1 // SPDX-License-Identifier: GPL-2.0
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
8 * Some code borrowed from the Linux EHCI driver.
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
21 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 static unsigned int quirks;
37 module_param(quirks, uint, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 * xhci_handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
48 * Returns negative errno, or zero on success
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
60 if (result == ~(u32)0) /* card removed */
72 * Disable interrupts and begin the xHCI halting process.
74 void xhci_quiesce(struct xhci_hcd *xhci)
81 halted = readl(&xhci->op_regs->status) & STS_HALT;
85 cmd = readl(&xhci->op_regs->command);
87 writel(cmd, &xhci->op_regs->command);
91 * Force HC into halt state.
93 * Disable any IRQs and clear the run/stop bit.
94 * HC will complete any current and actively pipelined transactions, and
95 * should halt within 16 ms of the run/stop bit being cleared.
96 * Read HC Halted bit in the status register to see when the HC is finished.
98 int xhci_halt(struct xhci_hcd *xhci)
101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
104 ret = xhci_handshake(&xhci->op_regs->status,
105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 xhci_warn(xhci, "Host halt failed, %d\n", ret);
110 xhci->xhc_state |= XHCI_STATE_HALTED;
111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
116 * Set the run bit and wait for the host to be running.
118 int xhci_start(struct xhci_hcd *xhci)
123 temp = readl(&xhci->op_regs->command);
125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
127 writel(temp, &xhci->op_regs->command);
130 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 ret = xhci_handshake(&xhci->op_regs->status,
134 STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 if (ret == -ETIMEDOUT)
136 xhci_err(xhci, "Host took too long to start, "
137 "waited %u microseconds.\n",
140 /* clear state flags. Including dying, halted or removing */
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
153 int xhci_reset(struct xhci_hcd *xhci)
159 state = readl(&xhci->op_regs->status);
161 if (state == ~(u32)0) {
162 xhci_warn(xhci, "Host not accessible, reset failed.\n");
166 if ((state & STS_HALT) == 0) {
167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 command = readl(&xhci->op_regs->command);
173 command |= CMD_RESET;
174 writel(command, &xhci->op_regs->command);
176 /* Existing Intel xHCI controllers require a delay of 1 mS,
177 * after setting the CMD_RESET bit, and before accessing any
178 * HC registers. This allows the HC to complete the
179 * reset operation and be ready for HC register access.
180 * Without this delay, the subsequent HC register access,
181 * may result in a system hang very rarely.
183 if (xhci->quirks & XHCI_INTEL_HOST)
186 ret = xhci_handshake(&xhci->op_regs->command,
187 CMD_RESET, 0, 10 * 1000 * 1000);
191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
194 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 "Wait for controller to be ready for doorbell rings");
197 * xHCI cannot write to any doorbells or operational registers other
198 * than status until the "Controller Not Ready" flag is cleared.
200 ret = xhci_handshake(&xhci->op_regs->status,
201 STS_CNR, 0, 10 * 1000 * 1000);
203 for (i = 0; i < 2; i++) {
204 xhci->bus_state[i].port_c_suspend = 0;
205 xhci->bus_state[i].suspended_ports = 0;
206 xhci->bus_state[i].resuming_ports = 0;
213 #ifdef CONFIG_USB_PCI
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
221 * TODO:Check with MSI Soc for sysdev
223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
225 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
227 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228 "failed to allocate MSI entry");
232 ret = request_irq(pdev->irq, xhci_msi_irq,
233 0, "xhci_hcd", xhci_to_hcd(xhci));
235 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 "disable MSI interrupt");
237 pci_free_irq_vectors(pdev);
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
249 struct usb_hcd *hcd = xhci_to_hcd(xhci);
250 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
253 * calculate number of msi-x vectors supported.
254 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255 * with max number of interrupters based on the xhci HCSPARAMS1.
256 * - num_online_cpus: maximum msi-x vectors per CPUs core.
257 * Add additional 1 vector to ensure always available interrupt.
259 xhci->msix_count = min(num_online_cpus() + 1,
260 HCS_MAX_INTRS(xhci->hcs_params1));
262 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
265 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266 "Failed to enable MSI-X");
270 for (i = 0; i < xhci->msix_count; i++) {
271 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272 "xhci_hcd", xhci_to_hcd(xhci));
277 hcd->msix_enabled = 1;
281 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
283 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284 pci_free_irq_vectors(pdev);
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
291 struct usb_hcd *hcd = xhci_to_hcd(xhci);
292 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
294 if (xhci->quirks & XHCI_PLAT)
297 /* return if using legacy interrupt */
301 if (hcd->msix_enabled) {
304 for (i = 0; i < xhci->msix_count; i++)
305 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
307 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
310 pci_free_irq_vectors(pdev);
311 hcd->msix_enabled = 0;
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
316 struct usb_hcd *hcd = xhci_to_hcd(xhci);
318 if (hcd->msix_enabled) {
319 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
322 for (i = 0; i < xhci->msix_count; i++)
323 synchronize_irq(pci_irq_vector(pdev, i));
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
329 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330 struct pci_dev *pdev;
333 /* The xhci platform device has set up IRQs through usb_add_hcd. */
334 if (xhci->quirks & XHCI_PLAT)
337 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
339 * Some Fresco Logic host controllers advertise MSI, but fail to
340 * generate interrupts. Don't even try to enable MSI.
342 if (xhci->quirks & XHCI_BROKEN_MSI)
345 /* unregister the legacy interrupt */
347 free_irq(hcd->irq, hcd);
350 ret = xhci_setup_msix(xhci);
352 /* fall back to msi*/
353 ret = xhci_setup_msi(xhci);
356 hcd->msi_enabled = 1;
361 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
366 if (!strlen(hcd->irq_descr))
367 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368 hcd->driver->description, hcd->self.busnum);
370 /* fall back to legacy interrupt*/
371 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372 hcd->irq_descr, hcd);
374 xhci_err(xhci, "request interrupt %d failed\n",
378 hcd->irq = pdev->irq;
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
399 static void compliance_mode_recovery(struct timer_list *t)
401 struct xhci_hcd *xhci;
406 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
408 for (i = 0; i < xhci->num_usb3_ports; i++) {
409 temp = readl(xhci->usb3_ports[i]);
410 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
412 * Compliance Mode Detected. Letting USB Core
413 * handle the Warm Reset
415 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416 "Compliance mode detected->port %d",
418 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419 "Attempting compliance mode recovery");
420 hcd = xhci->shared_hcd;
422 if (hcd->state == HC_STATE_SUSPENDED)
423 usb_hcd_resume_root_hub(hcd);
425 usb_hcd_poll_rh_status(hcd);
429 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430 mod_timer(&xhci->comp_mode_recovery_timer,
431 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
435 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436 * that causes ports behind that hardware to enter compliance mode sometimes.
437 * The quirk creates a timer that polls every 2 seconds the link state of
438 * each host controller's port and recovers it by issuing a Warm reset
439 * if Compliance mode is detected, otherwise the port will become "dead" (no
440 * device connections or disconnections will be detected anymore). Becasue no
441 * status event is generated when entering compliance mode (per xhci spec),
442 * this quirk is needed on systems that have the failing hardware installed.
444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
446 xhci->port_status_u0 = 0;
447 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
449 xhci->comp_mode_recovery_timer.expires = jiffies +
450 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
452 add_timer(&xhci->comp_mode_recovery_timer);
453 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454 "Compliance mode recovery timer initialized");
458 * This function identifies the systems that have installed the SN65LVPE502CP
459 * USB3.0 re-driver and that need the Compliance Mode Quirk.
461 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
465 const char *dmi_product_name, *dmi_sys_vendor;
467 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469 if (!dmi_product_name || !dmi_sys_vendor)
472 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
475 if (strstr(dmi_product_name, "Z420") ||
476 strstr(dmi_product_name, "Z620") ||
477 strstr(dmi_product_name, "Z820") ||
478 strstr(dmi_product_name, "Z1 Workstation"))
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
486 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
491 * Initialize memory for HCD and xHC (one-time init).
493 * Program the PAGESIZE register, initialize the device context array, create
494 * device contexts (?), set up a command ring segment (or two?), create event
495 * ring (one for now).
497 static int xhci_init(struct usb_hcd *hcd)
499 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503 spin_lock_init(&xhci->lock);
504 if (xhci->hci_version == 0x95 && link_quirk) {
505 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506 "QUIRK: Not clearing Link TRB chain bits.");
507 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
509 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510 "xHCI doesn't need link TRB QUIRK");
512 retval = xhci_mem_init(xhci, GFP_KERNEL);
513 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
515 /* Initializing Compliance Mode Recovery Data If Needed */
516 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518 compliance_mode_recovery_timer_init(xhci);
524 /*-------------------------------------------------------------------------*/
527 static int xhci_run_finished(struct xhci_hcd *xhci)
529 if (xhci_start(xhci)) {
533 xhci->shared_hcd->state = HC_STATE_RUNNING;
534 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
536 if (xhci->quirks & XHCI_NEC_HOST)
537 xhci_ring_cmd_db(xhci);
539 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540 "Finished xhci_run for USB3 roothub");
545 * Start the HC after it was halted.
547 * This function is called by the USB core when the HC driver is added.
548 * Its opposite is xhci_stop().
550 * xhci_init() must be called once before this function can be called.
551 * Reset the HC, enable device slot contexts, program DCBAAP, and
552 * set command ring pointer and event ring pointer.
554 * Setup MSI-X vectors and enable interrupts.
556 int xhci_run(struct usb_hcd *hcd)
561 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
563 /* Start the xHCI host controller running only after the USB 2.0 roothub
567 hcd->uses_new_polling = 1;
568 if (!usb_hcd_is_primary_hcd(hcd))
569 return xhci_run_finished(xhci);
571 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
573 ret = xhci_try_enable_msi(hcd);
577 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
578 temp_64 &= ~ERST_PTR_MASK;
579 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
582 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583 "// Set the interrupt modulation register");
584 temp = readl(&xhci->ir_set->irq_control);
585 temp &= ~ER_IRQ_INTERVAL_MASK;
586 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
587 writel(temp, &xhci->ir_set->irq_control);
589 /* Set the HCD state before we enable the irqs */
590 temp = readl(&xhci->op_regs->command);
592 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
593 "// Enable interrupts, cmd = 0x%x.", temp);
594 writel(temp, &xhci->op_regs->command);
596 temp = readl(&xhci->ir_set->irq_pending);
597 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
598 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
599 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
600 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
602 if (xhci->quirks & XHCI_NEC_HOST) {
603 struct xhci_command *command;
605 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
609 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
610 TRB_TYPE(TRB_NEC_GET_FW));
612 xhci_free_command(xhci, command);
614 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
615 "Finished xhci_run for USB2 roothub");
619 xhci_debugfs_init(xhci);
623 EXPORT_SYMBOL_GPL(xhci_run);
628 * This function is called by the USB core when the HC driver is removed.
629 * Its opposite is xhci_run().
631 * Disable device contexts, disable IRQs, and quiesce the HC.
632 * Reset the HC, finish any completed transactions, and cleanup memory.
634 static void xhci_stop(struct usb_hcd *hcd)
637 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
639 mutex_lock(&xhci->mutex);
641 /* Only halt host and free memory after both hcds are removed */
642 if (!usb_hcd_is_primary_hcd(hcd)) {
643 /* usb core will free this hcd shortly, unset pointer */
644 xhci->shared_hcd = NULL;
645 mutex_unlock(&xhci->mutex);
651 spin_lock_irq(&xhci->lock);
652 xhci->xhc_state |= XHCI_STATE_HALTED;
653 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
656 spin_unlock_irq(&xhci->lock);
658 xhci_cleanup_msix(xhci);
660 /* Deleting Compliance Mode Recovery Timer */
661 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
662 (!(xhci_all_ports_seen_u0(xhci)))) {
663 del_timer_sync(&xhci->comp_mode_recovery_timer);
664 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
665 "%s: compliance mode recovery timer deleted",
669 if (xhci->quirks & XHCI_AMD_PLL_FIX)
672 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673 "// Disabling event ring interrupts");
674 temp = readl(&xhci->op_regs->status);
675 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
676 temp = readl(&xhci->ir_set->irq_pending);
677 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
679 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
680 xhci_mem_cleanup(xhci);
681 xhci_debugfs_exit(xhci);
682 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
683 "xhci_stop completed - status = %x",
684 readl(&xhci->op_regs->status));
685 mutex_unlock(&xhci->mutex);
689 * Shutdown HC (not bus-specific)
691 * This is called when the machine is rebooting or halting. We assume that the
692 * machine will be powered off, and the HC's internal state will be reset.
693 * Don't bother to free memory.
695 * This will only ever be called with the main usb_hcd (the USB3 roothub).
697 static void xhci_shutdown(struct usb_hcd *hcd)
699 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
701 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
702 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
704 spin_lock_irq(&xhci->lock);
706 /* Workaround for spurious wakeups at shutdown with HSW */
707 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
709 spin_unlock_irq(&xhci->lock);
711 xhci_cleanup_msix(xhci);
713 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 "xhci_shutdown completed - status = %x",
715 readl(&xhci->op_regs->status));
717 /* Yet another workaround for spurious wakeups at shutdown with HSW */
718 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
719 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
723 static void xhci_save_registers(struct xhci_hcd *xhci)
725 xhci->s3.command = readl(&xhci->op_regs->command);
726 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
727 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
728 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
729 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
730 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
731 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
732 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
733 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
736 static void xhci_restore_registers(struct xhci_hcd *xhci)
738 writel(xhci->s3.command, &xhci->op_regs->command);
739 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
740 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
741 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
742 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
743 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
744 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
745 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
746 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
749 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
753 /* step 2: initialize command ring buffer */
754 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
755 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
756 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
757 xhci->cmd_ring->dequeue) &
758 (u64) ~CMD_RING_RSVD_BITS) |
759 xhci->cmd_ring->cycle_state;
760 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761 "// Setting command ring address to 0x%llx",
762 (long unsigned long) val_64);
763 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
767 * The whole command ring must be cleared to zero when we suspend the host.
769 * The host doesn't save the command ring pointer in the suspend well, so we
770 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
771 * aligned, because of the reserved bits in the command ring dequeue pointer
772 * register. Therefore, we can't just set the dequeue pointer back in the
773 * middle of the ring (TRBs are 16-byte aligned).
775 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
777 struct xhci_ring *ring;
778 struct xhci_segment *seg;
780 ring = xhci->cmd_ring;
784 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
785 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
786 cpu_to_le32(~TRB_CYCLE);
788 } while (seg != ring->deq_seg);
790 /* Reset the software enqueue and dequeue pointers */
791 ring->deq_seg = ring->first_seg;
792 ring->dequeue = ring->first_seg->trbs;
793 ring->enq_seg = ring->deq_seg;
794 ring->enqueue = ring->dequeue;
796 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
798 * Ring is now zeroed, so the HW should look for change of ownership
799 * when the cycle bit is set to 1.
801 ring->cycle_state = 1;
804 * Reset the hardware dequeue pointer.
805 * Yes, this will need to be re-written after resume, but we're paranoid
806 * and want to make sure the hardware doesn't access bogus memory
807 * because, say, the BIOS or an SMI started the host without changing
808 * the command ring pointers.
810 xhci_set_cmd_ring_deq(xhci);
813 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
816 __le32 __iomem **port_array;
820 spin_lock_irqsave(&xhci->lock, flags);
822 /* disable usb3 ports Wake bits */
823 port_index = xhci->num_usb3_ports;
824 port_array = xhci->usb3_ports;
825 while (port_index--) {
826 t1 = readl(port_array[port_index]);
827 t1 = xhci_port_state_to_neutral(t1);
828 t2 = t1 & ~PORT_WAKE_BITS;
830 writel(t2, port_array[port_index]);
833 /* disable usb2 ports Wake bits */
834 port_index = xhci->num_usb2_ports;
835 port_array = xhci->usb2_ports;
836 while (port_index--) {
837 t1 = readl(port_array[port_index]);
838 t1 = xhci_port_state_to_neutral(t1);
839 t2 = t1 & ~PORT_WAKE_BITS;
841 writel(t2, port_array[port_index]);
844 spin_unlock_irqrestore(&xhci->lock, flags);
848 * Stop HC (not bus-specific)
850 * This is called when the machine transition into S3/S4 mode.
853 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
856 unsigned int delay = XHCI_MAX_HALT_USEC;
857 struct usb_hcd *hcd = xhci_to_hcd(xhci);
863 if (hcd->state != HC_STATE_SUSPENDED ||
864 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
867 xhci_dbc_suspend(xhci);
869 /* Clear root port wake on bits if wakeup not allowed. */
871 xhci_disable_port_wake_on_bits(xhci);
873 /* Don't poll the roothubs on bus suspend. */
874 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
875 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
876 del_timer_sync(&hcd->rh_timer);
877 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
878 del_timer_sync(&xhci->shared_hcd->rh_timer);
880 if (xhci->quirks & XHCI_SUSPEND_DELAY)
881 usleep_range(1000, 1500);
883 spin_lock_irq(&xhci->lock);
884 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
885 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
886 /* step 1: stop endpoint */
887 /* skipped assuming that port suspend has done */
889 /* step 2: clear Run/Stop bit */
890 command = readl(&xhci->op_regs->command);
892 writel(command, &xhci->op_regs->command);
894 /* Some chips from Fresco Logic need an extraordinary delay */
895 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
897 if (xhci_handshake(&xhci->op_regs->status,
898 STS_HALT, STS_HALT, delay)) {
899 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
900 spin_unlock_irq(&xhci->lock);
903 xhci_clear_command_ring(xhci);
905 /* step 3: save registers */
906 xhci_save_registers(xhci);
908 /* step 4: set CSS flag */
909 command = readl(&xhci->op_regs->command);
911 writel(command, &xhci->op_regs->command);
912 if (xhci_handshake(&xhci->op_regs->status,
913 STS_SAVE, 0, 10 * 1000)) {
914 xhci_warn(xhci, "WARN: xHC save state timeout\n");
915 spin_unlock_irq(&xhci->lock);
918 spin_unlock_irq(&xhci->lock);
921 * Deleting Compliance Mode Recovery Timer because the xHCI Host
922 * is about to be suspended.
924 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
925 (!(xhci_all_ports_seen_u0(xhci)))) {
926 del_timer_sync(&xhci->comp_mode_recovery_timer);
927 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
928 "%s: compliance mode recovery timer deleted",
932 /* step 5: remove core well power */
933 /* synchronize irq when using MSI-X */
934 xhci_msix_sync_irqs(xhci);
938 EXPORT_SYMBOL_GPL(xhci_suspend);
941 * start xHC (not bus-specific)
943 * This is called when the machine transition from S3/S4 mode.
946 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
948 u32 command, temp = 0, status;
949 struct usb_hcd *hcd = xhci_to_hcd(xhci);
950 struct usb_hcd *secondary_hcd;
952 bool comp_timer_running = false;
957 /* Wait a bit if either of the roothubs need to settle from the
958 * transition into bus suspend.
960 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
962 xhci->bus_state[1].next_statechange))
965 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
966 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
968 spin_lock_irq(&xhci->lock);
969 if (xhci->quirks & XHCI_RESET_ON_RESUME)
973 /* step 1: restore register */
974 xhci_restore_registers(xhci);
975 /* step 2: initialize command ring buffer */
976 xhci_set_cmd_ring_deq(xhci);
977 /* step 3: restore state and start state*/
978 /* step 3: set CRS flag */
979 command = readl(&xhci->op_regs->command);
981 writel(command, &xhci->op_regs->command);
982 if (xhci_handshake(&xhci->op_regs->status,
983 STS_RESTORE, 0, 10 * 1000)) {
984 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
985 spin_unlock_irq(&xhci->lock);
988 temp = readl(&xhci->op_regs->status);
991 /* If restore operation fails, re-initialize the HC during resume */
992 if ((temp & STS_SRE) || hibernated) {
994 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
995 !(xhci_all_ports_seen_u0(xhci))) {
996 del_timer_sync(&xhci->comp_mode_recovery_timer);
997 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
998 "Compliance Mode Recovery Timer deleted!");
1001 /* Let the USB core know _both_ roothubs lost power. */
1002 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1003 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1005 xhci_dbg(xhci, "Stop HCD\n");
1008 spin_unlock_irq(&xhci->lock);
1009 xhci_cleanup_msix(xhci);
1011 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1012 temp = readl(&xhci->op_regs->status);
1013 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1014 temp = readl(&xhci->ir_set->irq_pending);
1015 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1017 xhci_dbg(xhci, "cleaning up memory\n");
1018 xhci_mem_cleanup(xhci);
1019 xhci_debugfs_exit(xhci);
1020 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1021 readl(&xhci->op_regs->status));
1023 /* USB core calls the PCI reinit and start functions twice:
1024 * first with the primary HCD, and then with the secondary HCD.
1025 * If we don't do the same, the host will never be started.
1027 if (!usb_hcd_is_primary_hcd(hcd))
1028 secondary_hcd = hcd;
1030 secondary_hcd = xhci->shared_hcd;
1032 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1033 retval = xhci_init(hcd->primary_hcd);
1036 comp_timer_running = true;
1038 xhci_dbg(xhci, "Start the primary HCD\n");
1039 retval = xhci_run(hcd->primary_hcd);
1041 xhci_dbg(xhci, "Start the secondary HCD\n");
1042 retval = xhci_run(secondary_hcd);
1044 hcd->state = HC_STATE_SUSPENDED;
1045 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1049 /* step 4: set Run/Stop bit */
1050 command = readl(&xhci->op_regs->command);
1052 writel(command, &xhci->op_regs->command);
1053 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1056 /* step 5: walk topology and initialize portsc,
1057 * portpmsc and portli
1059 /* this is done in bus_resume */
1061 /* step 6: restart each of the previously
1062 * Running endpoints by ringing their doorbells
1065 spin_unlock_irq(&xhci->lock);
1067 xhci_dbc_resume(xhci);
1071 /* Resume root hubs only when have pending events. */
1072 status = readl(&xhci->op_regs->status);
1073 if (status & STS_EINT) {
1074 usb_hcd_resume_root_hub(xhci->shared_hcd);
1075 usb_hcd_resume_root_hub(hcd);
1080 * If system is subject to the Quirk, Compliance Mode Timer needs to
1081 * be re-initialized Always after a system resume. Ports are subject
1082 * to suffer the Compliance Mode issue again. It doesn't matter if
1083 * ports have entered previously to U0 before system's suspension.
1085 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086 compliance_mode_recovery_timer_init(xhci);
1088 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1089 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1091 /* Re-enable port polling. */
1092 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1093 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1094 usb_hcd_poll_rh_status(xhci->shared_hcd);
1095 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1096 usb_hcd_poll_rh_status(hcd);
1100 EXPORT_SYMBOL_GPL(xhci_resume);
1101 #endif /* CONFIG_PM */
1103 /*-------------------------------------------------------------------------*/
1106 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1107 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1108 * value to right shift 1 for the bitmask.
1110 * Index = (epnum * 2) + direction - 1,
1111 * where direction = 0 for OUT, 1 for IN.
1112 * For control endpoints, the IN index is used (OUT index is unused), so
1113 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1115 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1118 if (usb_endpoint_xfer_control(desc))
1119 index = (unsigned int) (usb_endpoint_num(desc)*2);
1121 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1122 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1126 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1127 * address from the XHCI endpoint index.
1129 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1131 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1132 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1133 return direction | number;
1136 /* Find the flag for this endpoint (for use in the control context). Use the
1137 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1140 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1142 return 1 << (xhci_get_endpoint_index(desc) + 1);
1145 /* Find the flag for this endpoint (for use in the control context). Use the
1146 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1149 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1151 return 1 << (ep_index + 1);
1154 /* Compute the last valid endpoint context index. Basically, this is the
1155 * endpoint index plus one. For slot contexts with more than valid endpoint,
1156 * we find the most significant bit set in the added contexts flags.
1157 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1158 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1160 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1162 return fls(added_ctxs) - 1;
1165 /* Returns 1 if the arguments are OK;
1166 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1168 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1169 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1171 struct xhci_hcd *xhci;
1172 struct xhci_virt_device *virt_dev;
1174 if (!hcd || (check_ep && !ep) || !udev) {
1175 pr_debug("xHCI %s called with invalid args\n", func);
1178 if (!udev->parent) {
1179 pr_debug("xHCI %s called for root hub\n", func);
1183 xhci = hcd_to_xhci(hcd);
1184 if (check_virt_dev) {
1185 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1186 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1191 virt_dev = xhci->devs[udev->slot_id];
1192 if (virt_dev->udev != udev) {
1193 xhci_dbg(xhci, "xHCI %s called with udev and "
1194 "virt_dev does not match\n", func);
1199 if (xhci->xhc_state & XHCI_STATE_HALTED)
1205 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1206 struct usb_device *udev, struct xhci_command *command,
1207 bool ctx_change, bool must_succeed);
1210 * Full speed devices may have a max packet size greater than 8 bytes, but the
1211 * USB core doesn't know that until it reads the first 8 bytes of the
1212 * descriptor. If the usb_device's max packet size changes after that point,
1213 * we need to issue an evaluate context command and wait on it.
1215 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1216 unsigned int ep_index, struct urb *urb)
1218 struct xhci_container_ctx *out_ctx;
1219 struct xhci_input_control_ctx *ctrl_ctx;
1220 struct xhci_ep_ctx *ep_ctx;
1221 struct xhci_command *command;
1222 int max_packet_size;
1223 int hw_max_packet_size;
1226 out_ctx = xhci->devs[slot_id]->out_ctx;
1227 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1228 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1229 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1230 if (hw_max_packet_size != max_packet_size) {
1231 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1232 "Max Packet Size for ep 0 changed.");
1233 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1234 "Max packet size in usb_device = %d",
1236 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1237 "Max packet size in xHCI HW = %d",
1238 hw_max_packet_size);
1239 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1240 "Issuing evaluate context command.");
1242 /* Set up the input context flags for the command */
1243 /* FIXME: This won't work if a non-default control endpoint
1244 * changes max packet sizes.
1247 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1251 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1252 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1254 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1257 goto command_cleanup;
1259 /* Set up the modified control endpoint 0 */
1260 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1261 xhci->devs[slot_id]->out_ctx, ep_index);
1263 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1264 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1265 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1267 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1268 ctrl_ctx->drop_flags = 0;
1270 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1273 /* Clean up the input context for later use by bandwidth
1276 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1278 kfree(command->completion);
1285 * non-error returns are a promise to giveback() the urb later
1286 * we drop ownership so next owner (or urb unlink) can get it
1288 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1290 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1291 unsigned long flags;
1293 unsigned int slot_id, ep_index;
1294 unsigned int *ep_state;
1295 struct urb_priv *urb_priv;
1298 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1299 true, true, __func__) <= 0)
1302 slot_id = urb->dev->slot_id;
1303 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1304 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1306 if (!HCD_HW_ACCESSIBLE(hcd)) {
1307 if (!in_interrupt())
1308 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1312 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1313 num_tds = urb->number_of_packets;
1314 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1315 urb->transfer_buffer_length > 0 &&
1316 urb->transfer_flags & URB_ZERO_PACKET &&
1317 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1322 urb_priv = kzalloc(sizeof(struct urb_priv) +
1323 num_tds * sizeof(struct xhci_td), mem_flags);
1327 urb_priv->num_tds = num_tds;
1328 urb_priv->num_tds_done = 0;
1329 urb->hcpriv = urb_priv;
1331 trace_xhci_urb_enqueue(urb);
1333 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1334 /* Check to see if the max packet size for the default control
1335 * endpoint changed during FS device enumeration
1337 if (urb->dev->speed == USB_SPEED_FULL) {
1338 ret = xhci_check_maxpacket(xhci, slot_id,
1341 xhci_urb_free_priv(urb_priv);
1348 spin_lock_irqsave(&xhci->lock, flags);
1350 if (xhci->xhc_state & XHCI_STATE_DYING) {
1351 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1352 urb->ep->desc.bEndpointAddress, urb);
1356 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1357 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1362 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1363 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1368 switch (usb_endpoint_type(&urb->ep->desc)) {
1370 case USB_ENDPOINT_XFER_CONTROL:
1371 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1374 case USB_ENDPOINT_XFER_BULK:
1375 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1378 case USB_ENDPOINT_XFER_INT:
1379 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1382 case USB_ENDPOINT_XFER_ISOC:
1383 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1389 xhci_urb_free_priv(urb_priv);
1392 spin_unlock_irqrestore(&xhci->lock, flags);
1397 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1398 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1399 * should pick up where it left off in the TD, unless a Set Transfer Ring
1400 * Dequeue Pointer is issued.
1402 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1403 * the ring. Since the ring is a contiguous structure, they can't be physically
1404 * removed. Instead, there are two options:
1406 * 1) If the HC is in the middle of processing the URB to be canceled, we
1407 * simply move the ring's dequeue pointer past those TRBs using the Set
1408 * Transfer Ring Dequeue Pointer command. This will be the common case,
1409 * when drivers timeout on the last submitted URB and attempt to cancel.
1411 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1412 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1413 * HC will need to invalidate the any TRBs it has cached after the stop
1414 * endpoint command, as noted in the xHCI 0.95 errata.
1416 * 3) The TD may have completed by the time the Stop Endpoint Command
1417 * completes, so software needs to handle that case too.
1419 * This function should protect against the TD enqueueing code ringing the
1420 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1421 * It also needs to account for multiple cancellations on happening at the same
1422 * time for the same endpoint.
1424 * Note that this function can be called in any context, or so says
1425 * usb_hcd_unlink_urb()
1427 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1429 unsigned long flags;
1432 struct xhci_hcd *xhci;
1433 struct urb_priv *urb_priv;
1435 unsigned int ep_index;
1436 struct xhci_ring *ep_ring;
1437 struct xhci_virt_ep *ep;
1438 struct xhci_command *command;
1439 struct xhci_virt_device *vdev;
1441 xhci = hcd_to_xhci(hcd);
1442 spin_lock_irqsave(&xhci->lock, flags);
1444 trace_xhci_urb_dequeue(urb);
1446 /* Make sure the URB hasn't completed or been unlinked already */
1447 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1451 /* give back URB now if we can't queue it for cancel */
1452 vdev = xhci->devs[urb->dev->slot_id];
1453 urb_priv = urb->hcpriv;
1454 if (!vdev || !urb_priv)
1457 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1458 ep = &vdev->eps[ep_index];
1459 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1460 if (!ep || !ep_ring)
1463 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1464 temp = readl(&xhci->op_regs->status);
1465 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1470 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1471 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1472 "HC halted, freeing TD manually.");
1473 for (i = urb_priv->num_tds_done;
1474 i < urb_priv->num_tds;
1476 td = &urb_priv->td[i];
1477 if (!list_empty(&td->td_list))
1478 list_del_init(&td->td_list);
1479 if (!list_empty(&td->cancelled_td_list))
1480 list_del_init(&td->cancelled_td_list);
1485 i = urb_priv->num_tds_done;
1486 if (i < urb_priv->num_tds)
1487 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1488 "Cancel URB %p, dev %s, ep 0x%x, "
1489 "starting at offset 0x%llx",
1490 urb, urb->dev->devpath,
1491 urb->ep->desc.bEndpointAddress,
1492 (unsigned long long) xhci_trb_virt_to_dma(
1493 urb_priv->td[i].start_seg,
1494 urb_priv->td[i].first_trb));
1496 for (; i < urb_priv->num_tds; i++) {
1497 td = &urb_priv->td[i];
1498 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1501 /* Queue a stop endpoint command, but only if this is
1502 * the first cancellation to be handled.
1504 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1505 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1510 ep->ep_state |= EP_STOP_CMD_PENDING;
1511 ep->stop_cmd_timer.expires = jiffies +
1512 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1513 add_timer(&ep->stop_cmd_timer);
1514 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1516 xhci_ring_cmd_db(xhci);
1519 spin_unlock_irqrestore(&xhci->lock, flags);
1524 xhci_urb_free_priv(urb_priv);
1525 usb_hcd_unlink_urb_from_ep(hcd, urb);
1526 spin_unlock_irqrestore(&xhci->lock, flags);
1527 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1531 /* Drop an endpoint from a new bandwidth configuration for this device.
1532 * Only one call to this function is allowed per endpoint before
1533 * check_bandwidth() or reset_bandwidth() must be called.
1534 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1535 * add the endpoint to the schedule with possibly new parameters denoted by a
1536 * different endpoint descriptor in usb_host_endpoint.
1537 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1540 * The USB core will not allow URBs to be queued to an endpoint that is being
1541 * disabled, so there's no need for mutual exclusion to protect
1542 * the xhci->devs[slot_id] structure.
1544 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1545 struct usb_host_endpoint *ep)
1547 struct xhci_hcd *xhci;
1548 struct xhci_container_ctx *in_ctx, *out_ctx;
1549 struct xhci_input_control_ctx *ctrl_ctx;
1550 unsigned int ep_index;
1551 struct xhci_ep_ctx *ep_ctx;
1553 u32 new_add_flags, new_drop_flags;
1556 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1559 xhci = hcd_to_xhci(hcd);
1560 if (xhci->xhc_state & XHCI_STATE_DYING)
1563 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1564 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1565 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1566 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1567 __func__, drop_flag);
1571 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1572 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1573 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1575 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1580 ep_index = xhci_get_endpoint_index(&ep->desc);
1581 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582 /* If the HC already knows the endpoint is disabled,
1583 * or the HCD has noted it is disabled, ignore this request
1585 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1586 le32_to_cpu(ctrl_ctx->drop_flags) &
1587 xhci_get_endpoint_flag(&ep->desc)) {
1588 /* Do not warn when called after a usb_device_reset */
1589 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1590 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1595 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1596 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1598 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1599 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1601 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1603 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1605 if (xhci->quirks & XHCI_MTK_HOST)
1606 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1608 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1609 (unsigned int) ep->desc.bEndpointAddress,
1611 (unsigned int) new_drop_flags,
1612 (unsigned int) new_add_flags);
1616 /* Add an endpoint to a new possible bandwidth configuration for this device.
1617 * Only one call to this function is allowed per endpoint before
1618 * check_bandwidth() or reset_bandwidth() must be called.
1619 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620 * add the endpoint to the schedule with possibly new parameters denoted by a
1621 * different endpoint descriptor in usb_host_endpoint.
1622 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1625 * The USB core will not allow URBs to be queued to an endpoint until the
1626 * configuration or alt setting is installed in the device, so there's no need
1627 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1629 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630 struct usb_host_endpoint *ep)
1632 struct xhci_hcd *xhci;
1633 struct xhci_container_ctx *in_ctx;
1634 unsigned int ep_index;
1635 struct xhci_input_control_ctx *ctrl_ctx;
1637 u32 new_add_flags, new_drop_flags;
1638 struct xhci_virt_device *virt_dev;
1641 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1643 /* So we won't queue a reset ep command for a root hub */
1647 xhci = hcd_to_xhci(hcd);
1648 if (xhci->xhc_state & XHCI_STATE_DYING)
1651 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1652 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1653 /* FIXME when we have to issue an evaluate endpoint command to
1654 * deal with ep0 max packet size changing once we get the
1657 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1658 __func__, added_ctxs);
1662 virt_dev = xhci->devs[udev->slot_id];
1663 in_ctx = virt_dev->in_ctx;
1664 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1666 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1671 ep_index = xhci_get_endpoint_index(&ep->desc);
1672 /* If this endpoint is already in use, and the upper layers are trying
1673 * to add it again without dropping it, reject the addition.
1675 if (virt_dev->eps[ep_index].ring &&
1676 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1677 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1678 "without dropping it.\n",
1679 (unsigned int) ep->desc.bEndpointAddress);
1683 /* If the HCD has already noted the endpoint is enabled,
1684 * ignore this request.
1686 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1687 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1693 * Configuration and alternate setting changes must be done in
1694 * process context, not interrupt context (or so documenation
1695 * for usb_set_interface() and usb_set_configuration() claim).
1697 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1698 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1699 __func__, ep->desc.bEndpointAddress);
1703 if (xhci->quirks & XHCI_MTK_HOST) {
1704 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1706 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1707 virt_dev->eps[ep_index].new_ring = NULL;
1712 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1713 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1715 /* If xhci_endpoint_disable() was called for this endpoint, but the
1716 * xHC hasn't been notified yet through the check_bandwidth() call,
1717 * this re-adds a new state for the endpoint from the new endpoint
1718 * descriptors. We must drop and re-add this endpoint, so we leave the
1721 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1723 /* Store the usb_device pointer for later use */
1726 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1728 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1729 (unsigned int) ep->desc.bEndpointAddress,
1731 (unsigned int) new_drop_flags,
1732 (unsigned int) new_add_flags);
1736 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1738 struct xhci_input_control_ctx *ctrl_ctx;
1739 struct xhci_ep_ctx *ep_ctx;
1740 struct xhci_slot_ctx *slot_ctx;
1743 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1745 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1750 /* When a device's add flag and drop flag are zero, any subsequent
1751 * configure endpoint command will leave that endpoint's state
1752 * untouched. Make sure we don't leave any old state in the input
1753 * endpoint contexts.
1755 ctrl_ctx->drop_flags = 0;
1756 ctrl_ctx->add_flags = 0;
1757 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1758 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1759 /* Endpoint 0 is always valid */
1760 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1761 for (i = 1; i < 31; i++) {
1762 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1763 ep_ctx->ep_info = 0;
1764 ep_ctx->ep_info2 = 0;
1766 ep_ctx->tx_info = 0;
1770 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1771 struct usb_device *udev, u32 *cmd_status)
1775 switch (*cmd_status) {
1776 case COMP_COMMAND_ABORTED:
1777 case COMP_COMMAND_RING_STOPPED:
1778 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1781 case COMP_RESOURCE_ERROR:
1782 dev_warn(&udev->dev,
1783 "Not enough host controller resources for new device state.\n");
1785 /* FIXME: can we allocate more resources for the HC? */
1787 case COMP_BANDWIDTH_ERROR:
1788 case COMP_SECONDARY_BANDWIDTH_ERROR:
1789 dev_warn(&udev->dev,
1790 "Not enough bandwidth for new device state.\n");
1792 /* FIXME: can we go back to the old state? */
1794 case COMP_TRB_ERROR:
1795 /* the HCD set up something wrong */
1796 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1798 "and endpoint is not disabled.\n");
1801 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1802 dev_warn(&udev->dev,
1803 "ERROR: Incompatible device for endpoint configure command.\n");
1807 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1808 "Successful Endpoint Configure command");
1812 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1820 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1821 struct usb_device *udev, u32 *cmd_status)
1825 switch (*cmd_status) {
1826 case COMP_COMMAND_ABORTED:
1827 case COMP_COMMAND_RING_STOPPED:
1828 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1831 case COMP_PARAMETER_ERROR:
1832 dev_warn(&udev->dev,
1833 "WARN: xHCI driver setup invalid evaluate context command.\n");
1836 case COMP_SLOT_NOT_ENABLED_ERROR:
1837 dev_warn(&udev->dev,
1838 "WARN: slot not enabled for evaluate context command.\n");
1841 case COMP_CONTEXT_STATE_ERROR:
1842 dev_warn(&udev->dev,
1843 "WARN: invalid context state for evaluate context command.\n");
1846 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1847 dev_warn(&udev->dev,
1848 "ERROR: Incompatible device for evaluate context command.\n");
1851 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1852 /* Max Exit Latency too large error */
1853 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1857 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1858 "Successful evaluate context command");
1862 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1870 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1871 struct xhci_input_control_ctx *ctrl_ctx)
1873 u32 valid_add_flags;
1874 u32 valid_drop_flags;
1876 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1877 * (bit 1). The default control endpoint is added during the Address
1878 * Device command and is never removed until the slot is disabled.
1880 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1881 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1883 /* Use hweight32 to count the number of ones in the add flags, or
1884 * number of endpoints added. Don't count endpoints that are changed
1885 * (both added and dropped).
1887 return hweight32(valid_add_flags) -
1888 hweight32(valid_add_flags & valid_drop_flags);
1891 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1892 struct xhci_input_control_ctx *ctrl_ctx)
1894 u32 valid_add_flags;
1895 u32 valid_drop_flags;
1897 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1898 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1900 return hweight32(valid_drop_flags) -
1901 hweight32(valid_add_flags & valid_drop_flags);
1905 * We need to reserve the new number of endpoints before the configure endpoint
1906 * command completes. We can't subtract the dropped endpoints from the number
1907 * of active endpoints until the command completes because we can oversubscribe
1908 * the host in this case:
1910 * - the first configure endpoint command drops more endpoints than it adds
1911 * - a second configure endpoint command that adds more endpoints is queued
1912 * - the first configure endpoint command fails, so the config is unchanged
1913 * - the second command may succeed, even though there isn't enough resources
1915 * Must be called with xhci->lock held.
1917 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1918 struct xhci_input_control_ctx *ctrl_ctx)
1922 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1923 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1924 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1925 "Not enough ep ctxs: "
1926 "%u active, need to add %u, limit is %u.",
1927 xhci->num_active_eps, added_eps,
1928 xhci->limit_active_eps);
1931 xhci->num_active_eps += added_eps;
1932 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1933 "Adding %u ep ctxs, %u now active.", added_eps,
1934 xhci->num_active_eps);
1939 * The configure endpoint was failed by the xHC for some other reason, so we
1940 * need to revert the resources that failed configuration would have used.
1942 * Must be called with xhci->lock held.
1944 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1945 struct xhci_input_control_ctx *ctrl_ctx)
1949 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1950 xhci->num_active_eps -= num_failed_eps;
1951 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1952 "Removing %u failed ep ctxs, %u now active.",
1954 xhci->num_active_eps);
1958 * Now that the command has completed, clean up the active endpoint count by
1959 * subtracting out the endpoints that were dropped (but not changed).
1961 * Must be called with xhci->lock held.
1963 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1964 struct xhci_input_control_ctx *ctrl_ctx)
1966 u32 num_dropped_eps;
1968 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1969 xhci->num_active_eps -= num_dropped_eps;
1970 if (num_dropped_eps)
1971 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1972 "Removing %u dropped ep ctxs, %u now active.",
1974 xhci->num_active_eps);
1977 static unsigned int xhci_get_block_size(struct usb_device *udev)
1979 switch (udev->speed) {
1981 case USB_SPEED_FULL:
1983 case USB_SPEED_HIGH:
1985 case USB_SPEED_SUPER:
1986 case USB_SPEED_SUPER_PLUS:
1988 case USB_SPEED_UNKNOWN:
1989 case USB_SPEED_WIRELESS:
1991 /* Should never happen */
1997 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1999 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2001 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2006 /* If we are changing a LS/FS device under a HS hub,
2007 * make sure (if we are activating a new TT) that the HS bus has enough
2008 * bandwidth for this new TT.
2010 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2011 struct xhci_virt_device *virt_dev,
2014 struct xhci_interval_bw_table *bw_table;
2015 struct xhci_tt_bw_info *tt_info;
2017 /* Find the bandwidth table for the root port this TT is attached to. */
2018 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2019 tt_info = virt_dev->tt_info;
2020 /* If this TT already had active endpoints, the bandwidth for this TT
2021 * has already been added. Removing all periodic endpoints (and thus
2022 * making the TT enactive) will only decrease the bandwidth used.
2026 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2027 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2031 /* Not sure why we would have no new active endpoints...
2033 * Maybe because of an Evaluate Context change for a hub update or a
2034 * control endpoint 0 max packet size change?
2035 * FIXME: skip the bandwidth calculation in that case.
2040 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2041 struct xhci_virt_device *virt_dev)
2043 unsigned int bw_reserved;
2045 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2046 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2049 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2050 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2057 * This algorithm is a very conservative estimate of the worst-case scheduling
2058 * scenario for any one interval. The hardware dynamically schedules the
2059 * packets, so we can't tell which microframe could be the limiting factor in
2060 * the bandwidth scheduling. This only takes into account periodic endpoints.
2062 * Obviously, we can't solve an NP complete problem to find the minimum worst
2063 * case scenario. Instead, we come up with an estimate that is no less than
2064 * the worst case bandwidth used for any one microframe, but may be an
2067 * We walk the requirements for each endpoint by interval, starting with the
2068 * smallest interval, and place packets in the schedule where there is only one
2069 * possible way to schedule packets for that interval. In order to simplify
2070 * this algorithm, we record the largest max packet size for each interval, and
2071 * assume all packets will be that size.
2073 * For interval 0, we obviously must schedule all packets for each interval.
2074 * The bandwidth for interval 0 is just the amount of data to be transmitted
2075 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2076 * the number of packets).
2078 * For interval 1, we have two possible microframes to schedule those packets
2079 * in. For this algorithm, if we can schedule the same number of packets for
2080 * each possible scheduling opportunity (each microframe), we will do so. The
2081 * remaining number of packets will be saved to be transmitted in the gaps in
2082 * the next interval's scheduling sequence.
2084 * As we move those remaining packets to be scheduled with interval 2 packets,
2085 * we have to double the number of remaining packets to transmit. This is
2086 * because the intervals are actually powers of 2, and we would be transmitting
2087 * the previous interval's packets twice in this interval. We also have to be
2088 * sure that when we look at the largest max packet size for this interval, we
2089 * also look at the largest max packet size for the remaining packets and take
2090 * the greater of the two.
2092 * The algorithm continues to evenly distribute packets in each scheduling
2093 * opportunity, and push the remaining packets out, until we get to the last
2094 * interval. Then those packets and their associated overhead are just added
2095 * to the bandwidth used.
2097 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2098 struct xhci_virt_device *virt_dev,
2101 unsigned int bw_reserved;
2102 unsigned int max_bandwidth;
2103 unsigned int bw_used;
2104 unsigned int block_size;
2105 struct xhci_interval_bw_table *bw_table;
2106 unsigned int packet_size = 0;
2107 unsigned int overhead = 0;
2108 unsigned int packets_transmitted = 0;
2109 unsigned int packets_remaining = 0;
2112 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2113 return xhci_check_ss_bw(xhci, virt_dev);
2115 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2116 max_bandwidth = HS_BW_LIMIT;
2117 /* Convert percent of bus BW reserved to blocks reserved */
2118 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2120 max_bandwidth = FS_BW_LIMIT;
2121 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2124 bw_table = virt_dev->bw_table;
2125 /* We need to translate the max packet size and max ESIT payloads into
2126 * the units the hardware uses.
2128 block_size = xhci_get_block_size(virt_dev->udev);
2130 /* If we are manipulating a LS/FS device under a HS hub, double check
2131 * that the HS bus has enough bandwidth if we are activing a new TT.
2133 if (virt_dev->tt_info) {
2134 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2135 "Recalculating BW for rootport %u",
2136 virt_dev->real_port);
2137 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2138 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2139 "newly activated TT.\n");
2142 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2143 "Recalculating BW for TT slot %u port %u",
2144 virt_dev->tt_info->slot_id,
2145 virt_dev->tt_info->ttport);
2147 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2148 "Recalculating BW for rootport %u",
2149 virt_dev->real_port);
2152 /* Add in how much bandwidth will be used for interval zero, or the
2153 * rounded max ESIT payload + number of packets * largest overhead.
2155 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2156 bw_table->interval_bw[0].num_packets *
2157 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2159 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2160 unsigned int bw_added;
2161 unsigned int largest_mps;
2162 unsigned int interval_overhead;
2165 * How many packets could we transmit in this interval?
2166 * If packets didn't fit in the previous interval, we will need
2167 * to transmit that many packets twice within this interval.
2169 packets_remaining = 2 * packets_remaining +
2170 bw_table->interval_bw[i].num_packets;
2172 /* Find the largest max packet size of this or the previous
2175 if (list_empty(&bw_table->interval_bw[i].endpoints))
2178 struct xhci_virt_ep *virt_ep;
2179 struct list_head *ep_entry;
2181 ep_entry = bw_table->interval_bw[i].endpoints.next;
2182 virt_ep = list_entry(ep_entry,
2183 struct xhci_virt_ep, bw_endpoint_list);
2184 /* Convert to blocks, rounding up */
2185 largest_mps = DIV_ROUND_UP(
2186 virt_ep->bw_info.max_packet_size,
2189 if (largest_mps > packet_size)
2190 packet_size = largest_mps;
2192 /* Use the larger overhead of this or the previous interval. */
2193 interval_overhead = xhci_get_largest_overhead(
2194 &bw_table->interval_bw[i]);
2195 if (interval_overhead > overhead)
2196 overhead = interval_overhead;
2198 /* How many packets can we evenly distribute across
2199 * (1 << (i + 1)) possible scheduling opportunities?
2201 packets_transmitted = packets_remaining >> (i + 1);
2203 /* Add in the bandwidth used for those scheduled packets */
2204 bw_added = packets_transmitted * (overhead + packet_size);
2206 /* How many packets do we have remaining to transmit? */
2207 packets_remaining = packets_remaining % (1 << (i + 1));
2209 /* What largest max packet size should those packets have? */
2210 /* If we've transmitted all packets, don't carry over the
2211 * largest packet size.
2213 if (packets_remaining == 0) {
2216 } else if (packets_transmitted > 0) {
2217 /* Otherwise if we do have remaining packets, and we've
2218 * scheduled some packets in this interval, take the
2219 * largest max packet size from endpoints with this
2222 packet_size = largest_mps;
2223 overhead = interval_overhead;
2225 /* Otherwise carry over packet_size and overhead from the last
2226 * time we had a remainder.
2228 bw_used += bw_added;
2229 if (bw_used > max_bandwidth) {
2230 xhci_warn(xhci, "Not enough bandwidth. "
2231 "Proposed: %u, Max: %u\n",
2232 bw_used, max_bandwidth);
2237 * Ok, we know we have some packets left over after even-handedly
2238 * scheduling interval 15. We don't know which microframes they will
2239 * fit into, so we over-schedule and say they will be scheduled every
2242 if (packets_remaining > 0)
2243 bw_used += overhead + packet_size;
2245 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2246 unsigned int port_index = virt_dev->real_port - 1;
2248 /* OK, we're manipulating a HS device attached to a
2249 * root port bandwidth domain. Include the number of active TTs
2250 * in the bandwidth used.
2252 bw_used += TT_HS_OVERHEAD *
2253 xhci->rh_bw[port_index].num_active_tts;
2256 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2257 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2258 "Available: %u " "percent",
2259 bw_used, max_bandwidth, bw_reserved,
2260 (max_bandwidth - bw_used - bw_reserved) * 100 /
2263 bw_used += bw_reserved;
2264 if (bw_used > max_bandwidth) {
2265 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2266 bw_used, max_bandwidth);
2270 bw_table->bw_used = bw_used;
2274 static bool xhci_is_async_ep(unsigned int ep_type)
2276 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2277 ep_type != ISOC_IN_EP &&
2278 ep_type != INT_IN_EP);
2281 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2283 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2286 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2288 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2290 if (ep_bw->ep_interval == 0)
2291 return SS_OVERHEAD_BURST +
2292 (ep_bw->mult * ep_bw->num_packets *
2293 (SS_OVERHEAD + mps));
2294 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2295 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2296 1 << ep_bw->ep_interval);
2300 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2301 struct xhci_bw_info *ep_bw,
2302 struct xhci_interval_bw_table *bw_table,
2303 struct usb_device *udev,
2304 struct xhci_virt_ep *virt_ep,
2305 struct xhci_tt_bw_info *tt_info)
2307 struct xhci_interval_bw *interval_bw;
2308 int normalized_interval;
2310 if (xhci_is_async_ep(ep_bw->type))
2313 if (udev->speed >= USB_SPEED_SUPER) {
2314 if (xhci_is_sync_in_ep(ep_bw->type))
2315 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2316 xhci_get_ss_bw_consumed(ep_bw);
2318 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2319 xhci_get_ss_bw_consumed(ep_bw);
2323 /* SuperSpeed endpoints never get added to intervals in the table, so
2324 * this check is only valid for HS/FS/LS devices.
2326 if (list_empty(&virt_ep->bw_endpoint_list))
2328 /* For LS/FS devices, we need to translate the interval expressed in
2329 * microframes to frames.
2331 if (udev->speed == USB_SPEED_HIGH)
2332 normalized_interval = ep_bw->ep_interval;
2334 normalized_interval = ep_bw->ep_interval - 3;
2336 if (normalized_interval == 0)
2337 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2338 interval_bw = &bw_table->interval_bw[normalized_interval];
2339 interval_bw->num_packets -= ep_bw->num_packets;
2340 switch (udev->speed) {
2342 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2344 case USB_SPEED_FULL:
2345 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2347 case USB_SPEED_HIGH:
2348 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2350 case USB_SPEED_SUPER:
2351 case USB_SPEED_SUPER_PLUS:
2352 case USB_SPEED_UNKNOWN:
2353 case USB_SPEED_WIRELESS:
2354 /* Should never happen because only LS/FS/HS endpoints will get
2355 * added to the endpoint list.
2360 tt_info->active_eps -= 1;
2361 list_del_init(&virt_ep->bw_endpoint_list);
2364 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2365 struct xhci_bw_info *ep_bw,
2366 struct xhci_interval_bw_table *bw_table,
2367 struct usb_device *udev,
2368 struct xhci_virt_ep *virt_ep,
2369 struct xhci_tt_bw_info *tt_info)
2371 struct xhci_interval_bw *interval_bw;
2372 struct xhci_virt_ep *smaller_ep;
2373 int normalized_interval;
2375 if (xhci_is_async_ep(ep_bw->type))
2378 if (udev->speed == USB_SPEED_SUPER) {
2379 if (xhci_is_sync_in_ep(ep_bw->type))
2380 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2381 xhci_get_ss_bw_consumed(ep_bw);
2383 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2384 xhci_get_ss_bw_consumed(ep_bw);
2388 /* For LS/FS devices, we need to translate the interval expressed in
2389 * microframes to frames.
2391 if (udev->speed == USB_SPEED_HIGH)
2392 normalized_interval = ep_bw->ep_interval;
2394 normalized_interval = ep_bw->ep_interval - 3;
2396 if (normalized_interval == 0)
2397 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2398 interval_bw = &bw_table->interval_bw[normalized_interval];
2399 interval_bw->num_packets += ep_bw->num_packets;
2400 switch (udev->speed) {
2402 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2404 case USB_SPEED_FULL:
2405 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2407 case USB_SPEED_HIGH:
2408 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2410 case USB_SPEED_SUPER:
2411 case USB_SPEED_SUPER_PLUS:
2412 case USB_SPEED_UNKNOWN:
2413 case USB_SPEED_WIRELESS:
2414 /* Should never happen because only LS/FS/HS endpoints will get
2415 * added to the endpoint list.
2421 tt_info->active_eps += 1;
2422 /* Insert the endpoint into the list, largest max packet size first. */
2423 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2425 if (ep_bw->max_packet_size >=
2426 smaller_ep->bw_info.max_packet_size) {
2427 /* Add the new ep before the smaller endpoint */
2428 list_add_tail(&virt_ep->bw_endpoint_list,
2429 &smaller_ep->bw_endpoint_list);
2433 /* Add the new endpoint at the end of the list. */
2434 list_add_tail(&virt_ep->bw_endpoint_list,
2435 &interval_bw->endpoints);
2438 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2439 struct xhci_virt_device *virt_dev,
2442 struct xhci_root_port_bw_info *rh_bw_info;
2443 if (!virt_dev->tt_info)
2446 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2447 if (old_active_eps == 0 &&
2448 virt_dev->tt_info->active_eps != 0) {
2449 rh_bw_info->num_active_tts += 1;
2450 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2451 } else if (old_active_eps != 0 &&
2452 virt_dev->tt_info->active_eps == 0) {
2453 rh_bw_info->num_active_tts -= 1;
2454 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2458 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2459 struct xhci_virt_device *virt_dev,
2460 struct xhci_container_ctx *in_ctx)
2462 struct xhci_bw_info ep_bw_info[31];
2464 struct xhci_input_control_ctx *ctrl_ctx;
2465 int old_active_eps = 0;
2467 if (virt_dev->tt_info)
2468 old_active_eps = virt_dev->tt_info->active_eps;
2470 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2472 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2477 for (i = 0; i < 31; i++) {
2478 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2481 /* Make a copy of the BW info in case we need to revert this */
2482 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2483 sizeof(ep_bw_info[i]));
2484 /* Drop the endpoint from the interval table if the endpoint is
2485 * being dropped or changed.
2487 if (EP_IS_DROPPED(ctrl_ctx, i))
2488 xhci_drop_ep_from_interval_table(xhci,
2489 &virt_dev->eps[i].bw_info,
2495 /* Overwrite the information stored in the endpoints' bw_info */
2496 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2497 for (i = 0; i < 31; i++) {
2498 /* Add any changed or added endpoints to the interval table */
2499 if (EP_IS_ADDED(ctrl_ctx, i))
2500 xhci_add_ep_to_interval_table(xhci,
2501 &virt_dev->eps[i].bw_info,
2508 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2509 /* Ok, this fits in the bandwidth we have.
2510 * Update the number of active TTs.
2512 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2516 /* We don't have enough bandwidth for this, revert the stored info. */
2517 for (i = 0; i < 31; i++) {
2518 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2521 /* Drop the new copies of any added or changed endpoints from
2522 * the interval table.
2524 if (EP_IS_ADDED(ctrl_ctx, i)) {
2525 xhci_drop_ep_from_interval_table(xhci,
2526 &virt_dev->eps[i].bw_info,
2532 /* Revert the endpoint back to its old information */
2533 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2534 sizeof(ep_bw_info[i]));
2535 /* Add any changed or dropped endpoints back into the table */
2536 if (EP_IS_DROPPED(ctrl_ctx, i))
2537 xhci_add_ep_to_interval_table(xhci,
2538 &virt_dev->eps[i].bw_info,
2548 /* Issue a configure endpoint command or evaluate context command
2549 * and wait for it to finish.
2551 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2552 struct usb_device *udev,
2553 struct xhci_command *command,
2554 bool ctx_change, bool must_succeed)
2557 unsigned long flags;
2558 struct xhci_input_control_ctx *ctrl_ctx;
2559 struct xhci_virt_device *virt_dev;
2560 struct xhci_slot_ctx *slot_ctx;
2565 spin_lock_irqsave(&xhci->lock, flags);
2567 if (xhci->xhc_state & XHCI_STATE_DYING) {
2568 spin_unlock_irqrestore(&xhci->lock, flags);
2572 virt_dev = xhci->devs[udev->slot_id];
2574 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2576 spin_unlock_irqrestore(&xhci->lock, flags);
2577 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2582 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2583 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2584 spin_unlock_irqrestore(&xhci->lock, flags);
2585 xhci_warn(xhci, "Not enough host resources, "
2586 "active endpoint contexts = %u\n",
2587 xhci->num_active_eps);
2590 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2591 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2592 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2593 xhci_free_host_resources(xhci, ctrl_ctx);
2594 spin_unlock_irqrestore(&xhci->lock, flags);
2595 xhci_warn(xhci, "Not enough bandwidth\n");
2599 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2600 trace_xhci_configure_endpoint(slot_ctx);
2603 ret = xhci_queue_configure_endpoint(xhci, command,
2604 command->in_ctx->dma,
2605 udev->slot_id, must_succeed);
2607 ret = xhci_queue_evaluate_context(xhci, command,
2608 command->in_ctx->dma,
2609 udev->slot_id, must_succeed);
2611 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612 xhci_free_host_resources(xhci, ctrl_ctx);
2613 spin_unlock_irqrestore(&xhci->lock, flags);
2614 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2615 "FIXME allocate a new ring segment");
2618 xhci_ring_cmd_db(xhci);
2619 spin_unlock_irqrestore(&xhci->lock, flags);
2621 /* Wait for the configure endpoint command to complete */
2622 wait_for_completion(command->completion);
2625 ret = xhci_configure_endpoint_result(xhci, udev,
2628 ret = xhci_evaluate_context_result(xhci, udev,
2631 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2632 spin_lock_irqsave(&xhci->lock, flags);
2633 /* If the command failed, remove the reserved resources.
2634 * Otherwise, clean up the estimate to include dropped eps.
2637 xhci_free_host_resources(xhci, ctrl_ctx);
2639 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2640 spin_unlock_irqrestore(&xhci->lock, flags);
2645 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2646 struct xhci_virt_device *vdev, int i)
2648 struct xhci_virt_ep *ep = &vdev->eps[i];
2650 if (ep->ep_state & EP_HAS_STREAMS) {
2651 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2652 xhci_get_endpoint_address(i));
2653 xhci_free_stream_info(xhci, ep->stream_info);
2654 ep->stream_info = NULL;
2655 ep->ep_state &= ~EP_HAS_STREAMS;
2659 /* Called after one or more calls to xhci_add_endpoint() or
2660 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2661 * to call xhci_reset_bandwidth().
2663 * Since we are in the middle of changing either configuration or
2664 * installing a new alt setting, the USB core won't allow URBs to be
2665 * enqueued for any endpoint on the old config or interface. Nothing
2666 * else should be touching the xhci->devs[slot_id] structure, so we
2667 * don't need to take the xhci->lock for manipulating that.
2669 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2673 struct xhci_hcd *xhci;
2674 struct xhci_virt_device *virt_dev;
2675 struct xhci_input_control_ctx *ctrl_ctx;
2676 struct xhci_slot_ctx *slot_ctx;
2677 struct xhci_command *command;
2679 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2682 xhci = hcd_to_xhci(hcd);
2683 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2684 (xhci->xhc_state & XHCI_STATE_REMOVING))
2687 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2688 virt_dev = xhci->devs[udev->slot_id];
2690 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2694 command->in_ctx = virt_dev->in_ctx;
2696 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2697 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2699 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2702 goto command_cleanup;
2704 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2705 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2706 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2708 /* Don't issue the command if there's no endpoints to update. */
2709 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2710 ctrl_ctx->drop_flags == 0) {
2712 goto command_cleanup;
2714 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2715 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2716 for (i = 31; i >= 1; i--) {
2717 __le32 le32 = cpu_to_le32(BIT(i));
2719 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2720 || (ctrl_ctx->add_flags & le32) || i == 1) {
2721 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2722 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2727 ret = xhci_configure_endpoint(xhci, udev, command,
2730 /* Callee should call reset_bandwidth() */
2731 goto command_cleanup;
2733 /* Free any rings that were dropped, but not changed. */
2734 for (i = 1; i < 31; i++) {
2735 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2736 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2737 xhci_free_endpoint_ring(xhci, virt_dev, i);
2738 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2741 xhci_zero_in_ctx(xhci, virt_dev);
2743 * Install any rings for completely new endpoints or changed endpoints,
2744 * and free any old rings from changed endpoints.
2746 for (i = 1; i < 31; i++) {
2747 if (!virt_dev->eps[i].new_ring)
2749 /* Only free the old ring if it exists.
2750 * It may not if this is the first add of an endpoint.
2752 if (virt_dev->eps[i].ring) {
2753 xhci_free_endpoint_ring(xhci, virt_dev, i);
2755 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2756 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2757 virt_dev->eps[i].new_ring = NULL;
2760 kfree(command->completion);
2766 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2768 struct xhci_hcd *xhci;
2769 struct xhci_virt_device *virt_dev;
2772 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2775 xhci = hcd_to_xhci(hcd);
2777 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2778 virt_dev = xhci->devs[udev->slot_id];
2779 /* Free any rings allocated for added endpoints */
2780 for (i = 0; i < 31; i++) {
2781 if (virt_dev->eps[i].new_ring) {
2782 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2783 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2784 virt_dev->eps[i].new_ring = NULL;
2787 xhci_zero_in_ctx(xhci, virt_dev);
2790 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2791 struct xhci_container_ctx *in_ctx,
2792 struct xhci_container_ctx *out_ctx,
2793 struct xhci_input_control_ctx *ctrl_ctx,
2794 u32 add_flags, u32 drop_flags)
2796 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2797 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2798 xhci_slot_copy(xhci, in_ctx, out_ctx);
2799 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2802 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2803 unsigned int slot_id, unsigned int ep_index,
2804 struct xhci_dequeue_state *deq_state)
2806 struct xhci_input_control_ctx *ctrl_ctx;
2807 struct xhci_container_ctx *in_ctx;
2808 struct xhci_ep_ctx *ep_ctx;
2812 in_ctx = xhci->devs[slot_id]->in_ctx;
2813 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2815 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2820 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2821 xhci->devs[slot_id]->out_ctx, ep_index);
2822 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2823 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2824 deq_state->new_deq_ptr);
2826 xhci_warn(xhci, "WARN Cannot submit config ep after "
2827 "reset ep command\n");
2828 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2829 deq_state->new_deq_seg,
2830 deq_state->new_deq_ptr);
2833 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2835 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2836 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2837 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2838 added_ctxs, added_ctxs);
2841 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2842 unsigned int stream_id, struct xhci_td *td)
2844 struct xhci_dequeue_state deq_state;
2845 struct usb_device *udev = td->urb->dev;
2847 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2848 "Cleaning up stalled endpoint ring");
2849 /* We need to move the HW's dequeue pointer past this TD,
2850 * or it will attempt to resend it on the next doorbell ring.
2852 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2853 ep_index, stream_id, td, &deq_state);
2855 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2858 /* HW with the reset endpoint quirk will use the saved dequeue state to
2859 * issue a configure endpoint command later.
2861 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2862 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2863 "Queueing new dequeue state");
2864 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2865 ep_index, &deq_state);
2867 /* Better hope no one uses the input context between now and the
2868 * reset endpoint completion!
2869 * XXX: No idea how this hardware will react when stream rings
2872 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2873 "Setting up input context for "
2874 "configure endpoint command");
2875 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2876 ep_index, &deq_state);
2881 * Called after usb core issues a clear halt control message.
2882 * The host side of the halt should already be cleared by a reset endpoint
2883 * command issued when the STALL event was received.
2885 * The reset endpoint command may only be issued to endpoints in the halted
2886 * state. For software that wishes to reset the data toggle or sequence number
2887 * of an endpoint that isn't in the halted state this function will issue a
2888 * configure endpoint command with the Drop and Add bits set for the target
2889 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
2892 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2893 struct usb_host_endpoint *host_ep)
2895 struct xhci_hcd *xhci;
2896 struct usb_device *udev;
2897 struct xhci_virt_device *vdev;
2898 struct xhci_virt_ep *ep;
2899 struct xhci_input_control_ctx *ctrl_ctx;
2900 struct xhci_command *stop_cmd, *cfg_cmd;
2901 unsigned int ep_index;
2902 unsigned long flags;
2905 xhci = hcd_to_xhci(hcd);
2906 if (!host_ep->hcpriv)
2908 udev = (struct usb_device *) host_ep->hcpriv;
2909 vdev = xhci->devs[udev->slot_id];
2910 ep_index = xhci_get_endpoint_index(&host_ep->desc);
2911 ep = &vdev->eps[ep_index];
2913 /* Bail out if toggle is already being cleared by a endpoint reset */
2914 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
2915 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
2918 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
2919 if (usb_endpoint_xfer_control(&host_ep->desc) ||
2920 usb_endpoint_xfer_isoc(&host_ep->desc))
2923 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
2925 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
2928 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
2932 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
2936 spin_lock_irqsave(&xhci->lock, flags);
2938 /* block queuing new trbs and ringing ep doorbell */
2939 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
2942 * Make sure endpoint ring is empty before resetting the toggle/seq.
2943 * Driver is required to synchronously cancel all transfer request.
2944 * Stop the endpoint to force xHC to update the output context
2947 if (!list_empty(&ep->ring->td_list)) {
2948 dev_err(&udev->dev, "EP not empty, refuse reset\n");
2949 spin_unlock_irqrestore(&xhci->lock, flags);
2952 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
2953 xhci_ring_cmd_db(xhci);
2954 spin_unlock_irqrestore(&xhci->lock, flags);
2956 wait_for_completion(stop_cmd->completion);
2958 spin_lock_irqsave(&xhci->lock, flags);
2960 /* config ep command clears toggle if add and drop ep flags are set */
2961 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
2962 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
2963 ctrl_ctx, ep_flag, ep_flag);
2964 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
2966 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
2967 udev->slot_id, false);
2968 xhci_ring_cmd_db(xhci);
2969 spin_unlock_irqrestore(&xhci->lock, flags);
2971 wait_for_completion(cfg_cmd->completion);
2973 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
2974 xhci_free_command(xhci, cfg_cmd);
2976 xhci_free_command(xhci, stop_cmd);
2979 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2980 struct usb_device *udev, struct usb_host_endpoint *ep,
2981 unsigned int slot_id)
2984 unsigned int ep_index;
2985 unsigned int ep_state;
2989 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2992 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2993 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2994 " descriptor for ep 0x%x does not support streams\n",
2995 ep->desc.bEndpointAddress);
2999 ep_index = xhci_get_endpoint_index(&ep->desc);
3000 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3001 if (ep_state & EP_HAS_STREAMS ||
3002 ep_state & EP_GETTING_STREAMS) {
3003 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3004 "already has streams set up.\n",
3005 ep->desc.bEndpointAddress);
3006 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3007 "dynamic stream context array reallocation.\n");
3010 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3011 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3012 "endpoint 0x%x; URBs are pending.\n",
3013 ep->desc.bEndpointAddress);
3019 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3020 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3022 unsigned int max_streams;
3024 /* The stream context array size must be a power of two */
3025 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3027 * Find out how many primary stream array entries the host controller
3028 * supports. Later we may use secondary stream arrays (similar to 2nd
3029 * level page entries), but that's an optional feature for xHCI host
3030 * controllers. xHCs must support at least 4 stream IDs.
3032 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3033 if (*num_stream_ctxs > max_streams) {
3034 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3036 *num_stream_ctxs = max_streams;
3037 *num_streams = max_streams;
3041 /* Returns an error code if one of the endpoint already has streams.
3042 * This does not change any data structures, it only checks and gathers
3045 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3046 struct usb_device *udev,
3047 struct usb_host_endpoint **eps, unsigned int num_eps,
3048 unsigned int *num_streams, u32 *changed_ep_bitmask)
3050 unsigned int max_streams;
3051 unsigned int endpoint_flag;
3055 for (i = 0; i < num_eps; i++) {
3056 ret = xhci_check_streams_endpoint(xhci, udev,
3057 eps[i], udev->slot_id);
3061 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3062 if (max_streams < (*num_streams - 1)) {
3063 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3064 eps[i]->desc.bEndpointAddress,
3066 *num_streams = max_streams+1;
3069 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3070 if (*changed_ep_bitmask & endpoint_flag)
3072 *changed_ep_bitmask |= endpoint_flag;
3077 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3078 struct usb_device *udev,
3079 struct usb_host_endpoint **eps, unsigned int num_eps)
3081 u32 changed_ep_bitmask = 0;
3082 unsigned int slot_id;
3083 unsigned int ep_index;
3084 unsigned int ep_state;
3087 slot_id = udev->slot_id;
3088 if (!xhci->devs[slot_id])
3091 for (i = 0; i < num_eps; i++) {
3092 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3093 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3094 /* Are streams already being freed for the endpoint? */
3095 if (ep_state & EP_GETTING_NO_STREAMS) {
3096 xhci_warn(xhci, "WARN Can't disable streams for "
3098 "streams are being disabled already\n",
3099 eps[i]->desc.bEndpointAddress);
3102 /* Are there actually any streams to free? */
3103 if (!(ep_state & EP_HAS_STREAMS) &&
3104 !(ep_state & EP_GETTING_STREAMS)) {
3105 xhci_warn(xhci, "WARN Can't disable streams for "
3107 "streams are already disabled!\n",
3108 eps[i]->desc.bEndpointAddress);
3109 xhci_warn(xhci, "WARN xhci_free_streams() called "
3110 "with non-streams endpoint\n");
3113 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3115 return changed_ep_bitmask;
3119 * The USB device drivers use this function (through the HCD interface in USB
3120 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3121 * coordinate mass storage command queueing across multiple endpoints (basically
3122 * a stream ID == a task ID).
3124 * Setting up streams involves allocating the same size stream context array
3125 * for each endpoint and issuing a configure endpoint command for all endpoints.
3127 * Don't allow the call to succeed if one endpoint only supports one stream
3128 * (which means it doesn't support streams at all).
3130 * Drivers may get less stream IDs than they asked for, if the host controller
3131 * hardware or endpoints claim they can't support the number of requested
3134 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3135 struct usb_host_endpoint **eps, unsigned int num_eps,
3136 unsigned int num_streams, gfp_t mem_flags)
3139 struct xhci_hcd *xhci;
3140 struct xhci_virt_device *vdev;
3141 struct xhci_command *config_cmd;
3142 struct xhci_input_control_ctx *ctrl_ctx;
3143 unsigned int ep_index;
3144 unsigned int num_stream_ctxs;
3145 unsigned int max_packet;
3146 unsigned long flags;
3147 u32 changed_ep_bitmask = 0;
3152 /* Add one to the number of streams requested to account for
3153 * stream 0 that is reserved for xHCI usage.
3156 xhci = hcd_to_xhci(hcd);
3157 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3160 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3161 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3162 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3163 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3167 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3171 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3173 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3175 xhci_free_command(xhci, config_cmd);
3179 /* Check to make sure all endpoints are not already configured for
3180 * streams. While we're at it, find the maximum number of streams that
3181 * all the endpoints will support and check for duplicate endpoints.
3183 spin_lock_irqsave(&xhci->lock, flags);
3184 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3185 num_eps, &num_streams, &changed_ep_bitmask);
3187 xhci_free_command(xhci, config_cmd);
3188 spin_unlock_irqrestore(&xhci->lock, flags);
3191 if (num_streams <= 1) {
3192 xhci_warn(xhci, "WARN: endpoints can't handle "
3193 "more than one stream.\n");
3194 xhci_free_command(xhci, config_cmd);
3195 spin_unlock_irqrestore(&xhci->lock, flags);
3198 vdev = xhci->devs[udev->slot_id];
3199 /* Mark each endpoint as being in transition, so
3200 * xhci_urb_enqueue() will reject all URBs.
3202 for (i = 0; i < num_eps; i++) {
3203 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3204 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3206 spin_unlock_irqrestore(&xhci->lock, flags);
3208 /* Setup internal data structures and allocate HW data structures for
3209 * streams (but don't install the HW structures in the input context
3210 * until we're sure all memory allocation succeeded).
3212 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3213 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3214 num_stream_ctxs, num_streams);
3216 for (i = 0; i < num_eps; i++) {
3217 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3219 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3222 max_packet, mem_flags);
3223 if (!vdev->eps[ep_index].stream_info)
3225 /* Set maxPstreams in endpoint context and update deq ptr to
3226 * point to stream context array. FIXME
3230 /* Set up the input context for a configure endpoint command. */
3231 for (i = 0; i < num_eps; i++) {
3232 struct xhci_ep_ctx *ep_ctx;
3234 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3237 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3238 vdev->out_ctx, ep_index);
3239 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3240 vdev->eps[ep_index].stream_info);
3242 /* Tell the HW to drop its old copy of the endpoint context info
3243 * and add the updated copy from the input context.
3245 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3246 vdev->out_ctx, ctrl_ctx,
3247 changed_ep_bitmask, changed_ep_bitmask);
3249 /* Issue and wait for the configure endpoint command */
3250 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3253 /* xHC rejected the configure endpoint command for some reason, so we
3254 * leave the old ring intact and free our internal streams data
3260 spin_lock_irqsave(&xhci->lock, flags);
3261 for (i = 0; i < num_eps; i++) {
3262 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3264 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3265 udev->slot_id, ep_index);
3266 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3268 xhci_free_command(xhci, config_cmd);
3269 spin_unlock_irqrestore(&xhci->lock, flags);
3271 /* Subtract 1 for stream 0, which drivers can't use */
3272 return num_streams - 1;
3275 /* If it didn't work, free the streams! */
3276 for (i = 0; i < num_eps; i++) {
3277 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3278 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3279 vdev->eps[ep_index].stream_info = NULL;
3280 /* FIXME Unset maxPstreams in endpoint context and
3281 * update deq ptr to point to normal string ring.
3283 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3284 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3285 xhci_endpoint_zero(xhci, vdev, eps[i]);
3287 xhci_free_command(xhci, config_cmd);
3291 /* Transition the endpoint from using streams to being a "normal" endpoint
3294 * Modify the endpoint context state, submit a configure endpoint command,
3295 * and free all endpoint rings for streams if that completes successfully.
3297 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3298 struct usb_host_endpoint **eps, unsigned int num_eps,
3302 struct xhci_hcd *xhci;
3303 struct xhci_virt_device *vdev;
3304 struct xhci_command *command;
3305 struct xhci_input_control_ctx *ctrl_ctx;
3306 unsigned int ep_index;
3307 unsigned long flags;
3308 u32 changed_ep_bitmask;
3310 xhci = hcd_to_xhci(hcd);
3311 vdev = xhci->devs[udev->slot_id];
3313 /* Set up a configure endpoint command to remove the streams rings */
3314 spin_lock_irqsave(&xhci->lock, flags);
3315 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3316 udev, eps, num_eps);
3317 if (changed_ep_bitmask == 0) {
3318 spin_unlock_irqrestore(&xhci->lock, flags);
3322 /* Use the xhci_command structure from the first endpoint. We may have
3323 * allocated too many, but the driver may call xhci_free_streams() for
3324 * each endpoint it grouped into one call to xhci_alloc_streams().
3326 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3327 command = vdev->eps[ep_index].stream_info->free_streams_command;
3328 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3330 spin_unlock_irqrestore(&xhci->lock, flags);
3331 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3336 for (i = 0; i < num_eps; i++) {
3337 struct xhci_ep_ctx *ep_ctx;
3339 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3340 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3341 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3342 EP_GETTING_NO_STREAMS;
3344 xhci_endpoint_copy(xhci, command->in_ctx,
3345 vdev->out_ctx, ep_index);
3346 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3347 &vdev->eps[ep_index]);
3349 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3350 vdev->out_ctx, ctrl_ctx,
3351 changed_ep_bitmask, changed_ep_bitmask);
3352 spin_unlock_irqrestore(&xhci->lock, flags);
3354 /* Issue and wait for the configure endpoint command,
3355 * which must succeed.
3357 ret = xhci_configure_endpoint(xhci, udev, command,
3360 /* xHC rejected the configure endpoint command for some reason, so we
3361 * leave the streams rings intact.
3366 spin_lock_irqsave(&xhci->lock, flags);
3367 for (i = 0; i < num_eps; i++) {
3368 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3369 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3370 vdev->eps[ep_index].stream_info = NULL;
3371 /* FIXME Unset maxPstreams in endpoint context and
3372 * update deq ptr to point to normal string ring.
3374 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3375 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3377 spin_unlock_irqrestore(&xhci->lock, flags);
3383 * Deletes endpoint resources for endpoints that were active before a Reset
3384 * Device command, or a Disable Slot command. The Reset Device command leaves
3385 * the control endpoint intact, whereas the Disable Slot command deletes it.
3387 * Must be called with xhci->lock held.
3389 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3390 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3393 unsigned int num_dropped_eps = 0;
3394 unsigned int drop_flags = 0;
3396 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3397 if (virt_dev->eps[i].ring) {
3398 drop_flags |= 1 << i;
3402 xhci->num_active_eps -= num_dropped_eps;
3403 if (num_dropped_eps)
3404 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3405 "Dropped %u ep ctxs, flags = 0x%x, "
3407 num_dropped_eps, drop_flags,
3408 xhci->num_active_eps);
3412 * This submits a Reset Device Command, which will set the device state to 0,
3413 * set the device address to 0, and disable all the endpoints except the default
3414 * control endpoint. The USB core should come back and call
3415 * xhci_address_device(), and then re-set up the configuration. If this is
3416 * called because of a usb_reset_and_verify_device(), then the old alternate
3417 * settings will be re-installed through the normal bandwidth allocation
3420 * Wait for the Reset Device command to finish. Remove all structures
3421 * associated with the endpoints that were disabled. Clear the input device
3422 * structure? Reset the control endpoint 0 max packet size?
3424 * If the virt_dev to be reset does not exist or does not match the udev,
3425 * it means the device is lost, possibly due to the xHC restore error and
3426 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3427 * re-allocate the device.
3429 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3430 struct usb_device *udev)
3433 unsigned long flags;
3434 struct xhci_hcd *xhci;
3435 unsigned int slot_id;
3436 struct xhci_virt_device *virt_dev;
3437 struct xhci_command *reset_device_cmd;
3438 struct xhci_slot_ctx *slot_ctx;
3439 int old_active_eps = 0;
3441 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3444 xhci = hcd_to_xhci(hcd);
3445 slot_id = udev->slot_id;
3446 virt_dev = xhci->devs[slot_id];
3448 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3449 "not exist. Re-allocate the device\n", slot_id);
3450 ret = xhci_alloc_dev(hcd, udev);
3457 if (virt_dev->tt_info)
3458 old_active_eps = virt_dev->tt_info->active_eps;
3460 if (virt_dev->udev != udev) {
3461 /* If the virt_dev and the udev does not match, this virt_dev
3462 * may belong to another udev.
3463 * Re-allocate the device.
3465 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3466 "not match the udev. Re-allocate the device\n",
3468 ret = xhci_alloc_dev(hcd, udev);
3475 /* If device is not setup, there is no point in resetting it */
3476 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3477 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3478 SLOT_STATE_DISABLED)
3481 trace_xhci_discover_or_reset_device(slot_ctx);
3483 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3484 /* Allocate the command structure that holds the struct completion.
3485 * Assume we're in process context, since the normal device reset
3486 * process has to wait for the device anyway. Storage devices are
3487 * reset as part of error handling, so use GFP_NOIO instead of
3490 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3491 if (!reset_device_cmd) {
3492 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3496 /* Attempt to submit the Reset Device command to the command ring */
3497 spin_lock_irqsave(&xhci->lock, flags);
3499 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3501 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3502 spin_unlock_irqrestore(&xhci->lock, flags);
3503 goto command_cleanup;
3505 xhci_ring_cmd_db(xhci);
3506 spin_unlock_irqrestore(&xhci->lock, flags);
3508 /* Wait for the Reset Device command to finish */
3509 wait_for_completion(reset_device_cmd->completion);
3511 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3512 * unless we tried to reset a slot ID that wasn't enabled,
3513 * or the device wasn't in the addressed or configured state.
3515 ret = reset_device_cmd->status;
3517 case COMP_COMMAND_ABORTED:
3518 case COMP_COMMAND_RING_STOPPED:
3519 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3521 goto command_cleanup;
3522 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3523 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3524 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3526 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3527 xhci_dbg(xhci, "Not freeing device rings.\n");
3528 /* Don't treat this as an error. May change my mind later. */
3530 goto command_cleanup;
3532 xhci_dbg(xhci, "Successful reset device command.\n");
3535 if (xhci_is_vendor_info_code(xhci, ret))
3537 xhci_warn(xhci, "Unknown completion code %u for "
3538 "reset device command.\n", ret);
3540 goto command_cleanup;
3543 /* Free up host controller endpoint resources */
3544 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3545 spin_lock_irqsave(&xhci->lock, flags);
3546 /* Don't delete the default control endpoint resources */
3547 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3548 spin_unlock_irqrestore(&xhci->lock, flags);
3551 /* Everything but endpoint 0 is disabled, so free the rings. */
3552 for (i = 1; i < 31; i++) {
3553 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3555 if (ep->ep_state & EP_HAS_STREAMS) {
3556 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3557 xhci_get_endpoint_address(i));
3558 xhci_free_stream_info(xhci, ep->stream_info);
3559 ep->stream_info = NULL;
3560 ep->ep_state &= ~EP_HAS_STREAMS;
3564 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3565 xhci_free_endpoint_ring(xhci, virt_dev, i);
3567 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3568 xhci_drop_ep_from_interval_table(xhci,
3569 &virt_dev->eps[i].bw_info,
3574 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3576 /* If necessary, update the number of active TTs on this root port */
3577 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3581 xhci_free_command(xhci, reset_device_cmd);
3586 * At this point, the struct usb_device is about to go away, the device has
3587 * disconnected, and all traffic has been stopped and the endpoints have been
3588 * disabled. Free any HC data structures associated with that device.
3590 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3592 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3593 struct xhci_virt_device *virt_dev;
3594 struct xhci_slot_ctx *slot_ctx;
3597 #ifndef CONFIG_USB_DEFAULT_PERSIST
3599 * We called pm_runtime_get_noresume when the device was attached.
3600 * Decrement the counter here to allow controller to runtime suspend
3601 * if no devices remain.
3603 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3604 pm_runtime_put_noidle(hcd->self.controller);
3607 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3608 /* If the host is halted due to driver unload, we still need to free the
3611 if (ret <= 0 && ret != -ENODEV)
3614 virt_dev = xhci->devs[udev->slot_id];
3615 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3616 trace_xhci_free_dev(slot_ctx);
3618 /* Stop any wayward timer functions (which may grab the lock) */
3619 for (i = 0; i < 31; i++) {
3620 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3621 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3623 xhci_debugfs_remove_slot(xhci, udev->slot_id);
3624 ret = xhci_disable_slot(xhci, udev->slot_id);
3626 xhci_free_virt_device(xhci, udev->slot_id);
3629 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3631 struct xhci_command *command;
3632 unsigned long flags;
3636 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3640 spin_lock_irqsave(&xhci->lock, flags);
3641 /* Don't disable the slot if the host controller is dead. */
3642 state = readl(&xhci->op_regs->status);
3643 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3644 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3645 spin_unlock_irqrestore(&xhci->lock, flags);
3650 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3653 spin_unlock_irqrestore(&xhci->lock, flags);
3657 xhci_ring_cmd_db(xhci);
3658 spin_unlock_irqrestore(&xhci->lock, flags);
3663 * Checks if we have enough host controller resources for the default control
3666 * Must be called with xhci->lock held.
3668 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3670 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3671 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3672 "Not enough ep ctxs: "
3673 "%u active, need to add 1, limit is %u.",
3674 xhci->num_active_eps, xhci->limit_active_eps);
3677 xhci->num_active_eps += 1;
3678 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3679 "Adding 1 ep ctx, %u now active.",
3680 xhci->num_active_eps);
3686 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3687 * timed out, or allocating memory failed. Returns 1 on success.
3689 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3691 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3692 struct xhci_virt_device *vdev;
3693 struct xhci_slot_ctx *slot_ctx;
3694 unsigned long flags;
3696 struct xhci_command *command;
3698 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3702 spin_lock_irqsave(&xhci->lock, flags);
3703 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3705 spin_unlock_irqrestore(&xhci->lock, flags);
3706 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3707 xhci_free_command(xhci, command);
3710 xhci_ring_cmd_db(xhci);
3711 spin_unlock_irqrestore(&xhci->lock, flags);
3713 wait_for_completion(command->completion);
3714 slot_id = command->slot_id;
3716 if (!slot_id || command->status != COMP_SUCCESS) {
3717 xhci_err(xhci, "Error while assigning device slot ID\n");
3718 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3720 readl(&xhci->cap_regs->hcs_params1)));
3721 xhci_free_command(xhci, command);
3725 xhci_free_command(xhci, command);
3727 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3728 spin_lock_irqsave(&xhci->lock, flags);
3729 ret = xhci_reserve_host_control_ep_resources(xhci);
3731 spin_unlock_irqrestore(&xhci->lock, flags);
3732 xhci_warn(xhci, "Not enough host resources, "
3733 "active endpoint contexts = %u\n",
3734 xhci->num_active_eps);
3737 spin_unlock_irqrestore(&xhci->lock, flags);
3739 /* Use GFP_NOIO, since this function can be called from
3740 * xhci_discover_or_reset_device(), which may be called as part of
3741 * mass storage driver error handling.
3743 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3744 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3747 vdev = xhci->devs[slot_id];
3748 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3749 trace_xhci_alloc_dev(slot_ctx);
3751 udev->slot_id = slot_id;
3753 xhci_debugfs_create_slot(xhci, slot_id);
3755 #ifndef CONFIG_USB_DEFAULT_PERSIST
3757 * If resetting upon resume, we can't put the controller into runtime
3758 * suspend if there is a device attached.
3760 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3761 pm_runtime_get_noresume(hcd->self.controller);
3764 /* Is this a LS or FS device under a HS hub? */
3765 /* Hub or peripherial? */
3769 ret = xhci_disable_slot(xhci, udev->slot_id);
3771 xhci_free_virt_device(xhci, udev->slot_id);
3777 * Issue an Address Device command and optionally send a corresponding
3778 * SetAddress request to the device.
3780 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3781 enum xhci_setup_dev setup)
3783 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3784 unsigned long flags;
3785 struct xhci_virt_device *virt_dev;
3787 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3788 struct xhci_slot_ctx *slot_ctx;
3789 struct xhci_input_control_ctx *ctrl_ctx;
3791 struct xhci_command *command = NULL;
3793 mutex_lock(&xhci->mutex);
3795 if (xhci->xhc_state) { /* dying, removing or halted */
3800 if (!udev->slot_id) {
3801 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3802 "Bad Slot ID %d", udev->slot_id);
3807 virt_dev = xhci->devs[udev->slot_id];
3809 if (WARN_ON(!virt_dev)) {
3811 * In plug/unplug torture test with an NEC controller,
3812 * a zero-dereference was observed once due to virt_dev = 0.
3813 * Print useful debug rather than crash if it is observed again!
3815 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3820 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3821 trace_xhci_setup_device_slot(slot_ctx);
3823 if (setup == SETUP_CONTEXT_ONLY) {
3824 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3825 SLOT_STATE_DEFAULT) {
3826 xhci_dbg(xhci, "Slot already in default state\n");
3831 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3837 command->in_ctx = virt_dev->in_ctx;
3839 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3840 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3842 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3848 * If this is the first Set Address since device plug-in or
3849 * virt_device realloaction after a resume with an xHCI power loss,
3850 * then set up the slot context.
3852 if (!slot_ctx->dev_info)
3853 xhci_setup_addressable_virt_dev(xhci, udev);
3854 /* Otherwise, update the control endpoint ring enqueue pointer. */
3856 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3857 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3858 ctrl_ctx->drop_flags = 0;
3860 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3861 le32_to_cpu(slot_ctx->dev_info) >> 27);
3863 spin_lock_irqsave(&xhci->lock, flags);
3864 trace_xhci_setup_device(virt_dev);
3865 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3866 udev->slot_id, setup);
3868 spin_unlock_irqrestore(&xhci->lock, flags);
3869 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3870 "FIXME: allocate a command ring segment");
3873 xhci_ring_cmd_db(xhci);
3874 spin_unlock_irqrestore(&xhci->lock, flags);
3876 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3877 wait_for_completion(command->completion);
3879 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3880 * the SetAddress() "recovery interval" required by USB and aborting the
3881 * command on a timeout.
3883 switch (command->status) {
3884 case COMP_COMMAND_ABORTED:
3885 case COMP_COMMAND_RING_STOPPED:
3886 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3889 case COMP_CONTEXT_STATE_ERROR:
3890 case COMP_SLOT_NOT_ENABLED_ERROR:
3891 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3892 act, udev->slot_id);
3895 case COMP_USB_TRANSACTION_ERROR:
3896 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3898 mutex_unlock(&xhci->mutex);
3899 ret = xhci_disable_slot(xhci, udev->slot_id);
3901 xhci_alloc_dev(hcd, udev);
3902 kfree(command->completion);
3905 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3906 dev_warn(&udev->dev,
3907 "ERROR: Incompatible device for setup %s command\n", act);
3911 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3912 "Successful setup %s command", act);
3916 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3917 act, command->status);
3918 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3924 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3925 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3926 "Op regs DCBAA ptr = %#016llx", temp_64);
3927 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3928 "Slot ID %d dcbaa entry @%p = %#016llx",
3930 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3931 (unsigned long long)
3932 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3933 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3934 "Output Context DMA address = %#08llx",
3935 (unsigned long long)virt_dev->out_ctx->dma);
3936 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3937 le32_to_cpu(slot_ctx->dev_info) >> 27);
3939 * USB core uses address 1 for the roothubs, so we add one to the
3940 * address given back to us by the HC.
3942 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3943 le32_to_cpu(slot_ctx->dev_info) >> 27);
3944 /* Zero the input context control for later use */
3945 ctrl_ctx->add_flags = 0;
3946 ctrl_ctx->drop_flags = 0;
3948 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3949 "Internal device address = %d",
3950 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3952 mutex_unlock(&xhci->mutex);
3954 kfree(command->completion);
3960 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3962 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3965 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3967 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3971 * Transfer the port index into real index in the HW port status
3972 * registers. Caculate offset between the port's PORTSC register
3973 * and port status base. Divide the number of per port register
3974 * to get the real index. The raw port number bases 1.
3976 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3978 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3979 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3980 __le32 __iomem *addr;
3983 if (hcd->speed < HCD_USB3)
3984 addr = xhci->usb2_ports[port1 - 1];
3986 addr = xhci->usb3_ports[port1 - 1];
3988 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3993 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3994 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3996 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3997 struct usb_device *udev, u16 max_exit_latency)
3999 struct xhci_virt_device *virt_dev;
4000 struct xhci_command *command;
4001 struct xhci_input_control_ctx *ctrl_ctx;
4002 struct xhci_slot_ctx *slot_ctx;
4003 unsigned long flags;
4006 spin_lock_irqsave(&xhci->lock, flags);
4008 virt_dev = xhci->devs[udev->slot_id];
4011 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4012 * xHC was re-initialized. Exit latency will be set later after
4013 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4016 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4017 spin_unlock_irqrestore(&xhci->lock, flags);
4021 /* Attempt to issue an Evaluate Context command to change the MEL. */
4022 command = xhci->lpm_command;
4023 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4025 spin_unlock_irqrestore(&xhci->lock, flags);
4026 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4031 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4032 spin_unlock_irqrestore(&xhci->lock, flags);
4034 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4035 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4036 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4037 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4038 slot_ctx->dev_state = 0;
4040 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4041 "Set up evaluate context for LPM MEL change.");
4043 /* Issue and wait for the evaluate context command. */
4044 ret = xhci_configure_endpoint(xhci, udev, command,
4048 spin_lock_irqsave(&xhci->lock, flags);
4049 virt_dev->current_mel = max_exit_latency;
4050 spin_unlock_irqrestore(&xhci->lock, flags);
4057 /* BESL to HIRD Encoding array for USB2 LPM */
4058 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4059 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4061 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4062 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4063 struct usb_device *udev)
4065 int u2del, besl, besl_host;
4066 int besl_device = 0;
4069 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4070 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4072 if (field & USB_BESL_SUPPORT) {
4073 for (besl_host = 0; besl_host < 16; besl_host++) {
4074 if (xhci_besl_encoding[besl_host] >= u2del)
4077 /* Use baseline BESL value as default */
4078 if (field & USB_BESL_BASELINE_VALID)
4079 besl_device = USB_GET_BESL_BASELINE(field);
4080 else if (field & USB_BESL_DEEP_VALID)
4081 besl_device = USB_GET_BESL_DEEP(field);
4086 besl_host = (u2del - 51) / 75 + 1;
4089 besl = besl_host + besl_device;
4096 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4097 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4104 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4106 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4107 l1 = udev->l1_params.timeout / 256;
4109 /* device has preferred BESLD */
4110 if (field & USB_BESL_DEEP_VALID) {
4111 besld = USB_GET_BESL_DEEP(field);
4115 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4118 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4119 struct usb_device *udev, int enable)
4121 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4122 __le32 __iomem **port_array;
4123 __le32 __iomem *pm_addr, *hlpm_addr;
4124 u32 pm_val, hlpm_val, field;
4125 unsigned int port_num;
4126 unsigned long flags;
4127 int hird, exit_latency;
4130 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4134 if (!udev->parent || udev->parent->parent ||
4135 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4138 if (udev->usb2_hw_lpm_capable != 1)
4141 spin_lock_irqsave(&xhci->lock, flags);
4143 port_array = xhci->usb2_ports;
4144 port_num = udev->portnum - 1;
4145 pm_addr = port_array[port_num] + PORTPMSC;
4146 pm_val = readl(pm_addr);
4147 hlpm_addr = port_array[port_num] + PORTHLPMC;
4148 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4150 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4151 enable ? "enable" : "disable", port_num + 1);
4153 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4154 /* Host supports BESL timeout instead of HIRD */
4155 if (udev->usb2_hw_lpm_besl_capable) {
4156 /* if device doesn't have a preferred BESL value use a
4157 * default one which works with mixed HIRD and BESL
4158 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4160 if ((field & USB_BESL_SUPPORT) &&
4161 (field & USB_BESL_BASELINE_VALID))
4162 hird = USB_GET_BESL_BASELINE(field);
4164 hird = udev->l1_params.besl;
4166 exit_latency = xhci_besl_encoding[hird];
4167 spin_unlock_irqrestore(&xhci->lock, flags);
4169 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4170 * input context for link powermanagement evaluate
4171 * context commands. It is protected by hcd->bandwidth
4172 * mutex and is shared by all devices. We need to set
4173 * the max ext latency in USB 2 BESL LPM as well, so
4174 * use the same mutex and xhci_change_max_exit_latency()
4176 mutex_lock(hcd->bandwidth_mutex);
4177 ret = xhci_change_max_exit_latency(xhci, udev,
4179 mutex_unlock(hcd->bandwidth_mutex);
4183 spin_lock_irqsave(&xhci->lock, flags);
4185 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4186 writel(hlpm_val, hlpm_addr);
4190 hird = xhci_calculate_hird_besl(xhci, udev);
4193 pm_val &= ~PORT_HIRD_MASK;
4194 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4195 writel(pm_val, pm_addr);
4196 pm_val = readl(pm_addr);
4198 writel(pm_val, pm_addr);
4202 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4203 writel(pm_val, pm_addr);
4206 if (udev->usb2_hw_lpm_besl_capable) {
4207 spin_unlock_irqrestore(&xhci->lock, flags);
4208 mutex_lock(hcd->bandwidth_mutex);
4209 xhci_change_max_exit_latency(xhci, udev, 0);
4210 mutex_unlock(hcd->bandwidth_mutex);
4215 spin_unlock_irqrestore(&xhci->lock, flags);
4219 /* check if a usb2 port supports a given extened capability protocol
4220 * only USB2 ports extended protocol capability values are cached.
4221 * Return 1 if capability is supported
4223 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4224 unsigned capability)
4226 u32 port_offset, port_count;
4229 for (i = 0; i < xhci->num_ext_caps; i++) {
4230 if (xhci->ext_caps[i] & capability) {
4231 /* port offsets starts at 1 */
4232 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4233 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4234 if (port >= port_offset &&
4235 port < port_offset + port_count)
4242 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4244 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4245 int portnum = udev->portnum - 1;
4247 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4251 /* we only support lpm for non-hub device connected to root hub yet */
4252 if (!udev->parent || udev->parent->parent ||
4253 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4256 if (xhci->hw_lpm_support == 1 &&
4257 xhci_check_usb2_port_capability(
4258 xhci, portnum, XHCI_HLC)) {
4259 udev->usb2_hw_lpm_capable = 1;
4260 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4261 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4262 if (xhci_check_usb2_port_capability(xhci, portnum,
4264 udev->usb2_hw_lpm_besl_capable = 1;
4270 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4272 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4273 static unsigned long long xhci_service_interval_to_ns(
4274 struct usb_endpoint_descriptor *desc)
4276 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4279 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4280 enum usb3_link_state state)
4282 unsigned long long sel;
4283 unsigned long long pel;
4284 unsigned int max_sel_pel;
4289 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4290 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4291 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4292 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4296 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4297 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4298 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4302 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4304 return USB3_LPM_DISABLED;
4307 if (sel <= max_sel_pel && pel <= max_sel_pel)
4308 return USB3_LPM_DEVICE_INITIATED;
4310 if (sel > max_sel_pel)
4311 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4312 "due to long SEL %llu ms\n",
4315 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4316 "due to long PEL %llu ms\n",
4318 return USB3_LPM_DISABLED;
4321 /* The U1 timeout should be the maximum of the following values:
4322 * - For control endpoints, U1 system exit latency (SEL) * 3
4323 * - For bulk endpoints, U1 SEL * 5
4324 * - For interrupt endpoints:
4325 * - Notification EPs, U1 SEL * 3
4326 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4327 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4329 static unsigned long long xhci_calculate_intel_u1_timeout(
4330 struct usb_device *udev,
4331 struct usb_endpoint_descriptor *desc)
4333 unsigned long long timeout_ns;
4337 ep_type = usb_endpoint_type(desc);
4339 case USB_ENDPOINT_XFER_CONTROL:
4340 timeout_ns = udev->u1_params.sel * 3;
4342 case USB_ENDPOINT_XFER_BULK:
4343 timeout_ns = udev->u1_params.sel * 5;
4345 case USB_ENDPOINT_XFER_INT:
4346 intr_type = usb_endpoint_interrupt_type(desc);
4347 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4348 timeout_ns = udev->u1_params.sel * 3;
4351 /* Otherwise the calculation is the same as isoc eps */
4353 case USB_ENDPOINT_XFER_ISOC:
4354 timeout_ns = xhci_service_interval_to_ns(desc);
4355 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4356 if (timeout_ns < udev->u1_params.sel * 2)
4357 timeout_ns = udev->u1_params.sel * 2;
4366 /* Returns the hub-encoded U1 timeout value. */
4367 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4368 struct usb_device *udev,
4369 struct usb_endpoint_descriptor *desc)
4371 unsigned long long timeout_ns;
4373 if (xhci->quirks & XHCI_INTEL_HOST)
4374 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4376 timeout_ns = udev->u1_params.sel;
4378 /* The U1 timeout is encoded in 1us intervals.
4379 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4381 if (timeout_ns == USB3_LPM_DISABLED)
4384 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4386 /* If the necessary timeout value is bigger than what we can set in the
4387 * USB 3.0 hub, we have to disable hub-initiated U1.
4389 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4391 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4392 "due to long timeout %llu ms\n", timeout_ns);
4393 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4396 /* The U2 timeout should be the maximum of:
4397 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4398 * - largest bInterval of any active periodic endpoint (to avoid going
4399 * into lower power link states between intervals).
4400 * - the U2 Exit Latency of the device
4402 static unsigned long long xhci_calculate_intel_u2_timeout(
4403 struct usb_device *udev,
4404 struct usb_endpoint_descriptor *desc)
4406 unsigned long long timeout_ns;
4407 unsigned long long u2_del_ns;
4409 timeout_ns = 10 * 1000 * 1000;
4411 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4412 (xhci_service_interval_to_ns(desc) > timeout_ns))
4413 timeout_ns = xhci_service_interval_to_ns(desc);
4415 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4416 if (u2_del_ns > timeout_ns)
4417 timeout_ns = u2_del_ns;
4422 /* Returns the hub-encoded U2 timeout value. */
4423 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4424 struct usb_device *udev,
4425 struct usb_endpoint_descriptor *desc)
4427 unsigned long long timeout_ns;
4429 if (xhci->quirks & XHCI_INTEL_HOST)
4430 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4432 timeout_ns = udev->u2_params.sel;
4434 /* The U2 timeout is encoded in 256us intervals */
4435 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4436 /* If the necessary timeout value is bigger than what we can set in the
4437 * USB 3.0 hub, we have to disable hub-initiated U2.
4439 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4441 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4442 "due to long timeout %llu ms\n", timeout_ns);
4443 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4446 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4447 struct usb_device *udev,
4448 struct usb_endpoint_descriptor *desc,
4449 enum usb3_link_state state,
4452 if (state == USB3_LPM_U1)
4453 return xhci_calculate_u1_timeout(xhci, udev, desc);
4454 else if (state == USB3_LPM_U2)
4455 return xhci_calculate_u2_timeout(xhci, udev, desc);
4457 return USB3_LPM_DISABLED;
4460 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4461 struct usb_device *udev,
4462 struct usb_endpoint_descriptor *desc,
4463 enum usb3_link_state state,
4468 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4469 desc, state, timeout);
4471 /* If we found we can't enable hub-initiated LPM, or
4472 * the U1 or U2 exit latency was too high to allow
4473 * device-initiated LPM as well, just stop searching.
4475 if (alt_timeout == USB3_LPM_DISABLED ||
4476 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4477 *timeout = alt_timeout;
4480 if (alt_timeout > *timeout)
4481 *timeout = alt_timeout;
4485 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4486 struct usb_device *udev,
4487 struct usb_host_interface *alt,
4488 enum usb3_link_state state,
4493 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4494 if (xhci_update_timeout_for_endpoint(xhci, udev,
4495 &alt->endpoint[j].desc, state, timeout))
4502 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4503 enum usb3_link_state state)
4505 struct usb_device *parent;
4506 unsigned int num_hubs;
4508 if (state == USB3_LPM_U2)
4511 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4512 for (parent = udev->parent, num_hubs = 0; parent->parent;
4513 parent = parent->parent)
4519 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4520 " below second-tier hub.\n");
4521 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4522 "to decrease power consumption.\n");
4526 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4527 struct usb_device *udev,
4528 enum usb3_link_state state)
4530 if (xhci->quirks & XHCI_INTEL_HOST)
4531 return xhci_check_intel_tier_policy(udev, state);
4536 /* Returns the U1 or U2 timeout that should be enabled.
4537 * If the tier check or timeout setting functions return with a non-zero exit
4538 * code, that means the timeout value has been finalized and we shouldn't look
4539 * at any more endpoints.
4541 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4542 struct usb_device *udev, enum usb3_link_state state)
4544 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4545 struct usb_host_config *config;
4548 u16 timeout = USB3_LPM_DISABLED;
4550 if (state == USB3_LPM_U1)
4552 else if (state == USB3_LPM_U2)
4555 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4560 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4563 /* Gather some information about the currently installed configuration
4564 * and alternate interface settings.
4566 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4570 config = udev->actconfig;
4574 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4575 struct usb_driver *driver;
4576 struct usb_interface *intf = config->interface[i];
4581 /* Check if any currently bound drivers want hub-initiated LPM
4584 if (intf->dev.driver) {
4585 driver = to_usb_driver(intf->dev.driver);
4586 if (driver && driver->disable_hub_initiated_lpm) {
4587 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4588 "at request of driver %s\n",
4589 state_name, driver->name);
4590 return xhci_get_timeout_no_hub_lpm(udev, state);
4594 /* Not sure how this could happen... */
4595 if (!intf->cur_altsetting)
4598 if (xhci_update_timeout_for_interface(xhci, udev,
4599 intf->cur_altsetting,
4606 static int calculate_max_exit_latency(struct usb_device *udev,
4607 enum usb3_link_state state_changed,
4608 u16 hub_encoded_timeout)
4610 unsigned long long u1_mel_us = 0;
4611 unsigned long long u2_mel_us = 0;
4612 unsigned long long mel_us = 0;
4618 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4619 hub_encoded_timeout == USB3_LPM_DISABLED);
4620 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4621 hub_encoded_timeout == USB3_LPM_DISABLED);
4623 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4624 hub_encoded_timeout != USB3_LPM_DISABLED);
4625 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4626 hub_encoded_timeout != USB3_LPM_DISABLED);
4628 /* If U1 was already enabled and we're not disabling it,
4629 * or we're going to enable U1, account for the U1 max exit latency.
4631 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4633 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4634 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4636 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4638 if (u1_mel_us > u2_mel_us)
4642 /* xHCI host controller max exit latency field is only 16 bits wide. */
4643 if (mel_us > MAX_EXIT) {
4644 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4645 "is too big.\n", mel_us);
4651 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4652 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4653 struct usb_device *udev, enum usb3_link_state state)
4655 struct xhci_hcd *xhci;
4656 u16 hub_encoded_timeout;
4660 xhci = hcd_to_xhci(hcd);
4661 /* The LPM timeout values are pretty host-controller specific, so don't
4662 * enable hub-initiated timeouts unless the vendor has provided
4663 * information about their timeout algorithm.
4665 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4666 !xhci->devs[udev->slot_id])
4667 return USB3_LPM_DISABLED;
4669 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4670 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4672 /* Max Exit Latency is too big, disable LPM. */
4673 hub_encoded_timeout = USB3_LPM_DISABLED;
4677 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4680 return hub_encoded_timeout;
4683 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4684 struct usb_device *udev, enum usb3_link_state state)
4686 struct xhci_hcd *xhci;
4689 xhci = hcd_to_xhci(hcd);
4690 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4691 !xhci->devs[udev->slot_id])
4694 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4695 return xhci_change_max_exit_latency(xhci, udev, mel);
4697 #else /* CONFIG_PM */
4699 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4700 struct usb_device *udev, int enable)
4705 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4710 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4711 struct usb_device *udev, enum usb3_link_state state)
4713 return USB3_LPM_DISABLED;
4716 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4717 struct usb_device *udev, enum usb3_link_state state)
4721 #endif /* CONFIG_PM */
4723 /*-------------------------------------------------------------------------*/
4725 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4726 * internal data structures for the device.
4728 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4729 struct usb_tt *tt, gfp_t mem_flags)
4731 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4732 struct xhci_virt_device *vdev;
4733 struct xhci_command *config_cmd;
4734 struct xhci_input_control_ctx *ctrl_ctx;
4735 struct xhci_slot_ctx *slot_ctx;
4736 unsigned long flags;
4737 unsigned think_time;
4740 /* Ignore root hubs */
4744 vdev = xhci->devs[hdev->slot_id];
4746 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4750 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4754 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4756 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4758 xhci_free_command(xhci, config_cmd);
4762 spin_lock_irqsave(&xhci->lock, flags);
4763 if (hdev->speed == USB_SPEED_HIGH &&
4764 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4765 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4766 xhci_free_command(xhci, config_cmd);
4767 spin_unlock_irqrestore(&xhci->lock, flags);
4771 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4772 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4773 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4774 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4776 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4777 * but it may be already set to 1 when setup an xHCI virtual
4778 * device, so clear it anyway.
4781 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4782 else if (hdev->speed == USB_SPEED_FULL)
4783 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4785 if (xhci->hci_version > 0x95) {
4786 xhci_dbg(xhci, "xHCI version %x needs hub "
4787 "TT think time and number of ports\n",
4788 (unsigned int) xhci->hci_version);
4789 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4790 /* Set TT think time - convert from ns to FS bit times.
4791 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4792 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4794 * xHCI 1.0: this field shall be 0 if the device is not a
4797 think_time = tt->think_time;
4798 if (think_time != 0)
4799 think_time = (think_time / 666) - 1;
4800 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4801 slot_ctx->tt_info |=
4802 cpu_to_le32(TT_THINK_TIME(think_time));
4804 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4805 "TT think time or number of ports\n",
4806 (unsigned int) xhci->hci_version);
4808 slot_ctx->dev_state = 0;
4809 spin_unlock_irqrestore(&xhci->lock, flags);
4811 xhci_dbg(xhci, "Set up %s for hub device.\n",
4812 (xhci->hci_version > 0x95) ?
4813 "configure endpoint" : "evaluate context");
4815 /* Issue and wait for the configure endpoint or
4816 * evaluate context command.
4818 if (xhci->hci_version > 0x95)
4819 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4822 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4825 xhci_free_command(xhci, config_cmd);
4829 static int xhci_get_frame(struct usb_hcd *hcd)
4831 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4832 /* EHCI mods by the periodic size. Why? */
4833 return readl(&xhci->run_regs->microframe_index) >> 3;
4836 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4838 struct xhci_hcd *xhci;
4840 * TODO: Check with DWC3 clients for sysdev according to
4843 struct device *dev = hcd->self.sysdev;
4844 unsigned int minor_rev;
4847 /* Accept arbitrarily long scatter-gather lists */
4848 hcd->self.sg_tablesize = ~0;
4850 /* support to build packet from discontinuous buffers */
4851 hcd->self.no_sg_constraint = 1;
4853 /* XHCI controllers don't stop the ep queue on short packets :| */
4854 hcd->self.no_stop_on_short = 1;
4856 xhci = hcd_to_xhci(hcd);
4858 if (usb_hcd_is_primary_hcd(hcd)) {
4859 xhci->main_hcd = hcd;
4860 /* Mark the first roothub as being USB 2.0.
4861 * The xHCI driver will register the USB 3.0 roothub.
4863 hcd->speed = HCD_USB2;
4864 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4866 * USB 2.0 roothub under xHCI has an integrated TT,
4867 * (rate matching hub) as opposed to having an OHCI/UHCI
4868 * companion controller.
4873 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4874 * minor revision instead of sbrn
4876 minor_rev = xhci->usb3_rhub.min_rev;
4878 hcd->speed = HCD_USB31;
4879 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4881 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4883 minor_rev ? "Enhanced" : "");
4885 /* xHCI private pointer was set in xhci_pci_probe for the second
4886 * registered roothub.
4891 mutex_init(&xhci->mutex);
4892 xhci->cap_regs = hcd->regs;
4893 xhci->op_regs = hcd->regs +
4894 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4895 xhci->run_regs = hcd->regs +
4896 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4897 /* Cache read-only capability registers */
4898 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4899 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4900 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4901 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4902 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4903 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4904 if (xhci->hci_version > 0x100)
4905 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4907 xhci->quirks |= quirks;
4909 get_quirks(dev, xhci);
4911 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4912 * success event after a short transfer. This quirk will ignore such
4915 if (xhci->hci_version > 0x96)
4916 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4918 /* Make sure the HC is halted. */
4919 retval = xhci_halt(xhci);
4923 xhci_dbg(xhci, "Resetting HCD\n");
4924 /* Reset the internal HC memory state and registers. */
4925 retval = xhci_reset(xhci);
4928 xhci_dbg(xhci, "Reset complete\n");
4931 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4932 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4933 * address memory pointers actually. So, this driver clears the AC64
4934 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4935 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4937 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4938 xhci->hcc_params &= ~BIT(0);
4940 /* Set dma_mask and coherent_dma_mask to 64-bits,
4941 * if xHC supports 64-bit addressing */
4942 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4943 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4944 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4945 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4948 * This is to avoid error in cases where a 32-bit USB
4949 * controller is used on a 64-bit capable system.
4951 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4954 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4955 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4958 xhci_dbg(xhci, "Calling HCD init\n");
4959 /* Initialize HCD and host controller data structures. */
4960 retval = xhci_init(hcd);
4963 xhci_dbg(xhci, "Called HCD init\n");
4965 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4966 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4970 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4972 static const struct hc_driver xhci_hc_driver = {
4973 .description = "xhci-hcd",
4974 .product_desc = "xHCI Host Controller",
4975 .hcd_priv_size = sizeof(struct xhci_hcd),
4978 * generic hardware linkage
4981 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4984 * basic lifecycle operations
4986 .reset = NULL, /* set in xhci_init_driver() */
4989 .shutdown = xhci_shutdown,
4992 * managing i/o requests and associated device resources
4994 .urb_enqueue = xhci_urb_enqueue,
4995 .urb_dequeue = xhci_urb_dequeue,
4996 .alloc_dev = xhci_alloc_dev,
4997 .free_dev = xhci_free_dev,
4998 .alloc_streams = xhci_alloc_streams,
4999 .free_streams = xhci_free_streams,
5000 .add_endpoint = xhci_add_endpoint,
5001 .drop_endpoint = xhci_drop_endpoint,
5002 .endpoint_reset = xhci_endpoint_reset,
5003 .check_bandwidth = xhci_check_bandwidth,
5004 .reset_bandwidth = xhci_reset_bandwidth,
5005 .address_device = xhci_address_device,
5006 .enable_device = xhci_enable_device,
5007 .update_hub_device = xhci_update_hub_device,
5008 .reset_device = xhci_discover_or_reset_device,
5011 * scheduling support
5013 .get_frame_number = xhci_get_frame,
5018 .hub_control = xhci_hub_control,
5019 .hub_status_data = xhci_hub_status_data,
5020 .bus_suspend = xhci_bus_suspend,
5021 .bus_resume = xhci_bus_resume,
5024 * call back when device connected and addressed
5026 .update_device = xhci_update_device,
5027 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5028 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5029 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5030 .find_raw_port_number = xhci_find_raw_port_number,
5033 void xhci_init_driver(struct hc_driver *drv,
5034 const struct xhci_driver_overrides *over)
5038 /* Copy the generic table to drv then apply the overrides */
5039 *drv = xhci_hc_driver;
5042 drv->hcd_priv_size += over->extra_priv_size;
5044 drv->reset = over->reset;
5046 drv->start = over->start;
5049 EXPORT_SYMBOL_GPL(xhci_init_driver);
5051 MODULE_DESCRIPTION(DRIVER_DESC);
5052 MODULE_AUTHOR(DRIVER_AUTHOR);
5053 MODULE_LICENSE("GPL");
5055 static int __init xhci_hcd_init(void)
5058 * Check the compiler generated sizes of structures that must be laid
5059 * out in specific ways for hardware access.
5061 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5062 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5063 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5064 /* xhci_device_control has eight fields, and also
5065 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5067 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5068 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5069 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5070 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5071 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5072 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5073 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5078 xhci_debugfs_create_root();
5084 * If an init function is provided, an exit function must also be provided
5085 * to allow module unload.
5087 static void __exit xhci_hcd_fini(void)
5089 xhci_debugfs_remove_root();
5092 module_init(xhci_hcd_init);
5093 module_exit(xhci_hcd_fini);