2 * linux/fs/nfs/direct.c
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
62 #define NFSDBG_FACILITY NFSDBG_VFS
64 static struct kmem_cache *nfs_direct_cachep;
67 * This represents a set of asynchronous requests that we're waiting on
69 struct nfs_direct_req {
70 struct kref kref; /* release manager */
73 struct nfs_open_context *ctx; /* file open context info */
74 struct nfs_lock_context *l_ctx; /* Lock context info */
75 struct kiocb * iocb; /* controlling i/o request */
76 struct inode * inode; /* target file of i/o */
78 /* completion state */
79 atomic_t io_count; /* i/os we're waiting for */
80 spinlock_t lock; /* protect completion state */
81 ssize_t count, /* bytes actually processed */
82 bytes_left, /* bytes left to be sent */
83 error; /* any reported error */
84 struct completion completion; /* wait for i/o completion */
87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
89 struct work_struct work;
91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
93 struct nfs_writeverf verf; /* unstable write verifier */
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
101 static inline void get_dreq(struct nfs_direct_req *dreq)
103 atomic_inc(&dreq->io_count);
106 static inline int put_dreq(struct nfs_direct_req *dreq)
108 return atomic_dec_and_test(&dreq->io_count);
112 * nfs_direct_select_verf - select the right verifier
113 * @dreq - direct request possibly spanning multiple servers
114 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
115 * @ds_idx - index of data server in data server list, only valid if ds_clp set
117 * returns the correct verifier to use given the role of the server
119 static struct nfs_writeverf *
120 nfs_direct_select_verf(struct nfs_direct_req *dreq,
121 struct nfs_client *ds_clp,
124 struct nfs_writeverf *verfp = &dreq->verf;
126 #ifdef CONFIG_NFS_V4_1
128 /* pNFS is in use, use the DS verf */
129 if (ds_idx >= 0 && ds_idx < dreq->ds_cinfo.nbuckets)
130 verfp = &dreq->ds_cinfo.buckets[ds_idx].direct_verf;
140 * nfs_direct_set_hdr_verf - set the write/commit verifier
141 * @dreq - direct request possibly spanning multiple servers
142 * @hdr - pageio header to validate against previously seen verfs
144 * Set the server's (MDS or DS) "seen" verifier
146 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
147 struct nfs_pgio_header *hdr)
149 struct nfs_writeverf *verfp;
151 verfp = nfs_direct_select_verf(dreq, hdr->data->ds_clp,
153 WARN_ON_ONCE(verfp->committed >= 0);
154 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
155 WARN_ON_ONCE(verfp->committed < 0);
159 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
160 * @dreq - direct request possibly spanning multiple servers
161 * @hdr - pageio header to validate against previously seen verf
163 * set the server's "seen" verf if not initialized.
164 * returns result of comparison between @hdr->verf and the "seen"
165 * verf of the server used by @hdr (DS or MDS)
167 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
168 struct nfs_pgio_header *hdr)
170 struct nfs_writeverf *verfp;
172 verfp = nfs_direct_select_verf(dreq, hdr->data->ds_clp,
174 if (verfp->committed < 0) {
175 nfs_direct_set_hdr_verf(dreq, hdr);
178 return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
181 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
183 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
184 * @dreq - direct request possibly spanning multiple servers
185 * @data - commit data to validate against previously seen verf
187 * returns result of comparison between @data->verf and the verf of
188 * the server used by @data (DS or MDS)
190 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
191 struct nfs_commit_data *data)
193 struct nfs_writeverf *verfp;
195 verfp = nfs_direct_select_verf(dreq, data->ds_clp,
196 data->ds_commit_index);
197 WARN_ON_ONCE(verfp->committed < 0);
198 return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
203 * nfs_direct_IO - NFS address space operation for direct I/O
204 * @rw: direction (read or write)
205 * @iocb: target I/O control block
206 * @iov: array of vectors that define I/O buffer
207 * @pos: offset in file to begin the operation
208 * @nr_segs: size of iovec array
210 * The presence of this routine in the address space ops vector means
211 * the NFS client supports direct I/O. However, for most direct IO, we
212 * shunt off direct read and write requests before the VFS gets them,
213 * so this method is only ever called for swap.
215 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
217 #ifndef CONFIG_NFS_SWAP
218 dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
219 iocb->ki_filp, (long long) pos, iter->nr_segs);
223 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
225 if (rw == READ || rw == KERNEL_READ)
226 return nfs_file_direct_read(iocb, iter, pos,
227 rw == READ ? true : false);
228 return nfs_file_direct_write(iocb, iter, pos,
229 rw == WRITE ? true : false);
230 #endif /* CONFIG_NFS_SWAP */
233 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
236 for (i = 0; i < npages; i++)
237 page_cache_release(pages[i]);
240 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
241 struct nfs_direct_req *dreq)
243 cinfo->lock = &dreq->lock;
244 cinfo->mds = &dreq->mds_cinfo;
245 cinfo->ds = &dreq->ds_cinfo;
247 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
250 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
252 struct nfs_direct_req *dreq;
254 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
258 kref_init(&dreq->kref);
259 kref_get(&dreq->kref);
260 init_completion(&dreq->completion);
261 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
262 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
263 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
264 spin_lock_init(&dreq->lock);
269 static void nfs_direct_req_free(struct kref *kref)
271 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
273 if (dreq->l_ctx != NULL)
274 nfs_put_lock_context(dreq->l_ctx);
275 if (dreq->ctx != NULL)
276 put_nfs_open_context(dreq->ctx);
277 kmem_cache_free(nfs_direct_cachep, dreq);
280 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
282 kref_put(&dreq->kref, nfs_direct_req_free);
285 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
287 return dreq->bytes_left;
289 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
292 * Collects and returns the final error value/byte-count.
294 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
296 ssize_t result = -EIOCBQUEUED;
298 /* Async requests don't wait here */
302 result = wait_for_completion_killable(&dreq->completion);
305 result = dreq->error;
307 result = dreq->count;
310 return (ssize_t) result;
314 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
315 * the iocb is still valid here if this is a synchronous request.
317 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
319 struct inode *inode = dreq->inode;
321 if (dreq->iocb && write) {
322 loff_t pos = dreq->iocb->ki_pos + dreq->count;
324 spin_lock(&inode->i_lock);
325 if (i_size_read(inode) < pos)
326 i_size_write(inode, pos);
327 spin_unlock(&inode->i_lock);
331 nfs_zap_mapping(inode, inode->i_mapping);
333 inode_dio_done(inode);
336 long res = (long) dreq->error;
338 res = (long) dreq->count;
339 aio_complete(dreq->iocb, res, 0);
342 complete_all(&dreq->completion);
344 nfs_direct_req_release(dreq);
347 static void nfs_direct_readpage_release(struct nfs_page *req)
349 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
350 req->wb_context->dentry->d_inode->i_sb->s_id,
351 (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
353 (long long)req_offset(req));
354 nfs_release_request(req);
357 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
359 unsigned long bytes = 0;
360 struct nfs_direct_req *dreq = hdr->dreq;
362 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
365 spin_lock(&dreq->lock);
366 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
367 dreq->error = hdr->error;
369 dreq->count += hdr->good_bytes;
370 spin_unlock(&dreq->lock);
372 while (!list_empty(&hdr->pages)) {
373 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
374 struct page *page = req->wb_page;
376 if (!PageCompound(page) && bytes < hdr->good_bytes)
377 set_page_dirty(page);
378 bytes += req->wb_bytes;
379 nfs_list_remove_request(req);
380 nfs_direct_readpage_release(req);
384 nfs_direct_complete(dreq, false);
388 static void nfs_read_sync_pgio_error(struct list_head *head)
390 struct nfs_page *req;
392 while (!list_empty(head)) {
393 req = nfs_list_entry(head->next);
394 nfs_list_remove_request(req);
395 nfs_release_request(req);
399 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
404 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
405 .error_cleanup = nfs_read_sync_pgio_error,
406 .init_hdr = nfs_direct_pgio_init,
407 .completion = nfs_direct_read_completion,
411 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
412 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
413 * bail and stop sending more reads. Read length accounting is
414 * handled automatically by nfs_direct_read_result(). Otherwise, if
415 * no requests have been sent, just return an error.
418 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
419 struct iov_iter *iter,
422 struct nfs_pageio_descriptor desc;
423 struct inode *inode = dreq->inode;
424 ssize_t result = -EINVAL;
425 size_t requested_bytes = 0;
426 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
428 nfs_pageio_init_read(&desc, dreq->inode, false,
429 &nfs_direct_read_completion_ops);
432 atomic_inc(&inode->i_dio_count);
434 while (iov_iter_count(iter)) {
435 struct page **pagevec;
440 result = iov_iter_get_pages_alloc(iter, &pagevec,
446 iov_iter_advance(iter, bytes);
447 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
448 for (i = 0; i < npages; i++) {
449 struct nfs_page *req;
450 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
451 /* XXX do we need to do the eof zeroing found in async_filler? */
452 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
455 result = PTR_ERR(req);
458 req->wb_index = pos >> PAGE_SHIFT;
459 req->wb_offset = pos & ~PAGE_MASK;
460 if (!nfs_pageio_add_request(&desc, req)) {
461 result = desc.pg_error;
462 nfs_release_request(req);
467 requested_bytes += req_len;
469 dreq->bytes_left -= req_len;
471 nfs_direct_release_pages(pagevec, npages);
477 nfs_pageio_complete(&desc);
480 * If no bytes were started, return the error, and let the
481 * generic layer handle the completion.
483 if (requested_bytes == 0) {
484 inode_dio_done(inode);
485 nfs_direct_req_release(dreq);
486 return result < 0 ? result : -EIO;
490 nfs_direct_complete(dreq, false);
495 * nfs_file_direct_read - file direct read operation for NFS files
496 * @iocb: target I/O control block
497 * @iter: vector of user buffers into which to read data
498 * @pos: byte offset in file where reading starts
500 * We use this function for direct reads instead of calling
501 * generic_file_aio_read() in order to avoid gfar's check to see if
502 * the request starts before the end of the file. For that check
503 * to work, we must generate a GETATTR before each direct read, and
504 * even then there is a window between the GETATTR and the subsequent
505 * READ where the file size could change. Our preference is simply
506 * to do all reads the application wants, and the server will take
507 * care of managing the end of file boundary.
509 * This function also eliminates unnecessarily updating the file's
510 * atime locally, as the NFS server sets the file's atime, and this
511 * client must read the updated atime from the server back into its
514 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
515 loff_t pos, bool uio)
517 struct file *file = iocb->ki_filp;
518 struct address_space *mapping = file->f_mapping;
519 struct inode *inode = mapping->host;
520 struct nfs_direct_req *dreq;
521 struct nfs_lock_context *l_ctx;
522 ssize_t result = -EINVAL;
523 size_t count = iov_iter_count(iter);
524 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
526 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
527 file, count, (long long) pos);
533 mutex_lock(&inode->i_mutex);
534 result = nfs_sync_mapping(mapping);
538 task_io_account_read(count);
541 dreq = nfs_direct_req_alloc();
546 dreq->bytes_left = count;
547 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
548 l_ctx = nfs_get_lock_context(dreq->ctx);
550 result = PTR_ERR(l_ctx);
554 if (!is_sync_kiocb(iocb))
557 NFS_I(inode)->read_io += count;
558 result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
560 mutex_unlock(&inode->i_mutex);
563 result = nfs_direct_wait(dreq);
565 iocb->ki_pos = pos + result;
568 nfs_direct_req_release(dreq);
572 nfs_direct_req_release(dreq);
574 mutex_unlock(&inode->i_mutex);
579 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
580 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
582 struct nfs_pageio_descriptor desc;
583 struct nfs_page *req, *tmp;
585 struct nfs_commit_info cinfo;
588 nfs_init_cinfo_from_dreq(&cinfo, dreq);
589 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
590 spin_lock(cinfo.lock);
591 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
592 spin_unlock(cinfo.lock);
597 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
598 &nfs_direct_write_completion_ops);
601 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
602 if (!nfs_pageio_add_request(&desc, req)) {
603 nfs_list_remove_request(req);
604 nfs_list_add_request(req, &failed);
605 spin_lock(cinfo.lock);
608 spin_unlock(cinfo.lock);
610 nfs_release_request(req);
612 nfs_pageio_complete(&desc);
614 while (!list_empty(&failed)) {
615 req = nfs_list_entry(failed.next);
616 nfs_list_remove_request(req);
617 nfs_unlock_and_release_request(req);
621 nfs_direct_write_complete(dreq, dreq->inode);
624 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
626 struct nfs_direct_req *dreq = data->dreq;
627 struct nfs_commit_info cinfo;
628 struct nfs_page *req;
629 int status = data->task.tk_status;
631 nfs_init_cinfo_from_dreq(&cinfo, dreq);
633 dprintk("NFS: %5u commit failed with error %d.\n",
634 data->task.tk_pid, status);
635 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
636 } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
637 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
638 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
641 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
642 while (!list_empty(&data->pages)) {
643 req = nfs_list_entry(data->pages.next);
644 nfs_list_remove_request(req);
645 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
646 /* Note the rewrite will go through mds */
647 nfs_mark_request_commit(req, NULL, &cinfo);
649 nfs_release_request(req);
650 nfs_unlock_and_release_request(req);
653 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
654 nfs_direct_write_complete(dreq, data->inode);
657 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
659 /* There is no lock to clear */
662 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
663 .completion = nfs_direct_commit_complete,
664 .error_cleanup = nfs_direct_error_cleanup,
667 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
670 struct nfs_commit_info cinfo;
673 nfs_init_cinfo_from_dreq(&cinfo, dreq);
674 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
675 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
676 if (res < 0) /* res == -ENOMEM */
677 nfs_direct_write_reschedule(dreq);
680 static void nfs_direct_write_schedule_work(struct work_struct *work)
682 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
683 int flags = dreq->flags;
687 case NFS_ODIRECT_DO_COMMIT:
688 nfs_direct_commit_schedule(dreq);
690 case NFS_ODIRECT_RESCHED_WRITES:
691 nfs_direct_write_reschedule(dreq);
694 nfs_direct_complete(dreq, true);
698 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
700 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
704 static void nfs_direct_write_schedule_work(struct work_struct *work)
708 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
710 nfs_direct_complete(dreq, true);
714 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
716 struct nfs_direct_req *dreq = hdr->dreq;
717 struct nfs_commit_info cinfo;
719 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
721 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
724 nfs_init_cinfo_from_dreq(&cinfo, dreq);
726 spin_lock(&dreq->lock);
728 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
730 dreq->error = hdr->error;
732 if (dreq->error != 0)
733 bit = NFS_IOHDR_ERROR;
735 dreq->count += hdr->good_bytes;
736 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
737 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
738 bit = NFS_IOHDR_NEED_RESCHED;
739 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
740 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
741 bit = NFS_IOHDR_NEED_RESCHED;
742 else if (dreq->flags == 0) {
743 nfs_direct_set_hdr_verf(dreq, hdr);
744 bit = NFS_IOHDR_NEED_COMMIT;
745 dreq->flags = NFS_ODIRECT_DO_COMMIT;
746 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
747 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr)) {
749 NFS_ODIRECT_RESCHED_WRITES;
750 bit = NFS_IOHDR_NEED_RESCHED;
752 bit = NFS_IOHDR_NEED_COMMIT;
756 spin_unlock(&dreq->lock);
758 while (!list_empty(&hdr->pages)) {
759 bool do_destroy = true;
761 req = nfs_list_entry(hdr->pages.next);
762 nfs_list_remove_request(req);
764 case NFS_IOHDR_NEED_RESCHED:
765 case NFS_IOHDR_NEED_COMMIT:
766 kref_get(&req->wb_kref);
767 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
770 nfs_unlock_and_release_request(req);
775 nfs_direct_write_complete(dreq, hdr->inode);
779 static void nfs_write_sync_pgio_error(struct list_head *head)
781 struct nfs_page *req;
783 while (!list_empty(head)) {
784 req = nfs_list_entry(head->next);
785 nfs_list_remove_request(req);
786 nfs_unlock_and_release_request(req);
790 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
791 .error_cleanup = nfs_write_sync_pgio_error,
792 .init_hdr = nfs_direct_pgio_init,
793 .completion = nfs_direct_write_completion,
798 * NB: Return the value of the first error return code. Subsequent
799 * errors after the first one are ignored.
802 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
803 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
804 * bail and stop sending more writes. Write length accounting is
805 * handled automatically by nfs_direct_write_result(). Otherwise, if
806 * no requests have been sent, just return an error.
808 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
809 struct iov_iter *iter,
812 struct nfs_pageio_descriptor desc;
813 struct inode *inode = dreq->inode;
815 size_t requested_bytes = 0;
816 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
818 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
819 &nfs_direct_write_completion_ops);
822 atomic_inc(&inode->i_dio_count);
824 NFS_I(inode)->write_io += iov_iter_count(iter);
825 while (iov_iter_count(iter)) {
826 struct page **pagevec;
831 result = iov_iter_get_pages_alloc(iter, &pagevec,
837 iov_iter_advance(iter, bytes);
838 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
839 for (i = 0; i < npages; i++) {
840 struct nfs_page *req;
841 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
843 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
846 result = PTR_ERR(req);
849 nfs_lock_request(req);
850 req->wb_index = pos >> PAGE_SHIFT;
851 req->wb_offset = pos & ~PAGE_MASK;
852 if (!nfs_pageio_add_request(&desc, req)) {
853 result = desc.pg_error;
854 nfs_unlock_and_release_request(req);
859 requested_bytes += req_len;
861 dreq->bytes_left -= req_len;
863 nfs_direct_release_pages(pagevec, npages);
868 nfs_pageio_complete(&desc);
871 * If no bytes were started, return the error, and let the
872 * generic layer handle the completion.
874 if (requested_bytes == 0) {
875 inode_dio_done(inode);
876 nfs_direct_req_release(dreq);
877 return result < 0 ? result : -EIO;
881 nfs_direct_write_complete(dreq, dreq->inode);
886 * nfs_file_direct_write - file direct write operation for NFS files
887 * @iocb: target I/O control block
888 * @iter: vector of user buffers from which to write data
889 * @pos: byte offset in file where writing starts
891 * We use this function for direct writes instead of calling
892 * generic_file_aio_write() in order to avoid taking the inode
893 * semaphore and updating the i_size. The NFS server will set
894 * the new i_size and this client must read the updated size
895 * back into its cache. We let the server do generic write
896 * parameter checking and report problems.
898 * We eliminate local atime updates, see direct read above.
900 * We avoid unnecessary page cache invalidations for normal cached
901 * readers of this file.
903 * Note that O_APPEND is not supported for NFS direct writes, as there
904 * is no atomic O_APPEND write facility in the NFS protocol.
906 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
907 loff_t pos, bool uio)
909 ssize_t result = -EINVAL;
910 struct file *file = iocb->ki_filp;
911 struct address_space *mapping = file->f_mapping;
912 struct inode *inode = mapping->host;
913 struct nfs_direct_req *dreq;
914 struct nfs_lock_context *l_ctx;
916 size_t count = iov_iter_count(iter);
917 end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
919 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
921 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
922 file, count, (long long) pos);
924 result = generic_write_checks(file, &pos, &count, 0);
929 if ((ssize_t) count < 0)
935 mutex_lock(&inode->i_mutex);
937 result = nfs_sync_mapping(mapping);
941 if (mapping->nrpages) {
942 result = invalidate_inode_pages2_range(mapping,
943 pos >> PAGE_CACHE_SHIFT, end);
948 task_io_account_write(count);
951 dreq = nfs_direct_req_alloc();
956 dreq->bytes_left = count;
957 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
958 l_ctx = nfs_get_lock_context(dreq->ctx);
960 result = PTR_ERR(l_ctx);
964 if (!is_sync_kiocb(iocb))
967 result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
969 if (mapping->nrpages) {
970 invalidate_inode_pages2_range(mapping,
971 pos >> PAGE_CACHE_SHIFT, end);
974 mutex_unlock(&inode->i_mutex);
977 result = nfs_direct_wait(dreq);
979 struct inode *inode = mapping->host;
981 iocb->ki_pos = pos + result;
982 spin_lock(&inode->i_lock);
983 if (i_size_read(inode) < iocb->ki_pos)
984 i_size_write(inode, iocb->ki_pos);
985 spin_unlock(&inode->i_lock);
988 nfs_direct_req_release(dreq);
992 nfs_direct_req_release(dreq);
994 mutex_unlock(&inode->i_mutex);
1000 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1003 int __init nfs_init_directcache(void)
1005 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1006 sizeof(struct nfs_direct_req),
1007 0, (SLAB_RECLAIM_ACCOUNT|
1010 if (nfs_direct_cachep == NULL)
1017 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1020 void nfs_destroy_directcache(void)
1022 kmem_cache_destroy(nfs_direct_cachep);