2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * KVM/MIPS: MIPS specific KVM APIs
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
18 #include <linux/bootmem.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
25 #include <linux/kvm_host.h>
27 #include "interrupt.h"
30 #define CREATE_TRACE_POINTS
34 #define VECTORSPACING 0x100 /* for EI/VI mode */
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
40 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
41 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
42 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
43 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
45 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
46 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
47 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
48 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
49 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
50 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
51 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
52 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
53 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
54 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
55 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
63 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
67 for_each_possible_cpu(i) {
68 vcpu->arch.guest_kernel_asid[i] = 0;
69 vcpu->arch.guest_user_asid[i] = 0;
76 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
77 * Config7, so we are "runnable" if interrupts are pending
79 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
81 return !!(vcpu->arch.pending_exceptions);
84 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
89 int kvm_arch_hardware_enable(void)
94 int kvm_arch_hardware_setup(void)
99 void kvm_arch_check_processor_compat(void *rtn)
104 static void kvm_mips_init_tlbs(struct kvm *kvm)
109 * Add a wired entry to the TLB, it is used to map the commpage to
112 wired = read_c0_wired();
113 write_c0_wired(wired + 1);
115 kvm->arch.commpage_tlb = wired;
117 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
118 kvm->arch.commpage_tlb);
121 static void kvm_mips_init_vm_percpu(void *arg)
123 struct kvm *kvm = (struct kvm *)arg;
125 kvm_mips_init_tlbs(kvm);
126 kvm_mips_callbacks->vm_init(kvm);
130 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 if (atomic_inc_return(&kvm_mips_instance) == 1) {
133 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
135 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
141 void kvm_mips_free_vcpus(struct kvm *kvm)
144 struct kvm_vcpu *vcpu;
146 /* Put the pages we reserved for the guest pmap */
147 for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
148 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
149 kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
151 kfree(kvm->arch.guest_pmap);
153 kvm_for_each_vcpu(i, vcpu, kvm) {
154 kvm_arch_vcpu_free(vcpu);
157 mutex_lock(&kvm->lock);
159 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
160 kvm->vcpus[i] = NULL;
162 atomic_set(&kvm->online_vcpus, 0);
164 mutex_unlock(&kvm->lock);
167 static void kvm_mips_uninit_tlbs(void *arg)
169 /* Restore wired count */
172 /* Clear out all the TLBs */
173 kvm_local_flush_tlb_all();
176 void kvm_arch_destroy_vm(struct kvm *kvm)
178 kvm_mips_free_vcpus(kvm);
180 /* If this is the last instance, restore wired count */
181 if (atomic_dec_return(&kvm_mips_instance) == 0) {
182 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
184 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
188 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
194 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
195 unsigned long npages)
200 int kvm_arch_prepare_memory_region(struct kvm *kvm,
201 struct kvm_memory_slot *memslot,
202 const struct kvm_userspace_memory_region *mem,
203 enum kvm_mr_change change)
208 void kvm_arch_commit_memory_region(struct kvm *kvm,
209 const struct kvm_userspace_memory_region *mem,
210 const struct kvm_memory_slot *old,
211 const struct kvm_memory_slot *new,
212 enum kvm_mr_change change)
214 unsigned long npages = 0;
217 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
218 __func__, kvm, mem->slot, mem->guest_phys_addr,
219 mem->memory_size, mem->userspace_addr);
221 /* Setup Guest PMAP table */
222 if (!kvm->arch.guest_pmap) {
224 npages = mem->memory_size >> PAGE_SHIFT;
227 kvm->arch.guest_pmap_npages = npages;
228 kvm->arch.guest_pmap =
229 kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
231 if (!kvm->arch.guest_pmap) {
232 kvm_err("Failed to allocate guest PMAP");
236 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
237 npages, kvm->arch.guest_pmap);
239 /* Now setup the page table */
240 for (i = 0; i < npages; i++)
241 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
246 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
248 int err, size, offset;
252 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
259 err = kvm_vcpu_init(vcpu, kvm, id);
264 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
267 * Allocate space for host mode exception handlers that handle
270 if (cpu_has_veic || cpu_has_vint)
271 size = 0x200 + VECTORSPACING * 64;
275 /* Save Linux EBASE */
276 vcpu->arch.host_ebase = (void *)read_c0_ebase();
278 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
284 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
285 ALIGN(size, PAGE_SIZE), gebase);
288 vcpu->arch.guest_ebase = gebase;
290 /* Copy L1 Guest Exception handler to correct offset */
292 /* TLB Refill, EXL = 0 */
293 memcpy(gebase, mips32_exception,
294 mips32_exceptionEnd - mips32_exception);
296 /* General Exception Entry point */
297 memcpy(gebase + 0x180, mips32_exception,
298 mips32_exceptionEnd - mips32_exception);
300 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
301 for (i = 0; i < 8; i++) {
302 kvm_debug("L1 Vectored handler @ %p\n",
303 gebase + 0x200 + (i * VECTORSPACING));
304 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
305 mips32_exceptionEnd - mips32_exception);
308 /* General handler, relocate to unmapped space for sanity's sake */
310 kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
312 mips32_GuestExceptionEnd - mips32_GuestException);
314 memcpy(gebase + offset, mips32_GuestException,
315 mips32_GuestExceptionEnd - mips32_GuestException);
317 /* Invalidate the icache for these ranges */
318 local_flush_icache_range((unsigned long)gebase,
319 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
322 * Allocate comm page for guest kernel, a TLB will be reserved for
323 * mapping GVA @ 0xFFFF8000 to this page
325 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
327 if (!vcpu->arch.kseg0_commpage) {
329 goto out_free_gebase;
332 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
333 kvm_mips_commpage_init(vcpu);
336 vcpu->arch.last_sched_cpu = -1;
338 /* Start off the timer */
339 kvm_mips_init_count(vcpu);
353 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
355 hrtimer_cancel(&vcpu->arch.comparecount_timer);
357 kvm_vcpu_uninit(vcpu);
359 kvm_mips_dump_stats(vcpu);
361 kfree(vcpu->arch.guest_ebase);
362 kfree(vcpu->arch.kseg0_commpage);
366 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
368 kvm_arch_vcpu_free(vcpu);
371 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
372 struct kvm_guest_debug *dbg)
377 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
382 if (vcpu->sigset_active)
383 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
385 if (vcpu->mmio_needed) {
386 if (!vcpu->mmio_is_write)
387 kvm_mips_complete_mmio_load(vcpu, run);
388 vcpu->mmio_needed = 0;
394 /* Check if we have any exceptions/interrupts pending */
395 kvm_mips_deliver_interrupts(vcpu,
396 kvm_read_c0_guest_cause(vcpu->arch.cop0));
400 /* Disable hardware page table walking while in guest */
403 r = __kvm_mips_vcpu_run(run, vcpu);
405 /* Re-enable HTW before enabling interrupts */
411 if (vcpu->sigset_active)
412 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
417 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
418 struct kvm_mips_interrupt *irq)
420 int intr = (int)irq->irq;
421 struct kvm_vcpu *dvcpu = NULL;
423 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
424 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
430 dvcpu = vcpu->kvm->vcpus[irq->cpu];
432 if (intr == 2 || intr == 3 || intr == 4) {
433 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
435 } else if (intr == -2 || intr == -3 || intr == -4) {
436 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
438 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
443 dvcpu->arch.wait = 0;
445 if (waitqueue_active(&dvcpu->wq))
446 wake_up_interruptible(&dvcpu->wq);
451 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
452 struct kvm_mp_state *mp_state)
457 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
458 struct kvm_mp_state *mp_state)
463 static u64 kvm_mips_get_one_regs[] = {
501 KVM_REG_MIPS_CP0_INDEX,
502 KVM_REG_MIPS_CP0_CONTEXT,
503 KVM_REG_MIPS_CP0_USERLOCAL,
504 KVM_REG_MIPS_CP0_PAGEMASK,
505 KVM_REG_MIPS_CP0_WIRED,
506 KVM_REG_MIPS_CP0_HWRENA,
507 KVM_REG_MIPS_CP0_BADVADDR,
508 KVM_REG_MIPS_CP0_COUNT,
509 KVM_REG_MIPS_CP0_ENTRYHI,
510 KVM_REG_MIPS_CP0_COMPARE,
511 KVM_REG_MIPS_CP0_STATUS,
512 KVM_REG_MIPS_CP0_CAUSE,
513 KVM_REG_MIPS_CP0_EPC,
514 KVM_REG_MIPS_CP0_PRID,
515 KVM_REG_MIPS_CP0_CONFIG,
516 KVM_REG_MIPS_CP0_CONFIG1,
517 KVM_REG_MIPS_CP0_CONFIG2,
518 KVM_REG_MIPS_CP0_CONFIG3,
519 KVM_REG_MIPS_CP0_CONFIG4,
520 KVM_REG_MIPS_CP0_CONFIG5,
521 KVM_REG_MIPS_CP0_CONFIG7,
522 KVM_REG_MIPS_CP0_ERROREPC,
524 KVM_REG_MIPS_COUNT_CTL,
525 KVM_REG_MIPS_COUNT_RESUME,
526 KVM_REG_MIPS_COUNT_HZ,
529 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
530 const struct kvm_one_reg *reg)
532 struct mips_coproc *cop0 = vcpu->arch.cop0;
533 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
540 /* General purpose registers */
541 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
542 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
544 case KVM_REG_MIPS_HI:
545 v = (long)vcpu->arch.hi;
547 case KVM_REG_MIPS_LO:
548 v = (long)vcpu->arch.lo;
550 case KVM_REG_MIPS_PC:
551 v = (long)vcpu->arch.pc;
554 /* Floating point registers */
555 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
556 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
558 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
559 /* Odd singles in top of even double when FR=0 */
560 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
561 v = get_fpr32(&fpu->fpr[idx], 0);
563 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
565 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
566 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
568 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
569 /* Can't access odd doubles in FR=0 mode */
570 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
572 v = get_fpr64(&fpu->fpr[idx], 0);
574 case KVM_REG_MIPS_FCR_IR:
575 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
577 v = boot_cpu_data.fpu_id;
579 case KVM_REG_MIPS_FCR_CSR:
580 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
585 /* MIPS SIMD Architecture (MSA) registers */
586 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
587 if (!kvm_mips_guest_has_msa(&vcpu->arch))
589 /* Can't access MSA registers in FR=0 mode */
590 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
592 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
593 #ifdef CONFIG_CPU_LITTLE_ENDIAN
594 /* least significant byte first */
595 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
596 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
598 /* most significant byte first */
599 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
600 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
603 case KVM_REG_MIPS_MSA_IR:
604 if (!kvm_mips_guest_has_msa(&vcpu->arch))
606 v = boot_cpu_data.msa_id;
608 case KVM_REG_MIPS_MSA_CSR:
609 if (!kvm_mips_guest_has_msa(&vcpu->arch))
614 /* Co-processor 0 registers */
615 case KVM_REG_MIPS_CP0_INDEX:
616 v = (long)kvm_read_c0_guest_index(cop0);
618 case KVM_REG_MIPS_CP0_CONTEXT:
619 v = (long)kvm_read_c0_guest_context(cop0);
621 case KVM_REG_MIPS_CP0_USERLOCAL:
622 v = (long)kvm_read_c0_guest_userlocal(cop0);
624 case KVM_REG_MIPS_CP0_PAGEMASK:
625 v = (long)kvm_read_c0_guest_pagemask(cop0);
627 case KVM_REG_MIPS_CP0_WIRED:
628 v = (long)kvm_read_c0_guest_wired(cop0);
630 case KVM_REG_MIPS_CP0_HWRENA:
631 v = (long)kvm_read_c0_guest_hwrena(cop0);
633 case KVM_REG_MIPS_CP0_BADVADDR:
634 v = (long)kvm_read_c0_guest_badvaddr(cop0);
636 case KVM_REG_MIPS_CP0_ENTRYHI:
637 v = (long)kvm_read_c0_guest_entryhi(cop0);
639 case KVM_REG_MIPS_CP0_COMPARE:
640 v = (long)kvm_read_c0_guest_compare(cop0);
642 case KVM_REG_MIPS_CP0_STATUS:
643 v = (long)kvm_read_c0_guest_status(cop0);
645 case KVM_REG_MIPS_CP0_CAUSE:
646 v = (long)kvm_read_c0_guest_cause(cop0);
648 case KVM_REG_MIPS_CP0_EPC:
649 v = (long)kvm_read_c0_guest_epc(cop0);
651 case KVM_REG_MIPS_CP0_PRID:
652 v = (long)kvm_read_c0_guest_prid(cop0);
654 case KVM_REG_MIPS_CP0_CONFIG:
655 v = (long)kvm_read_c0_guest_config(cop0);
657 case KVM_REG_MIPS_CP0_CONFIG1:
658 v = (long)kvm_read_c0_guest_config1(cop0);
660 case KVM_REG_MIPS_CP0_CONFIG2:
661 v = (long)kvm_read_c0_guest_config2(cop0);
663 case KVM_REG_MIPS_CP0_CONFIG3:
664 v = (long)kvm_read_c0_guest_config3(cop0);
666 case KVM_REG_MIPS_CP0_CONFIG4:
667 v = (long)kvm_read_c0_guest_config4(cop0);
669 case KVM_REG_MIPS_CP0_CONFIG5:
670 v = (long)kvm_read_c0_guest_config5(cop0);
672 case KVM_REG_MIPS_CP0_CONFIG7:
673 v = (long)kvm_read_c0_guest_config7(cop0);
675 case KVM_REG_MIPS_CP0_ERROREPC:
676 v = (long)kvm_read_c0_guest_errorepc(cop0);
678 /* registers to be handled specially */
679 case KVM_REG_MIPS_CP0_COUNT:
680 case KVM_REG_MIPS_COUNT_CTL:
681 case KVM_REG_MIPS_COUNT_RESUME:
682 case KVM_REG_MIPS_COUNT_HZ:
683 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
690 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
691 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
693 return put_user(v, uaddr64);
694 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
695 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
698 return put_user(v32, uaddr32);
699 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
700 void __user *uaddr = (void __user *)(long)reg->addr;
702 return copy_to_user(uaddr, vs, 16);
708 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
709 const struct kvm_one_reg *reg)
711 struct mips_coproc *cop0 = vcpu->arch.cop0;
712 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
717 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
718 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
720 if (get_user(v, uaddr64) != 0)
722 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
723 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
726 if (get_user(v32, uaddr32) != 0)
729 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
730 void __user *uaddr = (void __user *)(long)reg->addr;
732 return copy_from_user(vs, uaddr, 16);
738 /* General purpose registers */
739 case KVM_REG_MIPS_R0:
740 /* Silently ignore requests to set $0 */
742 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
743 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
745 case KVM_REG_MIPS_HI:
748 case KVM_REG_MIPS_LO:
751 case KVM_REG_MIPS_PC:
755 /* Floating point registers */
756 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
757 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
759 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
760 /* Odd singles in top of even double when FR=0 */
761 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
762 set_fpr32(&fpu->fpr[idx], 0, v);
764 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
766 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
767 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
769 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
770 /* Can't access odd doubles in FR=0 mode */
771 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
773 set_fpr64(&fpu->fpr[idx], 0, v);
775 case KVM_REG_MIPS_FCR_IR:
776 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
780 case KVM_REG_MIPS_FCR_CSR:
781 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
786 /* MIPS SIMD Architecture (MSA) registers */
787 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
788 if (!kvm_mips_guest_has_msa(&vcpu->arch))
790 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
791 #ifdef CONFIG_CPU_LITTLE_ENDIAN
792 /* least significant byte first */
793 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
794 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
796 /* most significant byte first */
797 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
798 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
801 case KVM_REG_MIPS_MSA_IR:
802 if (!kvm_mips_guest_has_msa(&vcpu->arch))
806 case KVM_REG_MIPS_MSA_CSR:
807 if (!kvm_mips_guest_has_msa(&vcpu->arch))
812 /* Co-processor 0 registers */
813 case KVM_REG_MIPS_CP0_INDEX:
814 kvm_write_c0_guest_index(cop0, v);
816 case KVM_REG_MIPS_CP0_CONTEXT:
817 kvm_write_c0_guest_context(cop0, v);
819 case KVM_REG_MIPS_CP0_USERLOCAL:
820 kvm_write_c0_guest_userlocal(cop0, v);
822 case KVM_REG_MIPS_CP0_PAGEMASK:
823 kvm_write_c0_guest_pagemask(cop0, v);
825 case KVM_REG_MIPS_CP0_WIRED:
826 kvm_write_c0_guest_wired(cop0, v);
828 case KVM_REG_MIPS_CP0_HWRENA:
829 kvm_write_c0_guest_hwrena(cop0, v);
831 case KVM_REG_MIPS_CP0_BADVADDR:
832 kvm_write_c0_guest_badvaddr(cop0, v);
834 case KVM_REG_MIPS_CP0_ENTRYHI:
835 kvm_write_c0_guest_entryhi(cop0, v);
837 case KVM_REG_MIPS_CP0_STATUS:
838 kvm_write_c0_guest_status(cop0, v);
840 case KVM_REG_MIPS_CP0_EPC:
841 kvm_write_c0_guest_epc(cop0, v);
843 case KVM_REG_MIPS_CP0_PRID:
844 kvm_write_c0_guest_prid(cop0, v);
846 case KVM_REG_MIPS_CP0_ERROREPC:
847 kvm_write_c0_guest_errorepc(cop0, v);
849 /* registers to be handled specially */
850 case KVM_REG_MIPS_CP0_COUNT:
851 case KVM_REG_MIPS_CP0_COMPARE:
852 case KVM_REG_MIPS_CP0_CAUSE:
853 case KVM_REG_MIPS_CP0_CONFIG:
854 case KVM_REG_MIPS_CP0_CONFIG1:
855 case KVM_REG_MIPS_CP0_CONFIG2:
856 case KVM_REG_MIPS_CP0_CONFIG3:
857 case KVM_REG_MIPS_CP0_CONFIG4:
858 case KVM_REG_MIPS_CP0_CONFIG5:
859 case KVM_REG_MIPS_COUNT_CTL:
860 case KVM_REG_MIPS_COUNT_RESUME:
861 case KVM_REG_MIPS_COUNT_HZ:
862 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
869 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
870 struct kvm_enable_cap *cap)
874 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
882 case KVM_CAP_MIPS_FPU:
883 vcpu->arch.fpu_enabled = true;
885 case KVM_CAP_MIPS_MSA:
886 vcpu->arch.msa_enabled = true;
896 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
899 struct kvm_vcpu *vcpu = filp->private_data;
900 void __user *argp = (void __user *)arg;
904 case KVM_SET_ONE_REG:
905 case KVM_GET_ONE_REG: {
906 struct kvm_one_reg reg;
908 if (copy_from_user(®, argp, sizeof(reg)))
910 if (ioctl == KVM_SET_ONE_REG)
911 return kvm_mips_set_reg(vcpu, ®);
913 return kvm_mips_get_reg(vcpu, ®);
915 case KVM_GET_REG_LIST: {
916 struct kvm_reg_list __user *user_list = argp;
917 u64 __user *reg_dest;
918 struct kvm_reg_list reg_list;
921 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
924 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
925 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
929 reg_dest = user_list->reg;
930 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
931 sizeof(kvm_mips_get_one_regs)))
936 /* Treat the NMI as a CPU reset */
937 r = kvm_mips_reset_vcpu(vcpu);
941 struct kvm_mips_interrupt irq;
944 if (copy_from_user(&irq, argp, sizeof(irq)))
947 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
950 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
953 case KVM_ENABLE_CAP: {
954 struct kvm_enable_cap cap;
957 if (copy_from_user(&cap, argp, sizeof(cap)))
959 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
970 /* Get (and clear) the dirty memory log for a memory slot. */
971 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
973 struct kvm_memslots *slots;
974 struct kvm_memory_slot *memslot;
975 unsigned long ga, ga_end;
980 mutex_lock(&kvm->slots_lock);
982 r = kvm_get_dirty_log(kvm, log, &is_dirty);
986 /* If nothing is dirty, don't bother messing with page tables. */
988 slots = kvm_memslots(kvm);
989 memslot = id_to_memslot(slots, log->slot);
991 ga = memslot->base_gfn << PAGE_SHIFT;
992 ga_end = ga + (memslot->npages << PAGE_SHIFT);
994 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
997 n = kvm_dirty_bitmap_bytes(memslot);
998 memset(memslot->dirty_bitmap, 0, n);
1003 mutex_unlock(&kvm->slots_lock);
1008 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1020 int kvm_arch_init(void *opaque)
1022 if (kvm_mips_callbacks) {
1023 kvm_err("kvm: module already exists\n");
1027 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1030 void kvm_arch_exit(void)
1032 kvm_mips_callbacks = NULL;
1035 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1036 struct kvm_sregs *sregs)
1038 return -ENOIOCTLCMD;
1041 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1042 struct kvm_sregs *sregs)
1044 return -ENOIOCTLCMD;
1047 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1051 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1053 return -ENOIOCTLCMD;
1056 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1058 return -ENOIOCTLCMD;
1061 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1063 return VM_FAULT_SIGBUS;
1066 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1071 case KVM_CAP_ONE_REG:
1072 case KVM_CAP_ENABLE_CAP:
1075 case KVM_CAP_COALESCED_MMIO:
1076 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1078 case KVM_CAP_MIPS_FPU:
1081 case KVM_CAP_MIPS_MSA:
1083 * We don't support MSA vector partitioning yet:
1084 * 1) It would require explicit support which can't be tested
1085 * yet due to lack of support in current hardware.
1086 * 2) It extends the state that would need to be saved/restored
1087 * by e.g. QEMU for migration.
1089 * When vector partitioning hardware becomes available, support
1090 * could be added by requiring a flag when enabling
1091 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1092 * to save/restore the appropriate extra state.
1094 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1103 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1105 return kvm_mips_pending_timer(vcpu);
1108 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1111 struct mips_coproc *cop0;
1116 kvm_debug("VCPU Register Dump:\n");
1117 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1118 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1120 for (i = 0; i < 32; i += 4) {
1121 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1123 vcpu->arch.gprs[i + 1],
1124 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1126 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1127 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1129 cop0 = vcpu->arch.cop0;
1130 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1131 kvm_read_c0_guest_status(cop0),
1132 kvm_read_c0_guest_cause(cop0));
1134 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1139 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1143 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1144 vcpu->arch.gprs[i] = regs->gpr[i];
1145 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1146 vcpu->arch.hi = regs->hi;
1147 vcpu->arch.lo = regs->lo;
1148 vcpu->arch.pc = regs->pc;
1153 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1157 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1158 regs->gpr[i] = vcpu->arch.gprs[i];
1160 regs->hi = vcpu->arch.hi;
1161 regs->lo = vcpu->arch.lo;
1162 regs->pc = vcpu->arch.pc;
1167 static void kvm_mips_comparecount_func(unsigned long data)
1169 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1171 kvm_mips_callbacks->queue_timer_int(vcpu);
1173 vcpu->arch.wait = 0;
1174 if (waitqueue_active(&vcpu->wq))
1175 wake_up_interruptible(&vcpu->wq);
1178 /* low level hrtimer wake routine */
1179 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1181 struct kvm_vcpu *vcpu;
1183 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1184 kvm_mips_comparecount_func((unsigned long) vcpu);
1185 return kvm_mips_count_timeout(vcpu);
1188 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1190 kvm_mips_callbacks->vcpu_init(vcpu);
1191 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1193 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1197 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1198 struct kvm_translation *tr)
1203 /* Initial guest state */
1204 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1206 return kvm_mips_callbacks->vcpu_setup(vcpu);
1209 static void kvm_mips_set_c0_status(void)
1211 uint32_t status = read_c0_status();
1216 write_c0_status(status);
1221 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1223 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1225 uint32_t cause = vcpu->arch.host_cp0_cause;
1226 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1227 uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1228 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1229 enum emulation_result er = EMULATE_DONE;
1230 int ret = RESUME_GUEST;
1232 /* re-enable HTW before enabling interrupts */
1235 /* Set a default exit reason */
1236 run->exit_reason = KVM_EXIT_UNKNOWN;
1237 run->ready_for_interrupt_injection = 1;
1240 * Set the appropriate status bits based on host CPU features,
1241 * before we hit the scheduler
1243 kvm_mips_set_c0_status();
1247 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1248 cause, opc, run, vcpu);
1251 * Do a privilege check, if in UM most of these exit conditions end up
1252 * causing an exception to be delivered to the Guest Kernel
1254 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1255 if (er == EMULATE_PRIV_FAIL) {
1257 } else if (er == EMULATE_FAIL) {
1258 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1265 kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1267 ++vcpu->stat.int_exits;
1268 trace_kvm_exit(vcpu, INT_EXITS);
1276 case T_COP_UNUSABLE:
1277 kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1279 ++vcpu->stat.cop_unusable_exits;
1280 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1281 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1282 /* XXXKYMA: Might need to return to user space */
1283 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1288 ++vcpu->stat.tlbmod_exits;
1289 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1290 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1294 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1295 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1298 ++vcpu->stat.tlbmiss_st_exits;
1299 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1300 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1304 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1305 cause, opc, badvaddr);
1307 ++vcpu->stat.tlbmiss_ld_exits;
1308 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1309 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1313 ++vcpu->stat.addrerr_st_exits;
1314 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1315 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1319 ++vcpu->stat.addrerr_ld_exits;
1320 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1321 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1325 ++vcpu->stat.syscall_exits;
1326 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1327 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1331 ++vcpu->stat.resvd_inst_exits;
1332 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1333 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1337 ++vcpu->stat.break_inst_exits;
1338 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1339 ret = kvm_mips_callbacks->handle_break(vcpu);
1343 ++vcpu->stat.trap_inst_exits;
1344 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1345 ret = kvm_mips_callbacks->handle_trap(vcpu);
1349 ++vcpu->stat.msa_fpe_exits;
1350 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1351 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1355 ++vcpu->stat.fpe_exits;
1356 trace_kvm_exit(vcpu, FPE_EXITS);
1357 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1361 ++vcpu->stat.msa_disabled_exits;
1362 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1363 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1367 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1368 exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1369 kvm_read_c0_guest_status(vcpu->arch.cop0));
1370 kvm_arch_vcpu_dump_regs(vcpu);
1371 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1378 local_irq_disable();
1380 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1381 kvm_mips_deliver_interrupts(vcpu, cause);
1383 if (!(ret & RESUME_HOST)) {
1384 /* Only check for signals if not already exiting to userspace */
1385 if (signal_pending(current)) {
1386 run->exit_reason = KVM_EXIT_INTR;
1387 ret = (-EINTR << 2) | RESUME_HOST;
1388 ++vcpu->stat.signal_exits;
1389 trace_kvm_exit(vcpu, SIGNAL_EXITS);
1393 if (ret == RESUME_GUEST) {
1395 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1396 * is live), restore FCR31 / MSACSR.
1398 * This should be before returning to the guest exception
1399 * vector, as it may well cause an [MSA] FP exception if there
1400 * are pending exception bits unmasked. (see
1401 * kvm_mips_csr_die_notifier() for how that is handled).
1403 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1404 read_c0_status() & ST0_CU1)
1405 __kvm_restore_fcsr(&vcpu->arch);
1407 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1408 read_c0_config5() & MIPS_CONF5_MSAEN)
1409 __kvm_restore_msacsr(&vcpu->arch);
1412 /* Disable HTW before returning to guest or host */
1418 /* Enable FPU for guest and restore context */
1419 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1421 struct mips_coproc *cop0 = vcpu->arch.cop0;
1422 unsigned int sr, cfg5;
1426 sr = kvm_read_c0_guest_status(cop0);
1429 * If MSA state is already live, it is undefined how it interacts with
1430 * FR=0 FPU state, and we don't want to hit reserved instruction
1431 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1432 * play it safe and save it first.
1434 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1435 * get called when guest CU1 is set, however we can't trust the guest
1436 * not to clobber the status register directly via the commpage.
1438 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1439 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1443 * Enable FPU for guest
1444 * We set FR and FRE according to guest context
1446 change_c0_status(ST0_CU1 | ST0_FR, sr);
1448 cfg5 = kvm_read_c0_guest_config5(cop0);
1449 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1451 enable_fpu_hazard();
1453 /* If guest FPU state not active, restore it now */
1454 if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1455 __kvm_restore_fpu(&vcpu->arch);
1456 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1462 #ifdef CONFIG_CPU_HAS_MSA
1463 /* Enable MSA for guest and restore context */
1464 void kvm_own_msa(struct kvm_vcpu *vcpu)
1466 struct mips_coproc *cop0 = vcpu->arch.cop0;
1467 unsigned int sr, cfg5;
1472 * Enable FPU if enabled in guest, since we're restoring FPU context
1473 * anyway. We set FR and FRE according to guest context.
1475 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1476 sr = kvm_read_c0_guest_status(cop0);
1479 * If FR=0 FPU state is already live, it is undefined how it
1480 * interacts with MSA state, so play it safe and save it first.
1482 if (!(sr & ST0_FR) &&
1483 (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1484 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1487 change_c0_status(ST0_CU1 | ST0_FR, sr);
1488 if (sr & ST0_CU1 && cpu_has_fre) {
1489 cfg5 = kvm_read_c0_guest_config5(cop0);
1490 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1494 /* Enable MSA for guest */
1495 set_c0_config5(MIPS_CONF5_MSAEN);
1496 enable_fpu_hazard();
1498 switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1499 case KVM_MIPS_FPU_FPU:
1501 * Guest FPU state already loaded, only restore upper MSA state
1503 __kvm_restore_msa_upper(&vcpu->arch);
1504 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1507 /* Neither FPU or MSA already active, restore full MSA state */
1508 __kvm_restore_msa(&vcpu->arch);
1509 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1510 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1511 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1521 /* Drop FPU & MSA without saving it */
1522 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1525 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1527 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1529 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1530 clear_c0_status(ST0_CU1 | ST0_FR);
1531 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1536 /* Save and disable FPU & MSA */
1537 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1540 * FPU & MSA get disabled in root context (hardware) when it is disabled
1541 * in guest context (software), but the register state in the hardware
1542 * may still be in use. This is why we explicitly re-enable the hardware
1547 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1548 set_c0_config5(MIPS_CONF5_MSAEN);
1549 enable_fpu_hazard();
1551 __kvm_save_msa(&vcpu->arch);
1553 /* Disable MSA & FPU */
1555 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1556 clear_c0_status(ST0_CU1 | ST0_FR);
1557 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1558 } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1559 set_c0_status(ST0_CU1);
1560 enable_fpu_hazard();
1562 __kvm_save_fpu(&vcpu->arch);
1563 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1566 clear_c0_status(ST0_CU1 | ST0_FR);
1572 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1573 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1574 * exception if cause bits are set in the value being written.
1576 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1577 unsigned long cmd, void *ptr)
1579 struct die_args *args = (struct die_args *)ptr;
1580 struct pt_regs *regs = args->regs;
1583 /* Only interested in FPE and MSAFPE */
1584 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1587 /* Return immediately if guest context isn't active */
1588 if (!(current->flags & PF_VCPU))
1591 /* Should never get here from user mode */
1592 BUG_ON(user_mode(regs));
1594 pc = instruction_pointer(regs);
1597 /* match 2nd instruction in __kvm_restore_fcsr */
1598 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1602 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1604 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1605 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1610 /* Move PC forward a little and continue executing */
1611 instruction_pointer(regs) += 4;
1616 static struct notifier_block kvm_mips_csr_die_notifier = {
1617 .notifier_call = kvm_mips_csr_die_notify,
1620 int __init kvm_mips_init(void)
1624 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1629 register_die_notifier(&kvm_mips_csr_die_notifier);
1632 * On MIPS, kernel modules are executed from "mapped space", which
1633 * requires TLBs. The TLB handling code is statically linked with
1634 * the rest of the kernel (tlb.c) to avoid the possibility of
1635 * double faulting. The issue is that the TLB code references
1636 * routines that are part of the the KVM module, which are only
1637 * available once the module is loaded.
1639 kvm_mips_gfn_to_pfn = gfn_to_pfn;
1640 kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1641 kvm_mips_is_error_pfn = is_error_pfn;
1646 void __exit kvm_mips_exit(void)
1650 kvm_mips_gfn_to_pfn = NULL;
1651 kvm_mips_release_pfn_clean = NULL;
1652 kvm_mips_is_error_pfn = NULL;
1654 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1657 module_init(kvm_mips_init);
1658 module_exit(kvm_mips_exit);
1660 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);