /* update the indexes, then notify the other end */
169 notify_remote_via_irq(map->irq);
174 static void pvcalls_conn_back_write(struct sock_mapping *map)
176 struct pvcalls_data_intf *intf = map->ring;
177 struct pvcalls_data *data = &map->data;
180 RING_IDX cons, prod, size, array_size;
183 cons = intf->out_cons;
184 prod = intf->out_prod;
185 /* read the indexes before dealing with the data */
188 array_size = XEN_FLEX_RING_SIZE(map->ring_order);
189 size = pvcalls_queued(prod, cons, array_size);
193 memset(&msg, 0, sizeof(msg));
194 msg.msg_flags |= MSG_DONTWAIT;
195 if (pvcalls_mask(prod, array_size) > pvcalls_mask(cons, array_size)) {
196 vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
197 vec[0].iov_len = size;
198 iov_iter_kvec(&msg.msg_iter, ITER_KVEC|READ, vec, 1, size);
200 vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
201 vec[0].iov_len = array_size - pvcalls_mask(cons, array_size);
202 vec[1].iov_base = data->out;
203 vec[1].iov_len = size - vec[0].iov_len;
204 iov_iter_kvec(&msg.msg_iter, ITER_KVEC|READ, vec, 2, size);
207 atomic_set(&map->write, 0);
208 ret = inet_sendmsg(map->sock, &msg, size);
209 if (ret == -EAGAIN || (ret >= 0 && ret < size)) {
210 atomic_inc(&map->write);
211 atomic_inc(&map->io);
216 /* write the data, then update the indexes */
219 intf->out_error = ret;
222 intf->out_cons = cons + ret;
223 prod = intf->out_prod;
225 /* update the indexes, then notify the other end */
227 if (prod != cons + ret)
228 atomic_inc(&map->write);
229 notify_remote_via_irq(map->irq);
232 static void pvcalls_back_ioworker(struct work_struct *work)
234 struct pvcalls_ioworker *ioworker = container_of(work,
235 struct pvcalls_ioworker, register_work);
236 struct sock_mapping *map = container_of(ioworker, struct sock_mapping,
239 while (atomic_read(&map->io) > 0) {
240 if (atomic_read(&map->release) > 0) {
241 atomic_set(&map->release, 0);
245 if (atomic_read(&map->read) > 0)
246 pvcalls_conn_back_read(map);
247 if (atomic_read(&map->write) > 0)
248 pvcalls_conn_back_write(map);
250 atomic_dec(&map->io);
254 static int pvcalls_back_socket(struct xenbus_device *dev,
255 struct xen_pvcalls_request *req)
257 struct pvcalls_fedata *fedata;
259 struct xen_pvcalls_response *rsp;
261 fedata = dev_get_drvdata(&dev->dev);
263 if (req->u.socket.domain != AF_INET ||
264 req->u.socket.type != SOCK_STREAM ||
265 (req->u.socket.protocol != IPPROTO_IP &&
266 req->u.socket.protocol != AF_INET))
271 /* leave the actual socket allocation for later */
273 rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
274 rsp->req_id = req->req_id;
276 rsp->u.socket.id = req->u.socket.id;
282 static void pvcalls_sk_state_change(struct sock *sock)
284 struct sock_mapping *map = sock->sk_user_data;
285 struct pvcalls_data_intf *intf;
291 intf->in_error = -ENOTCONN;
292 notify_remote_via_irq(map->irq);
295 static void pvcalls_sk_data_ready(struct sock *sock)
297 struct sock_mapping *map = sock->sk_user_data;
298 struct pvcalls_ioworker *iow;
303 iow = &map->ioworker;
304 atomic_inc(&map->read);
305 atomic_inc(&map->io);
306 queue_work(iow->wq, &iow->register_work);
309 static struct sock_mapping *pvcalls_new_active_socket(
310 struct pvcalls_fedata *fedata,
317 struct sock_mapping *map;
320 map = kzalloc(sizeof(*map), GFP_KERNEL);
324 map->fedata = fedata;
329 ret = xenbus_map_ring_valloc(fedata->dev, &ref, 1, &page);
333 map->ring_order = map->ring->ring_order;
334 /* first read the order, then map the data ring */
336 if (map->ring_order > MAX_RING_ORDER) {
337 pr_warn("%s frontend requested ring_order %u, which is > MAX (%u)\n",
338 __func__, map->ring_order, MAX_RING_ORDER);
341 ret = xenbus_map_ring_valloc(fedata->dev, map->ring->ref,
342 (1 << map->ring_order), &page);
347 ret = bind_interdomain_evtchn_to_irqhandler(fedata->dev->otherend_id,
349 pvcalls_back_conn_event,
357 map->data.in = map->bytes;
358 map->data.out = map->bytes + XEN_FLEX_RING_SIZE(map->ring_order);
360 map->ioworker.wq = alloc_workqueue("pvcalls_io", WQ_UNBOUND, 1);
361 if (!map->ioworker.wq)
363 atomic_set(&map->io, 1);
364 INIT_WORK(&map->ioworker.register_work, pvcalls_back_ioworker);
366 down(&fedata->socket_lock);
367 list_add_tail(&map->list, &fedata->socket_mappings);
368 up(&fedata->socket_lock);
370 write_lock_bh(&map->sock->sk->sk_callback_lock);
371 map->saved_data_ready = map->sock->sk->sk_data_ready;
372 map->sock->sk->sk_user_data = map;
373 map->sock->sk->sk_data_ready = pvcalls_sk_data_ready;
374 map->sock->sk->sk_state_change = pvcalls_sk_state_change;
375 write_unlock_bh(&map->sock->sk->sk_callback_lock);
379 down(&fedata->socket_lock);
380 list_del(&map->list);
381 pvcalls_back_release_active(fedata->dev, fedata, map);
382 up(&fedata->socket_lock);
386 static int pvcalls_back_connect(struct xenbus_device *dev,
387 struct xen_pvcalls_request *req)
389 struct pvcalls_fedata *fedata;
392 struct sock_mapping *map;
393 struct xen_pvcalls_response *rsp;
394 struct sockaddr *sa = (struct sockaddr *)&req->u.connect.addr;
396 fedata = dev_get_drvdata(&dev->dev);
398 if (req->u.connect.len < sizeof(sa->sa_family) ||
399 req->u.connect.len > sizeof(req->u.connect.addr) ||
400 sa->sa_family != AF_INET)
403 ret = sock_create(AF_INET, SOCK_STREAM, 0, &sock);
406 ret = inet_stream_connect(sock, sa, req->u.connect.len, 0);
412 map = pvcalls_new_active_socket(fedata,
415 req->u.connect.evtchn,
423 rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
424 rsp->req_id = req->req_id;
426 rsp->u.connect.id = req->u.connect.id;
432 static int pvcalls_back_release_active(struct xenbus_device *dev,
433 struct pvcalls_fedata *fedata,
434 struct sock_mapping *map)
436 disable_irq(map->irq);
437 if (map->sock->sk != NULL) {
438 write_lock_bh(&map->sock->sk->sk_callback_lock);
439 map->sock->sk->sk_user_data = NULL;
440 map->sock->sk->sk_data_ready = map->saved_data_ready;
441 write_unlock_bh(&map->sock->sk->sk_callback_lock);
444 atomic_set(&map->release, 1);
445 flush_work(&map->ioworker.register_work);
447 xenbus_unmap_ring_vfree(dev, map->bytes);
448 xenbus_unmap_ring_vfree(dev, (void *)map->ring);
449 unbind_from_irqhandler(map->irq, map);
451 sock_release(map->sock);
457 static int pvcalls_back_release_passive(struct xenbus_device *dev,
458 struct pvcalls_fedata *fedata,
459 struct sockpass_mapping *mappass)
461 if (mappass->sock->sk != NULL) {
462 write_lock_bh(&mappass->sock->sk->sk_callback_lock);
463 mappass->sock->sk->sk_user_data = NULL;
464 mappass->sock->sk->sk_data_ready = mappass->saved_data_ready;
465 write_unlock_bh(&mappass->sock->sk->sk_callback_lock);
467 sock_release(mappass->sock);
468 flush_workqueue(mappass->wq);
469 destroy_workqueue(mappass->wq);
475 static int pvcalls_back_release(struct xenbus_device *dev,
476 struct xen_pvcalls_request *req)
478 struct pvcalls_fedata *fedata;
479 struct sock_mapping *map, *n;
480 struct sockpass_mapping *mappass;
482 struct xen_pvcalls_response *rsp;
484 fedata = dev_get_drvdata(&dev->dev);
486 down(&fedata->socket_lock);
487 list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
488 if (map->id == req->u.release.id) {
489 list_del(&map->list);
490 up(&fedata->socket_lock);
491 ret = pvcalls_back_release_active(dev, fedata, map);
495 mappass = radix_tree_lookup(&fedata->socketpass_mappings,
497 if (mappass != NULL) {
498 radix_tree_delete(&fedata->socketpass_mappings, mappass->id);
499 up(&fedata->socket_lock);
500 ret = pvcalls_back_release_passive(dev, fedata, mappass);
502 up(&fedata->socket_lock);
505 rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
506 rsp->req_id = req->req_id;
507 rsp->u.release.id = req->u.release.id;
513 static void __pvcalls_back_accept(struct work_struct *work)
515 struct sockpass_mapping *mappass = container_of(
516 work, struct sockpass_mapping, register_work);
517 struct sock_mapping *map;
518 struct pvcalls_ioworker *iow;
519 struct pvcalls_fedata *fedata;
521 struct xen_pvcalls_response *rsp;
522 struct xen_pvcalls_request *req;
527 fedata = mappass->fedata;
529 * __pvcalls_back_accept can race against pvcalls_back_accept.
530 * We only need to check the value of "cmd" on read. It could be
531 * done atomically, but to simplify the code on the write side, we
534 spin_lock_irqsave(&mappass->copy_lock, flags);
535 req = &mappass->reqcopy;
536 if (req->cmd != PVCALLS_ACCEPT) {
537 spin_unlock_irqrestore(&mappass->copy_lock, flags);
540 spin_unlock_irqrestore(&mappass->copy_lock, flags);
545 sock->type = mappass->sock->type;
546 sock->ops = mappass->sock->ops;
548 ret = inet_accept(mappass->sock, sock, O_NONBLOCK, true);
549 if (ret == -EAGAIN) {
554 map = pvcalls_new_active_socket(fedata,
555 req->u.accept.id_new,
557 req->u.accept.evtchn,
565 map->sockpass = mappass;
566 iow = &map->ioworker;
567 atomic_inc(&map->read);
568 atomic_inc(&map->io);
569 queue_work(iow->wq, &iow->register_work);
572 rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
573 rsp->req_id = req->req_id;
575 rsp->u.accept.id = req->u.accept.id;
577 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
579 notify_remote_via_irq(fedata->irq);
581 mappass->reqcopy.cmd = 0;
584 static void pvcalls_pass_sk_data_ready(struct sock *sock)
586 struct sockpass_mapping *mappass = sock->sk_user_data;
587 struct pvcalls_fedata *fedata;
588 struct xen_pvcalls_response *rsp;
595 fedata = mappass->fedata;
596 spin_lock_irqsave(&mappass->copy_lock, flags);
597 if (mappass->reqcopy.cmd == PVCALLS_POLL) {
598 rsp = RING_GET_RESPONSE(&fedata->ring,
599 fedata->ring.rsp_prod_pvt++);
600 rsp->req_id = mappass->reqcopy.req_id;
601 rsp->u.poll.id = mappass->reqcopy.u.poll.id;
602 rsp->cmd = mappass->reqcopy.cmd;
605 mappass->reqcopy.cmd = 0;
606 spin_unlock_irqrestore(&mappass->copy_lock, flags);
608 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
610 notify_remote_via_irq(mappass->fedata->irq);
612 spin_unlock_irqrestore(&mappass->copy_lock, flags);
613 queue_work(mappass->wq, &mappass->register_work);
617 static int pvcalls_back_bind(struct xenbus_device *dev,
618 struct xen_pvcalls_request *req)
620 struct pvcalls_fedata *fedata;
622 struct sockpass_mapping *map;
623 struct xen_pvcalls_response *rsp;
625 fedata = dev_get_drvdata(&dev->dev);
627 map = kzalloc(sizeof(*map), GFP_KERNEL);
633 INIT_WORK(&map->register_work, __pvcalls_back_accept);
634 spin_lock_init(&map->copy_lock);
635 map->wq = alloc_workqueue("pvcalls_wq", WQ_UNBOUND, 1);
641 ret = sock_create(AF_INET, SOCK_STREAM, 0, &map->sock);
645 ret = inet_bind(map->sock, (struct sockaddr *)&req->u.bind.addr,
650 map->fedata = fedata;
651 map->id = req->u.bind.id;
653 down(&fedata->socket_lock);
654 ret = radix_tree_insert(&fedata->socketpass_mappings, map->id,
656 up(&fedata->socket_lock);
660 write_lock_bh(&map->sock->sk->sk_callback_lock);
661 map->saved_data_ready = map->sock->sk->sk_data_ready;
662 map->sock->sk->sk_user_data = map;
663 map->sock->sk->sk_data_ready = pvcalls_pass_sk_data_ready;
664 write_unlock_bh(&map->sock->sk->sk_callback_lock);
668 if (map && map->sock)
669 sock_release(map->sock);
671 destroy_workqueue(map->wq);
674 rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
675 rsp->req_id = req->req_id;
677 rsp->u.bind.id = req->u.bind.id;
682 static int pvcalls_back_listen(struct xenbus_device *dev,
683 struct xen_pvcalls_request *req)
685 struct pvcalls_fedata *fedata;
687 struct sockpass_mapping *map;
688 struct xen_pvcalls_response *rsp;
690 fedata = dev_get_drvdata(&dev->dev);
692 down(&fedata->socket_lock);
693 map = radix_tree_lookup(&fedata->socketpass_mappings, req->u.listen.id);
694 up(&fedata->socket_lock);
698 ret = inet_listen(map->sock, req->u.listen.backlog);
701 rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
702 rsp->req_id = req->req_id;
704 rsp->u.listen.id = req->u.listen.id;
709 static int pvcalls_back_accept(struct xenbus_device *dev,
710 struct xen_pvcalls_request *req)
712 struct pvcalls_fedata *fedata;
713 struct sockpass_mapping *mappass;
715 struct xen_pvcalls_response *rsp;
718 fedata = dev_get_drvdata(&dev->dev);
720 down(&fedata->socket_lock);
721 mappass = radix_tree_lookup(&fedata->socketpass_mappings,
723 up(&fedata->socket_lock);
728 * Limitation of the current implementation: only support one
729 * concurrent accept or poll call on one socket.
731 spin_lock_irqsave(&mappass->copy_lock, flags);
732 if (mappass->reqcopy.cmd != 0) {
733 spin_unlock_irqrestore(&mappass->copy_lock, flags);
738 mappass->reqcopy = *req;
739 spin_unlock_irqrestore(&mappass->copy_lock, flags);
740 queue_work(mappass->wq, &mappass->register_work);
742 /* Tell the caller we don't need to send back a notification yet */
746 rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
747 rsp->req_id = req->req_id;
749 rsp->u.accept.id = req->u.accept.id;
754 static int pvcalls_back_poll(struct xenbus_device *dev,
755 struct xen_pvcalls_request *req)
757 struct pvcalls_fedata *fedata;
758 struct sockpass_mapping *mappass;
759 struct xen_pvcalls_response *rsp;
760 struct inet_connection_sock *icsk;
761 struct request_sock_queue *queue;
766 fedata = dev_get_drvdata(&dev->dev);
768 down(&fedata->socket_lock);
769 mappass = radix_tree_lookup(&fedata->socketpass_mappings,
771 up(&fedata->socket_lock);
776 * Limitation of the current implementation: only support one
777 * concurrent accept or poll call on one socket.
779 spin_lock_irqsave(&mappass->copy_lock, flags);
780 if (mappass->reqcopy.cmd != 0) {
785 mappass->reqcopy = *req;
786 icsk = inet_csk(mappass->sock->sk);
787 queue = &icsk->icsk_accept_queue;
788 data = queue->rskq_accept_head != NULL;
790 mappass->reqcopy.cmd = 0;
794 spin_unlock_irqrestore(&mappass->copy_lock, flags);
796 /* Tell the caller we don't need to send back a notification yet */
800 spin_unlock_irqrestore(&mappass->copy_lock, flags);
802 rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
803 rsp->req_id = req->req_id;
805 rsp->u.poll.id = req->u.poll.id;
810 static int pvcalls_back_handle_cmd(struct xenbus_device *dev,
811 struct xen_pvcalls_request *req)
817 ret = pvcalls_back_socket(dev, req);
819 case PVCALLS_CONNECT:
820 ret = pvcalls_back_connect(dev, req);
822 case PVCALLS_RELEASE:
823 ret = pvcalls_back_release(dev, req);
826 ret = pvcalls_back_bind(dev, req);
829 ret = pvcalls_back_listen(dev, req);
832 ret = pvcalls_back_accept(dev, req);
835 ret = pvcalls_back_poll(dev, req);
839 struct pvcalls_fedata *fedata;
840 struct xen_pvcalls_response *rsp;
842 fedata = dev_get_drvdata(&dev->dev);
843 rsp = RING_GET_RESPONSE(
844 &fedata->ring, fedata->ring.rsp_prod_pvt++);
845 rsp->req_id = req->req_id;
847 rsp->ret = -ENOTSUPP;
854 static void pvcalls_back_work(struct pvcalls_fedata *fedata)
856 int notify, notify_all = 0, more = 1;
857 struct xen_pvcalls_request req;
858 struct xenbus_device *dev = fedata->dev;
861 while (RING_HAS_UNCONSUMED_REQUESTS(&fedata->ring)) {
862 RING_COPY_REQUEST(&fedata->ring,
863 fedata->ring.req_cons++,
866 if (!pvcalls_back_handle_cmd(dev, &req)) {
867 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(
868 &fedata->ring, notify);
869 notify_all += notify;
874 notify_remote_via_irq(fedata->irq);
878 RING_FINAL_CHECK_FOR_REQUESTS(&fedata->ring, more);
882 static irqreturn_t pvcalls_back_event(int irq, void *dev_id)
884 struct xenbus_device *dev = dev_id;
885 struct pvcalls_fedata *fedata = NULL;
890 fedata = dev_get_drvdata(&dev->dev);
894 pvcalls_back_work(fedata);
898 static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map)
900 struct sock_mapping *map = sock_map;
901 struct pvcalls_ioworker *iow;
903 if (map == NULL || map->sock == NULL || map->sock->sk == NULL ||
904 map->sock->sk->sk_user_data != map)
907 iow = &map->ioworker;
909 atomic_inc(&map->write);
910 atomic_inc(&map->io);
911 queue_work(iow->wq, &iow->register_work);
916 static int backend_connect(struct xenbus_device *dev)
919 grant_ref_t ring_ref;
920 struct pvcalls_fedata *fedata = NULL;
922 fedata = kzalloc(sizeof(struct pvcalls_fedata), GFP_KERNEL);
927 err = xenbus_scanf(XBT_NIL, dev->otherend, "port", "%u",
931 xenbus_dev_fatal(dev, err, "reading %s/event-channel",
936 err = xenbus_scanf(XBT_NIL, dev->otherend, "ring-ref", "%u", &ring_ref);
939 xenbus_dev_fatal(dev, err, "reading %s/ring-ref",
944 err = bind_interdomain_evtchn_to_irq(dev->otherend_id, evtchn);
949 err = request_threaded_irq(fedata->irq, NULL, pvcalls_back_event,
950 IRQF_ONESHOT, "pvcalls-back", dev);
954 err = xenbus_map_ring_valloc(dev, &ring_ref, 1,
955 (void **)&fedata->sring);
959 BACK_RING_INIT(&fedata->ring, fedata->sring, XEN_PAGE_SIZE * 1);
962 INIT_LIST_HEAD(&fedata->socket_mappings);
963 INIT_RADIX_TREE(&fedata->socketpass_mappings, GFP_KERNEL);
964 sema_init(&fedata->socket_lock, 1);
965 dev_set_drvdata(&dev->dev, fedata);
967 down(&pvcalls_back_global.frontends_lock);
968 list_add_tail(&fedata->list, &pvcalls_back_global.frontends);
969 up(&pvcalls_back_global.frontends_lock);
974 if (fedata->irq >= 0)
975 unbind_from_irqhandler(fedata->irq, dev);
976 if (fedata->sring != NULL)
977 xenbus_unmap_ring_vfree(dev, fedata->sring);
982 static int backend_disconnect(struct xenbus_device *dev)
984 struct pvcalls_fedata *fedata;
985 struct sock_mapping *map, *n;
986 struct sockpass_mapping *mappass;
987 struct radix_tree_iter iter;
991 fedata = dev_get_drvdata(&dev->dev);
993 down(&fedata->socket_lock);
994 list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
995 list_del(&map->list);
996 pvcalls_back_release_active(dev, fedata, map);
999 radix_tree_for_each_slot(slot, &fedata->socketpass_mappings, &iter, 0) {
1000 mappass = radix_tree_deref_slot(slot);
1003 if (radix_tree_exception(mappass)) {
1004 if (radix_tree_deref_retry(mappass))
1005 slot = radix_tree_iter_retry(&iter);
1007 radix_tree_delete(&fedata->socketpass_mappings,
1009 pvcalls_back_release_passive(dev, fedata, mappass);
1012 up(&fedata->socket_lock);
1014 unbind_from_irqhandler(fedata->irq, dev);
1015 xenbus_unmap_ring_vfree(dev, fedata->sring);
1017 list_del(&fedata->list);
1019 dev_set_drvdata(&dev->dev, NULL);
1024 static int pvcalls_back_probe(struct xenbus_device *dev,
1025 const struct xenbus_device_id *id)
1028 struct xenbus_transaction xbt;
1033 err = xenbus_transaction_start(&xbt);
1035 pr_warn("%s cannot create xenstore transaction\n", __func__);
1039 err = xenbus_printf(xbt, dev->nodename, "versions", "%s",
1042 pr_warn("%s write out 'versions' failed\n", __func__);
1046 err = xenbus_printf(xbt, dev->nodename, "max-page-order", "%u",
1049 pr_warn("%s write out 'max-page-order' failed\n", __func__);
1053 err = xenbus_printf(xbt, dev->nodename, "function-calls",
1054 XENBUS_FUNCTIONS_CALLS);
1056 pr_warn("%s write out 'function-calls' failed\n", __func__);
1062 err = xenbus_transaction_end(xbt, abort);
1064 if (err == -EAGAIN && !abort)
1066 pr_warn("%s cannot complete xenstore transaction\n", __func__);
1073 xenbus_switch_state(dev, XenbusStateInitWait);
1078 static void set_backend_state(struct xenbus_device *dev,
1079 enum xenbus_state state)
1081 while (dev->state != state) {
1082 switch (dev->state) {
1083 case XenbusStateClosed:
1085 case XenbusStateInitWait:
1086 case XenbusStateConnected:
1087 xenbus_switch_state(dev, XenbusStateInitWait);
1089 case XenbusStateClosing:
1090 xenbus_switch_state(dev, XenbusStateClosing);
1096 case XenbusStateInitWait:
1097 case XenbusStateInitialised:
1099 case XenbusStateConnected:
1100 backend_connect(dev);
1101 xenbus_switch_state(dev, XenbusStateConnected);
1103 case XenbusStateClosing:
1104 case XenbusStateClosed:
1105 xenbus_switch_state(dev, XenbusStateClosing);
1111 case XenbusStateConnected:
1113 case XenbusStateInitWait:
1114 case XenbusStateClosing:
1115 case XenbusStateClosed:
1116 down(&pvcalls_back_global.frontends_lock);
1117 backend_disconnect(dev);
1118 up(&pvcalls_back_global.frontends_lock);
1119 xenbus_switch_state(dev, XenbusStateClosing);
1125 case XenbusStateClosing:
1127 case XenbusStateInitWait:
1128 case XenbusStateConnected:
1129 case XenbusStateClosed:
1130 xenbus_switch_state(dev, XenbusStateClosed);
1142 static void pvcalls_back_changed(struct xenbus_device *dev,
1143 enum xenbus_state frontend_state)
1145 switch (frontend_state) {
1146 case XenbusStateInitialising:
1147 set_backend_state(dev, XenbusStateInitWait);
1150 case XenbusStateInitialised:
1151 case XenbusStateConnected:
1152 set_backend_state(dev, XenbusStateConnected);
1155 case XenbusStateClosing:
1156 set_backend_state(dev, XenbusStateClosing);
1159 case XenbusStateClosed:
1160 set_backend_state(dev, XenbusStateClosed);
1161 if (xenbus_dev_is_online(dev))
1163 device_unregister(&dev->dev);
1165 case XenbusStateUnknown:
1166 set_backend_state(dev, XenbusStateClosed);
1167 device_unregister(&dev->dev);
1171 xenbus_dev_fatal(dev, -EINVAL, "saw state %d at frontend",
1177 static int pvcalls_back_remove(struct xenbus_device *dev)
1182 static int pvcalls_back_uevent(struct xenbus_device *xdev,
1183 struct kobj_uevent_env *env)
1188 static const struct xenbus_device_id pvcalls_back_ids[] = {
1193 static struct xenbus_driver pvcalls_back_driver = {
1194 .ids = pvcalls_back_ids,
1195 .probe = pvcalls_back_probe,
1196 .remove = pvcalls_back_remove,
1197 .uevent = pvcalls_back_uevent,
1198 .otherend_changed = pvcalls_back_changed,
1201 static int __init pvcalls_back_init(void)
1208 ret = xenbus_register_backend(&pvcalls_back_driver);
1212 sema_init(&pvcalls_back_global.frontends_lock, 1);
1213 INIT_LIST_HEAD(&pvcalls_back_global.frontends);
1216 module_init(pvcalls_back_init);
1218 static void __exit pvcalls_back_fin(void)
1220 struct pvcalls_fedata *fedata, *nfedata;
1222 down(&pvcalls_back_global.frontends_lock);
1223 list_for_each_entry_safe(fedata, nfedata,
1224 &pvcalls_back_global.frontends, list) {
1225 backend_disconnect(fedata->dev);
1227 up(&pvcalls_back_global.frontends_lock);
1229 xenbus_unregister_driver(&pvcalls_back_driver);
1232 module_exit(pvcalls_back_fin);
1234 MODULE_DESCRIPTION("Xen PV Calls backend driver");
1236 MODULE_LICENSE("GPL");