2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <asm/unaligned.h>
95 #include <linux/capability.h>
96 #include <linux/errno.h>
97 #include <linux/errqueue.h>
98 #include <linux/types.h>
99 #include <linux/socket.h>
100 #include <linux/in.h>
101 #include <linux/kernel.h>
102 #include <linux/module.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <linux/sched.h>
106 #include <linux/sched/mm.h>
107 #include <linux/timer.h>
108 #include <linux/string.h>
109 #include <linux/sockios.h>
110 #include <linux/net.h>
111 #include <linux/mm.h>
112 #include <linux/slab.h>
113 #include <linux/interrupt.h>
114 #include <linux/poll.h>
115 #include <linux/tcp.h>
116 #include <linux/init.h>
117 #include <linux/highmem.h>
118 #include <linux/user_namespace.h>
119 #include <linux/static_key.h>
120 #include <linux/memcontrol.h>
121 #include <linux/prefetch.h>
123 #include <linux/uaccess.h>
125 #include <linux/netdevice.h>
126 #include <net/protocol.h>
127 #include <linux/skbuff.h>
128 #include <net/net_namespace.h>
129 #include <net/request_sock.h>
130 #include <net/sock.h>
131 #include <linux/net_tstamp.h>
132 #include <net/xfrm.h>
133 #include <linux/ipsec.h>
134 #include <net/cls_cgroup.h>
135 #include <net/netprio_cgroup.h>
136 #include <linux/sock_diag.h>
138 #include <linux/filter.h>
139 #include <net/sock_reuseport.h>
141 #include <trace/events/sock.h>
144 #include <net/busy_poll.h>
146 static DEFINE_MUTEX(proto_list_mutex);
147 static LIST_HEAD(proto_list);
149 static void sock_inuse_add(struct net *net, int val);
152 * sk_ns_capable - General socket capability test
153 * @sk: Socket to use a capability on or through
154 * @user_ns: The user namespace of the capability to use
155 * @cap: The capability to use
157 * Test to see if the opener of the socket had when the socket was
158 * created and the current process has the capability @cap in the user
159 * namespace @user_ns.
161 bool sk_ns_capable(const struct sock *sk,
162 struct user_namespace *user_ns, int cap)
164 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
165 ns_capable(user_ns, cap);
167 EXPORT_SYMBOL(sk_ns_capable);
170 * sk_capable - Socket global capability test
171 * @sk: Socket to use a capability on or through
172 * @cap: The global capability to use
174 * Test to see if the opener of the socket had when the socket was
175 * created and the current process has the capability @cap in all user
178 bool sk_capable(const struct sock *sk, int cap)
180 return sk_ns_capable(sk, &init_user_ns, cap);
182 EXPORT_SYMBOL(sk_capable);
185 * sk_net_capable - Network namespace socket capability test
186 * @sk: Socket to use a capability on or through
187 * @cap: The capability to use
189 * Test to see if the opener of the socket had when the socket was created
190 * and the current process has the capability @cap over the network namespace
191 * the socket is a member of.
193 bool sk_net_capable(const struct sock *sk, int cap)
195 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
197 EXPORT_SYMBOL(sk_net_capable);
200 * Each address family might have different locking rules, so we have
201 * one slock key per address family and separate keys for internal and
204 static struct lock_class_key af_family_keys[AF_MAX];
205 static struct lock_class_key af_family_kern_keys[AF_MAX];
206 static struct lock_class_key af_family_slock_keys[AF_MAX];
207 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
210 * Make lock validator output more readable. (we pre-construct these
211 * strings build-time, so that runtime initialization of socket
215 #define _sock_locks(x) \
216 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
217 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
218 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
219 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
220 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
221 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
222 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
223 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
224 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
225 x "27" , x "28" , x "AF_CAN" , \
226 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
227 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
228 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
229 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
230 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
233 static const char *const af_family_key_strings[AF_MAX+1] = {
234 _sock_locks("sk_lock-")
236 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
237 _sock_locks("slock-")
239 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
240 _sock_locks("clock-")
243 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
244 _sock_locks("k-sk_lock-")
246 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
247 _sock_locks("k-slock-")
249 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
250 _sock_locks("k-clock-")
252 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
253 _sock_locks("rlock-")
255 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
256 _sock_locks("wlock-")
258 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
259 _sock_locks("elock-")
263 * sk_callback_lock and sk queues locking rules are per-address-family,
264 * so split the lock classes by using a per-AF key:
266 static struct lock_class_key af_callback_keys[AF_MAX];
267 static struct lock_class_key af_rlock_keys[AF_MAX];
268 static struct lock_class_key af_wlock_keys[AF_MAX];
269 static struct lock_class_key af_elock_keys[AF_MAX];
270 static struct lock_class_key af_kern_callback_keys[AF_MAX];
272 /* Run time adjustable parameters. */
273 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
274 EXPORT_SYMBOL(sysctl_wmem_max);
275 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
276 EXPORT_SYMBOL(sysctl_rmem_max);
277 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
278 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
280 /* Maximal space eaten by iovec or ancillary data plus some space */
281 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
282 EXPORT_SYMBOL(sysctl_optmem_max);
284 int sysctl_tstamp_allow_data __read_mostly = 1;
286 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
287 EXPORT_SYMBOL_GPL(memalloc_socks_key);
290 * sk_set_memalloc - sets %SOCK_MEMALLOC
291 * @sk: socket to set it on
293 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
294 * It's the responsibility of the admin to adjust min_free_kbytes
295 * to meet the requirements
297 void sk_set_memalloc(struct sock *sk)
299 sock_set_flag(sk, SOCK_MEMALLOC);
300 sk->sk_allocation |= __GFP_MEMALLOC;
301 static_branch_inc(&memalloc_socks_key);
303 EXPORT_SYMBOL_GPL(sk_set_memalloc);
305 void sk_clear_memalloc(struct sock *sk)
307 sock_reset_flag(sk, SOCK_MEMALLOC);
308 sk->sk_allocation &= ~__GFP_MEMALLOC;
309 static_branch_dec(&memalloc_socks_key);
312 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
313 * progress of swapping. SOCK_MEMALLOC may be cleared while
314 * it has rmem allocations due to the last swapfile being deactivated
315 * but there is a risk that the socket is unusable due to exceeding
316 * the rmem limits. Reclaim the reserves and obey rmem limits again.
320 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
322 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
325 unsigned int noreclaim_flag;
327 /* these should have been dropped before queueing */
328 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
330 noreclaim_flag = memalloc_noreclaim_save();
331 ret = sk->sk_backlog_rcv(sk, skb);
332 memalloc_noreclaim_restore(noreclaim_flag);
336 EXPORT_SYMBOL(__sk_backlog_rcv);
338 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
340 struct __kernel_sock_timeval tv;
343 if (timeo == MAX_SCHEDULE_TIMEOUT) {
347 tv.tv_sec = timeo / HZ;
348 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
351 if (in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
352 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
353 *(struct old_timeval32 *)optval = tv32;
358 struct __kernel_old_timeval old_tv;
359 old_tv.tv_sec = tv.tv_sec;
360 old_tv.tv_usec = tv.tv_usec;
361 *(struct __kernel_old_timeval *)optval = old_tv;
362 size = sizeof(old_tv);
364 *(struct __kernel_sock_timeval *)optval = tv;
371 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
373 struct __kernel_sock_timeval tv;
375 if (in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
376 struct old_timeval32 tv32;
378 if (optlen < sizeof(tv32))
381 if (copy_from_user(&tv32, optval, sizeof(tv32)))
383 tv.tv_sec = tv32.tv_sec;
384 tv.tv_usec = tv32.tv_usec;
385 } else if (old_timeval) {
386 struct __kernel_old_timeval old_tv;
388 if (optlen < sizeof(old_tv))
390 if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
392 tv.tv_sec = old_tv.tv_sec;
393 tv.tv_usec = old_tv.tv_usec;
395 if (optlen < sizeof(tv))
397 if (copy_from_user(&tv, optval, sizeof(tv)))
400 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
404 static int warned __read_mostly;
407 if (warned < 10 && net_ratelimit()) {
409 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
410 __func__, current->comm, task_pid_nr(current));
414 *timeo_p = MAX_SCHEDULE_TIMEOUT;
415 if (tv.tv_sec == 0 && tv.tv_usec == 0)
417 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
418 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
422 static void sock_warn_obsolete_bsdism(const char *name)
425 static char warncomm[TASK_COMM_LEN];
426 if (strcmp(warncomm, current->comm) && warned < 5) {
427 strcpy(warncomm, current->comm);
428 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
434 static bool sock_needs_netstamp(const struct sock *sk)
436 switch (sk->sk_family) {
445 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
447 if (sk->sk_flags & flags) {
448 sk->sk_flags &= ~flags;
449 if (sock_needs_netstamp(sk) &&
450 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
451 net_disable_timestamp();
456 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
459 struct sk_buff_head *list = &sk->sk_receive_queue;
461 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
462 atomic_inc(&sk->sk_drops);
463 trace_sock_rcvqueue_full(sk, skb);
467 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
468 atomic_inc(&sk->sk_drops);
473 skb_set_owner_r(skb, sk);
475 /* we escape from rcu protected region, make sure we dont leak
480 spin_lock_irqsave(&list->lock, flags);
481 sock_skb_set_dropcount(sk, skb);
482 __skb_queue_tail(list, skb);
483 spin_unlock_irqrestore(&list->lock, flags);
485 if (!sock_flag(sk, SOCK_DEAD))
486 sk->sk_data_ready(sk);
489 EXPORT_SYMBOL(__sock_queue_rcv_skb);
491 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
495 err = sk_filter(sk, skb);
499 return __sock_queue_rcv_skb(sk, skb);
501 EXPORT_SYMBOL(sock_queue_rcv_skb);
503 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
504 const int nested, unsigned int trim_cap, bool refcounted)
506 int rc = NET_RX_SUCCESS;
508 if (sk_filter_trim_cap(sk, skb, trim_cap))
509 goto discard_and_relse;
513 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
514 atomic_inc(&sk->sk_drops);
515 goto discard_and_relse;
518 bh_lock_sock_nested(sk);
521 if (!sock_owned_by_user(sk)) {
523 * trylock + unlock semantics:
525 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
527 rc = sk_backlog_rcv(sk, skb);
529 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
530 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
532 atomic_inc(&sk->sk_drops);
533 goto discard_and_relse;
545 EXPORT_SYMBOL(__sk_receive_skb);
547 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
549 struct dst_entry *dst = __sk_dst_get(sk);
551 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
552 sk_tx_queue_clear(sk);
553 sk->sk_dst_pending_confirm = 0;
554 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
561 EXPORT_SYMBOL(__sk_dst_check);
563 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
565 struct dst_entry *dst = sk_dst_get(sk);
567 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
575 EXPORT_SYMBOL(sk_dst_check);
577 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
579 int ret = -ENOPROTOOPT;
580 #ifdef CONFIG_NETDEVICES
581 struct net *net = sock_net(sk);
585 if (!ns_capable(net->user_ns, CAP_NET_RAW))
592 sk->sk_bound_dev_if = ifindex;
593 if (sk->sk_prot->rehash)
594 sk->sk_prot->rehash(sk);
605 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
608 int ret = -ENOPROTOOPT;
609 #ifdef CONFIG_NETDEVICES
610 struct net *net = sock_net(sk);
611 char devname[IFNAMSIZ];
618 /* Bind this socket to a particular device like "eth0",
619 * as specified in the passed interface name. If the
620 * name is "" or the option length is zero the socket
623 if (optlen > IFNAMSIZ - 1)
624 optlen = IFNAMSIZ - 1;
625 memset(devname, 0, sizeof(devname));
628 if (copy_from_user(devname, optval, optlen))
632 if (devname[0] != '\0') {
633 struct net_device *dev;
636 dev = dev_get_by_name_rcu(net, devname);
638 index = dev->ifindex;
646 ret = sock_setbindtodevice_locked(sk, index);
655 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
656 int __user *optlen, int len)
658 int ret = -ENOPROTOOPT;
659 #ifdef CONFIG_NETDEVICES
660 struct net *net = sock_net(sk);
661 char devname[IFNAMSIZ];
663 if (sk->sk_bound_dev_if == 0) {
672 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
676 len = strlen(devname) + 1;
679 if (copy_to_user(optval, devname, len))
684 if (put_user(len, optlen))
695 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
698 sock_set_flag(sk, bit);
700 sock_reset_flag(sk, bit);
703 bool sk_mc_loop(struct sock *sk)
705 if (dev_recursion_level())
709 switch (sk->sk_family) {
711 return inet_sk(sk)->mc_loop;
712 #if IS_ENABLED(CONFIG_IPV6)
714 return inet6_sk(sk)->mc_loop;
720 EXPORT_SYMBOL(sk_mc_loop);
723 * This is meant for all protocols to use and covers goings on
724 * at the socket level. Everything here is generic.
727 int sock_setsockopt(struct socket *sock, int level, int optname,
728 char __user *optval, unsigned int optlen)
730 struct sock_txtime sk_txtime;
731 struct sock *sk = sock->sk;
738 * Options without arguments
741 if (optname == SO_BINDTODEVICE)
742 return sock_setbindtodevice(sk, optval, optlen);
744 if (optlen < sizeof(int))
747 if (get_user(val, (int __user *)optval))
750 valbool = val ? 1 : 0;
756 if (val && !capable(CAP_NET_ADMIN))
759 sock_valbool_flag(sk, SOCK_DBG, valbool);
762 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
765 sk->sk_reuseport = valbool;
774 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
778 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
781 /* Don't error on this BSD doesn't and if you think
782 * about it this is right. Otherwise apps have to
783 * play 'guess the biggest size' games. RCVBUF/SNDBUF
784 * are treated in BSD as hints
786 val = min_t(u32, val, sysctl_wmem_max);
788 /* Ensure val * 2 fits into an int, to prevent max_t()
789 * from treating it as a negative value.
791 val = min_t(int, val, INT_MAX / 2);
792 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
793 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
794 /* Wake up sending tasks if we upped the value. */
795 sk->sk_write_space(sk);
799 if (!capable(CAP_NET_ADMIN)) {
804 /* No negative values (to prevent underflow, as val will be
812 /* Don't error on this BSD doesn't and if you think
813 * about it this is right. Otherwise apps have to
814 * play 'guess the biggest size' games. RCVBUF/SNDBUF
815 * are treated in BSD as hints
817 val = min_t(u32, val, sysctl_rmem_max);
819 /* Ensure val * 2 fits into an int, to prevent max_t()
820 * from treating it as a negative value.
822 val = min_t(int, val, INT_MAX / 2);
823 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
825 * We double it on the way in to account for
826 * "struct sk_buff" etc. overhead. Applications
827 * assume that the SO_RCVBUF setting they make will
828 * allow that much actual data to be received on that
831 * Applications are unaware that "struct sk_buff" and
832 * other overheads allocate from the receive buffer
833 * during socket buffer allocation.
835 * And after considering the possible alternatives,
836 * returning the value we actually used in getsockopt
837 * is the most desirable behavior.
839 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
843 if (!capable(CAP_NET_ADMIN)) {
848 /* No negative values (to prevent underflow, as val will be
856 if (sk->sk_prot->keepalive)
857 sk->sk_prot->keepalive(sk, valbool);
858 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
862 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
866 sk->sk_no_check_tx = valbool;
870 if ((val >= 0 && val <= 6) ||
871 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
872 sk->sk_priority = val;
878 if (optlen < sizeof(ling)) {
879 ret = -EINVAL; /* 1003.1g */
882 if (copy_from_user(&ling, optval, sizeof(ling))) {
887 sock_reset_flag(sk, SOCK_LINGER);
889 #if (BITS_PER_LONG == 32)
890 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
891 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
894 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
895 sock_set_flag(sk, SOCK_LINGER);
900 sock_warn_obsolete_bsdism("setsockopt");
905 set_bit(SOCK_PASSCRED, &sock->flags);
907 clear_bit(SOCK_PASSCRED, &sock->flags);
910 case SO_TIMESTAMP_OLD:
911 case SO_TIMESTAMP_NEW:
912 case SO_TIMESTAMPNS_OLD:
913 case SO_TIMESTAMPNS_NEW:
915 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
916 sock_set_flag(sk, SOCK_TSTAMP_NEW);
918 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
920 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
921 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
923 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
924 sock_set_flag(sk, SOCK_RCVTSTAMP);
925 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
927 sock_reset_flag(sk, SOCK_RCVTSTAMP);
928 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
929 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
933 case SO_TIMESTAMPING_NEW:
934 sock_set_flag(sk, SOCK_TSTAMP_NEW);
936 case SO_TIMESTAMPING_OLD:
937 if (val & ~SOF_TIMESTAMPING_MASK) {
942 if (val & SOF_TIMESTAMPING_OPT_ID &&
943 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
944 if (sk->sk_protocol == IPPROTO_TCP &&
945 sk->sk_type == SOCK_STREAM) {
946 if ((1 << sk->sk_state) &
947 (TCPF_CLOSE | TCPF_LISTEN)) {
951 sk->sk_tskey = tcp_sk(sk)->snd_una;
957 if (val & SOF_TIMESTAMPING_OPT_STATS &&
958 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
963 sk->sk_tsflags = val;
964 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
965 sock_enable_timestamp(sk,
966 SOCK_TIMESTAMPING_RX_SOFTWARE);
968 if (optname == SO_TIMESTAMPING_NEW)
969 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
971 sock_disable_timestamp(sk,
972 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
979 if (sock->ops->set_rcvlowat)
980 ret = sock->ops->set_rcvlowat(sk, val);
982 sk->sk_rcvlowat = val ? : 1;
985 case SO_RCVTIMEO_OLD:
986 case SO_RCVTIMEO_NEW:
987 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
990 case SO_SNDTIMEO_OLD:
991 case SO_SNDTIMEO_NEW:
992 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
995 case SO_ATTACH_FILTER:
997 if (optlen == sizeof(struct sock_fprog)) {
998 struct sock_fprog fprog;
1001 if (copy_from_user(&fprog, optval, sizeof(fprog)))
1004 ret = sk_attach_filter(&fprog, sk);
1010 if (optlen == sizeof(u32)) {
1014 if (copy_from_user(&ufd, optval, sizeof(ufd)))
1017 ret = sk_attach_bpf(ufd, sk);
1021 case SO_ATTACH_REUSEPORT_CBPF:
1023 if (optlen == sizeof(struct sock_fprog)) {
1024 struct sock_fprog fprog;
1027 if (copy_from_user(&fprog, optval, sizeof(fprog)))
1030 ret = sk_reuseport_attach_filter(&fprog, sk);
1034 case SO_ATTACH_REUSEPORT_EBPF:
1036 if (optlen == sizeof(u32)) {
1040 if (copy_from_user(&ufd, optval, sizeof(ufd)))
1043 ret = sk_reuseport_attach_bpf(ufd, sk);
1047 case SO_DETACH_FILTER:
1048 ret = sk_detach_filter(sk);
1051 case SO_LOCK_FILTER:
1052 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1055 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1060 set_bit(SOCK_PASSSEC, &sock->flags);
1062 clear_bit(SOCK_PASSSEC, &sock->flags);
1065 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1067 } else if (val != sk->sk_mark) {
1074 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1077 case SO_WIFI_STATUS:
1078 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1082 if (sock->ops->set_peek_off)
1083 ret = sock->ops->set_peek_off(sk, val);
1089 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1092 case SO_SELECT_ERR_QUEUE:
1093 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1096 #ifdef CONFIG_NET_RX_BUSY_POLL
1098 /* allow unprivileged users to decrease the value */
1099 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1105 sk->sk_ll_usec = val;
1110 case SO_MAX_PACING_RATE:
1112 unsigned long ulval = (val == ~0U) ? ~0UL : val;
1114 if (sizeof(ulval) != sizeof(val) &&
1115 optlen >= sizeof(ulval) &&
1116 get_user(ulval, (unsigned long __user *)optval)) {
1121 cmpxchg(&sk->sk_pacing_status,
1124 sk->sk_max_pacing_rate = ulval;
1125 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1128 case SO_INCOMING_CPU:
1129 sk->sk_incoming_cpu = val;
1134 dst_negative_advice(sk);
1138 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1139 if (!((sk->sk_type == SOCK_STREAM &&
1140 sk->sk_protocol == IPPROTO_TCP) ||
1141 (sk->sk_type == SOCK_DGRAM &&
1142 sk->sk_protocol == IPPROTO_UDP)))
1144 } else if (sk->sk_family != PF_RDS) {
1148 if (val < 0 || val > 1)
1151 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1156 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1158 } else if (optlen != sizeof(struct sock_txtime)) {
1160 } else if (copy_from_user(&sk_txtime, optval,
1161 sizeof(struct sock_txtime))) {
1163 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1166 sock_valbool_flag(sk, SOCK_TXTIME, true);
1167 sk->sk_clockid = sk_txtime.clockid;
1168 sk->sk_txtime_deadline_mode =
1169 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1170 sk->sk_txtime_report_errors =
1171 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1175 case SO_BINDTOIFINDEX:
1176 ret = sock_setbindtodevice_locked(sk, val);
1186 EXPORT_SYMBOL(sock_setsockopt);
1189 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1190 struct ucred *ucred)
1192 ucred->pid = pid_vnr(pid);
1193 ucred->uid = ucred->gid = -1;
1195 struct user_namespace *current_ns = current_user_ns();
1197 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1198 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1202 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1204 struct user_namespace *user_ns = current_user_ns();
1207 for (i = 0; i < src->ngroups; i++)
1208 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1214 int sock_getsockopt(struct socket *sock, int level, int optname,
1215 char __user *optval, int __user *optlen)
1217 struct sock *sk = sock->sk;
1222 unsigned long ulval;
1224 struct old_timeval32 tm32;
1225 struct __kernel_old_timeval tm;
1226 struct __kernel_sock_timeval stm;
1227 struct sock_txtime txtime;
1230 int lv = sizeof(int);
1233 if (get_user(len, optlen))
1238 memset(&v, 0, sizeof(v));
1242 v.val = sock_flag(sk, SOCK_DBG);
1246 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1250 v.val = sock_flag(sk, SOCK_BROADCAST);
1254 v.val = sk->sk_sndbuf;
1258 v.val = sk->sk_rcvbuf;
1262 v.val = sk->sk_reuse;
1266 v.val = sk->sk_reuseport;
1270 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1274 v.val = sk->sk_type;
1278 v.val = sk->sk_protocol;
1282 v.val = sk->sk_family;
1286 v.val = -sock_error(sk);
1288 v.val = xchg(&sk->sk_err_soft, 0);
1292 v.val = sock_flag(sk, SOCK_URGINLINE);
1296 v.val = sk->sk_no_check_tx;
1300 v.val = sk->sk_priority;
1304 lv = sizeof(v.ling);
1305 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1306 v.ling.l_linger = sk->sk_lingertime / HZ;
1310 sock_warn_obsolete_bsdism("getsockopt");
1313 case SO_TIMESTAMP_OLD:
1314 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1315 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1316 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1319 case SO_TIMESTAMPNS_OLD:
1320 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1323 case SO_TIMESTAMP_NEW:
1324 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1327 case SO_TIMESTAMPNS_NEW:
1328 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1331 case SO_TIMESTAMPING_OLD:
1332 v.val = sk->sk_tsflags;
1335 case SO_RCVTIMEO_OLD:
1336 case SO_RCVTIMEO_NEW:
1337 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1340 case SO_SNDTIMEO_OLD:
1341 case SO_SNDTIMEO_NEW:
1342 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1346 v.val = sk->sk_rcvlowat;
1354 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1359 struct ucred peercred;
1360 if (len > sizeof(peercred))
1361 len = sizeof(peercred);
1362 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1363 if (copy_to_user(optval, &peercred, len))
1372 if (!sk->sk_peer_cred)
1375 n = sk->sk_peer_cred->group_info->ngroups;
1376 if (len < n * sizeof(gid_t)) {
1377 len = n * sizeof(gid_t);
1378 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1380 len = n * sizeof(gid_t);
1382 ret = groups_to_user((gid_t __user *)optval,
1383 sk->sk_peer_cred->group_info);
1393 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1398 if (copy_to_user(optval, address, len))
1403 /* Dubious BSD thing... Probably nobody even uses it, but
1404 * the UNIX standard wants it for whatever reason... -DaveM
1407 v.val = sk->sk_state == TCP_LISTEN;
1411 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1415 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1418 v.val = sk->sk_mark;
1422 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1425 case SO_WIFI_STATUS:
1426 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1430 if (!sock->ops->set_peek_off)
1433 v.val = sk->sk_peek_off;
1436 v.val = sock_flag(sk, SOCK_NOFCS);
1439 case SO_BINDTODEVICE:
1440 return sock_getbindtodevice(sk, optval, optlen, len);
1443 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1449 case SO_LOCK_FILTER:
1450 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1453 case SO_BPF_EXTENSIONS:
1454 v.val = bpf_tell_extensions();
1457 case SO_SELECT_ERR_QUEUE:
1458 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1461 #ifdef CONFIG_NET_RX_BUSY_POLL
1463 v.val = sk->sk_ll_usec;
1467 case SO_MAX_PACING_RATE:
1468 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1469 lv = sizeof(v.ulval);
1470 v.ulval = sk->sk_max_pacing_rate;
1473 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1477 case SO_INCOMING_CPU:
1478 v.val = sk->sk_incoming_cpu;
1483 u32 meminfo[SK_MEMINFO_VARS];
1485 if (get_user(len, optlen))
1488 sk_get_meminfo(sk, meminfo);
1490 len = min_t(unsigned int, len, sizeof(meminfo));
1491 if (copy_to_user(optval, &meminfo, len))
1497 #ifdef CONFIG_NET_RX_BUSY_POLL
1498 case SO_INCOMING_NAPI_ID:
1499 v.val = READ_ONCE(sk->sk_napi_id);
1501 /* aggregate non-NAPI IDs down to 0 */
1502 if (v.val < MIN_NAPI_ID)
1512 v.val64 = sock_gen_cookie(sk);
1516 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1520 lv = sizeof(v.txtime);
1521 v.txtime.clockid = sk->sk_clockid;
1522 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1523 SOF_TXTIME_DEADLINE_MODE : 0;
1524 v.txtime.flags |= sk->sk_txtime_report_errors ?
1525 SOF_TXTIME_REPORT_ERRORS : 0;
1528 case SO_BINDTOIFINDEX:
1529 v.val = sk->sk_bound_dev_if;
1533 /* We implement the SO_SNDLOWAT etc to not be settable
1536 return -ENOPROTOOPT;
1541 if (copy_to_user(optval, &v, len))
1544 if (put_user(len, optlen))
1550 * Initialize an sk_lock.
1552 * (We also register the sk_lock with the lock validator.)
1554 static inline void sock_lock_init(struct sock *sk)
1556 if (sk->sk_kern_sock)
1557 sock_lock_init_class_and_name(
1559 af_family_kern_slock_key_strings[sk->sk_family],
1560 af_family_kern_slock_keys + sk->sk_family,
1561 af_family_kern_key_strings[sk->sk_family],
1562 af_family_kern_keys + sk->sk_family);
1564 sock_lock_init_class_and_name(
1566 af_family_slock_key_strings[sk->sk_family],
1567 af_family_slock_keys + sk->sk_family,
1568 af_family_key_strings[sk->sk_family],
1569 af_family_keys + sk->sk_family);
1573 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1574 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1575 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1577 static void sock_copy(struct sock *nsk, const struct sock *osk)
1579 #ifdef CONFIG_SECURITY_NETWORK
1580 void *sptr = nsk->sk_security;
1582 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1584 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1585 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1587 #ifdef CONFIG_SECURITY_NETWORK
1588 nsk->sk_security = sptr;
1589 security_sk_clone(osk, nsk);
1593 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1597 struct kmem_cache *slab;
1601 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1604 if (priority & __GFP_ZERO)
1605 sk_prot_clear_nulls(sk, prot->obj_size);
1607 sk = kmalloc(prot->obj_size, priority);
1610 if (security_sk_alloc(sk, family, priority))
1613 if (!try_module_get(prot->owner))
1615 sk_tx_queue_clear(sk);
1621 security_sk_free(sk);
1624 kmem_cache_free(slab, sk);
1630 static void sk_prot_free(struct proto *prot, struct sock *sk)
1632 struct kmem_cache *slab;
1633 struct module *owner;
1635 owner = prot->owner;
1638 cgroup_sk_free(&sk->sk_cgrp_data);
1639 mem_cgroup_sk_free(sk);
1640 security_sk_free(sk);
1642 kmem_cache_free(slab, sk);
1649 * sk_alloc - All socket objects are allocated here
1650 * @net: the applicable net namespace
1651 * @family: protocol family
1652 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1653 * @prot: struct proto associated with this new sock instance
1654 * @kern: is this to be a kernel socket?
1656 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1657 struct proto *prot, int kern)
1661 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1663 sk->sk_family = family;
1665 * See comment in struct sock definition to understand
1666 * why we need sk_prot_creator -acme
1668 sk->sk_prot = sk->sk_prot_creator = prot;
1669 sk->sk_kern_sock = kern;
1671 sk->sk_net_refcnt = kern ? 0 : 1;
1672 if (likely(sk->sk_net_refcnt)) {
1674 sock_inuse_add(net, 1);
1677 sock_net_set(sk, net);
1678 refcount_set(&sk->sk_wmem_alloc, 1);
1680 mem_cgroup_sk_alloc(sk);
1681 cgroup_sk_alloc(&sk->sk_cgrp_data);
1682 sock_update_classid(&sk->sk_cgrp_data);
1683 sock_update_netprioidx(&sk->sk_cgrp_data);
1688 EXPORT_SYMBOL(sk_alloc);
1690 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1691 * grace period. This is the case for UDP sockets and TCP listeners.
1693 static void __sk_destruct(struct rcu_head *head)
1695 struct sock *sk = container_of(head, struct sock, sk_rcu);
1696 struct sk_filter *filter;
1698 if (sk->sk_destruct)
1699 sk->sk_destruct(sk);
1701 filter = rcu_dereference_check(sk->sk_filter,
1702 refcount_read(&sk->sk_wmem_alloc) == 0);
1704 sk_filter_uncharge(sk, filter);
1705 RCU_INIT_POINTER(sk->sk_filter, NULL);
1707 if (rcu_access_pointer(sk->sk_reuseport_cb))
1708 reuseport_detach_sock(sk);
1710 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1712 if (atomic_read(&sk->sk_omem_alloc))
1713 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1714 __func__, atomic_read(&sk->sk_omem_alloc));
1716 if (sk->sk_frag.page) {
1717 put_page(sk->sk_frag.page);
1718 sk->sk_frag.page = NULL;
1721 if (sk->sk_peer_cred)
1722 put_cred(sk->sk_peer_cred);
1723 put_pid(sk->sk_peer_pid);
1724 if (likely(sk->sk_net_refcnt))
1725 put_net(sock_net(sk));
1726 sk_prot_free(sk->sk_prot_creator, sk);
1729 void sk_destruct(struct sock *sk)
1731 if (sock_flag(sk, SOCK_RCU_FREE))
1732 call_rcu(&sk->sk_rcu, __sk_destruct);
1734 __sk_destruct(&sk->sk_rcu);
1737 static void __sk_free(struct sock *sk)
1739 if (likely(sk->sk_net_refcnt))
1740 sock_inuse_add(sock_net(sk), -1);
1742 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1743 sock_diag_broadcast_destroy(sk);
1748 void sk_free(struct sock *sk)
1751 * We subtract one from sk_wmem_alloc and can know if
1752 * some packets are still in some tx queue.
1753 * If not null, sock_wfree() will call __sk_free(sk) later
1755 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1758 EXPORT_SYMBOL(sk_free);
1760 static void sk_init_common(struct sock *sk)
1762 skb_queue_head_init(&sk->sk_receive_queue);
1763 skb_queue_head_init(&sk->sk_write_queue);
1764 skb_queue_head_init(&sk->sk_error_queue);
1766 rwlock_init(&sk->sk_callback_lock);
1767 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1768 af_rlock_keys + sk->sk_family,
1769 af_family_rlock_key_strings[sk->sk_family]);
1770 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1771 af_wlock_keys + sk->sk_family,
1772 af_family_wlock_key_strings[sk->sk_family]);
1773 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1774 af_elock_keys + sk->sk_family,
1775 af_family_elock_key_strings[sk->sk_family]);
1776 lockdep_set_class_and_name(&sk->sk_callback_lock,
1777 af_callback_keys + sk->sk_family,
1778 af_family_clock_key_strings[sk->sk_family]);
1782 * sk_clone_lock - clone a socket, and lock its clone
1783 * @sk: the socket to clone
1784 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1786 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1788 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1791 bool is_charged = true;
1793 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1794 if (newsk != NULL) {
1795 struct sk_filter *filter;
1797 sock_copy(newsk, sk);
1799 newsk->sk_prot_creator = sk->sk_prot;
1802 if (likely(newsk->sk_net_refcnt))
1803 get_net(sock_net(newsk));
1804 sk_node_init(&newsk->sk_node);
1805 sock_lock_init(newsk);
1806 bh_lock_sock(newsk);
1807 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1808 newsk->sk_backlog.len = 0;
1810 atomic_set(&newsk->sk_rmem_alloc, 0);
1812 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1814 refcount_set(&newsk->sk_wmem_alloc, 1);
1815 atomic_set(&newsk->sk_omem_alloc, 0);
1816 sk_init_common(newsk);
1818 newsk->sk_dst_cache = NULL;
1819 newsk->sk_dst_pending_confirm = 0;
1820 newsk->sk_wmem_queued = 0;
1821 newsk->sk_forward_alloc = 0;
1822 atomic_set(&newsk->sk_drops, 0);
1823 newsk->sk_send_head = NULL;
1824 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1825 atomic_set(&newsk->sk_zckey, 0);
1827 sock_reset_flag(newsk, SOCK_DONE);
1828 mem_cgroup_sk_alloc(newsk);
1829 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1832 filter = rcu_dereference(sk->sk_filter);
1834 /* though it's an empty new sock, the charging may fail
1835 * if sysctl_optmem_max was changed between creation of
1836 * original socket and cloning
1838 is_charged = sk_filter_charge(newsk, filter);
1839 RCU_INIT_POINTER(newsk->sk_filter, filter);
1842 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1843 /* We need to make sure that we don't uncharge the new
1844 * socket if we couldn't charge it in the first place
1845 * as otherwise we uncharge the parent's filter.
1848 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1849 sk_free_unlock_clone(newsk);
1853 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1856 newsk->sk_err_soft = 0;
1857 newsk->sk_priority = 0;
1858 newsk->sk_incoming_cpu = raw_smp_processor_id();
1859 if (likely(newsk->sk_net_refcnt))
1860 sock_inuse_add(sock_net(newsk), 1);
1863 * Before updating sk_refcnt, we must commit prior changes to memory
1864 * (Documentation/RCU/rculist_nulls.txt for details)
1867 refcount_set(&newsk->sk_refcnt, 2);
1870 * Increment the counter in the same struct proto as the master
1871 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1872 * is the same as sk->sk_prot->socks, as this field was copied
1875 * This _changes_ the previous behaviour, where
1876 * tcp_create_openreq_child always was incrementing the
1877 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1878 * to be taken into account in all callers. -acme
1880 sk_refcnt_debug_inc(newsk);
1881 sk_set_socket(newsk, NULL);
1882 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1884 if (newsk->sk_prot->sockets_allocated)
1885 sk_sockets_allocated_inc(newsk);
1887 if (sock_needs_netstamp(sk) &&
1888 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1889 net_enable_timestamp();
1894 EXPORT_SYMBOL_GPL(sk_clone_lock);
1896 void sk_free_unlock_clone(struct sock *sk)
1898 /* It is still raw copy of parent, so invalidate
1899 * destructor and make plain sk_free() */
1900 sk->sk_destruct = NULL;
1904 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1906 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1910 sk_dst_set(sk, dst);
1911 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1912 if (sk->sk_route_caps & NETIF_F_GSO)
1913 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1914 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1915 if (sk_can_gso(sk)) {
1916 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1917 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1919 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1920 sk->sk_gso_max_size = dst->dev->gso_max_size;
1921 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1924 sk->sk_gso_max_segs = max_segs;
1926 EXPORT_SYMBOL_GPL(sk_setup_caps);
1929 * Simple resource managers for sockets.
1934 * Write buffer destructor automatically called from kfree_skb.
1936 void sock_wfree(struct sk_buff *skb)
1938 struct sock *sk = skb->sk;
1939 unsigned int len = skb->truesize;
1941 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1943 * Keep a reference on sk_wmem_alloc, this will be released
1944 * after sk_write_space() call
1946 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1947 sk->sk_write_space(sk);
1951 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1952 * could not do because of in-flight packets
1954 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1957 EXPORT_SYMBOL(sock_wfree);
1959 /* This variant of sock_wfree() is used by TCP,
1960 * since it sets SOCK_USE_WRITE_QUEUE.
1962 void __sock_wfree(struct sk_buff *skb)
1964 struct sock *sk = skb->sk;
1966 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1970 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1975 if (unlikely(!sk_fullsock(sk))) {
1976 skb->destructor = sock_edemux;
1981 skb->destructor = sock_wfree;
1982 skb_set_hash_from_sk(skb, sk);
1984 * We used to take a refcount on sk, but following operation
1985 * is enough to guarantee sk_free() wont free this sock until
1986 * all in-flight packets are completed
1988 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1990 EXPORT_SYMBOL(skb_set_owner_w);
1992 /* This helper is used by netem, as it can hold packets in its
1993 * delay queue. We want to allow the owner socket to send more
1994 * packets, as if they were already TX completed by a typical driver.
1995 * But we also want to keep skb->sk set because some packet schedulers
1996 * rely on it (sch_fq for example).
1998 void skb_orphan_partial(struct sk_buff *skb)
2000 if (skb_is_tcp_pure_ack(skb))
2003 if (skb->destructor == sock_wfree
2005 || skb->destructor == tcp_wfree
2008 struct sock *sk = skb->sk;
2010 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2011 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2012 skb->destructor = sock_efree;
2018 EXPORT_SYMBOL(skb_orphan_partial);
2021 * Read buffer destructor automatically called from kfree_skb.
2023 void sock_rfree(struct sk_buff *skb)
2025 struct sock *sk = skb->sk;
2026 unsigned int len = skb->truesize;
2028 atomic_sub(len, &sk->sk_rmem_alloc);
2029 sk_mem_uncharge(sk, len);
2031 EXPORT_SYMBOL(sock_rfree);
2034 * Buffer destructor for skbs that are not used directly in read or write
2035 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2037 void sock_efree(struct sk_buff *skb)
2041 EXPORT_SYMBOL(sock_efree);
2043 kuid_t sock_i_uid(struct sock *sk)
2047 read_lock_bh(&sk->sk_callback_lock);
2048 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2049 read_unlock_bh(&sk->sk_callback_lock);
2052 EXPORT_SYMBOL(sock_i_uid);
2054 unsigned long sock_i_ino(struct sock *sk)
2058 read_lock_bh(&sk->sk_callback_lock);
2059 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2060 read_unlock_bh(&sk->sk_callback_lock);
2063 EXPORT_SYMBOL(sock_i_ino);
2066 * Allocate a skb from the socket's send buffer.
2068 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2071 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
2072 struct sk_buff *skb = alloc_skb(size, priority);
2074 skb_set_owner_w(skb, sk);
2080 EXPORT_SYMBOL(sock_wmalloc);
2082 static void sock_ofree(struct sk_buff *skb)
2084 struct sock *sk = skb->sk;
2086 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2089 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2092 struct sk_buff *skb;
2094 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2095 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2099 skb = alloc_skb(size, priority);
2103 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2105 skb->destructor = sock_ofree;
2110 * Allocate a memory block from the socket's option memory buffer.
2112 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2114 if ((unsigned int)size <= sysctl_optmem_max &&
2115 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2117 /* First do the add, to avoid the race if kmalloc
2120 atomic_add(size, &sk->sk_omem_alloc);
2121 mem = kmalloc(size, priority);
2124 atomic_sub(size, &sk->sk_omem_alloc);
2128 EXPORT_SYMBOL(sock_kmalloc);
2130 /* Free an option memory block. Note, we actually want the inline
2131 * here as this allows gcc to detect the nullify and fold away the
2132 * condition entirely.
2134 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2137 if (WARN_ON_ONCE(!mem))
2143 atomic_sub(size, &sk->sk_omem_alloc);
2146 void sock_kfree_s(struct sock *sk, void *mem, int size)
2148 __sock_kfree_s(sk, mem, size, false);
2150 EXPORT_SYMBOL(sock_kfree_s);
2152 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2154 __sock_kfree_s(sk, mem, size, true);
2156 EXPORT_SYMBOL(sock_kzfree_s);
2158 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2159 I think, these locks should be removed for datagram sockets.
2161 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2165 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2169 if (signal_pending(current))
2171 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2172 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2173 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2175 if (sk->sk_shutdown & SEND_SHUTDOWN)
2179 timeo = schedule_timeout(timeo);
2181 finish_wait(sk_sleep(sk), &wait);
2187 * Generic send/receive buffer handlers
2190 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2191 unsigned long data_len, int noblock,
2192 int *errcode, int max_page_order)
2194 struct sk_buff *skb;
2198 timeo = sock_sndtimeo(sk, noblock);
2200 err = sock_error(sk);
2205 if (sk->sk_shutdown & SEND_SHUTDOWN)
2208 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2211 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2212 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2216 if (signal_pending(current))
2218 timeo = sock_wait_for_wmem(sk, timeo);
2220 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2221 errcode, sk->sk_allocation);
2223 skb_set_owner_w(skb, sk);
2227 err = sock_intr_errno(timeo);
2232 EXPORT_SYMBOL(sock_alloc_send_pskb);
2234 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2235 int noblock, int *errcode)
2237 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2239 EXPORT_SYMBOL(sock_alloc_send_skb);
2241 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2242 struct sockcm_cookie *sockc)
2246 switch (cmsg->cmsg_type) {
2248 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2250 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2252 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2254 case SO_TIMESTAMPING_OLD:
2255 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2258 tsflags = *(u32 *)CMSG_DATA(cmsg);
2259 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2262 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2263 sockc->tsflags |= tsflags;
2266 if (!sock_flag(sk, SOCK_TXTIME))
2268 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2270 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2272 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2274 case SCM_CREDENTIALS:
2281 EXPORT_SYMBOL(__sock_cmsg_send);
2283 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2284 struct sockcm_cookie *sockc)
2286 struct cmsghdr *cmsg;
2289 for_each_cmsghdr(cmsg, msg) {
2290 if (!CMSG_OK(msg, cmsg))
2292 if (cmsg->cmsg_level != SOL_SOCKET)
2294 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2300 EXPORT_SYMBOL(sock_cmsg_send);
2302 static void sk_enter_memory_pressure(struct sock *sk)
2304 if (!sk->sk_prot->enter_memory_pressure)
2307 sk->sk_prot->enter_memory_pressure(sk);
2310 static void sk_leave_memory_pressure(struct sock *sk)
2312 if (sk->sk_prot->leave_memory_pressure) {
2313 sk->sk_prot->leave_memory_pressure(sk);
2315 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2317 if (memory_pressure && *memory_pressure)
2318 *memory_pressure = 0;
2322 /* On 32bit arches, an skb frag is limited to 2^15 */
2323 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2326 * skb_page_frag_refill - check that a page_frag contains enough room
2327 * @sz: minimum size of the fragment we want to get
2328 * @pfrag: pointer to page_frag
2329 * @gfp: priority for memory allocation
2331 * Note: While this allocator tries to use high order pages, there is
2332 * no guarantee that allocations succeed. Therefore, @sz MUST be
2333 * less or equal than PAGE_SIZE.
2335 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2338 if (page_ref_count(pfrag->page) == 1) {
2342 if (pfrag->offset + sz <= pfrag->size)
2344 put_page(pfrag->page);
2348 if (SKB_FRAG_PAGE_ORDER) {
2349 /* Avoid direct reclaim but allow kswapd to wake */
2350 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2351 __GFP_COMP | __GFP_NOWARN |
2353 SKB_FRAG_PAGE_ORDER);
2354 if (likely(pfrag->page)) {
2355 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2359 pfrag->page = alloc_page(gfp);
2360 if (likely(pfrag->page)) {
2361 pfrag->size = PAGE_SIZE;
2366 EXPORT_SYMBOL(skb_page_frag_refill);
2368 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2370 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2373 sk_enter_memory_pressure(sk);
2374 sk_stream_moderate_sndbuf(sk);
2377 EXPORT_SYMBOL(sk_page_frag_refill);
2379 static void __lock_sock(struct sock *sk)
2380 __releases(&sk->sk_lock.slock)
2381 __acquires(&sk->sk_lock.slock)
2386 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2387 TASK_UNINTERRUPTIBLE);
2388 spin_unlock_bh(&sk->sk_lock.slock);
2390 spin_lock_bh(&sk->sk_lock.slock);
2391 if (!sock_owned_by_user(sk))
2394 finish_wait(&sk->sk_lock.wq, &wait);
2397 void __release_sock(struct sock *sk)
2398 __releases(&sk->sk_lock.slock)
2399 __acquires(&sk->sk_lock.slock)
2401 struct sk_buff *skb, *next;
2403 while ((skb = sk->sk_backlog.head) != NULL) {
2404 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2406 spin_unlock_bh(&sk->sk_lock.slock);
2411 WARN_ON_ONCE(skb_dst_is_noref(skb));
2412 skb_mark_not_on_list(skb);
2413 sk_backlog_rcv(sk, skb);
2418 } while (skb != NULL);
2420 spin_lock_bh(&sk->sk_lock.slock);
2424 * Doing the zeroing here guarantee we can not loop forever
2425 * while a wild producer attempts to flood us.
2427 sk->sk_backlog.len = 0;
2430 void __sk_flush_backlog(struct sock *sk)
2432 spin_lock_bh(&sk->sk_lock.slock);
2434 spin_unlock_bh(&sk->sk_lock.slock);
2438 * sk_wait_data - wait for data to arrive at sk_receive_queue
2439 * @sk: sock to wait on
2440 * @timeo: for how long
2441 * @skb: last skb seen on sk_receive_queue
2443 * Now socket state including sk->sk_err is changed only under lock,
2444 * hence we may omit checks after joining wait queue.
2445 * We check receive queue before schedule() only as optimization;
2446 * it is very likely that release_sock() added new data.
2448 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2450 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2453 add_wait_queue(sk_sleep(sk), &wait);
2454 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2455 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2456 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2457 remove_wait_queue(sk_sleep(sk), &wait);
2460 EXPORT_SYMBOL(sk_wait_data);
2463 * __sk_mem_raise_allocated - increase memory_allocated
2465 * @size: memory size to allocate
2466 * @amt: pages to allocate
2467 * @kind: allocation type
2469 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2471 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2473 struct proto *prot = sk->sk_prot;
2474 long allocated = sk_memory_allocated_add(sk, amt);
2475 bool charged = true;
2477 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2478 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2479 goto suppress_allocation;
2482 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2483 sk_leave_memory_pressure(sk);
2487 /* Under pressure. */
2488 if (allocated > sk_prot_mem_limits(sk, 1))
2489 sk_enter_memory_pressure(sk);
2491 /* Over hard limit. */
2492 if (allocated > sk_prot_mem_limits(sk, 2))
2493 goto suppress_allocation;
2495 /* guarantee minimum buffer size under pressure */
2496 if (kind == SK_MEM_RECV) {
2497 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2500 } else { /* SK_MEM_SEND */
2501 int wmem0 = sk_get_wmem0(sk, prot);
2503 if (sk->sk_type == SOCK_STREAM) {
2504 if (sk->sk_wmem_queued < wmem0)
2506 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2511 if (sk_has_memory_pressure(sk)) {
2514 if (!sk_under_memory_pressure(sk))
2516 alloc = sk_sockets_allocated_read_positive(sk);
2517 if (sk_prot_mem_limits(sk, 2) > alloc *
2518 sk_mem_pages(sk->sk_wmem_queued +
2519 atomic_read(&sk->sk_rmem_alloc) +
2520 sk->sk_forward_alloc))
2524 suppress_allocation:
2526 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2527 sk_stream_moderate_sndbuf(sk);
2529 /* Fail only if socket is _under_ its sndbuf.
2530 * In this case we cannot block, so that we have to fail.
2532 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2536 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2537 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2539 sk_memory_allocated_sub(sk, amt);
2541 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2542 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2546 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2549 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2551 * @size: memory size to allocate
2552 * @kind: allocation type
2554 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2555 * rmem allocation. This function assumes that protocols which have
2556 * memory_pressure use sk_wmem_queued as write buffer accounting.
2558 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2560 int ret, amt = sk_mem_pages(size);
2562 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2563 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2565 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2568 EXPORT_SYMBOL(__sk_mem_schedule);
2571 * __sk_mem_reduce_allocated - reclaim memory_allocated
2573 * @amount: number of quanta
2575 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2577 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2579 sk_memory_allocated_sub(sk, amount);
2581 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2582 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2584 if (sk_under_memory_pressure(sk) &&
2585 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2586 sk_leave_memory_pressure(sk);
2588 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2591 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2593 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2595 void __sk_mem_reclaim(struct sock *sk, int amount)
2597 amount >>= SK_MEM_QUANTUM_SHIFT;
2598 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2599 __sk_mem_reduce_allocated(sk, amount);
2601 EXPORT_SYMBOL(__sk_mem_reclaim);
2603 int sk_set_peek_off(struct sock *sk, int val)
2605 sk->sk_peek_off = val;
2608 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2611 * Set of default routines for initialising struct proto_ops when
2612 * the protocol does not support a particular function. In certain
2613 * cases where it makes no sense for a protocol to have a "do nothing"
2614 * function, some default processing is provided.
2617 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2621 EXPORT_SYMBOL(sock_no_bind);
2623 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2628 EXPORT_SYMBOL(sock_no_connect);
2630 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2634 EXPORT_SYMBOL(sock_no_socketpair);
2636 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2641 EXPORT_SYMBOL(sock_no_accept);
2643 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2648 EXPORT_SYMBOL(sock_no_getname);
2650 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2654 EXPORT_SYMBOL(sock_no_ioctl);
2656 int sock_no_listen(struct socket *sock, int backlog)
2660 EXPORT_SYMBOL(sock_no_listen);
2662 int sock_no_shutdown(struct socket *sock, int how)
2666 EXPORT_SYMBOL(sock_no_shutdown);
2668 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2669 char __user *optval, unsigned int optlen)
2673 EXPORT_SYMBOL(sock_no_setsockopt);
2675 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2676 char __user *optval, int __user *optlen)
2680 EXPORT_SYMBOL(sock_no_getsockopt);
2682 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2686 EXPORT_SYMBOL(sock_no_sendmsg);
2688 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2692 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2694 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2699 EXPORT_SYMBOL(sock_no_recvmsg);
2701 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2703 /* Mirror missing mmap method error code */
2706 EXPORT_SYMBOL(sock_no_mmap);
2708 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2711 struct msghdr msg = {.msg_flags = flags};
2713 char *kaddr = kmap(page);
2714 iov.iov_base = kaddr + offset;
2716 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2720 EXPORT_SYMBOL(sock_no_sendpage);
2722 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2723 int offset, size_t size, int flags)
2726 struct msghdr msg = {.msg_flags = flags};
2728 char *kaddr = kmap(page);
2730 iov.iov_base = kaddr + offset;
2732 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2736 EXPORT_SYMBOL(sock_no_sendpage_locked);
2739 * Default Socket Callbacks
2742 static void sock_def_wakeup(struct sock *sk)
2744 struct socket_wq *wq;
2747 wq = rcu_dereference(sk->sk_wq);
2748 if (skwq_has_sleeper(wq))
2749 wake_up_interruptible_all(&wq->wait);
2753 static void sock_def_error_report(struct sock *sk)
2755 struct socket_wq *wq;
2758 wq = rcu_dereference(sk->sk_wq);
2759 if (skwq_has_sleeper(wq))
2760 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2761 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2765 static void sock_def_readable(struct sock *sk)
2767 struct socket_wq *wq;
2770 wq = rcu_dereference(sk->sk_wq);
2771 if (skwq_has_sleeper(wq))
2772 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2773 EPOLLRDNORM | EPOLLRDBAND);
2774 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2778 static void sock_def_write_space(struct sock *sk)
2780 struct socket_wq *wq;
2784 /* Do not wake up a writer until he can make "significant"
2787 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2788 wq = rcu_dereference(sk->sk_wq);
2789 if (skwq_has_sleeper(wq))
2790 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2791 EPOLLWRNORM | EPOLLWRBAND);
2793 /* Should agree with poll, otherwise some programs break */
2794 if (sock_writeable(sk))
2795 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2801 static void sock_def_destruct(struct sock *sk)
2805 void sk_send_sigurg(struct sock *sk)
2807 if (sk->sk_socket && sk->sk_socket->file)
2808 if (send_sigurg(&sk->sk_socket->file->f_owner))
2809 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2811 EXPORT_SYMBOL(sk_send_sigurg);
2813 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2814 unsigned long expires)
2816 if (!mod_timer(timer, expires))
2819 EXPORT_SYMBOL(sk_reset_timer);
2821 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2823 if (del_timer(timer))
2826 EXPORT_SYMBOL(sk_stop_timer);
2828 void sock_init_data(struct socket *sock, struct sock *sk)
2831 sk->sk_send_head = NULL;
2833 timer_setup(&sk->sk_timer, NULL, 0);
2835 sk->sk_allocation = GFP_KERNEL;
2836 sk->sk_rcvbuf = sysctl_rmem_default;
2837 sk->sk_sndbuf = sysctl_wmem_default;
2838 sk->sk_state = TCP_CLOSE;
2839 sk_set_socket(sk, sock);
2841 sock_set_flag(sk, SOCK_ZAPPED);
2844 sk->sk_type = sock->type;
2845 RCU_INIT_POINTER(sk->sk_wq, sock->wq);
2847 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2849 RCU_INIT_POINTER(sk->sk_wq, NULL);
2850 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2853 rwlock_init(&sk->sk_callback_lock);
2854 if (sk->sk_kern_sock)
2855 lockdep_set_class_and_name(
2856 &sk->sk_callback_lock,
2857 af_kern_callback_keys + sk->sk_family,
2858 af_family_kern_clock_key_strings[sk->sk_family]);
2860 lockdep_set_class_and_name(
2861 &sk->sk_callback_lock,
2862 af_callback_keys + sk->sk_family,
2863 af_family_clock_key_strings[sk->sk_family]);
2865 sk->sk_state_change = sock_def_wakeup;
2866 sk->sk_data_ready = sock_def_readable;
2867 sk->sk_write_space = sock_def_write_space;
2868 sk->sk_error_report = sock_def_error_report;
2869 sk->sk_destruct = sock_def_destruct;
2871 sk->sk_frag.page = NULL;
2872 sk->sk_frag.offset = 0;
2873 sk->sk_peek_off = -1;
2875 sk->sk_peer_pid = NULL;
2876 sk->sk_peer_cred = NULL;
2877 sk->sk_write_pending = 0;
2878 sk->sk_rcvlowat = 1;
2879 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2880 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2882 sk->sk_stamp = SK_DEFAULT_STAMP;
2883 #if BITS_PER_LONG==32
2884 seqlock_init(&sk->sk_stamp_seq);
2886 atomic_set(&sk->sk_zckey, 0);
2888 #ifdef CONFIG_NET_RX_BUSY_POLL
2890 sk->sk_ll_usec = sysctl_net_busy_read;
2893 sk->sk_max_pacing_rate = ~0UL;
2894 sk->sk_pacing_rate = ~0UL;
2895 sk->sk_pacing_shift = 10;
2896 sk->sk_incoming_cpu = -1;
2898 sk_rx_queue_clear(sk);
2900 * Before updating sk_refcnt, we must commit prior changes to memory
2901 * (Documentation/RCU/rculist_nulls.txt for details)
2904 refcount_set(&sk->sk_refcnt, 1);
2905 atomic_set(&sk->sk_drops, 0);
2907 EXPORT_SYMBOL(sock_init_data);
2909 void lock_sock_nested(struct sock *sk, int subclass)
2912 spin_lock_bh(&sk->sk_lock.slock);
2913 if (sk->sk_lock.owned)
2915 sk->sk_lock.owned = 1;
2916 spin_unlock(&sk->sk_lock.slock);
2918 * The sk_lock has mutex_lock() semantics here:
2920 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2923 EXPORT_SYMBOL(lock_sock_nested);
2925 void release_sock(struct sock *sk)
2927 spin_lock_bh(&sk->sk_lock.slock);
2928 if (sk->sk_backlog.tail)
2931 /* Warning : release_cb() might need to release sk ownership,
2932 * ie call sock_release_ownership(sk) before us.
2934 if (sk->sk_prot->release_cb)
2935 sk->sk_prot->release_cb(sk);
2937 sock_release_ownership(sk);
2938 if (waitqueue_active(&sk->sk_lock.wq))
2939 wake_up(&sk->sk_lock.wq);
2940 spin_unlock_bh(&sk->sk_lock.slock);
2942 EXPORT_SYMBOL(release_sock);
2945 * lock_sock_fast - fast version of lock_sock
2948 * This version should be used for very small section, where process wont block
2949 * return false if fast path is taken:
2951 * sk_lock.slock locked, owned = 0, BH disabled
2953 * return true if slow path is taken:
2955 * sk_lock.slock unlocked, owned = 1, BH enabled
2957 bool lock_sock_fast(struct sock *sk)
2960 spin_lock_bh(&sk->sk_lock.slock);
2962 if (!sk->sk_lock.owned)
2964 * Note : We must disable BH
2969 sk->sk_lock.owned = 1;
2970 spin_unlock(&sk->sk_lock.slock);
2972 * The sk_lock has mutex_lock() semantics here:
2974 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2978 EXPORT_SYMBOL(lock_sock_fast);
2980 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2984 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2985 tv = ktime_to_timeval(sock_read_timestamp(sk));
2986 if (tv.tv_sec == -1)
2988 if (tv.tv_sec == 0) {
2989 ktime_t kt = ktime_get_real();
2990 sock_write_timestamp(sk, kt);
2991 tv = ktime_to_timeval(kt);
2993 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2995 EXPORT_SYMBOL(sock_get_timestamp);
2997 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
3001 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3002 ts = ktime_to_timespec(sock_read_timestamp(sk));
3003 if (ts.tv_sec == -1)
3005 if (ts.tv_sec == 0) {
3006 ktime_t kt = ktime_get_real();
3007 sock_write_timestamp(sk, kt);
3008 ts = ktime_to_timespec(sk->sk_stamp);
3010 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
3012 EXPORT_SYMBOL(sock_get_timestampns);
3014 void sock_enable_timestamp(struct sock *sk, int flag)
3016 if (!sock_flag(sk, flag)) {
3017 unsigned long previous_flags = sk->sk_flags;
3019 sock_set_flag(sk, flag);
3021 * we just set one of the two flags which require net
3022 * time stamping, but time stamping might have been on
3023 * already because of the other one
3025 if (sock_needs_netstamp(sk) &&
3026 !(previous_flags & SK_FLAGS_TIMESTAMP))
3027 net_enable_timestamp();
3031 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3032 int level, int type)
3034 struct sock_exterr_skb *serr;
3035 struct sk_buff *skb;
3039 skb = sock_dequeue_err_skb(sk);
3045 msg->msg_flags |= MSG_TRUNC;
3048 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3052 sock_recv_timestamp(msg, sk, skb);
3054 serr = SKB_EXT_ERR(skb);
3055 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3057 msg->msg_flags |= MSG_ERRQUEUE;
3065 EXPORT_SYMBOL(sock_recv_errqueue);
3068 * Get a socket option on an socket.
3070 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3071 * asynchronous errors should be reported by getsockopt. We assume
3072 * this means if you specify SO_ERROR (otherwise whats the point of it).
3074 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3075 char __user *optval, int __user *optlen)
3077 struct sock *sk = sock->sk;
3079 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3081 EXPORT_SYMBOL(sock_common_getsockopt);
3083 #ifdef CONFIG_COMPAT
3084 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3085 char __user *optval, int __user *optlen)
3087 struct sock *sk = sock->sk;
3089 if (sk->sk_prot->compat_getsockopt != NULL)
3090 return sk->sk_prot->compat_getsockopt(sk, level, optname,
3092 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3094 EXPORT_SYMBOL(compat_sock_common_getsockopt);
3097 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3100 struct sock *sk = sock->sk;
3104 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3105 flags & ~MSG_DONTWAIT, &addr_len);
3107 msg->msg_namelen = addr_len;
3110 EXPORT_SYMBOL(sock_common_recvmsg);
3113 * Set socket options on an inet socket.
3115 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3116 char __user *optval, unsigned int optlen)
3118 struct sock *sk = sock->sk;
3120 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3122 EXPORT_SYMBOL(sock_common_setsockopt);
3124 #ifdef CONFIG_COMPAT
3125 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3126 char __user *optval, unsigned int optlen)
3128 struct sock *sk = sock->sk;
3130 if (sk->sk_prot->compat_setsockopt != NULL)
3131 return sk->sk_prot->compat_setsockopt(sk, level, optname,
3133 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3135 EXPORT_SYMBOL(compat_sock_common_setsockopt);
3138 void sk_common_release(struct sock *sk)
3140 if (sk->sk_prot->destroy)
3141 sk->sk_prot->destroy(sk);
3144 * Observation: when sock_common_release is called, processes have
3145 * no access to socket. But net still has.
3146 * Step one, detach it from networking:
3148 * A. Remove from hash tables.
3151 sk->sk_prot->unhash(sk);
3154 * In this point socket cannot receive new packets, but it is possible
3155 * that some packets are in flight because some CPU runs receiver and
3156 * did hash table lookup before we unhashed socket. They will achieve
3157 * receive queue and will be purged by socket destructor.
3159 * Also we still have packets pending on receive queue and probably,
3160 * our own packets waiting in device queues. sock_destroy will drain
3161 * receive queue, but transmitted packets will delay socket destruction
3162 * until the last reference will be released.
3167 xfrm_sk_free_policy(sk);
3169 sk_refcnt_debug_release(sk);
3173 EXPORT_SYMBOL(sk_common_release);
3175 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3177 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3179 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3180 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3181 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3182 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3183 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3184 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3185 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3186 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3187 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3190 #ifdef CONFIG_PROC_FS
3191 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3193 int val[PROTO_INUSE_NR];
3196 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3198 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3200 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3202 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3204 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3206 int cpu, idx = prot->inuse_idx;
3209 for_each_possible_cpu(cpu)
3210 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3212 return res >= 0 ? res : 0;
3214 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3216 static void sock_inuse_add(struct net *net, int val)
3218 this_cpu_add(*net->core.sock_inuse, val);
3221 int sock_inuse_get(struct net *net)
3225 for_each_possible_cpu(cpu)
3226 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3231 EXPORT_SYMBOL_GPL(sock_inuse_get);
3233 static int __net_init sock_inuse_init_net(struct net *net)
3235 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3236 if (net->core.prot_inuse == NULL)
3239 net->core.sock_inuse = alloc_percpu(int);
3240 if (net->core.sock_inuse == NULL)
3246 free_percpu(net->core.prot_inuse);
3250 static void __net_exit sock_inuse_exit_net(struct net *net)
3252 free_percpu(net->core.prot_inuse);
3253 free_percpu(net->core.sock_inuse);
3256 static struct pernet_operations net_inuse_ops = {
3257 .init = sock_inuse_init_net,
3258 .exit = sock_inuse_exit_net,
3261 static __init int net_inuse_init(void)
3263 if (register_pernet_subsys(&net_inuse_ops))
3264 panic("Cannot initialize net inuse counters");
3269 core_initcall(net_inuse_init);
3271 static void assign_proto_idx(struct proto *prot)
3273 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3275 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3276 pr_err("PROTO_INUSE_NR exhausted\n");
3280 set_bit(prot->inuse_idx, proto_inuse_idx);
3283 static void release_proto_idx(struct proto *prot)
3285 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3286 clear_bit(prot->inuse_idx, proto_inuse_idx);
3289 static inline void assign_proto_idx(struct proto *prot)
3293 static inline void release_proto_idx(struct proto *prot)
3297 static void sock_inuse_add(struct net *net, int val)
3302 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3306 kfree(rsk_prot->slab_name);
3307 rsk_prot->slab_name = NULL;
3308 kmem_cache_destroy(rsk_prot->slab);
3309 rsk_prot->slab = NULL;
3312 static int req_prot_init(const struct proto *prot)
3314 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3319 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3321 if (!rsk_prot->slab_name)
3324 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3325 rsk_prot->obj_size, 0,
3326 SLAB_ACCOUNT | prot->slab_flags,
3329 if (!rsk_prot->slab) {
3330 pr_crit("%s: Can't create request sock SLAB cache!\n",
3337 int proto_register(struct proto *prot, int alloc_slab)
3340 prot->slab = kmem_cache_create_usercopy(prot->name,
3342 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3344 prot->useroffset, prot->usersize,
3347 if (prot->slab == NULL) {
3348 pr_crit("%s: Can't create sock SLAB cache!\n",
3353 if (req_prot_init(prot))
3354 goto out_free_request_sock_slab;
3356 if (prot->twsk_prot != NULL) {
3357 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3359 if (prot->twsk_prot->twsk_slab_name == NULL)
3360 goto out_free_request_sock_slab;
3362 prot->twsk_prot->twsk_slab =
3363 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3364 prot->twsk_prot->twsk_obj_size,
3369 if (prot->twsk_prot->twsk_slab == NULL)
3370 goto out_free_timewait_sock_slab_name;
3374 mutex_lock(&proto_list_mutex);
3375 list_add(&prot->node, &proto_list);
3376 assign_proto_idx(prot);
3377 mutex_unlock(&proto_list_mutex);
3380 out_free_timewait_sock_slab_name:
3381 kfree(prot->twsk_prot->twsk_slab_name);
3382 out_free_request_sock_slab:
3383 req_prot_cleanup(prot->rsk_prot);
3385 kmem_cache_destroy(prot->slab);
3390 EXPORT_SYMBOL(proto_register);
3392 void proto_unregister(struct proto *prot)
3394 mutex_lock(&proto_list_mutex);
3395 release_proto_idx(prot);
3396 list_del(&prot->node);
3397 mutex_unlock(&proto_list_mutex);
3399 kmem_cache_destroy(prot->slab);
3402 req_prot_cleanup(prot->rsk_prot);
3404 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3405 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3406 kfree(prot->twsk_prot->twsk_slab_name);
3407 prot->twsk_prot->twsk_slab = NULL;
3410 EXPORT_SYMBOL(proto_unregister);
3412 int sock_load_diag_module(int family, int protocol)
3415 if (!sock_is_registered(family))
3418 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3419 NETLINK_SOCK_DIAG, family);
3423 if (family == AF_INET &&
3424 protocol != IPPROTO_RAW &&
3425 !rcu_access_pointer(inet_protos[protocol]))
3429 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3430 NETLINK_SOCK_DIAG, family, protocol);
3432 EXPORT_SYMBOL(sock_load_diag_module);
3434 #ifdef CONFIG_PROC_FS
3435 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3436 __acquires(proto_list_mutex)
3438 mutex_lock(&proto_list_mutex);
3439 return seq_list_start_head(&proto_list, *pos);
3442 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3444 return seq_list_next(v, &proto_list, pos);
3447 static void proto_seq_stop(struct seq_file *seq, void *v)
3448 __releases(proto_list_mutex)
3450 mutex_unlock(&proto_list_mutex);
3453 static char proto_method_implemented(const void *method)
3455 return method == NULL ? 'n' : 'y';
3457 static long sock_prot_memory_allocated(struct proto *proto)
3459 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3462 static char *sock_prot_memory_pressure(struct proto *proto)
3464 return proto->memory_pressure != NULL ?
3465 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3468 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3471 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3472 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3475 sock_prot_inuse_get(seq_file_net(seq), proto),
3476 sock_prot_memory_allocated(proto),
3477 sock_prot_memory_pressure(proto),
3479 proto->slab == NULL ? "no" : "yes",
3480 module_name(proto->owner),
3481 proto_method_implemented(proto->close),
3482 proto_method_implemented(proto->connect),
3483 proto_method_implemented(proto->disconnect),
3484 proto_method_implemented(proto->accept),
3485 proto_method_implemented(proto->ioctl),
3486 proto_method_implemented(proto->init),
3487 proto_method_implemented(proto->destroy),
3488 proto_method_implemented(proto->shutdown),
3489 proto_method_implemented(proto->setsockopt),
3490 proto_method_implemented(proto->getsockopt),
3491 proto_method_implemented(proto->sendmsg),
3492 proto_method_implemented(proto->recvmsg),
3493 proto_method_implemented(proto->sendpage),
3494 proto_method_implemented(proto->bind),
3495 proto_method_implemented(proto->backlog_rcv),
3496 proto_method_implemented(proto->hash),
3497 proto_method_implemented(proto->unhash),
3498 proto_method_implemented(proto->get_port),
3499 proto_method_implemented(proto->enter_memory_pressure));
3502 static int proto_seq_show(struct seq_file *seq, void *v)
3504 if (v == &proto_list)
3505 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3514 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3516 proto_seq_printf(seq, list_entry(v, struct proto, node));
3520 static const struct seq_operations proto_seq_ops = {
3521 .start = proto_seq_start,
3522 .next = proto_seq_next,
3523 .stop = proto_seq_stop,
3524 .show = proto_seq_show,
3527 static __net_init int proto_init_net(struct net *net)
3529 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3530 sizeof(struct seq_net_private)))
3536 static __net_exit void proto_exit_net(struct net *net)
3538 remove_proc_entry("protocols", net->proc_net);
3542 static __net_initdata struct pernet_operations proto_net_ops = {
3543 .init = proto_init_net,
3544 .exit = proto_exit_net,
3547 static int __init proto_init(void)
3549 return register_pernet_subsys(&proto_net_ops);
3552 subsys_initcall(proto_init);
3554 #endif /* PROC_FS */
3556 #ifdef CONFIG_NET_RX_BUSY_POLL
3557 bool sk_busy_loop_end(void *p, unsigned long start_time)
3559 struct sock *sk = p;
3561 return !skb_queue_empty(&sk->sk_receive_queue) ||
3562 sk_busy_loop_timeout(sk, start_time);
3564 EXPORT_SYMBOL(sk_busy_loop_end);
3565 #endif /* CONFIG_NET_RX_BUSY_POLL */