]> Git Repo - linux.git/blob - fs/ext4/mballoc.c
modpost: inform compilers that fatal() never returns
[linux.git] / fs / ext4 / mballoc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, [email protected]
4  * Written by Alex Tomas <[email protected]>
5  */
6
7
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
22
23 /*
24  * MUSTDO:
25  *   - test ext4_ext_search_left() and ext4_ext_search_right()
26  *   - search for metadata in few groups
27  *
28  * TODO v4:
29  *   - normalization should take into account whether file is still open
30  *   - discard preallocations if no free space left (policy?)
31  *   - don't normalize tails
32  *   - quota
33  *   - reservation for superuser
34  *
35  * TODO v3:
36  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
37  *   - track min/max extents in each group for better group selection
38  *   - mb_mark_used() may allocate chunk right after splitting buddy
39  *   - tree of groups sorted by number of free blocks
40  *   - error handling
41  */
42
43 /*
44  * The allocation request involve request for multiple number of blocks
45  * near to the goal(block) value specified.
46  *
47  * During initialization phase of the allocator we decide to use the
48  * group preallocation or inode preallocation depending on the size of
49  * the file. The size of the file could be the resulting file size we
50  * would have after allocation, or the current file size, which ever
51  * is larger. If the size is less than sbi->s_mb_stream_request we
52  * select to use the group preallocation. The default value of
53  * s_mb_stream_request is 16 blocks. This can also be tuned via
54  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55  * terms of number of blocks.
56  *
57  * The main motivation for having small file use group preallocation is to
58  * ensure that we have small files closer together on the disk.
59  *
60  * First stage the allocator looks at the inode prealloc list,
61  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62  * spaces for this particular inode. The inode prealloc space is
63  * represented as:
64  *
65  * pa_lstart -> the logical start block for this prealloc space
66  * pa_pstart -> the physical start block for this prealloc space
67  * pa_len    -> length for this prealloc space (in clusters)
68  * pa_free   ->  free space available in this prealloc space (in clusters)
69  *
70  * The inode preallocation space is used looking at the _logical_ start
71  * block. If only the logical file block falls within the range of prealloc
72  * space we will consume the particular prealloc space. This makes sure that
73  * we have contiguous physical blocks representing the file blocks
74  *
75  * The important thing to be noted in case of inode prealloc space is that
76  * we don't modify the values associated to inode prealloc space except
77  * pa_free.
78  *
79  * If we are not able to find blocks in the inode prealloc space and if we
80  * have the group allocation flag set then we look at the locality group
81  * prealloc space. These are per CPU prealloc list represented as
82  *
83  * ext4_sb_info.s_locality_groups[smp_processor_id()]
84  *
85  * The reason for having a per cpu locality group is to reduce the contention
86  * between CPUs. It is possible to get scheduled at this point.
87  *
88  * The locality group prealloc space is used looking at whether we have
89  * enough free space (pa_free) within the prealloc space.
90  *
91  * If we can't allocate blocks via inode prealloc or/and locality group
92  * prealloc then we look at the buddy cache. The buddy cache is represented
93  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94  * mapped to the buddy and bitmap information regarding different
95  * groups. The buddy information is attached to buddy cache inode so that
96  * we can access them through the page cache. The information regarding
97  * each group is loaded via ext4_mb_load_buddy.  The information involve
98  * block bitmap and buddy information. The information are stored in the
99  * inode as:
100  *
101  *  {                        page                        }
102  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103  *
104  *
105  * one block each for bitmap and buddy information.  So for each group we
106  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107  * blocksize) blocks.  So it can have information regarding groups_per_page
108  * which is blocks_per_page/2
109  *
110  * The buddy cache inode is not stored on disk. The inode is thrown
111  * away when the filesystem is unmounted.
112  *
113  * We look for count number of blocks in the buddy cache. If we were able
114  * to locate that many free blocks we return with additional information
115  * regarding rest of the contiguous physical block available
116  *
117  * Before allocating blocks via buddy cache we normalize the request
118  * blocks. This ensure we ask for more blocks that we needed. The extra
119  * blocks that we get after allocation is added to the respective prealloc
120  * list. In case of inode preallocation we follow a list of heuristics
121  * based on file size. This can be found in ext4_mb_normalize_request. If
122  * we are doing a group prealloc we try to normalize the request to
123  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
124  * dependent on the cluster size; for non-bigalloc file systems, it is
125  * 512 blocks. This can be tuned via
126  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * smallest multiple of the stripe value (sbi->s_stripe) which is
130  * greater than the default mb_group_prealloc.
131  *
132  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133  * structures in two data structures:
134  *
135  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136  *
137  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138  *
139  *    This is an array of lists where the index in the array represents the
140  *    largest free order in the buddy bitmap of the participating group infos of
141  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142  *    number of buddy bitmap orders possible) number of lists. Group-infos are
143  *    placed in appropriate lists.
144  *
145  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146  *
147  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148  *
149  *    This is an array of lists where in the i-th list there are groups with
150  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
151  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152  *    Note that we don't bother with a special list for completely empty groups
153  *    so we only have MB_NUM_ORDERS(sb) lists.
154  *
155  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156  * structures to decide the order in which groups are to be traversed for
157  * fulfilling an allocation request.
158  *
159  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160  * >= the order of the request. We directly look at the largest free order list
161  * in the data structure (1) above where largest_free_order = order of the
162  * request. If that list is empty, we look at remaining list in the increasing
163  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164  * lookup in O(1) time.
165  *
166  * At CR_GOAL_LEN_FAST, we only consider groups where
167  * average fragment size > request size. So, we lookup a group which has average
168  * fragment size just above or equal to request size using our average fragment
169  * size group lists (data structure 2) in O(1) time.
170  *
171  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174  * fragment size > goal length. So before falling to the slower
175  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177  * enough average fragment size. This increases the chances of finding a
178  * suitable block group in O(1) time and results in faster allocation at the
179  * cost of reduced size of allocation.
180  *
181  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183  * CR_GOAL_LEN_FAST phase.
184  *
185  * The regular allocator (using the buddy cache) supports a few tunables.
186  *
187  * /sys/fs/ext4/<partition>/mb_min_to_scan
188  * /sys/fs/ext4/<partition>/mb_max_to_scan
189  * /sys/fs/ext4/<partition>/mb_order2_req
190  * /sys/fs/ext4/<partition>/mb_linear_limit
191  *
192  * The regular allocator uses buddy scan only if the request len is power of
193  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194  * value of s_mb_order2_reqs can be tuned via
195  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
196  * stripe size (sbi->s_stripe), we try to search for contiguous block in
197  * stripe size. This should result in better allocation on RAID setups. If
198  * not, we search in the specific group using bitmap for best extents. The
199  * tunable min_to_scan and max_to_scan control the behaviour here.
200  * min_to_scan indicate how long the mballoc __must__ look for a best
201  * extent and max_to_scan indicates how long the mballoc __can__ look for a
202  * best extent in the found extents. Searching for the blocks starts with
203  * the group specified as the goal value in allocation context via
204  * ac_g_ex. Each group is first checked based on the criteria whether it
205  * can be used for allocation. ext4_mb_good_group explains how the groups are
206  * checked.
207  *
208  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209  * get traversed linearly. That may result in subsequent allocations being not
210  * close to each other. And so, the underlying device may get filled up in a
211  * non-linear fashion. While that may not matter on non-rotational devices, for
212  * rotational devices that may result in higher seek times. "mb_linear_limit"
213  * tells mballoc how many groups mballoc should search linearly before
214  * performing consulting above data structures for more efficient lookups. For
215  * non rotational devices, this value defaults to 0 and for rotational devices
216  * this is set to MB_DEFAULT_LINEAR_LIMIT.
217  *
218  * Both the prealloc space are getting populated as above. So for the first
219  * request we will hit the buddy cache which will result in this prealloc
220  * space getting filled. The prealloc space is then later used for the
221  * subsequent request.
222  */
223
224 /*
225  * mballoc operates on the following data:
226  *  - on-disk bitmap
227  *  - in-core buddy (actually includes buddy and bitmap)
228  *  - preallocation descriptors (PAs)
229  *
230  * there are two types of preallocations:
231  *  - inode
232  *    assiged to specific inode and can be used for this inode only.
233  *    it describes part of inode's space preallocated to specific
234  *    physical blocks. any block from that preallocated can be used
235  *    independent. the descriptor just tracks number of blocks left
236  *    unused. so, before taking some block from descriptor, one must
237  *    make sure corresponded logical block isn't allocated yet. this
238  *    also means that freeing any block within descriptor's range
239  *    must discard all preallocated blocks.
240  *  - locality group
241  *    assigned to specific locality group which does not translate to
242  *    permanent set of inodes: inode can join and leave group. space
243  *    from this type of preallocation can be used for any inode. thus
244  *    it's consumed from the beginning to the end.
245  *
246  * relation between them can be expressed as:
247  *    in-core buddy = on-disk bitmap + preallocation descriptors
248  *
249  * this mean blocks mballoc considers used are:
250  *  - allocated blocks (persistent)
251  *  - preallocated blocks (non-persistent)
252  *
253  * consistency in mballoc world means that at any time a block is either
254  * free or used in ALL structures. notice: "any time" should not be read
255  * literally -- time is discrete and delimited by locks.
256  *
257  *  to keep it simple, we don't use block numbers, instead we count number of
258  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259  *
260  * all operations can be expressed as:
261  *  - init buddy:                       buddy = on-disk + PAs
262  *  - new PA:                           buddy += N; PA = N
263  *  - use inode PA:                     on-disk += N; PA -= N
264  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
265  *  - use locality group PA             on-disk += N; PA -= N
266  *  - discard locality group PA         buddy -= PA; PA = 0
267  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268  *        is used in real operation because we can't know actual used
269  *        bits from PA, only from on-disk bitmap
270  *
271  * if we follow this strict logic, then all operations above should be atomic.
272  * given some of them can block, we'd have to use something like semaphores
273  * killing performance on high-end SMP hardware. let's try to relax it using
274  * the following knowledge:
275  *  1) if buddy is referenced, it's already initialized
276  *  2) while block is used in buddy and the buddy is referenced,
277  *     nobody can re-allocate that block
278  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
280  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281  *     block
282  *
283  * so, now we're building a concurrency table:
284  *  - init buddy vs.
285  *    - new PA
286  *      blocks for PA are allocated in the buddy, buddy must be referenced
287  *      until PA is linked to allocation group to avoid concurrent buddy init
288  *    - use inode PA
289  *      we need to make sure that either on-disk bitmap or PA has uptodate data
290  *      given (3) we care that PA-=N operation doesn't interfere with init
291  *    - discard inode PA
292  *      the simplest way would be to have buddy initialized by the discard
293  *    - use locality group PA
294  *      again PA-=N must be serialized with init
295  *    - discard locality group PA
296  *      the simplest way would be to have buddy initialized by the discard
297  *  - new PA vs.
298  *    - use inode PA
299  *      i_data_sem serializes them
300  *    - discard inode PA
301  *      discard process must wait until PA isn't used by another process
302  *    - use locality group PA
303  *      some mutex should serialize them
304  *    - discard locality group PA
305  *      discard process must wait until PA isn't used by another process
306  *  - use inode PA
307  *    - use inode PA
308  *      i_data_sem or another mutex should serializes them
309  *    - discard inode PA
310  *      discard process must wait until PA isn't used by another process
311  *    - use locality group PA
312  *      nothing wrong here -- they're different PAs covering different blocks
313  *    - discard locality group PA
314  *      discard process must wait until PA isn't used by another process
315  *
316  * now we're ready to make few consequences:
317  *  - PA is referenced and while it is no discard is possible
318  *  - PA is referenced until block isn't marked in on-disk bitmap
319  *  - PA changes only after on-disk bitmap
320  *  - discard must not compete with init. either init is done before
321  *    any discard or they're serialized somehow
322  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
323  *
324  * a special case when we've used PA to emptiness. no need to modify buddy
325  * in this case, but we should care about concurrent init
326  *
327  */
328
329  /*
330  * Logic in few words:
331  *
332  *  - allocation:
333  *    load group
334  *    find blocks
335  *    mark bits in on-disk bitmap
336  *    release group
337  *
338  *  - use preallocation:
339  *    find proper PA (per-inode or group)
340  *    load group
341  *    mark bits in on-disk bitmap
342  *    release group
343  *    release PA
344  *
345  *  - free:
346  *    load group
347  *    mark bits in on-disk bitmap
348  *    release group
349  *
350  *  - discard preallocations in group:
351  *    mark PAs deleted
352  *    move them onto local list
353  *    load on-disk bitmap
354  *    load group
355  *    remove PA from object (inode or locality group)
356  *    mark free blocks in-core
357  *
358  *  - discard inode's preallocations:
359  */
360
361 /*
362  * Locking rules
363  *
364  * Locks:
365  *  - bitlock on a group        (group)
366  *  - object (inode/locality)   (object)
367  *  - per-pa lock               (pa)
368  *  - cr_power2_aligned lists lock      (cr_power2_aligned)
369  *  - cr_goal_len_fast lists lock       (cr_goal_len_fast)
370  *
371  * Paths:
372  *  - new pa
373  *    object
374  *    group
375  *
376  *  - find and use pa:
377  *    pa
378  *
379  *  - release consumed pa:
380  *    pa
381  *    group
382  *    object
383  *
384  *  - generate in-core bitmap:
385  *    group
386  *        pa
387  *
388  *  - discard all for given object (inode, locality group):
389  *    object
390  *        pa
391  *    group
392  *
393  *  - discard all for given group:
394  *    group
395  *        pa
396  *    group
397  *        object
398  *
399  *  - allocation path (ext4_mb_regular_allocator)
400  *    group
401  *    cr_power2_aligned/cr_goal_len_fast
402  */
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
406
407 /* We create slab caches for groupinfo data structures based on the
408  * superblock block size.  There will be one per mounted filesystem for
409  * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414         "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415         "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416         "ext4_groupinfo_64k", "ext4_groupinfo_128k"
417 };
418
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420                                         ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424                                ext4_group_t group, enum criteria cr);
425
426 static int ext4_try_to_trim_range(struct super_block *sb,
427                 struct ext4_buddy *e4b, ext4_grpblk_t start,
428                 ext4_grpblk_t max, ext4_grpblk_t minblocks);
429
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451         int __cpu;
452         u64 __seq = 0;
453
454         for_each_possible_cpu(__cpu)
455                 __seq += per_cpu(discard_pa_seq, __cpu);
456         return __seq;
457 }
458
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462         *bit += ((unsigned long) addr & 7UL) << 3;
463         addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465         *bit += ((unsigned long) addr & 3UL) << 3;
466         addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470         return addr;
471 }
472
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475         /*
476          * ext4_test_bit on architecture like powerpc
477          * needs unsigned long aligned address
478          */
479         addr = mb_correct_addr_and_bit(&bit, addr);
480         return ext4_test_bit(bit, addr);
481 }
482
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485         addr = mb_correct_addr_and_bit(&bit, addr);
486         ext4_set_bit(bit, addr);
487 }
488
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491         addr = mb_correct_addr_and_bit(&bit, addr);
492         ext4_clear_bit(bit, addr);
493 }
494
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497         addr = mb_correct_addr_and_bit(&bit, addr);
498         return ext4_test_and_clear_bit(bit, addr);
499 }
500
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503         int fix = 0, ret, tmpmax;
504         addr = mb_correct_addr_and_bit(&fix, addr);
505         tmpmax = max + fix;
506         start += fix;
507
508         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509         if (ret > max)
510                 return max;
511         return ret;
512 }
513
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516         int fix = 0, ret, tmpmax;
517         addr = mb_correct_addr_and_bit(&fix, addr);
518         tmpmax = max + fix;
519         start += fix;
520
521         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522         if (ret > max)
523                 return max;
524         return ret;
525 }
526
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529         char *bb;
530
531         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532         BUG_ON(max == NULL);
533
534         if (order > e4b->bd_blkbits + 1) {
535                 *max = 0;
536                 return NULL;
537         }
538
539         /* at order 0 we see each particular block */
540         if (order == 0) {
541                 *max = 1 << (e4b->bd_blkbits + 3);
542                 return e4b->bd_bitmap;
543         }
544
545         bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547
548         return bb;
549 }
550
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553                            int first, int count)
554 {
555         int i;
556         struct super_block *sb = e4b->bd_sb;
557
558         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559                 return;
560         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561         for (i = 0; i < count; i++) {
562                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563                         ext4_fsblk_t blocknr;
564
565                         blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566                         blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567                         ext4_grp_locked_error(sb, e4b->bd_group,
568                                               inode ? inode->i_ino : 0,
569                                               blocknr,
570                                               "freeing block already freed "
571                                               "(bit %u)",
572                                               first + i);
573                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
574                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
575                 }
576                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577         }
578 }
579
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582         int i;
583
584         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585                 return;
586         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587         for (i = 0; i < count; i++) {
588                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590         }
591 }
592
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596                 return;
597         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598                 unsigned char *b1, *b2;
599                 int i;
600                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601                 b2 = (unsigned char *) bitmap;
602                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603                         if (b1[i] != b2[i]) {
604                                 ext4_msg(e4b->bd_sb, KERN_ERR,
605                                          "corruption in group %u "
606                                          "at byte %u(%u): %x in copy != %x "
607                                          "on disk/prealloc",
608                                          e4b->bd_group, i, i * 8, b1[i], b2[i]);
609                                 BUG();
610                         }
611                 }
612         }
613 }
614
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616                         struct ext4_group_info *grp, ext4_group_t group)
617 {
618         struct buffer_head *bh;
619
620         grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621         if (!grp->bb_bitmap)
622                 return;
623
624         bh = ext4_read_block_bitmap(sb, group);
625         if (IS_ERR_OR_NULL(bh)) {
626                 kfree(grp->bb_bitmap);
627                 grp->bb_bitmap = NULL;
628                 return;
629         }
630
631         memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632         put_bh(bh);
633 }
634
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637         kfree(grp->bb_bitmap);
638 }
639
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642                                 struct ext4_buddy *e4b, int first, int count)
643 {
644         return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647                                                 int first, int count)
648 {
649         return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653         return;
654 }
655
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657                         struct ext4_group_info *grp, ext4_group_t group)
658 {
659         return;
660 }
661
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664         return;
665 }
666 #endif
667
668 #ifdef AGGRESSIVE_CHECK
669
670 #define MB_CHECK_ASSERT(assert)                                         \
671 do {                                                                    \
672         if (!(assert)) {                                                \
673                 printk(KERN_EMERG                                       \
674                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675                         function, file, line, # assert);                \
676                 BUG();                                                  \
677         }                                                               \
678 } while (0)
679
680 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681                                 const char *function, int line)
682 {
683         struct super_block *sb = e4b->bd_sb;
684         int order = e4b->bd_blkbits + 1;
685         int max;
686         int max2;
687         int i;
688         int j;
689         int k;
690         int count;
691         struct ext4_group_info *grp;
692         int fragments = 0;
693         int fstart;
694         struct list_head *cur;
695         void *buddy;
696         void *buddy2;
697
698         if (e4b->bd_info->bb_check_counter++ % 10)
699                 return 0;
700
701         while (order > 1) {
702                 buddy = mb_find_buddy(e4b, order, &max);
703                 MB_CHECK_ASSERT(buddy);
704                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705                 MB_CHECK_ASSERT(buddy2);
706                 MB_CHECK_ASSERT(buddy != buddy2);
707                 MB_CHECK_ASSERT(max * 2 == max2);
708
709                 count = 0;
710                 for (i = 0; i < max; i++) {
711
712                         if (mb_test_bit(i, buddy)) {
713                                 /* only single bit in buddy2 may be 0 */
714                                 if (!mb_test_bit(i << 1, buddy2)) {
715                                         MB_CHECK_ASSERT(
716                                                 mb_test_bit((i<<1)+1, buddy2));
717                                 }
718                                 continue;
719                         }
720
721                         /* both bits in buddy2 must be 1 */
722                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724
725                         for (j = 0; j < (1 << order); j++) {
726                                 k = (i * (1 << order)) + j;
727                                 MB_CHECK_ASSERT(
728                                         !mb_test_bit(k, e4b->bd_bitmap));
729                         }
730                         count++;
731                 }
732                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733                 order--;
734         }
735
736         fstart = -1;
737         buddy = mb_find_buddy(e4b, 0, &max);
738         for (i = 0; i < max; i++) {
739                 if (!mb_test_bit(i, buddy)) {
740                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741                         if (fstart == -1) {
742                                 fragments++;
743                                 fstart = i;
744                         }
745                         continue;
746                 }
747                 fstart = -1;
748                 /* check used bits only */
749                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750                         buddy2 = mb_find_buddy(e4b, j, &max2);
751                         k = i >> j;
752                         MB_CHECK_ASSERT(k < max2);
753                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754                 }
755         }
756         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758
759         grp = ext4_get_group_info(sb, e4b->bd_group);
760         if (!grp)
761                 return NULL;
762         list_for_each(cur, &grp->bb_prealloc_list) {
763                 ext4_group_t groupnr;
764                 struct ext4_prealloc_space *pa;
765                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768                 for (i = 0; i < pa->pa_len; i++)
769                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770         }
771         return 0;
772 }
773 #undef MB_CHECK_ASSERT
774 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
775                                         __FILE__, __func__, __LINE__)
776 #else
777 #define mb_check_buddy(e4b)
778 #endif
779
780 /*
781  * Divide blocks started from @first with length @len into
782  * smaller chunks with power of 2 blocks.
783  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
784  * then increase bb_counters[] for corresponded chunk size.
785  */
786 static void ext4_mb_mark_free_simple(struct super_block *sb,
787                                 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
788                                         struct ext4_group_info *grp)
789 {
790         struct ext4_sb_info *sbi = EXT4_SB(sb);
791         ext4_grpblk_t min;
792         ext4_grpblk_t max;
793         ext4_grpblk_t chunk;
794         unsigned int border;
795
796         BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
797
798         border = 2 << sb->s_blocksize_bits;
799
800         while (len > 0) {
801                 /* find how many blocks can be covered since this position */
802                 max = ffs(first | border) - 1;
803
804                 /* find how many blocks of power 2 we need to mark */
805                 min = fls(len) - 1;
806
807                 if (max < min)
808                         min = max;
809                 chunk = 1 << min;
810
811                 /* mark multiblock chunks only */
812                 grp->bb_counters[min]++;
813                 if (min > 0)
814                         mb_clear_bit(first >> min,
815                                      buddy + sbi->s_mb_offsets[min]);
816
817                 len -= chunk;
818                 first += chunk;
819         }
820 }
821
822 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
823 {
824         int order;
825
826         /*
827          * We don't bother with a special lists groups with only 1 block free
828          * extents and for completely empty groups.
829          */
830         order = fls(len) - 2;
831         if (order < 0)
832                 return 0;
833         if (order == MB_NUM_ORDERS(sb))
834                 order--;
835         return order;
836 }
837
838 /* Move group to appropriate avg_fragment_size list */
839 static void
840 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
841 {
842         struct ext4_sb_info *sbi = EXT4_SB(sb);
843         int new_order;
844
845         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
846                 return;
847
848         new_order = mb_avg_fragment_size_order(sb,
849                                         grp->bb_free / grp->bb_fragments);
850         if (new_order == grp->bb_avg_fragment_size_order)
851                 return;
852
853         if (grp->bb_avg_fragment_size_order != -1) {
854                 write_lock(&sbi->s_mb_avg_fragment_size_locks[
855                                         grp->bb_avg_fragment_size_order]);
856                 list_del(&grp->bb_avg_fragment_size_node);
857                 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
858                                         grp->bb_avg_fragment_size_order]);
859         }
860         grp->bb_avg_fragment_size_order = new_order;
861         write_lock(&sbi->s_mb_avg_fragment_size_locks[
862                                         grp->bb_avg_fragment_size_order]);
863         list_add_tail(&grp->bb_avg_fragment_size_node,
864                 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
865         write_unlock(&sbi->s_mb_avg_fragment_size_locks[
866                                         grp->bb_avg_fragment_size_order]);
867 }
868
869 /*
870  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
871  * cr level needs an update.
872  */
873 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
874                         enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
875 {
876         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
877         struct ext4_group_info *iter;
878         int i;
879
880         if (ac->ac_status == AC_STATUS_FOUND)
881                 return;
882
883         if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
884                 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
885
886         for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
887                 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
888                         continue;
889                 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
890                 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
891                         read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
892                         continue;
893                 }
894                 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
895                                     bb_largest_free_order_node) {
896                         if (sbi->s_mb_stats)
897                                 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
898                         if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
899                                 *group = iter->bb_group;
900                                 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
901                                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
902                                 return;
903                         }
904                 }
905                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
906         }
907
908         /* Increment cr and search again if no group is found */
909         *new_cr = CR_GOAL_LEN_FAST;
910 }
911
912 /*
913  * Find a suitable group of given order from the average fragments list.
914  */
915 static struct ext4_group_info *
916 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
917 {
918         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
919         struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
920         rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
921         struct ext4_group_info *grp = NULL, *iter;
922         enum criteria cr = ac->ac_criteria;
923
924         if (list_empty(frag_list))
925                 return NULL;
926         read_lock(frag_list_lock);
927         if (list_empty(frag_list)) {
928                 read_unlock(frag_list_lock);
929                 return NULL;
930         }
931         list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
932                 if (sbi->s_mb_stats)
933                         atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
934                 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
935                         grp = iter;
936                         break;
937                 }
938         }
939         read_unlock(frag_list_lock);
940         return grp;
941 }
942
943 /*
944  * Choose next group by traversing average fragment size list of suitable
945  * order. Updates *new_cr if cr level needs an update.
946  */
947 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
948                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
949 {
950         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
951         struct ext4_group_info *grp = NULL;
952         int i;
953
954         if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
955                 if (sbi->s_mb_stats)
956                         atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
957         }
958
959         for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
960              i < MB_NUM_ORDERS(ac->ac_sb); i++) {
961                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
962                 if (grp) {
963                         *group = grp->bb_group;
964                         ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
965                         return;
966                 }
967         }
968
969         /*
970          * CR_BEST_AVAIL_LEN works based on the concept that we have
971          * a larger normalized goal len request which can be trimmed to
972          * a smaller goal len such that it can still satisfy original
973          * request len. However, allocation request for non-regular
974          * files never gets normalized.
975          * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
976          */
977         if (ac->ac_flags & EXT4_MB_HINT_DATA)
978                 *new_cr = CR_BEST_AVAIL_LEN;
979         else
980                 *new_cr = CR_GOAL_LEN_SLOW;
981 }
982
983 /*
984  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
985  * order we have and proactively trim the goal request length to that order to
986  * find a suitable group faster.
987  *
988  * This optimizes allocation speed at the cost of slightly reduced
989  * preallocations. However, we make sure that we don't trim the request too
990  * much and fall to CR_GOAL_LEN_SLOW in that case.
991  */
992 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
993                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
994 {
995         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
996         struct ext4_group_info *grp = NULL;
997         int i, order, min_order;
998         unsigned long num_stripe_clusters = 0;
999
1000         if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1001                 if (sbi->s_mb_stats)
1002                         atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1003         }
1004
1005         /*
1006          * mb_avg_fragment_size_order() returns order in a way that makes
1007          * retrieving back the length using (1 << order) inaccurate. Hence, use
1008          * fls() instead since we need to know the actual length while modifying
1009          * goal length.
1010          */
1011         order = fls(ac->ac_g_ex.fe_len) - 1;
1012         min_order = order - sbi->s_mb_best_avail_max_trim_order;
1013         if (min_order < 0)
1014                 min_order = 0;
1015
1016         if (sbi->s_stripe > 0) {
1017                 /*
1018                  * We are assuming that stripe size is always a multiple of
1019                  * cluster ratio otherwise __ext4_fill_super exists early.
1020                  */
1021                 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1022                 if (1 << min_order < num_stripe_clusters)
1023                         /*
1024                          * We consider 1 order less because later we round
1025                          * up the goal len to num_stripe_clusters
1026                          */
1027                         min_order = fls(num_stripe_clusters) - 1;
1028         }
1029
1030         if (1 << min_order < ac->ac_o_ex.fe_len)
1031                 min_order = fls(ac->ac_o_ex.fe_len);
1032
1033         for (i = order; i >= min_order; i--) {
1034                 int frag_order;
1035                 /*
1036                  * Scale down goal len to make sure we find something
1037                  * in the free fragments list. Basically, reduce
1038                  * preallocations.
1039                  */
1040                 ac->ac_g_ex.fe_len = 1 << i;
1041
1042                 if (num_stripe_clusters > 0) {
1043                         /*
1044                          * Try to round up the adjusted goal length to
1045                          * stripe size (in cluster units) multiple for
1046                          * efficiency.
1047                          */
1048                         ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1049                                                      num_stripe_clusters);
1050                 }
1051
1052                 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1053                                                         ac->ac_g_ex.fe_len);
1054
1055                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1056                 if (grp) {
1057                         *group = grp->bb_group;
1058                         ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1059                         return;
1060                 }
1061         }
1062
1063         /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1064         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1065         *new_cr = CR_GOAL_LEN_SLOW;
1066 }
1067
1068 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1069 {
1070         if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1071                 return 0;
1072         if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1073                 return 0;
1074         if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1075                 return 0;
1076         return 1;
1077 }
1078
1079 /*
1080  * Return next linear group for allocation. If linear traversal should not be
1081  * performed, this function just returns the same group
1082  */
1083 static ext4_group_t
1084 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1085                   ext4_group_t ngroups)
1086 {
1087         if (!should_optimize_scan(ac))
1088                 goto inc_and_return;
1089
1090         if (ac->ac_groups_linear_remaining) {
1091                 ac->ac_groups_linear_remaining--;
1092                 goto inc_and_return;
1093         }
1094
1095         return group;
1096 inc_and_return:
1097         /*
1098          * Artificially restricted ngroups for non-extent
1099          * files makes group > ngroups possible on first loop.
1100          */
1101         return group + 1 >= ngroups ? 0 : group + 1;
1102 }
1103
1104 /*
1105  * ext4_mb_choose_next_group: choose next group for allocation.
1106  *
1107  * @ac        Allocation Context
1108  * @new_cr    This is an output parameter. If the there is no good group
1109  *            available at current CR level, this field is updated to indicate
1110  *            the new cr level that should be used.
1111  * @group     This is an input / output parameter. As an input it indicates the
1112  *            next group that the allocator intends to use for allocation. As
1113  *            output, this field indicates the next group that should be used as
1114  *            determined by the optimization functions.
1115  * @ngroups   Total number of groups
1116  */
1117 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1118                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1119 {
1120         *new_cr = ac->ac_criteria;
1121
1122         if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1123                 *group = next_linear_group(ac, *group, ngroups);
1124                 return;
1125         }
1126
1127         if (*new_cr == CR_POWER2_ALIGNED) {
1128                 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1129         } else if (*new_cr == CR_GOAL_LEN_FAST) {
1130                 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1131         } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1132                 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1133         } else {
1134                 /*
1135                  * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1136                  * bb_free. But until that happens, we should never come here.
1137                  */
1138                 WARN_ON(1);
1139         }
1140 }
1141
1142 /*
1143  * Cache the order of the largest free extent we have available in this block
1144  * group.
1145  */
1146 static void
1147 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1148 {
1149         struct ext4_sb_info *sbi = EXT4_SB(sb);
1150         int i;
1151
1152         for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1153                 if (grp->bb_counters[i] > 0)
1154                         break;
1155         /* No need to move between order lists? */
1156         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1157             i == grp->bb_largest_free_order) {
1158                 grp->bb_largest_free_order = i;
1159                 return;
1160         }
1161
1162         if (grp->bb_largest_free_order >= 0) {
1163                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1164                                               grp->bb_largest_free_order]);
1165                 list_del_init(&grp->bb_largest_free_order_node);
1166                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1167                                               grp->bb_largest_free_order]);
1168         }
1169         grp->bb_largest_free_order = i;
1170         if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1171                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1172                                               grp->bb_largest_free_order]);
1173                 list_add_tail(&grp->bb_largest_free_order_node,
1174                       &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1175                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1176                                               grp->bb_largest_free_order]);
1177         }
1178 }
1179
1180 static noinline_for_stack
1181 void ext4_mb_generate_buddy(struct super_block *sb,
1182                             void *buddy, void *bitmap, ext4_group_t group,
1183                             struct ext4_group_info *grp)
1184 {
1185         struct ext4_sb_info *sbi = EXT4_SB(sb);
1186         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1187         ext4_grpblk_t i = 0;
1188         ext4_grpblk_t first;
1189         ext4_grpblk_t len;
1190         unsigned free = 0;
1191         unsigned fragments = 0;
1192         unsigned long long period = get_cycles();
1193
1194         /* initialize buddy from bitmap which is aggregation
1195          * of on-disk bitmap and preallocations */
1196         i = mb_find_next_zero_bit(bitmap, max, 0);
1197         grp->bb_first_free = i;
1198         while (i < max) {
1199                 fragments++;
1200                 first = i;
1201                 i = mb_find_next_bit(bitmap, max, i);
1202                 len = i - first;
1203                 free += len;
1204                 if (len > 1)
1205                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1206                 else
1207                         grp->bb_counters[0]++;
1208                 if (i < max)
1209                         i = mb_find_next_zero_bit(bitmap, max, i);
1210         }
1211         grp->bb_fragments = fragments;
1212
1213         if (free != grp->bb_free) {
1214                 ext4_grp_locked_error(sb, group, 0, 0,
1215                                       "block bitmap and bg descriptor "
1216                                       "inconsistent: %u vs %u free clusters",
1217                                       free, grp->bb_free);
1218                 /*
1219                  * If we intend to continue, we consider group descriptor
1220                  * corrupt and update bb_free using bitmap value
1221                  */
1222                 grp->bb_free = free;
1223                 ext4_mark_group_bitmap_corrupted(sb, group,
1224                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1225         }
1226         mb_set_largest_free_order(sb, grp);
1227         mb_update_avg_fragment_size(sb, grp);
1228
1229         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1230
1231         period = get_cycles() - period;
1232         atomic_inc(&sbi->s_mb_buddies_generated);
1233         atomic64_add(period, &sbi->s_mb_generation_time);
1234 }
1235
1236 /* The buddy information is attached the buddy cache inode
1237  * for convenience. The information regarding each group
1238  * is loaded via ext4_mb_load_buddy. The information involve
1239  * block bitmap and buddy information. The information are
1240  * stored in the inode as
1241  *
1242  * {                        page                        }
1243  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1244  *
1245  *
1246  * one block each for bitmap and buddy information.
1247  * So for each group we take up 2 blocks. A page can
1248  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1249  * So it can have information regarding groups_per_page which
1250  * is blocks_per_page/2
1251  *
1252  * Locking note:  This routine takes the block group lock of all groups
1253  * for this page; do not hold this lock when calling this routine!
1254  */
1255
1256 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1257 {
1258         ext4_group_t ngroups;
1259         unsigned int blocksize;
1260         int blocks_per_page;
1261         int groups_per_page;
1262         int err = 0;
1263         int i;
1264         ext4_group_t first_group, group;
1265         int first_block;
1266         struct super_block *sb;
1267         struct buffer_head *bhs;
1268         struct buffer_head **bh = NULL;
1269         struct inode *inode;
1270         char *data;
1271         char *bitmap;
1272         struct ext4_group_info *grinfo;
1273
1274         inode = page->mapping->host;
1275         sb = inode->i_sb;
1276         ngroups = ext4_get_groups_count(sb);
1277         blocksize = i_blocksize(inode);
1278         blocks_per_page = PAGE_SIZE / blocksize;
1279
1280         mb_debug(sb, "init page %lu\n", page->index);
1281
1282         groups_per_page = blocks_per_page >> 1;
1283         if (groups_per_page == 0)
1284                 groups_per_page = 1;
1285
1286         /* allocate buffer_heads to read bitmaps */
1287         if (groups_per_page > 1) {
1288                 i = sizeof(struct buffer_head *) * groups_per_page;
1289                 bh = kzalloc(i, gfp);
1290                 if (bh == NULL)
1291                         return -ENOMEM;
1292         } else
1293                 bh = &bhs;
1294
1295         first_group = page->index * blocks_per_page / 2;
1296
1297         /* read all groups the page covers into the cache */
1298         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1299                 if (group >= ngroups)
1300                         break;
1301
1302                 grinfo = ext4_get_group_info(sb, group);
1303                 if (!grinfo)
1304                         continue;
1305                 /*
1306                  * If page is uptodate then we came here after online resize
1307                  * which added some new uninitialized group info structs, so
1308                  * we must skip all initialized uptodate buddies on the page,
1309                  * which may be currently in use by an allocating task.
1310                  */
1311                 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1312                         bh[i] = NULL;
1313                         continue;
1314                 }
1315                 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1316                 if (IS_ERR(bh[i])) {
1317                         err = PTR_ERR(bh[i]);
1318                         bh[i] = NULL;
1319                         goto out;
1320                 }
1321                 mb_debug(sb, "read bitmap for group %u\n", group);
1322         }
1323
1324         /* wait for I/O completion */
1325         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1326                 int err2;
1327
1328                 if (!bh[i])
1329                         continue;
1330                 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1331                 if (!err)
1332                         err = err2;
1333         }
1334
1335         first_block = page->index * blocks_per_page;
1336         for (i = 0; i < blocks_per_page; i++) {
1337                 group = (first_block + i) >> 1;
1338                 if (group >= ngroups)
1339                         break;
1340
1341                 if (!bh[group - first_group])
1342                         /* skip initialized uptodate buddy */
1343                         continue;
1344
1345                 if (!buffer_verified(bh[group - first_group]))
1346                         /* Skip faulty bitmaps */
1347                         continue;
1348                 err = 0;
1349
1350                 /*
1351                  * data carry information regarding this
1352                  * particular group in the format specified
1353                  * above
1354                  *
1355                  */
1356                 data = page_address(page) + (i * blocksize);
1357                 bitmap = bh[group - first_group]->b_data;
1358
1359                 /*
1360                  * We place the buddy block and bitmap block
1361                  * close together
1362                  */
1363                 grinfo = ext4_get_group_info(sb, group);
1364                 if (!grinfo) {
1365                         err = -EFSCORRUPTED;
1366                         goto out;
1367                 }
1368                 if ((first_block + i) & 1) {
1369                         /* this is block of buddy */
1370                         BUG_ON(incore == NULL);
1371                         mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1372                                 group, page->index, i * blocksize);
1373                         trace_ext4_mb_buddy_bitmap_load(sb, group);
1374                         grinfo->bb_fragments = 0;
1375                         memset(grinfo->bb_counters, 0,
1376                                sizeof(*grinfo->bb_counters) *
1377                                (MB_NUM_ORDERS(sb)));
1378                         /*
1379                          * incore got set to the group block bitmap below
1380                          */
1381                         ext4_lock_group(sb, group);
1382                         /* init the buddy */
1383                         memset(data, 0xff, blocksize);
1384                         ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1385                         ext4_unlock_group(sb, group);
1386                         incore = NULL;
1387                 } else {
1388                         /* this is block of bitmap */
1389                         BUG_ON(incore != NULL);
1390                         mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1391                                 group, page->index, i * blocksize);
1392                         trace_ext4_mb_bitmap_load(sb, group);
1393
1394                         /* see comments in ext4_mb_put_pa() */
1395                         ext4_lock_group(sb, group);
1396                         memcpy(data, bitmap, blocksize);
1397
1398                         /* mark all preallocated blks used in in-core bitmap */
1399                         ext4_mb_generate_from_pa(sb, data, group);
1400                         WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1401                         ext4_unlock_group(sb, group);
1402
1403                         /* set incore so that the buddy information can be
1404                          * generated using this
1405                          */
1406                         incore = data;
1407                 }
1408         }
1409         SetPageUptodate(page);
1410
1411 out:
1412         if (bh) {
1413                 for (i = 0; i < groups_per_page; i++)
1414                         brelse(bh[i]);
1415                 if (bh != &bhs)
1416                         kfree(bh);
1417         }
1418         return err;
1419 }
1420
1421 /*
1422  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1423  * on the same buddy page doesn't happen whild holding the buddy page lock.
1424  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1425  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1426  */
1427 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1428                 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1429 {
1430         struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1431         int block, pnum, poff;
1432         int blocks_per_page;
1433         struct page *page;
1434
1435         e4b->bd_buddy_page = NULL;
1436         e4b->bd_bitmap_page = NULL;
1437
1438         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1439         /*
1440          * the buddy cache inode stores the block bitmap
1441          * and buddy information in consecutive blocks.
1442          * So for each group we need two blocks.
1443          */
1444         block = group * 2;
1445         pnum = block / blocks_per_page;
1446         poff = block % blocks_per_page;
1447         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1448         if (!page)
1449                 return -ENOMEM;
1450         BUG_ON(page->mapping != inode->i_mapping);
1451         e4b->bd_bitmap_page = page;
1452         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1453
1454         if (blocks_per_page >= 2) {
1455                 /* buddy and bitmap are on the same page */
1456                 return 0;
1457         }
1458
1459         block++;
1460         pnum = block / blocks_per_page;
1461         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1462         if (!page)
1463                 return -ENOMEM;
1464         BUG_ON(page->mapping != inode->i_mapping);
1465         e4b->bd_buddy_page = page;
1466         return 0;
1467 }
1468
1469 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1470 {
1471         if (e4b->bd_bitmap_page) {
1472                 unlock_page(e4b->bd_bitmap_page);
1473                 put_page(e4b->bd_bitmap_page);
1474         }
1475         if (e4b->bd_buddy_page) {
1476                 unlock_page(e4b->bd_buddy_page);
1477                 put_page(e4b->bd_buddy_page);
1478         }
1479 }
1480
1481 /*
1482  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1483  * block group lock of all groups for this page; do not hold the BG lock when
1484  * calling this routine!
1485  */
1486 static noinline_for_stack
1487 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1488 {
1489
1490         struct ext4_group_info *this_grp;
1491         struct ext4_buddy e4b;
1492         struct page *page;
1493         int ret = 0;
1494
1495         might_sleep();
1496         mb_debug(sb, "init group %u\n", group);
1497         this_grp = ext4_get_group_info(sb, group);
1498         if (!this_grp)
1499                 return -EFSCORRUPTED;
1500
1501         /*
1502          * This ensures that we don't reinit the buddy cache
1503          * page which map to the group from which we are already
1504          * allocating. If we are looking at the buddy cache we would
1505          * have taken a reference using ext4_mb_load_buddy and that
1506          * would have pinned buddy page to page cache.
1507          * The call to ext4_mb_get_buddy_page_lock will mark the
1508          * page accessed.
1509          */
1510         ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1511         if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1512                 /*
1513                  * somebody initialized the group
1514                  * return without doing anything
1515                  */
1516                 goto err;
1517         }
1518
1519         page = e4b.bd_bitmap_page;
1520         ret = ext4_mb_init_cache(page, NULL, gfp);
1521         if (ret)
1522                 goto err;
1523         if (!PageUptodate(page)) {
1524                 ret = -EIO;
1525                 goto err;
1526         }
1527
1528         if (e4b.bd_buddy_page == NULL) {
1529                 /*
1530                  * If both the bitmap and buddy are in
1531                  * the same page we don't need to force
1532                  * init the buddy
1533                  */
1534                 ret = 0;
1535                 goto err;
1536         }
1537         /* init buddy cache */
1538         page = e4b.bd_buddy_page;
1539         ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1540         if (ret)
1541                 goto err;
1542         if (!PageUptodate(page)) {
1543                 ret = -EIO;
1544                 goto err;
1545         }
1546 err:
1547         ext4_mb_put_buddy_page_lock(&e4b);
1548         return ret;
1549 }
1550
1551 /*
1552  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1553  * block group lock of all groups for this page; do not hold the BG lock when
1554  * calling this routine!
1555  */
1556 static noinline_for_stack int
1557 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1558                        struct ext4_buddy *e4b, gfp_t gfp)
1559 {
1560         int blocks_per_page;
1561         int block;
1562         int pnum;
1563         int poff;
1564         struct page *page;
1565         int ret;
1566         struct ext4_group_info *grp;
1567         struct ext4_sb_info *sbi = EXT4_SB(sb);
1568         struct inode *inode = sbi->s_buddy_cache;
1569
1570         might_sleep();
1571         mb_debug(sb, "load group %u\n", group);
1572
1573         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1574         grp = ext4_get_group_info(sb, group);
1575         if (!grp)
1576                 return -EFSCORRUPTED;
1577
1578         e4b->bd_blkbits = sb->s_blocksize_bits;
1579         e4b->bd_info = grp;
1580         e4b->bd_sb = sb;
1581         e4b->bd_group = group;
1582         e4b->bd_buddy_page = NULL;
1583         e4b->bd_bitmap_page = NULL;
1584
1585         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1586                 /*
1587                  * we need full data about the group
1588                  * to make a good selection
1589                  */
1590                 ret = ext4_mb_init_group(sb, group, gfp);
1591                 if (ret)
1592                         return ret;
1593         }
1594
1595         /*
1596          * the buddy cache inode stores the block bitmap
1597          * and buddy information in consecutive blocks.
1598          * So for each group we need two blocks.
1599          */
1600         block = group * 2;
1601         pnum = block / blocks_per_page;
1602         poff = block % blocks_per_page;
1603
1604         /* we could use find_or_create_page(), but it locks page
1605          * what we'd like to avoid in fast path ... */
1606         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1607         if (page == NULL || !PageUptodate(page)) {
1608                 if (page)
1609                         /*
1610                          * drop the page reference and try
1611                          * to get the page with lock. If we
1612                          * are not uptodate that implies
1613                          * somebody just created the page but
1614                          * is yet to initialize the same. So
1615                          * wait for it to initialize.
1616                          */
1617                         put_page(page);
1618                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1619                 if (page) {
1620                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1621         "ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1622                                 /* should never happen */
1623                                 unlock_page(page);
1624                                 ret = -EINVAL;
1625                                 goto err;
1626                         }
1627                         if (!PageUptodate(page)) {
1628                                 ret = ext4_mb_init_cache(page, NULL, gfp);
1629                                 if (ret) {
1630                                         unlock_page(page);
1631                                         goto err;
1632                                 }
1633                                 mb_cmp_bitmaps(e4b, page_address(page) +
1634                                                (poff * sb->s_blocksize));
1635                         }
1636                         unlock_page(page);
1637                 }
1638         }
1639         if (page == NULL) {
1640                 ret = -ENOMEM;
1641                 goto err;
1642         }
1643         if (!PageUptodate(page)) {
1644                 ret = -EIO;
1645                 goto err;
1646         }
1647
1648         /* Pages marked accessed already */
1649         e4b->bd_bitmap_page = page;
1650         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1651
1652         block++;
1653         pnum = block / blocks_per_page;
1654         poff = block % blocks_per_page;
1655
1656         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1657         if (page == NULL || !PageUptodate(page)) {
1658                 if (page)
1659                         put_page(page);
1660                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1661                 if (page) {
1662                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1663         "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1664                                 /* should never happen */
1665                                 unlock_page(page);
1666                                 ret = -EINVAL;
1667                                 goto err;
1668                         }
1669                         if (!PageUptodate(page)) {
1670                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1671                                                          gfp);
1672                                 if (ret) {
1673                                         unlock_page(page);
1674                                         goto err;
1675                                 }
1676                         }
1677                         unlock_page(page);
1678                 }
1679         }
1680         if (page == NULL) {
1681                 ret = -ENOMEM;
1682                 goto err;
1683         }
1684         if (!PageUptodate(page)) {
1685                 ret = -EIO;
1686                 goto err;
1687         }
1688
1689         /* Pages marked accessed already */
1690         e4b->bd_buddy_page = page;
1691         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1692
1693         return 0;
1694
1695 err:
1696         if (page)
1697                 put_page(page);
1698         if (e4b->bd_bitmap_page)
1699                 put_page(e4b->bd_bitmap_page);
1700
1701         e4b->bd_buddy = NULL;
1702         e4b->bd_bitmap = NULL;
1703         return ret;
1704 }
1705
1706 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1707                               struct ext4_buddy *e4b)
1708 {
1709         return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1710 }
1711
1712 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1713 {
1714         if (e4b->bd_bitmap_page)
1715                 put_page(e4b->bd_bitmap_page);
1716         if (e4b->bd_buddy_page)
1717                 put_page(e4b->bd_buddy_page);
1718 }
1719
1720
1721 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1722 {
1723         int order = 1, max;
1724         void *bb;
1725
1726         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1727         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1728
1729         while (order <= e4b->bd_blkbits + 1) {
1730                 bb = mb_find_buddy(e4b, order, &max);
1731                 if (!mb_test_bit(block >> order, bb)) {
1732                         /* this block is part of buddy of order 'order' */
1733                         return order;
1734                 }
1735                 order++;
1736         }
1737         return 0;
1738 }
1739
1740 static void mb_clear_bits(void *bm, int cur, int len)
1741 {
1742         __u32 *addr;
1743
1744         len = cur + len;
1745         while (cur < len) {
1746                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1747                         /* fast path: clear whole word at once */
1748                         addr = bm + (cur >> 3);
1749                         *addr = 0;
1750                         cur += 32;
1751                         continue;
1752                 }
1753                 mb_clear_bit(cur, bm);
1754                 cur++;
1755         }
1756 }
1757
1758 /* clear bits in given range
1759  * will return first found zero bit if any, -1 otherwise
1760  */
1761 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1762 {
1763         __u32 *addr;
1764         int zero_bit = -1;
1765
1766         len = cur + len;
1767         while (cur < len) {
1768                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1769                         /* fast path: clear whole word at once */
1770                         addr = bm + (cur >> 3);
1771                         if (*addr != (__u32)(-1) && zero_bit == -1)
1772                                 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1773                         *addr = 0;
1774                         cur += 32;
1775                         continue;
1776                 }
1777                 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1778                         zero_bit = cur;
1779                 cur++;
1780         }
1781
1782         return zero_bit;
1783 }
1784
1785 void mb_set_bits(void *bm, int cur, int len)
1786 {
1787         __u32 *addr;
1788
1789         len = cur + len;
1790         while (cur < len) {
1791                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1792                         /* fast path: set whole word at once */
1793                         addr = bm + (cur >> 3);
1794                         *addr = 0xffffffff;
1795                         cur += 32;
1796                         continue;
1797                 }
1798                 mb_set_bit(cur, bm);
1799                 cur++;
1800         }
1801 }
1802
1803 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1804 {
1805         if (mb_test_bit(*bit + side, bitmap)) {
1806                 mb_clear_bit(*bit, bitmap);
1807                 (*bit) -= side;
1808                 return 1;
1809         }
1810         else {
1811                 (*bit) += side;
1812                 mb_set_bit(*bit, bitmap);
1813                 return -1;
1814         }
1815 }
1816
1817 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1818 {
1819         int max;
1820         int order = 1;
1821         void *buddy = mb_find_buddy(e4b, order, &max);
1822
1823         while (buddy) {
1824                 void *buddy2;
1825
1826                 /* Bits in range [first; last] are known to be set since
1827                  * corresponding blocks were allocated. Bits in range
1828                  * (first; last) will stay set because they form buddies on
1829                  * upper layer. We just deal with borders if they don't
1830                  * align with upper layer and then go up.
1831                  * Releasing entire group is all about clearing
1832                  * single bit of highest order buddy.
1833                  */
1834
1835                 /* Example:
1836                  * ---------------------------------
1837                  * |   1   |   1   |   1   |   1   |
1838                  * ---------------------------------
1839                  * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1840                  * ---------------------------------
1841                  *   0   1   2   3   4   5   6   7
1842                  *      \_____________________/
1843                  *
1844                  * Neither [1] nor [6] is aligned to above layer.
1845                  * Left neighbour [0] is free, so mark it busy,
1846                  * decrease bb_counters and extend range to
1847                  * [0; 6]
1848                  * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1849                  * mark [6] free, increase bb_counters and shrink range to
1850                  * [0; 5].
1851                  * Then shift range to [0; 2], go up and do the same.
1852                  */
1853
1854
1855                 if (first & 1)
1856                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1857                 if (!(last & 1))
1858                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1859                 if (first > last)
1860                         break;
1861                 order++;
1862
1863                 buddy2 = mb_find_buddy(e4b, order, &max);
1864                 if (!buddy2) {
1865                         mb_clear_bits(buddy, first, last - first + 1);
1866                         e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1867                         break;
1868                 }
1869                 first >>= 1;
1870                 last >>= 1;
1871                 buddy = buddy2;
1872         }
1873 }
1874
1875 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1876                            int first, int count)
1877 {
1878         int left_is_free = 0;
1879         int right_is_free = 0;
1880         int block;
1881         int last = first + count - 1;
1882         struct super_block *sb = e4b->bd_sb;
1883
1884         if (WARN_ON(count == 0))
1885                 return;
1886         BUG_ON(last >= (sb->s_blocksize << 3));
1887         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1888         /* Don't bother if the block group is corrupt. */
1889         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1890                 return;
1891
1892         mb_check_buddy(e4b);
1893         mb_free_blocks_double(inode, e4b, first, count);
1894
1895         this_cpu_inc(discard_pa_seq);
1896         e4b->bd_info->bb_free += count;
1897         if (first < e4b->bd_info->bb_first_free)
1898                 e4b->bd_info->bb_first_free = first;
1899
1900         /* access memory sequentially: check left neighbour,
1901          * clear range and then check right neighbour
1902          */
1903         if (first != 0)
1904                 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1905         block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1906         if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1907                 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1908
1909         if (unlikely(block != -1)) {
1910                 struct ext4_sb_info *sbi = EXT4_SB(sb);
1911                 ext4_fsblk_t blocknr;
1912
1913                 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1914                 blocknr += EXT4_C2B(sbi, block);
1915                 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1916                         ext4_grp_locked_error(sb, e4b->bd_group,
1917                                               inode ? inode->i_ino : 0,
1918                                               blocknr,
1919                                               "freeing already freed block (bit %u); block bitmap corrupt.",
1920                                               block);
1921                         ext4_mark_group_bitmap_corrupted(
1922                                 sb, e4b->bd_group,
1923                                 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1924                 }
1925                 goto done;
1926         }
1927
1928         /* let's maintain fragments counter */
1929         if (left_is_free && right_is_free)
1930                 e4b->bd_info->bb_fragments--;
1931         else if (!left_is_free && !right_is_free)
1932                 e4b->bd_info->bb_fragments++;
1933
1934         /* buddy[0] == bd_bitmap is a special case, so handle
1935          * it right away and let mb_buddy_mark_free stay free of
1936          * zero order checks.
1937          * Check if neighbours are to be coaleasced,
1938          * adjust bitmap bb_counters and borders appropriately.
1939          */
1940         if (first & 1) {
1941                 first += !left_is_free;
1942                 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1943         }
1944         if (!(last & 1)) {
1945                 last -= !right_is_free;
1946                 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1947         }
1948
1949         if (first <= last)
1950                 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1951
1952 done:
1953         mb_set_largest_free_order(sb, e4b->bd_info);
1954         mb_update_avg_fragment_size(sb, e4b->bd_info);
1955         mb_check_buddy(e4b);
1956 }
1957
1958 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1959                                 int needed, struct ext4_free_extent *ex)
1960 {
1961         int next = block;
1962         int max, order;
1963         void *buddy;
1964
1965         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1966         BUG_ON(ex == NULL);
1967
1968         buddy = mb_find_buddy(e4b, 0, &max);
1969         BUG_ON(buddy == NULL);
1970         BUG_ON(block >= max);
1971         if (mb_test_bit(block, buddy)) {
1972                 ex->fe_len = 0;
1973                 ex->fe_start = 0;
1974                 ex->fe_group = 0;
1975                 return 0;
1976         }
1977
1978         /* find actual order */
1979         order = mb_find_order_for_block(e4b, block);
1980         block = block >> order;
1981
1982         ex->fe_len = 1 << order;
1983         ex->fe_start = block << order;
1984         ex->fe_group = e4b->bd_group;
1985
1986         /* calc difference from given start */
1987         next = next - ex->fe_start;
1988         ex->fe_len -= next;
1989         ex->fe_start += next;
1990
1991         while (needed > ex->fe_len &&
1992                mb_find_buddy(e4b, order, &max)) {
1993
1994                 if (block + 1 >= max)
1995                         break;
1996
1997                 next = (block + 1) * (1 << order);
1998                 if (mb_test_bit(next, e4b->bd_bitmap))
1999                         break;
2000
2001                 order = mb_find_order_for_block(e4b, next);
2002
2003                 block = next >> order;
2004                 ex->fe_len += 1 << order;
2005         }
2006
2007         if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2008                 /* Should never happen! (but apparently sometimes does?!?) */
2009                 WARN_ON(1);
2010                 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2011                         "corruption or bug in mb_find_extent "
2012                         "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2013                         block, order, needed, ex->fe_group, ex->fe_start,
2014                         ex->fe_len, ex->fe_logical);
2015                 ex->fe_len = 0;
2016                 ex->fe_start = 0;
2017                 ex->fe_group = 0;
2018         }
2019         return ex->fe_len;
2020 }
2021
2022 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2023 {
2024         int ord;
2025         int mlen = 0;
2026         int max = 0;
2027         int cur;
2028         int start = ex->fe_start;
2029         int len = ex->fe_len;
2030         unsigned ret = 0;
2031         int len0 = len;
2032         void *buddy;
2033         bool split = false;
2034
2035         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2036         BUG_ON(e4b->bd_group != ex->fe_group);
2037         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2038         mb_check_buddy(e4b);
2039         mb_mark_used_double(e4b, start, len);
2040
2041         this_cpu_inc(discard_pa_seq);
2042         e4b->bd_info->bb_free -= len;
2043         if (e4b->bd_info->bb_first_free == start)
2044                 e4b->bd_info->bb_first_free += len;
2045
2046         /* let's maintain fragments counter */
2047         if (start != 0)
2048                 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2049         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2050                 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2051         if (mlen && max)
2052                 e4b->bd_info->bb_fragments++;
2053         else if (!mlen && !max)
2054                 e4b->bd_info->bb_fragments--;
2055
2056         /* let's maintain buddy itself */
2057         while (len) {
2058                 if (!split)
2059                         ord = mb_find_order_for_block(e4b, start);
2060
2061                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2062                         /* the whole chunk may be allocated at once! */
2063                         mlen = 1 << ord;
2064                         if (!split)
2065                                 buddy = mb_find_buddy(e4b, ord, &max);
2066                         else
2067                                 split = false;
2068                         BUG_ON((start >> ord) >= max);
2069                         mb_set_bit(start >> ord, buddy);
2070                         e4b->bd_info->bb_counters[ord]--;
2071                         start += mlen;
2072                         len -= mlen;
2073                         BUG_ON(len < 0);
2074                         continue;
2075                 }
2076
2077                 /* store for history */
2078                 if (ret == 0)
2079                         ret = len | (ord << 16);
2080
2081                 /* we have to split large buddy */
2082                 BUG_ON(ord <= 0);
2083                 buddy = mb_find_buddy(e4b, ord, &max);
2084                 mb_set_bit(start >> ord, buddy);
2085                 e4b->bd_info->bb_counters[ord]--;
2086
2087                 ord--;
2088                 cur = (start >> ord) & ~1U;
2089                 buddy = mb_find_buddy(e4b, ord, &max);
2090                 mb_clear_bit(cur, buddy);
2091                 mb_clear_bit(cur + 1, buddy);
2092                 e4b->bd_info->bb_counters[ord]++;
2093                 e4b->bd_info->bb_counters[ord]++;
2094                 split = true;
2095         }
2096         mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2097
2098         mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2099         mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2100         mb_check_buddy(e4b);
2101
2102         return ret;
2103 }
2104
2105 /*
2106  * Must be called under group lock!
2107  */
2108 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2109                                         struct ext4_buddy *e4b)
2110 {
2111         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2112         int ret;
2113
2114         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2115         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2116
2117         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2118         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2119         ret = mb_mark_used(e4b, &ac->ac_b_ex);
2120
2121         /* preallocation can change ac_b_ex, thus we store actually
2122          * allocated blocks for history */
2123         ac->ac_f_ex = ac->ac_b_ex;
2124
2125         ac->ac_status = AC_STATUS_FOUND;
2126         ac->ac_tail = ret & 0xffff;
2127         ac->ac_buddy = ret >> 16;
2128
2129         /*
2130          * take the page reference. We want the page to be pinned
2131          * so that we don't get a ext4_mb_init_cache_call for this
2132          * group until we update the bitmap. That would mean we
2133          * double allocate blocks. The reference is dropped
2134          * in ext4_mb_release_context
2135          */
2136         ac->ac_bitmap_page = e4b->bd_bitmap_page;
2137         get_page(ac->ac_bitmap_page);
2138         ac->ac_buddy_page = e4b->bd_buddy_page;
2139         get_page(ac->ac_buddy_page);
2140         /* store last allocated for subsequent stream allocation */
2141         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2142                 spin_lock(&sbi->s_md_lock);
2143                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2144                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2145                 spin_unlock(&sbi->s_md_lock);
2146         }
2147         /*
2148          * As we've just preallocated more space than
2149          * user requested originally, we store allocated
2150          * space in a special descriptor.
2151          */
2152         if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2153                 ext4_mb_new_preallocation(ac);
2154
2155 }
2156
2157 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2158                                         struct ext4_buddy *e4b,
2159                                         int finish_group)
2160 {
2161         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2162         struct ext4_free_extent *bex = &ac->ac_b_ex;
2163         struct ext4_free_extent *gex = &ac->ac_g_ex;
2164
2165         if (ac->ac_status == AC_STATUS_FOUND)
2166                 return;
2167         /*
2168          * We don't want to scan for a whole year
2169          */
2170         if (ac->ac_found > sbi->s_mb_max_to_scan &&
2171                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2172                 ac->ac_status = AC_STATUS_BREAK;
2173                 return;
2174         }
2175
2176         /*
2177          * Haven't found good chunk so far, let's continue
2178          */
2179         if (bex->fe_len < gex->fe_len)
2180                 return;
2181
2182         if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2183                 ext4_mb_use_best_found(ac, e4b);
2184 }
2185
2186 /*
2187  * The routine checks whether found extent is good enough. If it is,
2188  * then the extent gets marked used and flag is set to the context
2189  * to stop scanning. Otherwise, the extent is compared with the
2190  * previous found extent and if new one is better, then it's stored
2191  * in the context. Later, the best found extent will be used, if
2192  * mballoc can't find good enough extent.
2193  *
2194  * The algorithm used is roughly as follows:
2195  *
2196  * * If free extent found is exactly as big as goal, then
2197  *   stop the scan and use it immediately
2198  *
2199  * * If free extent found is smaller than goal, then keep retrying
2200  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2201  *   that stop scanning and use whatever we have.
2202  *
2203  * * If free extent found is bigger than goal, then keep retrying
2204  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2205  *   stopping the scan and using the extent.
2206  *
2207  *
2208  * FIXME: real allocation policy is to be designed yet!
2209  */
2210 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2211                                         struct ext4_free_extent *ex,
2212                                         struct ext4_buddy *e4b)
2213 {
2214         struct ext4_free_extent *bex = &ac->ac_b_ex;
2215         struct ext4_free_extent *gex = &ac->ac_g_ex;
2216
2217         BUG_ON(ex->fe_len <= 0);
2218         BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2219         BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2220         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2221
2222         ac->ac_found++;
2223         ac->ac_cX_found[ac->ac_criteria]++;
2224
2225         /*
2226          * The special case - take what you catch first
2227          */
2228         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2229                 *bex = *ex;
2230                 ext4_mb_use_best_found(ac, e4b);
2231                 return;
2232         }
2233
2234         /*
2235          * Let's check whether the chuck is good enough
2236          */
2237         if (ex->fe_len == gex->fe_len) {
2238                 *bex = *ex;
2239                 ext4_mb_use_best_found(ac, e4b);
2240                 return;
2241         }
2242
2243         /*
2244          * If this is first found extent, just store it in the context
2245          */
2246         if (bex->fe_len == 0) {
2247                 *bex = *ex;
2248                 return;
2249         }
2250
2251         /*
2252          * If new found extent is better, store it in the context
2253          */
2254         if (bex->fe_len < gex->fe_len) {
2255                 /* if the request isn't satisfied, any found extent
2256                  * larger than previous best one is better */
2257                 if (ex->fe_len > bex->fe_len)
2258                         *bex = *ex;
2259         } else if (ex->fe_len > gex->fe_len) {
2260                 /* if the request is satisfied, then we try to find
2261                  * an extent that still satisfy the request, but is
2262                  * smaller than previous one */
2263                 if (ex->fe_len < bex->fe_len)
2264                         *bex = *ex;
2265         }
2266
2267         ext4_mb_check_limits(ac, e4b, 0);
2268 }
2269
2270 static noinline_for_stack
2271 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2272                                         struct ext4_buddy *e4b)
2273 {
2274         struct ext4_free_extent ex = ac->ac_b_ex;
2275         ext4_group_t group = ex.fe_group;
2276         int max;
2277         int err;
2278
2279         BUG_ON(ex.fe_len <= 0);
2280         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2281         if (err)
2282                 return;
2283
2284         ext4_lock_group(ac->ac_sb, group);
2285         max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2286
2287         if (max > 0) {
2288                 ac->ac_b_ex = ex;
2289                 ext4_mb_use_best_found(ac, e4b);
2290         }
2291
2292         ext4_unlock_group(ac->ac_sb, group);
2293         ext4_mb_unload_buddy(e4b);
2294 }
2295
2296 static noinline_for_stack
2297 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2298                                 struct ext4_buddy *e4b)
2299 {
2300         ext4_group_t group = ac->ac_g_ex.fe_group;
2301         int max;
2302         int err;
2303         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2304         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2305         struct ext4_free_extent ex;
2306
2307         if (!grp)
2308                 return -EFSCORRUPTED;
2309         if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2310                 return 0;
2311         if (grp->bb_free == 0)
2312                 return 0;
2313
2314         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2315         if (err)
2316                 return err;
2317
2318         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2319                 ext4_mb_unload_buddy(e4b);
2320                 return 0;
2321         }
2322
2323         ext4_lock_group(ac->ac_sb, group);
2324         max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2325                              ac->ac_g_ex.fe_len, &ex);
2326         ex.fe_logical = 0xDEADFA11; /* debug value */
2327
2328         if (max >= ac->ac_g_ex.fe_len &&
2329             ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2330                 ext4_fsblk_t start;
2331
2332                 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2333                 /* use do_div to get remainder (would be 64-bit modulo) */
2334                 if (do_div(start, sbi->s_stripe) == 0) {
2335                         ac->ac_found++;
2336                         ac->ac_b_ex = ex;
2337                         ext4_mb_use_best_found(ac, e4b);
2338                 }
2339         } else if (max >= ac->ac_g_ex.fe_len) {
2340                 BUG_ON(ex.fe_len <= 0);
2341                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2342                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2343                 ac->ac_found++;
2344                 ac->ac_b_ex = ex;
2345                 ext4_mb_use_best_found(ac, e4b);
2346         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2347                 /* Sometimes, caller may want to merge even small
2348                  * number of blocks to an existing extent */
2349                 BUG_ON(ex.fe_len <= 0);
2350                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2351                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2352                 ac->ac_found++;
2353                 ac->ac_b_ex = ex;
2354                 ext4_mb_use_best_found(ac, e4b);
2355         }
2356         ext4_unlock_group(ac->ac_sb, group);
2357         ext4_mb_unload_buddy(e4b);
2358
2359         return 0;
2360 }
2361
2362 /*
2363  * The routine scans buddy structures (not bitmap!) from given order
2364  * to max order and tries to find big enough chunk to satisfy the req
2365  */
2366 static noinline_for_stack
2367 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2368                                         struct ext4_buddy *e4b)
2369 {
2370         struct super_block *sb = ac->ac_sb;
2371         struct ext4_group_info *grp = e4b->bd_info;
2372         void *buddy;
2373         int i;
2374         int k;
2375         int max;
2376
2377         BUG_ON(ac->ac_2order <= 0);
2378         for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2379                 if (grp->bb_counters[i] == 0)
2380                         continue;
2381
2382                 buddy = mb_find_buddy(e4b, i, &max);
2383                 if (WARN_RATELIMIT(buddy == NULL,
2384                          "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2385                         continue;
2386
2387                 k = mb_find_next_zero_bit(buddy, max, 0);
2388                 if (k >= max) {
2389                         ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2390                                 "%d free clusters of order %d. But found 0",
2391                                 grp->bb_counters[i], i);
2392                         ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2393                                          e4b->bd_group,
2394                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2395                         break;
2396                 }
2397                 ac->ac_found++;
2398                 ac->ac_cX_found[ac->ac_criteria]++;
2399
2400                 ac->ac_b_ex.fe_len = 1 << i;
2401                 ac->ac_b_ex.fe_start = k << i;
2402                 ac->ac_b_ex.fe_group = e4b->bd_group;
2403
2404                 ext4_mb_use_best_found(ac, e4b);
2405
2406                 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2407
2408                 if (EXT4_SB(sb)->s_mb_stats)
2409                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2410
2411                 break;
2412         }
2413 }
2414
2415 /*
2416  * The routine scans the group and measures all found extents.
2417  * In order to optimize scanning, caller must pass number of
2418  * free blocks in the group, so the routine can know upper limit.
2419  */
2420 static noinline_for_stack
2421 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2422                                         struct ext4_buddy *e4b)
2423 {
2424         struct super_block *sb = ac->ac_sb;
2425         void *bitmap = e4b->bd_bitmap;
2426         struct ext4_free_extent ex;
2427         int i, j, freelen;
2428         int free;
2429
2430         free = e4b->bd_info->bb_free;
2431         if (WARN_ON(free <= 0))
2432                 return;
2433
2434         i = e4b->bd_info->bb_first_free;
2435
2436         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2437                 i = mb_find_next_zero_bit(bitmap,
2438                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2439                 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2440                         /*
2441                          * IF we have corrupt bitmap, we won't find any
2442                          * free blocks even though group info says we
2443                          * have free blocks
2444                          */
2445                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2446                                         "%d free clusters as per "
2447                                         "group info. But bitmap says 0",
2448                                         free);
2449                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2450                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2451                         break;
2452                 }
2453
2454                 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2455                         /*
2456                          * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2457                          * sure that this group will have a large enough
2458                          * continuous free extent, so skip over the smaller free
2459                          * extents
2460                          */
2461                         j = mb_find_next_bit(bitmap,
2462                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2463                         freelen = j - i;
2464
2465                         if (freelen < ac->ac_g_ex.fe_len) {
2466                                 i = j;
2467                                 free -= freelen;
2468                                 continue;
2469                         }
2470                 }
2471
2472                 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2473                 if (WARN_ON(ex.fe_len <= 0))
2474                         break;
2475                 if (free < ex.fe_len) {
2476                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2477                                         "%d free clusters as per "
2478                                         "group info. But got %d blocks",
2479                                         free, ex.fe_len);
2480                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2481                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2482                         /*
2483                          * The number of free blocks differs. This mostly
2484                          * indicate that the bitmap is corrupt. So exit
2485                          * without claiming the space.
2486                          */
2487                         break;
2488                 }
2489                 ex.fe_logical = 0xDEADC0DE; /* debug value */
2490                 ext4_mb_measure_extent(ac, &ex, e4b);
2491
2492                 i += ex.fe_len;
2493                 free -= ex.fe_len;
2494         }
2495
2496         ext4_mb_check_limits(ac, e4b, 1);
2497 }
2498
2499 /*
2500  * This is a special case for storages like raid5
2501  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2502  */
2503 static noinline_for_stack
2504 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2505                                  struct ext4_buddy *e4b)
2506 {
2507         struct super_block *sb = ac->ac_sb;
2508         struct ext4_sb_info *sbi = EXT4_SB(sb);
2509         void *bitmap = e4b->bd_bitmap;
2510         struct ext4_free_extent ex;
2511         ext4_fsblk_t first_group_block;
2512         ext4_fsblk_t a;
2513         ext4_grpblk_t i, stripe;
2514         int max;
2515
2516         BUG_ON(sbi->s_stripe == 0);
2517
2518         /* find first stripe-aligned block in group */
2519         first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2520
2521         a = first_group_block + sbi->s_stripe - 1;
2522         do_div(a, sbi->s_stripe);
2523         i = (a * sbi->s_stripe) - first_group_block;
2524
2525         stripe = EXT4_B2C(sbi, sbi->s_stripe);
2526         i = EXT4_B2C(sbi, i);
2527         while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2528                 if (!mb_test_bit(i, bitmap)) {
2529                         max = mb_find_extent(e4b, i, stripe, &ex);
2530                         if (max >= stripe) {
2531                                 ac->ac_found++;
2532                                 ac->ac_cX_found[ac->ac_criteria]++;
2533                                 ex.fe_logical = 0xDEADF00D; /* debug value */
2534                                 ac->ac_b_ex = ex;
2535                                 ext4_mb_use_best_found(ac, e4b);
2536                                 break;
2537                         }
2538                 }
2539                 i += stripe;
2540         }
2541 }
2542
2543 /*
2544  * This is also called BEFORE we load the buddy bitmap.
2545  * Returns either 1 or 0 indicating that the group is either suitable
2546  * for the allocation or not.
2547  */
2548 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2549                                 ext4_group_t group, enum criteria cr)
2550 {
2551         ext4_grpblk_t free, fragments;
2552         int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2553         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2554
2555         BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2556
2557         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2558                 return false;
2559
2560         free = grp->bb_free;
2561         if (free == 0)
2562                 return false;
2563
2564         fragments = grp->bb_fragments;
2565         if (fragments == 0)
2566                 return false;
2567
2568         switch (cr) {
2569         case CR_POWER2_ALIGNED:
2570                 BUG_ON(ac->ac_2order == 0);
2571
2572                 /* Avoid using the first bg of a flexgroup for data files */
2573                 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2574                     (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2575                     ((group % flex_size) == 0))
2576                         return false;
2577
2578                 if (free < ac->ac_g_ex.fe_len)
2579                         return false;
2580
2581                 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2582                         return true;
2583
2584                 if (grp->bb_largest_free_order < ac->ac_2order)
2585                         return false;
2586
2587                 return true;
2588         case CR_GOAL_LEN_FAST:
2589         case CR_BEST_AVAIL_LEN:
2590                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2591                         return true;
2592                 break;
2593         case CR_GOAL_LEN_SLOW:
2594                 if (free >= ac->ac_g_ex.fe_len)
2595                         return true;
2596                 break;
2597         case CR_ANY_FREE:
2598                 return true;
2599         default:
2600                 BUG();
2601         }
2602
2603         return false;
2604 }
2605
2606 /*
2607  * This could return negative error code if something goes wrong
2608  * during ext4_mb_init_group(). This should not be called with
2609  * ext4_lock_group() held.
2610  *
2611  * Note: because we are conditionally operating with the group lock in
2612  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2613  * function using __acquire and __release.  This means we need to be
2614  * super careful before messing with the error path handling via "goto
2615  * out"!
2616  */
2617 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2618                                      ext4_group_t group, enum criteria cr)
2619 {
2620         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2621         struct super_block *sb = ac->ac_sb;
2622         struct ext4_sb_info *sbi = EXT4_SB(sb);
2623         bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2624         ext4_grpblk_t free;
2625         int ret = 0;
2626
2627         if (!grp)
2628                 return -EFSCORRUPTED;
2629         if (sbi->s_mb_stats)
2630                 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2631         if (should_lock) {
2632                 ext4_lock_group(sb, group);
2633                 __release(ext4_group_lock_ptr(sb, group));
2634         }
2635         free = grp->bb_free;
2636         if (free == 0)
2637                 goto out;
2638         /*
2639          * In all criterias except CR_ANY_FREE we try to avoid groups that
2640          * can't possibly satisfy the full goal request due to insufficient
2641          * free blocks.
2642          */
2643         if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2644                 goto out;
2645         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2646                 goto out;
2647         if (should_lock) {
2648                 __acquire(ext4_group_lock_ptr(sb, group));
2649                 ext4_unlock_group(sb, group);
2650         }
2651
2652         /* We only do this if the grp has never been initialized */
2653         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2654                 struct ext4_group_desc *gdp =
2655                         ext4_get_group_desc(sb, group, NULL);
2656                 int ret;
2657
2658                 /*
2659                  * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2660                  * search to find large good chunks almost for free. If buddy
2661                  * data is not ready, then this optimization makes no sense. But
2662                  * we never skip the first block group in a flex_bg, since this
2663                  * gets used for metadata block allocation, and we want to make
2664                  * sure we locate metadata blocks in the first block group in
2665                  * the flex_bg if possible.
2666                  */
2667                 if (!ext4_mb_cr_expensive(cr) &&
2668                     (!sbi->s_log_groups_per_flex ||
2669                      ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2670                     !(ext4_has_group_desc_csum(sb) &&
2671                       (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2672                         return 0;
2673                 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2674                 if (ret)
2675                         return ret;
2676         }
2677
2678         if (should_lock) {
2679                 ext4_lock_group(sb, group);
2680                 __release(ext4_group_lock_ptr(sb, group));
2681         }
2682         ret = ext4_mb_good_group(ac, group, cr);
2683 out:
2684         if (should_lock) {
2685                 __acquire(ext4_group_lock_ptr(sb, group));
2686                 ext4_unlock_group(sb, group);
2687         }
2688         return ret;
2689 }
2690
2691 /*
2692  * Start prefetching @nr block bitmaps starting at @group.
2693  * Return the next group which needs to be prefetched.
2694  */
2695 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2696                               unsigned int nr, int *cnt)
2697 {
2698         ext4_group_t ngroups = ext4_get_groups_count(sb);
2699         struct buffer_head *bh;
2700         struct blk_plug plug;
2701
2702         blk_start_plug(&plug);
2703         while (nr-- > 0) {
2704                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2705                                                                   NULL);
2706                 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2707
2708                 /*
2709                  * Prefetch block groups with free blocks; but don't
2710                  * bother if it is marked uninitialized on disk, since
2711                  * it won't require I/O to read.  Also only try to
2712                  * prefetch once, so we avoid getblk() call, which can
2713                  * be expensive.
2714                  */
2715                 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2716                     EXT4_MB_GRP_NEED_INIT(grp) &&
2717                     ext4_free_group_clusters(sb, gdp) > 0 ) {
2718                         bh = ext4_read_block_bitmap_nowait(sb, group, true);
2719                         if (bh && !IS_ERR(bh)) {
2720                                 if (!buffer_uptodate(bh) && cnt)
2721                                         (*cnt)++;
2722                                 brelse(bh);
2723                         }
2724                 }
2725                 if (++group >= ngroups)
2726                         group = 0;
2727         }
2728         blk_finish_plug(&plug);
2729         return group;
2730 }
2731
2732 /*
2733  * Prefetching reads the block bitmap into the buffer cache; but we
2734  * need to make sure that the buddy bitmap in the page cache has been
2735  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2736  * is not yet completed, or indeed if it was not initiated by
2737  * ext4_mb_prefetch did not start the I/O.
2738  *
2739  * TODO: We should actually kick off the buddy bitmap setup in a work
2740  * queue when the buffer I/O is completed, so that we don't block
2741  * waiting for the block allocation bitmap read to finish when
2742  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2743  */
2744 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2745                            unsigned int nr)
2746 {
2747         struct ext4_group_desc *gdp;
2748         struct ext4_group_info *grp;
2749
2750         while (nr-- > 0) {
2751                 if (!group)
2752                         group = ext4_get_groups_count(sb);
2753                 group--;
2754                 gdp = ext4_get_group_desc(sb, group, NULL);
2755                 grp = ext4_get_group_info(sb, group);
2756
2757                 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2758                     ext4_free_group_clusters(sb, gdp) > 0) {
2759                         if (ext4_mb_init_group(sb, group, GFP_NOFS))
2760                                 break;
2761                 }
2762         }
2763 }
2764
2765 static noinline_for_stack int
2766 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2767 {
2768         ext4_group_t prefetch_grp = 0, ngroups, group, i;
2769         enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2770         int err = 0, first_err = 0;
2771         unsigned int nr = 0, prefetch_ios = 0;
2772         struct ext4_sb_info *sbi;
2773         struct super_block *sb;
2774         struct ext4_buddy e4b;
2775         int lost;
2776
2777         sb = ac->ac_sb;
2778         sbi = EXT4_SB(sb);
2779         ngroups = ext4_get_groups_count(sb);
2780         /* non-extent files are limited to low blocks/groups */
2781         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2782                 ngroups = sbi->s_blockfile_groups;
2783
2784         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2785
2786         /* first, try the goal */
2787         err = ext4_mb_find_by_goal(ac, &e4b);
2788         if (err || ac->ac_status == AC_STATUS_FOUND)
2789                 goto out;
2790
2791         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2792                 goto out;
2793
2794         /*
2795          * ac->ac_2order is set only if the fe_len is a power of 2
2796          * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2797          * so that we try exact allocation using buddy.
2798          */
2799         i = fls(ac->ac_g_ex.fe_len);
2800         ac->ac_2order = 0;
2801         /*
2802          * We search using buddy data only if the order of the request
2803          * is greater than equal to the sbi_s_mb_order2_reqs
2804          * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2805          * We also support searching for power-of-two requests only for
2806          * requests upto maximum buddy size we have constructed.
2807          */
2808         if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2809                 if (is_power_of_2(ac->ac_g_ex.fe_len))
2810                         ac->ac_2order = array_index_nospec(i - 1,
2811                                                            MB_NUM_ORDERS(sb));
2812         }
2813
2814         /* if stream allocation is enabled, use global goal */
2815         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2816                 /* TBD: may be hot point */
2817                 spin_lock(&sbi->s_md_lock);
2818                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2819                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2820                 spin_unlock(&sbi->s_md_lock);
2821         }
2822
2823         /*
2824          * Let's just scan groups to find more-less suitable blocks We
2825          * start with CR_GOAL_LEN_FAST, unless it is power of 2
2826          * aligned, in which case let's do that faster approach first.
2827          */
2828         if (ac->ac_2order)
2829                 cr = CR_POWER2_ALIGNED;
2830 repeat:
2831         for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2832                 ac->ac_criteria = cr;
2833                 /*
2834                  * searching for the right group start
2835                  * from the goal value specified
2836                  */
2837                 group = ac->ac_g_ex.fe_group;
2838                 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2839                 prefetch_grp = group;
2840
2841                 for (i = 0, new_cr = cr; i < ngroups; i++,
2842                      ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2843                         int ret = 0;
2844
2845                         cond_resched();
2846                         if (new_cr != cr) {
2847                                 cr = new_cr;
2848                                 goto repeat;
2849                         }
2850
2851                         /*
2852                          * Batch reads of the block allocation bitmaps
2853                          * to get multiple READs in flight; limit
2854                          * prefetching at inexpensive CR, otherwise mballoc
2855                          * can spend a lot of time loading imperfect groups
2856                          */
2857                         if ((prefetch_grp == group) &&
2858                             (ext4_mb_cr_expensive(cr) ||
2859                              prefetch_ios < sbi->s_mb_prefetch_limit)) {
2860                                 nr = sbi->s_mb_prefetch;
2861                                 if (ext4_has_feature_flex_bg(sb)) {
2862                                         nr = 1 << sbi->s_log_groups_per_flex;
2863                                         nr -= group & (nr - 1);
2864                                         nr = min(nr, sbi->s_mb_prefetch);
2865                                 }
2866                                 prefetch_grp = ext4_mb_prefetch(sb, group,
2867                                                         nr, &prefetch_ios);
2868                         }
2869
2870                         /* This now checks without needing the buddy page */
2871                         ret = ext4_mb_good_group_nolock(ac, group, cr);
2872                         if (ret <= 0) {
2873                                 if (!first_err)
2874                                         first_err = ret;
2875                                 continue;
2876                         }
2877
2878                         err = ext4_mb_load_buddy(sb, group, &e4b);
2879                         if (err)
2880                                 goto out;
2881
2882                         ext4_lock_group(sb, group);
2883
2884                         /*
2885                          * We need to check again after locking the
2886                          * block group
2887                          */
2888                         ret = ext4_mb_good_group(ac, group, cr);
2889                         if (ret == 0) {
2890                                 ext4_unlock_group(sb, group);
2891                                 ext4_mb_unload_buddy(&e4b);
2892                                 continue;
2893                         }
2894
2895                         ac->ac_groups_scanned++;
2896                         if (cr == CR_POWER2_ALIGNED)
2897                                 ext4_mb_simple_scan_group(ac, &e4b);
2898                         else if ((cr == CR_GOAL_LEN_FAST ||
2899                                  cr == CR_BEST_AVAIL_LEN) &&
2900                                  sbi->s_stripe &&
2901                                  !(ac->ac_g_ex.fe_len %
2902                                  EXT4_B2C(sbi, sbi->s_stripe)))
2903                                 ext4_mb_scan_aligned(ac, &e4b);
2904                         else
2905                                 ext4_mb_complex_scan_group(ac, &e4b);
2906
2907                         ext4_unlock_group(sb, group);
2908                         ext4_mb_unload_buddy(&e4b);
2909
2910                         if (ac->ac_status != AC_STATUS_CONTINUE)
2911                                 break;
2912                 }
2913                 /* Processed all groups and haven't found blocks */
2914                 if (sbi->s_mb_stats && i == ngroups)
2915                         atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2916
2917                 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2918                         /* Reset goal length to original goal length before
2919                          * falling into CR_GOAL_LEN_SLOW */
2920                         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2921         }
2922
2923         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2924             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2925                 /*
2926                  * We've been searching too long. Let's try to allocate
2927                  * the best chunk we've found so far
2928                  */
2929                 ext4_mb_try_best_found(ac, &e4b);
2930                 if (ac->ac_status != AC_STATUS_FOUND) {
2931                         /*
2932                          * Someone more lucky has already allocated it.
2933                          * The only thing we can do is just take first
2934                          * found block(s)
2935                          */
2936                         lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2937                         mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2938                                  ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2939                                  ac->ac_b_ex.fe_len, lost);
2940
2941                         ac->ac_b_ex.fe_group = 0;
2942                         ac->ac_b_ex.fe_start = 0;
2943                         ac->ac_b_ex.fe_len = 0;
2944                         ac->ac_status = AC_STATUS_CONTINUE;
2945                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2946                         cr = CR_ANY_FREE;
2947                         goto repeat;
2948                 }
2949         }
2950
2951         if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2952                 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2953 out:
2954         if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2955                 err = first_err;
2956
2957         mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2958                  ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2959                  ac->ac_flags, cr, err);
2960
2961         if (nr)
2962                 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2963
2964         return err;
2965 }
2966
2967 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2968 {
2969         struct super_block *sb = pde_data(file_inode(seq->file));
2970         ext4_group_t group;
2971
2972         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2973                 return NULL;
2974         group = *pos + 1;
2975         return (void *) ((unsigned long) group);
2976 }
2977
2978 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2979 {
2980         struct super_block *sb = pde_data(file_inode(seq->file));
2981         ext4_group_t group;
2982
2983         ++*pos;
2984         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2985                 return NULL;
2986         group = *pos + 1;
2987         return (void *) ((unsigned long) group);
2988 }
2989
2990 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2991 {
2992         struct super_block *sb = pde_data(file_inode(seq->file));
2993         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2994         int i;
2995         int err, buddy_loaded = 0;
2996         struct ext4_buddy e4b;
2997         struct ext4_group_info *grinfo;
2998         unsigned char blocksize_bits = min_t(unsigned char,
2999                                              sb->s_blocksize_bits,
3000                                              EXT4_MAX_BLOCK_LOG_SIZE);
3001         struct sg {
3002                 struct ext4_group_info info;
3003                 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3004         } sg;
3005
3006         group--;
3007         if (group == 0)
3008                 seq_puts(seq, "#group: free  frags first ["
3009                               " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3010                               " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3011
3012         i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3013                 sizeof(struct ext4_group_info);
3014
3015         grinfo = ext4_get_group_info(sb, group);
3016         if (!grinfo)
3017                 return 0;
3018         /* Load the group info in memory only if not already loaded. */
3019         if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3020                 err = ext4_mb_load_buddy(sb, group, &e4b);
3021                 if (err) {
3022                         seq_printf(seq, "#%-5u: I/O error\n", group);
3023                         return 0;
3024                 }
3025                 buddy_loaded = 1;
3026         }
3027
3028         memcpy(&sg, grinfo, i);
3029
3030         if (buddy_loaded)
3031                 ext4_mb_unload_buddy(&e4b);
3032
3033         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3034                         sg.info.bb_fragments, sg.info.bb_first_free);
3035         for (i = 0; i <= 13; i++)
3036                 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3037                                 sg.info.bb_counters[i] : 0);
3038         seq_puts(seq, " ]\n");
3039
3040         return 0;
3041 }
3042
3043 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3044 {
3045 }
3046
3047 const struct seq_operations ext4_mb_seq_groups_ops = {
3048         .start  = ext4_mb_seq_groups_start,
3049         .next   = ext4_mb_seq_groups_next,
3050         .stop   = ext4_mb_seq_groups_stop,
3051         .show   = ext4_mb_seq_groups_show,
3052 };
3053
3054 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3055 {
3056         struct super_block *sb = seq->private;
3057         struct ext4_sb_info *sbi = EXT4_SB(sb);
3058
3059         seq_puts(seq, "mballoc:\n");
3060         if (!sbi->s_mb_stats) {
3061                 seq_puts(seq, "\tmb stats collection turned off.\n");
3062                 seq_puts(
3063                         seq,
3064                         "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3065                 return 0;
3066         }
3067         seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3068         seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3069
3070         seq_printf(seq, "\tgroups_scanned: %u\n",
3071                    atomic_read(&sbi->s_bal_groups_scanned));
3072
3073         /* CR_POWER2_ALIGNED stats */
3074         seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3075         seq_printf(seq, "\t\thits: %llu\n",
3076                    atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3077         seq_printf(
3078                 seq, "\t\tgroups_considered: %llu\n",
3079                 atomic64_read(
3080                         &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3081         seq_printf(seq, "\t\textents_scanned: %u\n",
3082                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3083         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3084                    atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3085         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3086                    atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3087
3088         /* CR_GOAL_LEN_FAST stats */
3089         seq_puts(seq, "\tcr_goal_fast_stats:\n");
3090         seq_printf(seq, "\t\thits: %llu\n",
3091                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3092         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3093                    atomic64_read(
3094                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3095         seq_printf(seq, "\t\textents_scanned: %u\n",
3096                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3097         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3098                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3099         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3100                    atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3101
3102         /* CR_BEST_AVAIL_LEN stats */
3103         seq_puts(seq, "\tcr_best_avail_stats:\n");
3104         seq_printf(seq, "\t\thits: %llu\n",
3105                    atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3106         seq_printf(
3107                 seq, "\t\tgroups_considered: %llu\n",
3108                 atomic64_read(
3109                         &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3110         seq_printf(seq, "\t\textents_scanned: %u\n",
3111                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3112         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3113                    atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3114         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3115                    atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3116
3117         /* CR_GOAL_LEN_SLOW stats */
3118         seq_puts(seq, "\tcr_goal_slow_stats:\n");
3119         seq_printf(seq, "\t\thits: %llu\n",
3120                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3121         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3122                    atomic64_read(
3123                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3124         seq_printf(seq, "\t\textents_scanned: %u\n",
3125                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3126         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3127                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3128
3129         /* CR_ANY_FREE stats */
3130         seq_puts(seq, "\tcr_any_free_stats:\n");
3131         seq_printf(seq, "\t\thits: %llu\n",
3132                    atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3133         seq_printf(
3134                 seq, "\t\tgroups_considered: %llu\n",
3135                 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3136         seq_printf(seq, "\t\textents_scanned: %u\n",
3137                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3138         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3139                    atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3140
3141         /* Aggregates */
3142         seq_printf(seq, "\textents_scanned: %u\n",
3143                    atomic_read(&sbi->s_bal_ex_scanned));
3144         seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3145         seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3146                    atomic_read(&sbi->s_bal_len_goals));
3147         seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3148         seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3149         seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3150         seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3151                    atomic_read(&sbi->s_mb_buddies_generated),
3152                    ext4_get_groups_count(sb));
3153         seq_printf(seq, "\tbuddies_time_used: %llu\n",
3154                    atomic64_read(&sbi->s_mb_generation_time));
3155         seq_printf(seq, "\tpreallocated: %u\n",
3156                    atomic_read(&sbi->s_mb_preallocated));
3157         seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3158         return 0;
3159 }
3160
3161 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3162 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3163 {
3164         struct super_block *sb = pde_data(file_inode(seq->file));
3165         unsigned long position;
3166
3167         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3168                 return NULL;
3169         position = *pos + 1;
3170         return (void *) ((unsigned long) position);
3171 }
3172
3173 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3174 {
3175         struct super_block *sb = pde_data(file_inode(seq->file));
3176         unsigned long position;
3177
3178         ++*pos;
3179         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3180                 return NULL;
3181         position = *pos + 1;
3182         return (void *) ((unsigned long) position);
3183 }
3184
3185 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3186 {
3187         struct super_block *sb = pde_data(file_inode(seq->file));
3188         struct ext4_sb_info *sbi = EXT4_SB(sb);
3189         unsigned long position = ((unsigned long) v);
3190         struct ext4_group_info *grp;
3191         unsigned int count;
3192
3193         position--;
3194         if (position >= MB_NUM_ORDERS(sb)) {
3195                 position -= MB_NUM_ORDERS(sb);
3196                 if (position == 0)
3197                         seq_puts(seq, "avg_fragment_size_lists:\n");
3198
3199                 count = 0;
3200                 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3201                 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3202                                     bb_avg_fragment_size_node)
3203                         count++;
3204                 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3205                 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3206                                         (unsigned int)position, count);
3207                 return 0;
3208         }
3209
3210         if (position == 0) {
3211                 seq_printf(seq, "optimize_scan: %d\n",
3212                            test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3213                 seq_puts(seq, "max_free_order_lists:\n");
3214         }
3215         count = 0;
3216         read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3217         list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3218                             bb_largest_free_order_node)
3219                 count++;
3220         read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3221         seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3222                    (unsigned int)position, count);
3223
3224         return 0;
3225 }
3226
3227 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3228 {
3229 }
3230
3231 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3232         .start  = ext4_mb_seq_structs_summary_start,
3233         .next   = ext4_mb_seq_structs_summary_next,
3234         .stop   = ext4_mb_seq_structs_summary_stop,
3235         .show   = ext4_mb_seq_structs_summary_show,
3236 };
3237
3238 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3239 {
3240         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3241         struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3242
3243         BUG_ON(!cachep);
3244         return cachep;
3245 }
3246
3247 /*
3248  * Allocate the top-level s_group_info array for the specified number
3249  * of groups
3250  */
3251 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3252 {
3253         struct ext4_sb_info *sbi = EXT4_SB(sb);
3254         unsigned size;
3255         struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3256
3257         size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3258                 EXT4_DESC_PER_BLOCK_BITS(sb);
3259         if (size <= sbi->s_group_info_size)
3260                 return 0;
3261
3262         size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3263         new_groupinfo = kvzalloc(size, GFP_KERNEL);
3264         if (!new_groupinfo) {
3265                 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3266                 return -ENOMEM;
3267         }
3268         rcu_read_lock();
3269         old_groupinfo = rcu_dereference(sbi->s_group_info);
3270         if (old_groupinfo)
3271                 memcpy(new_groupinfo, old_groupinfo,
3272                        sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3273         rcu_read_unlock();
3274         rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3275         sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3276         if (old_groupinfo)
3277                 ext4_kvfree_array_rcu(old_groupinfo);
3278         ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3279                    sbi->s_group_info_size);
3280         return 0;
3281 }
3282
3283 /* Create and initialize ext4_group_info data for the given group. */
3284 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3285                           struct ext4_group_desc *desc)
3286 {
3287         int i;
3288         int metalen = 0;
3289         int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3290         struct ext4_sb_info *sbi = EXT4_SB(sb);
3291         struct ext4_group_info **meta_group_info;
3292         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3293
3294         /*
3295          * First check if this group is the first of a reserved block.
3296          * If it's true, we have to allocate a new table of pointers
3297          * to ext4_group_info structures
3298          */
3299         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3300                 metalen = sizeof(*meta_group_info) <<
3301                         EXT4_DESC_PER_BLOCK_BITS(sb);
3302                 meta_group_info = kmalloc(metalen, GFP_NOFS);
3303                 if (meta_group_info == NULL) {
3304                         ext4_msg(sb, KERN_ERR, "can't allocate mem "
3305                                  "for a buddy group");
3306                         return -ENOMEM;
3307                 }
3308                 rcu_read_lock();
3309                 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3310                 rcu_read_unlock();
3311         }
3312
3313         meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3314         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3315
3316         meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3317         if (meta_group_info[i] == NULL) {
3318                 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3319                 goto exit_group_info;
3320         }
3321         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3322                 &(meta_group_info[i]->bb_state));
3323
3324         /*
3325          * initialize bb_free to be able to skip
3326          * empty groups without initialization
3327          */
3328         if (ext4_has_group_desc_csum(sb) &&
3329             (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3330                 meta_group_info[i]->bb_free =
3331                         ext4_free_clusters_after_init(sb, group, desc);
3332         } else {
3333                 meta_group_info[i]->bb_free =
3334                         ext4_free_group_clusters(sb, desc);
3335         }
3336
3337         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3338         init_rwsem(&meta_group_info[i]->alloc_sem);
3339         meta_group_info[i]->bb_free_root = RB_ROOT;
3340         INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3341         INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3342         meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3343         meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3344         meta_group_info[i]->bb_group = group;
3345
3346         mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3347         return 0;
3348
3349 exit_group_info:
3350         /* If a meta_group_info table has been allocated, release it now */
3351         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3352                 struct ext4_group_info ***group_info;
3353
3354                 rcu_read_lock();
3355                 group_info = rcu_dereference(sbi->s_group_info);
3356                 kfree(group_info[idx]);
3357                 group_info[idx] = NULL;
3358                 rcu_read_unlock();
3359         }
3360         return -ENOMEM;
3361 } /* ext4_mb_add_groupinfo */
3362
3363 static int ext4_mb_init_backend(struct super_block *sb)
3364 {
3365         ext4_group_t ngroups = ext4_get_groups_count(sb);
3366         ext4_group_t i;
3367         struct ext4_sb_info *sbi = EXT4_SB(sb);
3368         int err;
3369         struct ext4_group_desc *desc;
3370         struct ext4_group_info ***group_info;
3371         struct kmem_cache *cachep;
3372
3373         err = ext4_mb_alloc_groupinfo(sb, ngroups);
3374         if (err)
3375                 return err;
3376
3377         sbi->s_buddy_cache = new_inode(sb);
3378         if (sbi->s_buddy_cache == NULL) {
3379                 ext4_msg(sb, KERN_ERR, "can't get new inode");
3380                 goto err_freesgi;
3381         }
3382         /* To avoid potentially colliding with an valid on-disk inode number,
3383          * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3384          * not in the inode hash, so it should never be found by iget(), but
3385          * this will avoid confusion if it ever shows up during debugging. */
3386         sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3387         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3388         for (i = 0; i < ngroups; i++) {
3389                 cond_resched();
3390                 desc = ext4_get_group_desc(sb, i, NULL);
3391                 if (desc == NULL) {
3392                         ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3393                         goto err_freebuddy;
3394                 }
3395                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3396                         goto err_freebuddy;
3397         }
3398
3399         if (ext4_has_feature_flex_bg(sb)) {
3400                 /* a single flex group is supposed to be read by a single IO.
3401                  * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3402                  * unsigned integer, so the maximum shift is 32.
3403                  */
3404                 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3405                         ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3406                         goto err_freebuddy;
3407                 }
3408                 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3409                         BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3410                 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3411         } else {
3412                 sbi->s_mb_prefetch = 32;
3413         }
3414         if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3415                 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3416         /* now many real IOs to prefetch within a single allocation at cr=0
3417          * given cr=0 is an CPU-related optimization we shouldn't try to
3418          * load too many groups, at some point we should start to use what
3419          * we've got in memory.
3420          * with an average random access time 5ms, it'd take a second to get
3421          * 200 groups (* N with flex_bg), so let's make this limit 4
3422          */
3423         sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3424         if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3425                 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3426
3427         return 0;
3428
3429 err_freebuddy:
3430         cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3431         while (i-- > 0) {
3432                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3433
3434                 if (grp)
3435                         kmem_cache_free(cachep, grp);
3436         }
3437         i = sbi->s_group_info_size;
3438         rcu_read_lock();
3439         group_info = rcu_dereference(sbi->s_group_info);
3440         while (i-- > 0)
3441                 kfree(group_info[i]);
3442         rcu_read_unlock();
3443         iput(sbi->s_buddy_cache);
3444 err_freesgi:
3445         rcu_read_lock();
3446         kvfree(rcu_dereference(sbi->s_group_info));
3447         rcu_read_unlock();
3448         return -ENOMEM;
3449 }
3450
3451 static void ext4_groupinfo_destroy_slabs(void)
3452 {
3453         int i;
3454
3455         for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3456                 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3457                 ext4_groupinfo_caches[i] = NULL;
3458         }
3459 }
3460
3461 static int ext4_groupinfo_create_slab(size_t size)
3462 {
3463         static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3464         int slab_size;
3465         int blocksize_bits = order_base_2(size);
3466         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3467         struct kmem_cache *cachep;
3468
3469         if (cache_index >= NR_GRPINFO_CACHES)
3470                 return -EINVAL;
3471
3472         if (unlikely(cache_index < 0))
3473                 cache_index = 0;
3474
3475         mutex_lock(&ext4_grpinfo_slab_create_mutex);
3476         if (ext4_groupinfo_caches[cache_index]) {
3477                 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3478                 return 0;       /* Already created */
3479         }
3480
3481         slab_size = offsetof(struct ext4_group_info,
3482                                 bb_counters[blocksize_bits + 2]);
3483
3484         cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3485                                         slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3486                                         NULL);
3487
3488         ext4_groupinfo_caches[cache_index] = cachep;
3489
3490         mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3491         if (!cachep) {
3492                 printk(KERN_EMERG
3493                        "EXT4-fs: no memory for groupinfo slab cache\n");
3494                 return -ENOMEM;
3495         }
3496
3497         return 0;
3498 }
3499
3500 static void ext4_discard_work(struct work_struct *work)
3501 {
3502         struct ext4_sb_info *sbi = container_of(work,
3503                         struct ext4_sb_info, s_discard_work);
3504         struct super_block *sb = sbi->s_sb;
3505         struct ext4_free_data *fd, *nfd;
3506         struct ext4_buddy e4b;
3507         LIST_HEAD(discard_list);
3508         ext4_group_t grp, load_grp;
3509         int err = 0;
3510
3511         spin_lock(&sbi->s_md_lock);
3512         list_splice_init(&sbi->s_discard_list, &discard_list);
3513         spin_unlock(&sbi->s_md_lock);
3514
3515         load_grp = UINT_MAX;
3516         list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3517                 /*
3518                  * If filesystem is umounting or no memory or suffering
3519                  * from no space, give up the discard
3520                  */
3521                 if ((sb->s_flags & SB_ACTIVE) && !err &&
3522                     !atomic_read(&sbi->s_retry_alloc_pending)) {
3523                         grp = fd->efd_group;
3524                         if (grp != load_grp) {
3525                                 if (load_grp != UINT_MAX)
3526                                         ext4_mb_unload_buddy(&e4b);
3527
3528                                 err = ext4_mb_load_buddy(sb, grp, &e4b);
3529                                 if (err) {
3530                                         kmem_cache_free(ext4_free_data_cachep, fd);
3531                                         load_grp = UINT_MAX;
3532                                         continue;
3533                                 } else {
3534                                         load_grp = grp;
3535                                 }
3536                         }
3537
3538                         ext4_lock_group(sb, grp);
3539                         ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3540                                                 fd->efd_start_cluster + fd->efd_count - 1, 1);
3541                         ext4_unlock_group(sb, grp);
3542                 }
3543                 kmem_cache_free(ext4_free_data_cachep, fd);
3544         }
3545
3546         if (load_grp != UINT_MAX)
3547                 ext4_mb_unload_buddy(&e4b);
3548 }
3549
3550 int ext4_mb_init(struct super_block *sb)
3551 {
3552         struct ext4_sb_info *sbi = EXT4_SB(sb);
3553         unsigned i, j;
3554         unsigned offset, offset_incr;
3555         unsigned max;
3556         int ret;
3557
3558         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3559
3560         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3561         if (sbi->s_mb_offsets == NULL) {
3562                 ret = -ENOMEM;
3563                 goto out;
3564         }
3565
3566         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3567         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3568         if (sbi->s_mb_maxs == NULL) {
3569                 ret = -ENOMEM;
3570                 goto out;
3571         }
3572
3573         ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3574         if (ret < 0)
3575                 goto out;
3576
3577         /* order 0 is regular bitmap */
3578         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3579         sbi->s_mb_offsets[0] = 0;
3580
3581         i = 1;
3582         offset = 0;
3583         offset_incr = 1 << (sb->s_blocksize_bits - 1);
3584         max = sb->s_blocksize << 2;
3585         do {
3586                 sbi->s_mb_offsets[i] = offset;
3587                 sbi->s_mb_maxs[i] = max;
3588                 offset += offset_incr;
3589                 offset_incr = offset_incr >> 1;
3590                 max = max >> 1;
3591                 i++;
3592         } while (i < MB_NUM_ORDERS(sb));
3593
3594         sbi->s_mb_avg_fragment_size =
3595                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3596                         GFP_KERNEL);
3597         if (!sbi->s_mb_avg_fragment_size) {
3598                 ret = -ENOMEM;
3599                 goto out;
3600         }
3601         sbi->s_mb_avg_fragment_size_locks =
3602                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3603                         GFP_KERNEL);
3604         if (!sbi->s_mb_avg_fragment_size_locks) {
3605                 ret = -ENOMEM;
3606                 goto out;
3607         }
3608         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3609                 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3610                 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3611         }
3612         sbi->s_mb_largest_free_orders =
3613                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3614                         GFP_KERNEL);
3615         if (!sbi->s_mb_largest_free_orders) {
3616                 ret = -ENOMEM;
3617                 goto out;
3618         }
3619         sbi->s_mb_largest_free_orders_locks =
3620                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3621                         GFP_KERNEL);
3622         if (!sbi->s_mb_largest_free_orders_locks) {
3623                 ret = -ENOMEM;
3624                 goto out;
3625         }
3626         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3627                 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3628                 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3629         }
3630
3631         spin_lock_init(&sbi->s_md_lock);
3632         sbi->s_mb_free_pending = 0;
3633         INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3634         INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3635         INIT_LIST_HEAD(&sbi->s_discard_list);
3636         INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3637         atomic_set(&sbi->s_retry_alloc_pending, 0);
3638
3639         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3640         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3641         sbi->s_mb_stats = MB_DEFAULT_STATS;
3642         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3643         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3644         sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3645
3646         /*
3647          * The default group preallocation is 512, which for 4k block
3648          * sizes translates to 2 megabytes.  However for bigalloc file
3649          * systems, this is probably too big (i.e, if the cluster size
3650          * is 1 megabyte, then group preallocation size becomes half a
3651          * gigabyte!).  As a default, we will keep a two megabyte
3652          * group pralloc size for cluster sizes up to 64k, and after
3653          * that, we will force a minimum group preallocation size of
3654          * 32 clusters.  This translates to 8 megs when the cluster
3655          * size is 256k, and 32 megs when the cluster size is 1 meg,
3656          * which seems reasonable as a default.
3657          */
3658         sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3659                                        sbi->s_cluster_bits, 32);
3660         /*
3661          * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3662          * to the lowest multiple of s_stripe which is bigger than
3663          * the s_mb_group_prealloc as determined above. We want
3664          * the preallocation size to be an exact multiple of the
3665          * RAID stripe size so that preallocations don't fragment
3666          * the stripes.
3667          */
3668         if (sbi->s_stripe > 1) {
3669                 sbi->s_mb_group_prealloc = roundup(
3670                         sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3671         }
3672
3673         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3674         if (sbi->s_locality_groups == NULL) {
3675                 ret = -ENOMEM;
3676                 goto out;
3677         }
3678         for_each_possible_cpu(i) {
3679                 struct ext4_locality_group *lg;
3680                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3681                 mutex_init(&lg->lg_mutex);
3682                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3683                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3684                 spin_lock_init(&lg->lg_prealloc_lock);
3685         }
3686
3687         if (bdev_nonrot(sb->s_bdev))
3688                 sbi->s_mb_max_linear_groups = 0;
3689         else
3690                 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3691         /* init file for buddy data */
3692         ret = ext4_mb_init_backend(sb);
3693         if (ret != 0)
3694                 goto out_free_locality_groups;
3695
3696         return 0;
3697
3698 out_free_locality_groups:
3699         free_percpu(sbi->s_locality_groups);
3700         sbi->s_locality_groups = NULL;
3701 out:
3702         kfree(sbi->s_mb_avg_fragment_size);
3703         kfree(sbi->s_mb_avg_fragment_size_locks);
3704         kfree(sbi->s_mb_largest_free_orders);
3705         kfree(sbi->s_mb_largest_free_orders_locks);
3706         kfree(sbi->s_mb_offsets);
3707         sbi->s_mb_offsets = NULL;
3708         kfree(sbi->s_mb_maxs);
3709         sbi->s_mb_maxs = NULL;
3710         return ret;
3711 }
3712
3713 /* need to called with the ext4 group lock held */
3714 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3715 {
3716         struct ext4_prealloc_space *pa;
3717         struct list_head *cur, *tmp;
3718         int count = 0;
3719
3720         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3721                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3722                 list_del(&pa->pa_group_list);
3723                 count++;
3724                 kmem_cache_free(ext4_pspace_cachep, pa);
3725         }
3726         return count;
3727 }
3728
3729 int ext4_mb_release(struct super_block *sb)
3730 {
3731         ext4_group_t ngroups = ext4_get_groups_count(sb);
3732         ext4_group_t i;
3733         int num_meta_group_infos;
3734         struct ext4_group_info *grinfo, ***group_info;
3735         struct ext4_sb_info *sbi = EXT4_SB(sb);
3736         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3737         int count;
3738
3739         if (test_opt(sb, DISCARD)) {
3740                 /*
3741                  * wait the discard work to drain all of ext4_free_data
3742                  */
3743                 flush_work(&sbi->s_discard_work);
3744                 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3745         }
3746
3747         if (sbi->s_group_info) {
3748                 for (i = 0; i < ngroups; i++) {
3749                         cond_resched();
3750                         grinfo = ext4_get_group_info(sb, i);
3751                         if (!grinfo)
3752                                 continue;
3753                         mb_group_bb_bitmap_free(grinfo);
3754                         ext4_lock_group(sb, i);
3755                         count = ext4_mb_cleanup_pa(grinfo);
3756                         if (count)
3757                                 mb_debug(sb, "mballoc: %d PAs left\n",
3758                                          count);
3759                         ext4_unlock_group(sb, i);
3760                         kmem_cache_free(cachep, grinfo);
3761                 }
3762                 num_meta_group_infos = (ngroups +
3763                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3764                         EXT4_DESC_PER_BLOCK_BITS(sb);
3765                 rcu_read_lock();
3766                 group_info = rcu_dereference(sbi->s_group_info);
3767                 for (i = 0; i < num_meta_group_infos; i++)
3768                         kfree(group_info[i]);
3769                 kvfree(group_info);
3770                 rcu_read_unlock();
3771         }
3772         kfree(sbi->s_mb_avg_fragment_size);
3773         kfree(sbi->s_mb_avg_fragment_size_locks);
3774         kfree(sbi->s_mb_largest_free_orders);
3775         kfree(sbi->s_mb_largest_free_orders_locks);
3776         kfree(sbi->s_mb_offsets);
3777         kfree(sbi->s_mb_maxs);
3778         iput(sbi->s_buddy_cache);
3779         if (sbi->s_mb_stats) {
3780                 ext4_msg(sb, KERN_INFO,
3781                        "mballoc: %u blocks %u reqs (%u success)",
3782                                 atomic_read(&sbi->s_bal_allocated),
3783                                 atomic_read(&sbi->s_bal_reqs),
3784                                 atomic_read(&sbi->s_bal_success));
3785                 ext4_msg(sb, KERN_INFO,
3786                       "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3787                                 "%u 2^N hits, %u breaks, %u lost",
3788                                 atomic_read(&sbi->s_bal_ex_scanned),
3789                                 atomic_read(&sbi->s_bal_groups_scanned),
3790                                 atomic_read(&sbi->s_bal_goals),
3791                                 atomic_read(&sbi->s_bal_2orders),
3792                                 atomic_read(&sbi->s_bal_breaks),
3793                                 atomic_read(&sbi->s_mb_lost_chunks));
3794                 ext4_msg(sb, KERN_INFO,
3795                        "mballoc: %u generated and it took %llu",
3796                                 atomic_read(&sbi->s_mb_buddies_generated),
3797                                 atomic64_read(&sbi->s_mb_generation_time));
3798                 ext4_msg(sb, KERN_INFO,
3799                        "mballoc: %u preallocated, %u discarded",
3800                                 atomic_read(&sbi->s_mb_preallocated),
3801                                 atomic_read(&sbi->s_mb_discarded));
3802         }
3803
3804         free_percpu(sbi->s_locality_groups);
3805
3806         return 0;
3807 }
3808
3809 static inline int ext4_issue_discard(struct super_block *sb,
3810                 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3811                 struct bio **biop)
3812 {
3813         ext4_fsblk_t discard_block;
3814
3815         discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3816                          ext4_group_first_block_no(sb, block_group));
3817         count = EXT4_C2B(EXT4_SB(sb), count);
3818         trace_ext4_discard_blocks(sb,
3819                         (unsigned long long) discard_block, count);
3820         if (biop) {
3821                 return __blkdev_issue_discard(sb->s_bdev,
3822                         (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3823                         (sector_t)count << (sb->s_blocksize_bits - 9),
3824                         GFP_NOFS, biop);
3825         } else
3826                 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3827 }
3828
3829 static void ext4_free_data_in_buddy(struct super_block *sb,
3830                                     struct ext4_free_data *entry)
3831 {
3832         struct ext4_buddy e4b;
3833         struct ext4_group_info *db;
3834         int err, count = 0;
3835
3836         mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3837                  entry->efd_count, entry->efd_group, entry);
3838
3839         err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3840         /* we expect to find existing buddy because it's pinned */
3841         BUG_ON(err != 0);
3842
3843         spin_lock(&EXT4_SB(sb)->s_md_lock);
3844         EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3845         spin_unlock(&EXT4_SB(sb)->s_md_lock);
3846
3847         db = e4b.bd_info;
3848         /* there are blocks to put in buddy to make them really free */
3849         count += entry->efd_count;
3850         ext4_lock_group(sb, entry->efd_group);
3851         /* Take it out of per group rb tree */
3852         rb_erase(&entry->efd_node, &(db->bb_free_root));
3853         mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3854
3855         /*
3856          * Clear the trimmed flag for the group so that the next
3857          * ext4_trim_fs can trim it.
3858          * If the volume is mounted with -o discard, online discard
3859          * is supported and the free blocks will be trimmed online.
3860          */
3861         if (!test_opt(sb, DISCARD))
3862                 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3863
3864         if (!db->bb_free_root.rb_node) {
3865                 /* No more items in the per group rb tree
3866                  * balance refcounts from ext4_mb_free_metadata()
3867                  */
3868                 put_page(e4b.bd_buddy_page);
3869                 put_page(e4b.bd_bitmap_page);
3870         }
3871         ext4_unlock_group(sb, entry->efd_group);
3872         ext4_mb_unload_buddy(&e4b);
3873
3874         mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3875 }
3876
3877 /*
3878  * This function is called by the jbd2 layer once the commit has finished,
3879  * so we know we can free the blocks that were released with that commit.
3880  */
3881 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3882 {
3883         struct ext4_sb_info *sbi = EXT4_SB(sb);
3884         struct ext4_free_data *entry, *tmp;
3885         LIST_HEAD(freed_data_list);
3886         struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3887         bool wake;
3888
3889         list_replace_init(s_freed_head, &freed_data_list);
3890
3891         list_for_each_entry(entry, &freed_data_list, efd_list)
3892                 ext4_free_data_in_buddy(sb, entry);
3893
3894         if (test_opt(sb, DISCARD)) {
3895                 spin_lock(&sbi->s_md_lock);
3896                 wake = list_empty(&sbi->s_discard_list);
3897                 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3898                 spin_unlock(&sbi->s_md_lock);
3899                 if (wake)
3900                         queue_work(system_unbound_wq, &sbi->s_discard_work);
3901         } else {
3902                 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3903                         kmem_cache_free(ext4_free_data_cachep, entry);
3904         }
3905 }
3906
3907 int __init ext4_init_mballoc(void)
3908 {
3909         ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3910                                         SLAB_RECLAIM_ACCOUNT);
3911         if (ext4_pspace_cachep == NULL)
3912                 goto out;
3913
3914         ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3915                                     SLAB_RECLAIM_ACCOUNT);
3916         if (ext4_ac_cachep == NULL)
3917                 goto out_pa_free;
3918
3919         ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3920                                            SLAB_RECLAIM_ACCOUNT);
3921         if (ext4_free_data_cachep == NULL)
3922                 goto out_ac_free;
3923
3924         return 0;
3925
3926 out_ac_free:
3927         kmem_cache_destroy(ext4_ac_cachep);
3928 out_pa_free:
3929         kmem_cache_destroy(ext4_pspace_cachep);
3930 out:
3931         return -ENOMEM;
3932 }
3933
3934 void ext4_exit_mballoc(void)
3935 {
3936         /*
3937          * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3938          * before destroying the slab cache.
3939          */
3940         rcu_barrier();
3941         kmem_cache_destroy(ext4_pspace_cachep);
3942         kmem_cache_destroy(ext4_ac_cachep);
3943         kmem_cache_destroy(ext4_free_data_cachep);
3944         ext4_groupinfo_destroy_slabs();
3945 }
3946
3947 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3948 #define EXT4_MB_SYNC_UPDATE 0x0002
3949 static int
3950 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3951                      ext4_group_t group, ext4_grpblk_t blkoff,
3952                      ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3953 {
3954         struct ext4_sb_info *sbi = EXT4_SB(sb);
3955         struct buffer_head *bitmap_bh = NULL;
3956         struct ext4_group_desc *gdp;
3957         struct buffer_head *gdp_bh;
3958         int err;
3959         unsigned int i, already, changed = len;
3960
3961         KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3962                                    handle, sb, state, group, blkoff, len,
3963                                    flags, ret_changed);
3964
3965         if (ret_changed)
3966                 *ret_changed = 0;
3967         bitmap_bh = ext4_read_block_bitmap(sb, group);
3968         if (IS_ERR(bitmap_bh))
3969                 return PTR_ERR(bitmap_bh);
3970
3971         if (handle) {
3972                 BUFFER_TRACE(bitmap_bh, "getting write access");
3973                 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3974                                                     EXT4_JTR_NONE);
3975                 if (err)
3976                         goto out_err;
3977         }
3978
3979         err = -EIO;
3980         gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3981         if (!gdp)
3982                 goto out_err;
3983
3984         if (handle) {
3985                 BUFFER_TRACE(gdp_bh, "get_write_access");
3986                 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
3987                                                     EXT4_JTR_NONE);
3988                 if (err)
3989                         goto out_err;
3990         }
3991
3992         ext4_lock_group(sb, group);
3993         if (ext4_has_group_desc_csum(sb) &&
3994             (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3995                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3996                 ext4_free_group_clusters_set(sb, gdp,
3997                         ext4_free_clusters_after_init(sb, group, gdp));
3998         }
3999
4000         if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4001                 already = 0;
4002                 for (i = 0; i < len; i++)
4003                         if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4004                                         state)
4005                                 already++;
4006                 changed = len - already;
4007         }
4008
4009         if (state) {
4010                 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4011                 ext4_free_group_clusters_set(sb, gdp,
4012                         ext4_free_group_clusters(sb, gdp) - changed);
4013         } else {
4014                 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4015                 ext4_free_group_clusters_set(sb, gdp,
4016                         ext4_free_group_clusters(sb, gdp) + changed);
4017         }
4018
4019         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4020         ext4_group_desc_csum_set(sb, group, gdp);
4021         ext4_unlock_group(sb, group);
4022         if (ret_changed)
4023                 *ret_changed = changed;
4024
4025         if (sbi->s_log_groups_per_flex) {
4026                 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4027                 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4028                                            s_flex_groups, flex_group);
4029
4030                 if (state)
4031                         atomic64_sub(changed, &fg->free_clusters);
4032                 else
4033                         atomic64_add(changed, &fg->free_clusters);
4034         }
4035
4036         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4037         if (err)
4038                 goto out_err;
4039         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4040         if (err)
4041                 goto out_err;
4042
4043         if (flags & EXT4_MB_SYNC_UPDATE) {
4044                 sync_dirty_buffer(bitmap_bh);
4045                 sync_dirty_buffer(gdp_bh);
4046         }
4047
4048 out_err:
4049         brelse(bitmap_bh);
4050         return err;
4051 }
4052
4053 /*
4054  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4055  * Returns 0 if success or error code
4056  */
4057 static noinline_for_stack int
4058 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4059                                 handle_t *handle, unsigned int reserv_clstrs)
4060 {
4061         struct ext4_group_desc *gdp;
4062         struct ext4_sb_info *sbi;
4063         struct super_block *sb;
4064         ext4_fsblk_t block;
4065         int err, len;
4066         int flags = 0;
4067         ext4_grpblk_t changed;
4068
4069         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4070         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4071
4072         sb = ac->ac_sb;
4073         sbi = EXT4_SB(sb);
4074
4075         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4076         if (!gdp)
4077                 return -EIO;
4078         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4079                         ext4_free_group_clusters(sb, gdp));
4080
4081         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4082         len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4083         if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4084                 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4085                            "fs metadata", block, block+len);
4086                 /* File system mounted not to panic on error
4087                  * Fix the bitmap and return EFSCORRUPTED
4088                  * We leak some of the blocks here.
4089                  */
4090                 err = ext4_mb_mark_context(handle, sb, true,
4091                                            ac->ac_b_ex.fe_group,
4092                                            ac->ac_b_ex.fe_start,
4093                                            ac->ac_b_ex.fe_len,
4094                                            0, NULL);
4095                 if (!err)
4096                         err = -EFSCORRUPTED;
4097                 return err;
4098         }
4099
4100 #ifdef AGGRESSIVE_CHECK
4101         flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4102 #endif
4103         err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4104                                    ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4105                                    flags, &changed);
4106
4107         if (err && changed == 0)
4108                 return err;
4109
4110 #ifdef AGGRESSIVE_CHECK
4111         BUG_ON(changed != ac->ac_b_ex.fe_len);
4112 #endif
4113         percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4114         /*
4115          * Now reduce the dirty block count also. Should not go negative
4116          */
4117         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4118                 /* release all the reserved blocks if non delalloc */
4119                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4120                                    reserv_clstrs);
4121
4122         return err;
4123 }
4124
4125 /*
4126  * Idempotent helper for Ext4 fast commit replay path to set the state of
4127  * blocks in bitmaps and update counters.
4128  */
4129 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4130                      int len, bool state)
4131 {
4132         struct ext4_sb_info *sbi = EXT4_SB(sb);
4133         ext4_group_t group;
4134         ext4_grpblk_t blkoff;
4135         int err = 0;
4136         unsigned int clen, thisgrp_len;
4137
4138         while (len > 0) {
4139                 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4140
4141                 /*
4142                  * Check to see if we are freeing blocks across a group
4143                  * boundary.
4144                  * In case of flex_bg, this can happen that (block, len) may
4145                  * span across more than one group. In that case we need to
4146                  * get the corresponding group metadata to work with.
4147                  * For this we have goto again loop.
4148                  */
4149                 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4150                         EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4151                 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4152
4153                 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4154                         ext4_error(sb, "Marking blocks in system zone - "
4155                                    "Block = %llu, len = %u",
4156                                    block, thisgrp_len);
4157                         break;
4158                 }
4159
4160                 err = ext4_mb_mark_context(NULL, sb, state,
4161                                            group, blkoff, clen,
4162                                            EXT4_MB_BITMAP_MARKED_CHECK |
4163                                            EXT4_MB_SYNC_UPDATE,
4164                                            NULL);
4165                 if (err)
4166                         break;
4167
4168                 block += thisgrp_len;
4169                 len -= thisgrp_len;
4170                 BUG_ON(len < 0);
4171         }
4172 }
4173
4174 /*
4175  * here we normalize request for locality group
4176  * Group request are normalized to s_mb_group_prealloc, which goes to
4177  * s_strip if we set the same via mount option.
4178  * s_mb_group_prealloc can be configured via
4179  * /sys/fs/ext4/<partition>/mb_group_prealloc
4180  *
4181  * XXX: should we try to preallocate more than the group has now?
4182  */
4183 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4184 {
4185         struct super_block *sb = ac->ac_sb;
4186         struct ext4_locality_group *lg = ac->ac_lg;
4187
4188         BUG_ON(lg == NULL);
4189         ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4190         mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4191 }
4192
4193 /*
4194  * This function returns the next element to look at during inode
4195  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4196  * (ei->i_prealloc_lock)
4197  *
4198  * new_start    The start of the range we want to compare
4199  * cur_start    The existing start that we are comparing against
4200  * node The node of the rb_tree
4201  */
4202 static inline struct rb_node*
4203 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4204 {
4205         if (new_start < cur_start)
4206                 return node->rb_left;
4207         else
4208                 return node->rb_right;
4209 }
4210
4211 static inline void
4212 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4213                           ext4_lblk_t start, loff_t end)
4214 {
4215         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4216         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4217         struct ext4_prealloc_space *tmp_pa;
4218         ext4_lblk_t tmp_pa_start;
4219         loff_t tmp_pa_end;
4220         struct rb_node *iter;
4221
4222         read_lock(&ei->i_prealloc_lock);
4223         for (iter = ei->i_prealloc_node.rb_node; iter;
4224              iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4225                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4226                                   pa_node.inode_node);
4227                 tmp_pa_start = tmp_pa->pa_lstart;
4228                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4229
4230                 spin_lock(&tmp_pa->pa_lock);
4231                 if (tmp_pa->pa_deleted == 0)
4232                         BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4233                 spin_unlock(&tmp_pa->pa_lock);
4234         }
4235         read_unlock(&ei->i_prealloc_lock);
4236 }
4237
4238 /*
4239  * Given an allocation context "ac" and a range "start", "end", check
4240  * and adjust boundaries if the range overlaps with any of the existing
4241  * preallocatoins stored in the corresponding inode of the allocation context.
4242  *
4243  * Parameters:
4244  *      ac                      allocation context
4245  *      start                   start of the new range
4246  *      end                     end of the new range
4247  */
4248 static inline void
4249 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4250                           ext4_lblk_t *start, loff_t *end)
4251 {
4252         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4253         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4254         struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4255         struct rb_node *iter;
4256         ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4257         loff_t new_end, tmp_pa_end, left_pa_end = -1;
4258
4259         new_start = *start;
4260         new_end = *end;
4261
4262         /*
4263          * Adjust the normalized range so that it doesn't overlap with any
4264          * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4265          * so it doesn't change underneath us.
4266          */
4267         read_lock(&ei->i_prealloc_lock);
4268
4269         /* Step 1: find any one immediate neighboring PA of the normalized range */
4270         for (iter = ei->i_prealloc_node.rb_node; iter;
4271              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4272                                             tmp_pa_start, iter)) {
4273                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4274                                   pa_node.inode_node);
4275                 tmp_pa_start = tmp_pa->pa_lstart;
4276                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4277
4278                 /* PA must not overlap original request */
4279                 spin_lock(&tmp_pa->pa_lock);
4280                 if (tmp_pa->pa_deleted == 0)
4281                         BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4282                                  ac->ac_o_ex.fe_logical < tmp_pa_start));
4283                 spin_unlock(&tmp_pa->pa_lock);
4284         }
4285
4286         /*
4287          * Step 2: check if the found PA is left or right neighbor and
4288          * get the other neighbor
4289          */
4290         if (tmp_pa) {
4291                 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4292                         struct rb_node *tmp;
4293
4294                         left_pa = tmp_pa;
4295                         tmp = rb_next(&left_pa->pa_node.inode_node);
4296                         if (tmp) {
4297                                 right_pa = rb_entry(tmp,
4298                                                     struct ext4_prealloc_space,
4299                                                     pa_node.inode_node);
4300                         }
4301                 } else {
4302                         struct rb_node *tmp;
4303
4304                         right_pa = tmp_pa;
4305                         tmp = rb_prev(&right_pa->pa_node.inode_node);
4306                         if (tmp) {
4307                                 left_pa = rb_entry(tmp,
4308                                                    struct ext4_prealloc_space,
4309                                                    pa_node.inode_node);
4310                         }
4311                 }
4312         }
4313
4314         /* Step 3: get the non deleted neighbors */
4315         if (left_pa) {
4316                 for (iter = &left_pa->pa_node.inode_node;;
4317                      iter = rb_prev(iter)) {
4318                         if (!iter) {
4319                                 left_pa = NULL;
4320                                 break;
4321                         }
4322
4323                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4324                                           pa_node.inode_node);
4325                         left_pa = tmp_pa;
4326                         spin_lock(&tmp_pa->pa_lock);
4327                         if (tmp_pa->pa_deleted == 0) {
4328                                 spin_unlock(&tmp_pa->pa_lock);
4329                                 break;
4330                         }
4331                         spin_unlock(&tmp_pa->pa_lock);
4332                 }
4333         }
4334
4335         if (right_pa) {
4336                 for (iter = &right_pa->pa_node.inode_node;;
4337                      iter = rb_next(iter)) {
4338                         if (!iter) {
4339                                 right_pa = NULL;
4340                                 break;
4341                         }
4342
4343                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4344                                           pa_node.inode_node);
4345                         right_pa = tmp_pa;
4346                         spin_lock(&tmp_pa->pa_lock);
4347                         if (tmp_pa->pa_deleted == 0) {
4348                                 spin_unlock(&tmp_pa->pa_lock);
4349                                 break;
4350                         }
4351                         spin_unlock(&tmp_pa->pa_lock);
4352                 }
4353         }
4354
4355         if (left_pa) {
4356                 left_pa_end = pa_logical_end(sbi, left_pa);
4357                 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4358         }
4359
4360         if (right_pa) {
4361                 right_pa_start = right_pa->pa_lstart;
4362                 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4363         }
4364
4365         /* Step 4: trim our normalized range to not overlap with the neighbors */
4366         if (left_pa) {
4367                 if (left_pa_end > new_start)
4368                         new_start = left_pa_end;
4369         }
4370
4371         if (right_pa) {
4372                 if (right_pa_start < new_end)
4373                         new_end = right_pa_start;
4374         }
4375         read_unlock(&ei->i_prealloc_lock);
4376
4377         /* XXX: extra loop to check we really don't overlap preallocations */
4378         ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4379
4380         *start = new_start;
4381         *end = new_end;
4382 }
4383
4384 /*
4385  * Normalization means making request better in terms of
4386  * size and alignment
4387  */
4388 static noinline_for_stack void
4389 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4390                                 struct ext4_allocation_request *ar)
4391 {
4392         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4393         struct ext4_super_block *es = sbi->s_es;
4394         int bsbits, max;
4395         loff_t size, start_off, end;
4396         loff_t orig_size __maybe_unused;
4397         ext4_lblk_t start;
4398
4399         /* do normalize only data requests, metadata requests
4400            do not need preallocation */
4401         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4402                 return;
4403
4404         /* sometime caller may want exact blocks */
4405         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4406                 return;
4407
4408         /* caller may indicate that preallocation isn't
4409          * required (it's a tail, for example) */
4410         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4411                 return;
4412
4413         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4414                 ext4_mb_normalize_group_request(ac);
4415                 return ;
4416         }
4417
4418         bsbits = ac->ac_sb->s_blocksize_bits;
4419
4420         /* first, let's learn actual file size
4421          * given current request is allocated */
4422         size = extent_logical_end(sbi, &ac->ac_o_ex);
4423         size = size << bsbits;
4424         if (size < i_size_read(ac->ac_inode))
4425                 size = i_size_read(ac->ac_inode);
4426         orig_size = size;
4427
4428         /* max size of free chunks */
4429         max = 2 << bsbits;
4430
4431 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
4432                 (req <= (size) || max <= (chunk_size))
4433
4434         /* first, try to predict filesize */
4435         /* XXX: should this table be tunable? */
4436         start_off = 0;
4437         if (size <= 16 * 1024) {
4438                 size = 16 * 1024;
4439         } else if (size <= 32 * 1024) {
4440                 size = 32 * 1024;
4441         } else if (size <= 64 * 1024) {
4442                 size = 64 * 1024;
4443         } else if (size <= 128 * 1024) {
4444                 size = 128 * 1024;
4445         } else if (size <= 256 * 1024) {
4446                 size = 256 * 1024;
4447         } else if (size <= 512 * 1024) {
4448                 size = 512 * 1024;
4449         } else if (size <= 1024 * 1024) {
4450                 size = 1024 * 1024;
4451         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4452                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4453                                                 (21 - bsbits)) << 21;
4454                 size = 2 * 1024 * 1024;
4455         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4456                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4457                                                         (22 - bsbits)) << 22;
4458                 size = 4 * 1024 * 1024;
4459         } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4460                                         (8<<20)>>bsbits, max, 8 * 1024)) {
4461                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4462                                                         (23 - bsbits)) << 23;
4463                 size = 8 * 1024 * 1024;
4464         } else {
4465                 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4466                 size      = (loff_t) EXT4_C2B(sbi,
4467                                               ac->ac_o_ex.fe_len) << bsbits;
4468         }
4469         size = size >> bsbits;
4470         start = start_off >> bsbits;
4471
4472         /*
4473          * For tiny groups (smaller than 8MB) the chosen allocation
4474          * alignment may be larger than group size. Make sure the
4475          * alignment does not move allocation to a different group which
4476          * makes mballoc fail assertions later.
4477          */
4478         start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4479                         (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4480
4481         /* don't cover already allocated blocks in selected range */
4482         if (ar->pleft && start <= ar->lleft) {
4483                 size -= ar->lleft + 1 - start;
4484                 start = ar->lleft + 1;
4485         }
4486         if (ar->pright && start + size - 1 >= ar->lright)
4487                 size -= start + size - ar->lright;
4488
4489         /*
4490          * Trim allocation request for filesystems with artificially small
4491          * groups.
4492          */
4493         if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4494                 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4495
4496         end = start + size;
4497
4498         ext4_mb_pa_adjust_overlap(ac, &start, &end);
4499
4500         size = end - start;
4501
4502         /*
4503          * In this function "start" and "size" are normalized for better
4504          * alignment and length such that we could preallocate more blocks.
4505          * This normalization is done such that original request of
4506          * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4507          * "size" boundaries.
4508          * (Note fe_len can be relaxed since FS block allocation API does not
4509          * provide gurantee on number of contiguous blocks allocation since that
4510          * depends upon free space left, etc).
4511          * In case of inode pa, later we use the allocated blocks
4512          * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4513          * range of goal/best blocks [start, size] to put it at the
4514          * ac_o_ex.fe_logical extent of this inode.
4515          * (See ext4_mb_use_inode_pa() for more details)
4516          */
4517         if (start + size <= ac->ac_o_ex.fe_logical ||
4518                         start > ac->ac_o_ex.fe_logical) {
4519                 ext4_msg(ac->ac_sb, KERN_ERR,
4520                          "start %lu, size %lu, fe_logical %lu",
4521                          (unsigned long) start, (unsigned long) size,
4522                          (unsigned long) ac->ac_o_ex.fe_logical);
4523                 BUG();
4524         }
4525         BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4526
4527         /* now prepare goal request */
4528
4529         /* XXX: is it better to align blocks WRT to logical
4530          * placement or satisfy big request as is */
4531         ac->ac_g_ex.fe_logical = start;
4532         ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4533         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4534
4535         /* define goal start in order to merge */
4536         if (ar->pright && (ar->lright == (start + size)) &&
4537             ar->pright >= size &&
4538             ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4539                 /* merge to the right */
4540                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4541                                                 &ac->ac_g_ex.fe_group,
4542                                                 &ac->ac_g_ex.fe_start);
4543                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4544         }
4545         if (ar->pleft && (ar->lleft + 1 == start) &&
4546             ar->pleft + 1 < ext4_blocks_count(es)) {
4547                 /* merge to the left */
4548                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4549                                                 &ac->ac_g_ex.fe_group,
4550                                                 &ac->ac_g_ex.fe_start);
4551                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4552         }
4553
4554         mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4555                  orig_size, start);
4556 }
4557
4558 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4559 {
4560         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4561
4562         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4563                 atomic_inc(&sbi->s_bal_reqs);
4564                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4565                 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4566                         atomic_inc(&sbi->s_bal_success);
4567
4568                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4569                 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4570                         atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4571                 }
4572
4573                 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4574                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4575                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4576                         atomic_inc(&sbi->s_bal_goals);
4577                 /* did we allocate as much as normalizer originally wanted? */
4578                 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4579                         atomic_inc(&sbi->s_bal_len_goals);
4580
4581                 if (ac->ac_found > sbi->s_mb_max_to_scan)
4582                         atomic_inc(&sbi->s_bal_breaks);
4583         }
4584
4585         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4586                 trace_ext4_mballoc_alloc(ac);
4587         else
4588                 trace_ext4_mballoc_prealloc(ac);
4589 }
4590
4591 /*
4592  * Called on failure; free up any blocks from the inode PA for this
4593  * context.  We don't need this for MB_GROUP_PA because we only change
4594  * pa_free in ext4_mb_release_context(), but on failure, we've already
4595  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4596  */
4597 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4598 {
4599         struct ext4_prealloc_space *pa = ac->ac_pa;
4600         struct ext4_buddy e4b;
4601         int err;
4602
4603         if (pa == NULL) {
4604                 if (ac->ac_f_ex.fe_len == 0)
4605                         return;
4606                 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4607                 if (WARN_RATELIMIT(err,
4608                                    "ext4: mb_load_buddy failed (%d)", err))
4609                         /*
4610                          * This should never happen since we pin the
4611                          * pages in the ext4_allocation_context so
4612                          * ext4_mb_load_buddy() should never fail.
4613                          */
4614                         return;
4615                 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4616                 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4617                                ac->ac_f_ex.fe_len);
4618                 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4619                 ext4_mb_unload_buddy(&e4b);
4620                 return;
4621         }
4622         if (pa->pa_type == MB_INODE_PA) {
4623                 spin_lock(&pa->pa_lock);
4624                 pa->pa_free += ac->ac_b_ex.fe_len;
4625                 spin_unlock(&pa->pa_lock);
4626         }
4627 }
4628
4629 /*
4630  * use blocks preallocated to inode
4631  */
4632 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4633                                 struct ext4_prealloc_space *pa)
4634 {
4635         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4636         ext4_fsblk_t start;
4637         ext4_fsblk_t end;
4638         int len;
4639
4640         /* found preallocated blocks, use them */
4641         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4642         end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4643                   start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4644         len = EXT4_NUM_B2C(sbi, end - start);
4645         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4646                                         &ac->ac_b_ex.fe_start);
4647         ac->ac_b_ex.fe_len = len;
4648         ac->ac_status = AC_STATUS_FOUND;
4649         ac->ac_pa = pa;
4650
4651         BUG_ON(start < pa->pa_pstart);
4652         BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4653         BUG_ON(pa->pa_free < len);
4654         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4655         pa->pa_free -= len;
4656
4657         mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4658 }
4659
4660 /*
4661  * use blocks preallocated to locality group
4662  */
4663 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4664                                 struct ext4_prealloc_space *pa)
4665 {
4666         unsigned int len = ac->ac_o_ex.fe_len;
4667
4668         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4669                                         &ac->ac_b_ex.fe_group,
4670                                         &ac->ac_b_ex.fe_start);
4671         ac->ac_b_ex.fe_len = len;
4672         ac->ac_status = AC_STATUS_FOUND;
4673         ac->ac_pa = pa;
4674
4675         /* we don't correct pa_pstart or pa_len here to avoid
4676          * possible race when the group is being loaded concurrently
4677          * instead we correct pa later, after blocks are marked
4678          * in on-disk bitmap -- see ext4_mb_release_context()
4679          * Other CPUs are prevented from allocating from this pa by lg_mutex
4680          */
4681         mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4682                  pa->pa_lstart, len, pa);
4683 }
4684
4685 /*
4686  * Return the prealloc space that have minimal distance
4687  * from the goal block. @cpa is the prealloc
4688  * space that is having currently known minimal distance
4689  * from the goal block.
4690  */
4691 static struct ext4_prealloc_space *
4692 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4693                         struct ext4_prealloc_space *pa,
4694                         struct ext4_prealloc_space *cpa)
4695 {
4696         ext4_fsblk_t cur_distance, new_distance;
4697
4698         if (cpa == NULL) {
4699                 atomic_inc(&pa->pa_count);
4700                 return pa;
4701         }
4702         cur_distance = abs(goal_block - cpa->pa_pstart);
4703         new_distance = abs(goal_block - pa->pa_pstart);
4704
4705         if (cur_distance <= new_distance)
4706                 return cpa;
4707
4708         /* drop the previous reference */
4709         atomic_dec(&cpa->pa_count);
4710         atomic_inc(&pa->pa_count);
4711         return pa;
4712 }
4713
4714 /*
4715  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4716  */
4717 static bool
4718 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4719                       struct ext4_prealloc_space *pa)
4720 {
4721         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4722         ext4_fsblk_t start;
4723
4724         if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4725                 return true;
4726
4727         /*
4728          * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4729          * in ext4_mb_normalize_request and will keep same with ac_o_ex
4730          * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4731          * consistent with ext4_mb_find_by_goal.
4732          */
4733         start = pa->pa_pstart +
4734                 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4735         if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4736                 return false;
4737
4738         if (ac->ac_g_ex.fe_len > pa->pa_len -
4739             EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4740                 return false;
4741
4742         return true;
4743 }
4744
4745 /*
4746  * search goal blocks in preallocated space
4747  */
4748 static noinline_for_stack bool
4749 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4750 {
4751         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4752         int order, i;
4753         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4754         struct ext4_locality_group *lg;
4755         struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4756         struct rb_node *iter;
4757         ext4_fsblk_t goal_block;
4758
4759         /* only data can be preallocated */
4760         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4761                 return false;
4762
4763         /*
4764          * first, try per-file preallocation by searching the inode pa rbtree.
4765          *
4766          * Here, we can't do a direct traversal of the tree because
4767          * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4768          * deleted and that can cause direct traversal to skip some entries.
4769          */
4770         read_lock(&ei->i_prealloc_lock);
4771
4772         if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4773                 goto try_group_pa;
4774         }
4775
4776         /*
4777          * Step 1: Find a pa with logical start immediately adjacent to the
4778          * original logical start. This could be on the left or right.
4779          *
4780          * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4781          */
4782         for (iter = ei->i_prealloc_node.rb_node; iter;
4783              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4784                                             tmp_pa->pa_lstart, iter)) {
4785                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4786                                   pa_node.inode_node);
4787         }
4788
4789         /*
4790          * Step 2: The adjacent pa might be to the right of logical start, find
4791          * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4792          * logical start is towards the left of original request's logical start
4793          */
4794         if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4795                 struct rb_node *tmp;
4796                 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4797
4798                 if (tmp) {
4799                         tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4800                                             pa_node.inode_node);
4801                 } else {
4802                         /*
4803                          * If there is no adjacent pa to the left then finding
4804                          * an overlapping pa is not possible hence stop searching
4805                          * inode pa tree
4806                          */
4807                         goto try_group_pa;
4808                 }
4809         }
4810
4811         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4812
4813         /*
4814          * Step 3: If the left adjacent pa is deleted, keep moving left to find
4815          * the first non deleted adjacent pa. After this step we should have a
4816          * valid tmp_pa which is guaranteed to be non deleted.
4817          */
4818         for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4819                 if (!iter) {
4820                         /*
4821                          * no non deleted left adjacent pa, so stop searching
4822                          * inode pa tree
4823                          */
4824                         goto try_group_pa;
4825                 }
4826                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4827                                   pa_node.inode_node);
4828                 spin_lock(&tmp_pa->pa_lock);
4829                 if (tmp_pa->pa_deleted == 0) {
4830                         /*
4831                          * We will keep holding the pa_lock from
4832                          * this point on because we don't want group discard
4833                          * to delete this pa underneath us. Since group
4834                          * discard is anyways an ENOSPC operation it
4835                          * should be okay for it to wait a few more cycles.
4836                          */
4837                         break;
4838                 } else {
4839                         spin_unlock(&tmp_pa->pa_lock);
4840                 }
4841         }
4842
4843         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4844         BUG_ON(tmp_pa->pa_deleted == 1);
4845
4846         /*
4847          * Step 4: We now have the non deleted left adjacent pa. Only this
4848          * pa can possibly satisfy the request hence check if it overlaps
4849          * original logical start and stop searching if it doesn't.
4850          */
4851         if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4852                 spin_unlock(&tmp_pa->pa_lock);
4853                 goto try_group_pa;
4854         }
4855
4856         /* non-extent files can't have physical blocks past 2^32 */
4857         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4858             (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4859              EXT4_MAX_BLOCK_FILE_PHYS)) {
4860                 /*
4861                  * Since PAs don't overlap, we won't find any other PA to
4862                  * satisfy this.
4863                  */
4864                 spin_unlock(&tmp_pa->pa_lock);
4865                 goto try_group_pa;
4866         }
4867
4868         if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4869                 atomic_inc(&tmp_pa->pa_count);
4870                 ext4_mb_use_inode_pa(ac, tmp_pa);
4871                 spin_unlock(&tmp_pa->pa_lock);
4872                 read_unlock(&ei->i_prealloc_lock);
4873                 return true;
4874         } else {
4875                 /*
4876                  * We found a valid overlapping pa but couldn't use it because
4877                  * it had no free blocks. This should ideally never happen
4878                  * because:
4879                  *
4880                  * 1. When a new inode pa is added to rbtree it must have
4881                  *    pa_free > 0 since otherwise we won't actually need
4882                  *    preallocation.
4883                  *
4884                  * 2. An inode pa that is in the rbtree can only have it's
4885                  *    pa_free become zero when another thread calls:
4886                  *      ext4_mb_new_blocks
4887                  *       ext4_mb_use_preallocated
4888                  *        ext4_mb_use_inode_pa
4889                  *
4890                  * 3. Further, after the above calls make pa_free == 0, we will
4891                  *    immediately remove it from the rbtree in:
4892                  *      ext4_mb_new_blocks
4893                  *       ext4_mb_release_context
4894                  *        ext4_mb_put_pa
4895                  *
4896                  * 4. Since the pa_free becoming 0 and pa_free getting removed
4897                  * from tree both happen in ext4_mb_new_blocks, which is always
4898                  * called with i_data_sem held for data allocations, we can be
4899                  * sure that another process will never see a pa in rbtree with
4900                  * pa_free == 0.
4901                  */
4902                 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4903         }
4904         spin_unlock(&tmp_pa->pa_lock);
4905 try_group_pa:
4906         read_unlock(&ei->i_prealloc_lock);
4907
4908         /* can we use group allocation? */
4909         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4910                 return false;
4911
4912         /* inode may have no locality group for some reason */
4913         lg = ac->ac_lg;
4914         if (lg == NULL)
4915                 return false;
4916         order  = fls(ac->ac_o_ex.fe_len) - 1;
4917         if (order > PREALLOC_TB_SIZE - 1)
4918                 /* The max size of hash table is PREALLOC_TB_SIZE */
4919                 order = PREALLOC_TB_SIZE - 1;
4920
4921         goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4922         /*
4923          * search for the prealloc space that is having
4924          * minimal distance from the goal block.
4925          */
4926         for (i = order; i < PREALLOC_TB_SIZE; i++) {
4927                 rcu_read_lock();
4928                 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4929                                         pa_node.lg_list) {
4930                         spin_lock(&tmp_pa->pa_lock);
4931                         if (tmp_pa->pa_deleted == 0 &&
4932                                         tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4933
4934                                 cpa = ext4_mb_check_group_pa(goal_block,
4935                                                                 tmp_pa, cpa);
4936                         }
4937                         spin_unlock(&tmp_pa->pa_lock);
4938                 }
4939                 rcu_read_unlock();
4940         }
4941         if (cpa) {
4942                 ext4_mb_use_group_pa(ac, cpa);
4943                 return true;
4944         }
4945         return false;
4946 }
4947
4948 /*
4949  * the function goes through all preallocation in this group and marks them
4950  * used in in-core bitmap. buddy must be generated from this bitmap
4951  * Need to be called with ext4 group lock held
4952  */
4953 static noinline_for_stack
4954 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4955                                         ext4_group_t group)
4956 {
4957         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4958         struct ext4_prealloc_space *pa;
4959         struct list_head *cur;
4960         ext4_group_t groupnr;
4961         ext4_grpblk_t start;
4962         int preallocated = 0;
4963         int len;
4964
4965         if (!grp)
4966                 return;
4967
4968         /* all form of preallocation discards first load group,
4969          * so the only competing code is preallocation use.
4970          * we don't need any locking here
4971          * notice we do NOT ignore preallocations with pa_deleted
4972          * otherwise we could leave used blocks available for
4973          * allocation in buddy when concurrent ext4_mb_put_pa()
4974          * is dropping preallocation
4975          */
4976         list_for_each(cur, &grp->bb_prealloc_list) {
4977                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4978                 spin_lock(&pa->pa_lock);
4979                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4980                                              &groupnr, &start);
4981                 len = pa->pa_len;
4982                 spin_unlock(&pa->pa_lock);
4983                 if (unlikely(len == 0))
4984                         continue;
4985                 BUG_ON(groupnr != group);
4986                 mb_set_bits(bitmap, start, len);
4987                 preallocated += len;
4988         }
4989         mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4990 }
4991
4992 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4993                                     struct ext4_prealloc_space *pa)
4994 {
4995         struct ext4_inode_info *ei;
4996
4997         if (pa->pa_deleted) {
4998                 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4999                              pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5000                              pa->pa_len);
5001                 return;
5002         }
5003
5004         pa->pa_deleted = 1;
5005
5006         if (pa->pa_type == MB_INODE_PA) {
5007                 ei = EXT4_I(pa->pa_inode);
5008                 atomic_dec(&ei->i_prealloc_active);
5009         }
5010 }
5011
5012 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5013 {
5014         BUG_ON(!pa);
5015         BUG_ON(atomic_read(&pa->pa_count));
5016         BUG_ON(pa->pa_deleted == 0);
5017         kmem_cache_free(ext4_pspace_cachep, pa);
5018 }
5019
5020 static void ext4_mb_pa_callback(struct rcu_head *head)
5021 {
5022         struct ext4_prealloc_space *pa;
5023
5024         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5025         ext4_mb_pa_free(pa);
5026 }
5027
5028 /*
5029  * drops a reference to preallocated space descriptor
5030  * if this was the last reference and the space is consumed
5031  */
5032 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5033                         struct super_block *sb, struct ext4_prealloc_space *pa)
5034 {
5035         ext4_group_t grp;
5036         ext4_fsblk_t grp_blk;
5037         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5038
5039         /* in this short window concurrent discard can set pa_deleted */
5040         spin_lock(&pa->pa_lock);
5041         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5042                 spin_unlock(&pa->pa_lock);
5043                 return;
5044         }
5045
5046         if (pa->pa_deleted == 1) {
5047                 spin_unlock(&pa->pa_lock);
5048                 return;
5049         }
5050
5051         ext4_mb_mark_pa_deleted(sb, pa);
5052         spin_unlock(&pa->pa_lock);
5053
5054         grp_blk = pa->pa_pstart;
5055         /*
5056          * If doing group-based preallocation, pa_pstart may be in the
5057          * next group when pa is used up
5058          */
5059         if (pa->pa_type == MB_GROUP_PA)
5060                 grp_blk--;
5061
5062         grp = ext4_get_group_number(sb, grp_blk);
5063
5064         /*
5065          * possible race:
5066          *
5067          *  P1 (buddy init)                     P2 (regular allocation)
5068          *                                      find block B in PA
5069          *  copy on-disk bitmap to buddy
5070          *                                      mark B in on-disk bitmap
5071          *                                      drop PA from group
5072          *  mark all PAs in buddy
5073          *
5074          * thus, P1 initializes buddy with B available. to prevent this
5075          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5076          * against that pair
5077          */
5078         ext4_lock_group(sb, grp);
5079         list_del(&pa->pa_group_list);
5080         ext4_unlock_group(sb, grp);
5081
5082         if (pa->pa_type == MB_INODE_PA) {
5083                 write_lock(pa->pa_node_lock.inode_lock);
5084                 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5085                 write_unlock(pa->pa_node_lock.inode_lock);
5086                 ext4_mb_pa_free(pa);
5087         } else {
5088                 spin_lock(pa->pa_node_lock.lg_lock);
5089                 list_del_rcu(&pa->pa_node.lg_list);
5090                 spin_unlock(pa->pa_node_lock.lg_lock);
5091                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5092         }
5093 }
5094
5095 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5096 {
5097         struct rb_node **iter = &root->rb_node, *parent = NULL;
5098         struct ext4_prealloc_space *iter_pa, *new_pa;
5099         ext4_lblk_t iter_start, new_start;
5100
5101         while (*iter) {
5102                 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5103                                    pa_node.inode_node);
5104                 new_pa = rb_entry(new, struct ext4_prealloc_space,
5105                                    pa_node.inode_node);
5106                 iter_start = iter_pa->pa_lstart;
5107                 new_start = new_pa->pa_lstart;
5108
5109                 parent = *iter;
5110                 if (new_start < iter_start)
5111                         iter = &((*iter)->rb_left);
5112                 else
5113                         iter = &((*iter)->rb_right);
5114         }
5115
5116         rb_link_node(new, parent, iter);
5117         rb_insert_color(new, root);
5118 }
5119
5120 /*
5121  * creates new preallocated space for given inode
5122  */
5123 static noinline_for_stack void
5124 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5125 {
5126         struct super_block *sb = ac->ac_sb;
5127         struct ext4_sb_info *sbi = EXT4_SB(sb);
5128         struct ext4_prealloc_space *pa;
5129         struct ext4_group_info *grp;
5130         struct ext4_inode_info *ei;
5131
5132         /* preallocate only when found space is larger then requested */
5133         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5134         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5135         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5136         BUG_ON(ac->ac_pa == NULL);
5137
5138         pa = ac->ac_pa;
5139
5140         if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5141                 struct ext4_free_extent ex = {
5142                         .fe_logical = ac->ac_g_ex.fe_logical,
5143                         .fe_len = ac->ac_orig_goal_len,
5144                 };
5145                 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5146
5147                 /* we can't allocate as much as normalizer wants.
5148                  * so, found space must get proper lstart
5149                  * to cover original request */
5150                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5151                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5152
5153                 /*
5154                  * Use the below logic for adjusting best extent as it keeps
5155                  * fragmentation in check while ensuring logical range of best
5156                  * extent doesn't overflow out of goal extent:
5157                  *
5158                  * 1. Check if best ex can be kept at end of goal (before
5159                  *    cr_best_avail trimmed it) and still cover original start
5160                  * 2. Else, check if best ex can be kept at start of goal and
5161                  *    still cover original start
5162                  * 3. Else, keep the best ex at start of original request.
5163                  */
5164                 ex.fe_len = ac->ac_b_ex.fe_len;
5165
5166                 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5167                 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5168                         goto adjust_bex;
5169
5170                 ex.fe_logical = ac->ac_g_ex.fe_logical;
5171                 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
5172                         goto adjust_bex;
5173
5174                 ex.fe_logical = ac->ac_o_ex.fe_logical;
5175 adjust_bex:
5176                 ac->ac_b_ex.fe_logical = ex.fe_logical;
5177
5178                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5179                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5180                 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5181         }
5182
5183         pa->pa_lstart = ac->ac_b_ex.fe_logical;
5184         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5185         pa->pa_len = ac->ac_b_ex.fe_len;
5186         pa->pa_free = pa->pa_len;
5187         spin_lock_init(&pa->pa_lock);
5188         INIT_LIST_HEAD(&pa->pa_group_list);
5189         pa->pa_deleted = 0;
5190         pa->pa_type = MB_INODE_PA;
5191
5192         mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5193                  pa->pa_len, pa->pa_lstart);
5194         trace_ext4_mb_new_inode_pa(ac, pa);
5195
5196         atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5197         ext4_mb_use_inode_pa(ac, pa);
5198
5199         ei = EXT4_I(ac->ac_inode);
5200         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5201         if (!grp)
5202                 return;
5203
5204         pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5205         pa->pa_inode = ac->ac_inode;
5206
5207         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5208
5209         write_lock(pa->pa_node_lock.inode_lock);
5210         ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5211         write_unlock(pa->pa_node_lock.inode_lock);
5212         atomic_inc(&ei->i_prealloc_active);
5213 }
5214
5215 /*
5216  * creates new preallocated space for locality group inodes belongs to
5217  */
5218 static noinline_for_stack void
5219 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5220 {
5221         struct super_block *sb = ac->ac_sb;
5222         struct ext4_locality_group *lg;
5223         struct ext4_prealloc_space *pa;
5224         struct ext4_group_info *grp;
5225
5226         /* preallocate only when found space is larger then requested */
5227         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5228         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5229         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5230         BUG_ON(ac->ac_pa == NULL);
5231
5232         pa = ac->ac_pa;
5233
5234         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5235         pa->pa_lstart = pa->pa_pstart;
5236         pa->pa_len = ac->ac_b_ex.fe_len;
5237         pa->pa_free = pa->pa_len;
5238         spin_lock_init(&pa->pa_lock);
5239         INIT_LIST_HEAD(&pa->pa_node.lg_list);
5240         INIT_LIST_HEAD(&pa->pa_group_list);
5241         pa->pa_deleted = 0;
5242         pa->pa_type = MB_GROUP_PA;
5243
5244         mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5245                  pa->pa_len, pa->pa_lstart);
5246         trace_ext4_mb_new_group_pa(ac, pa);
5247
5248         ext4_mb_use_group_pa(ac, pa);
5249         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5250
5251         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5252         if (!grp)
5253                 return;
5254         lg = ac->ac_lg;
5255         BUG_ON(lg == NULL);
5256
5257         pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5258         pa->pa_inode = NULL;
5259
5260         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5261
5262         /*
5263          * We will later add the new pa to the right bucket
5264          * after updating the pa_free in ext4_mb_release_context
5265          */
5266 }
5267
5268 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5269 {
5270         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5271                 ext4_mb_new_group_pa(ac);
5272         else
5273                 ext4_mb_new_inode_pa(ac);
5274 }
5275
5276 /*
5277  * finds all unused blocks in on-disk bitmap, frees them in
5278  * in-core bitmap and buddy.
5279  * @pa must be unlinked from inode and group lists, so that
5280  * nobody else can find/use it.
5281  * the caller MUST hold group/inode locks.
5282  * TODO: optimize the case when there are no in-core structures yet
5283  */
5284 static noinline_for_stack int
5285 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5286                         struct ext4_prealloc_space *pa)
5287 {
5288         struct super_block *sb = e4b->bd_sb;
5289         struct ext4_sb_info *sbi = EXT4_SB(sb);
5290         unsigned int end;
5291         unsigned int next;
5292         ext4_group_t group;
5293         ext4_grpblk_t bit;
5294         unsigned long long grp_blk_start;
5295         int free = 0;
5296
5297         BUG_ON(pa->pa_deleted == 0);
5298         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5299         grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5300         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5301         end = bit + pa->pa_len;
5302
5303         while (bit < end) {
5304                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5305                 if (bit >= end)
5306                         break;
5307                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5308                 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5309                          (unsigned) ext4_group_first_block_no(sb, group) + bit,
5310                          (unsigned) next - bit, (unsigned) group);
5311                 free += next - bit;
5312
5313                 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5314                 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5315                                                     EXT4_C2B(sbi, bit)),
5316                                                next - bit);
5317                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5318                 bit = next + 1;
5319         }
5320         if (free != pa->pa_free) {
5321                 ext4_msg(e4b->bd_sb, KERN_CRIT,
5322                          "pa %p: logic %lu, phys. %lu, len %d",
5323                          pa, (unsigned long) pa->pa_lstart,
5324                          (unsigned long) pa->pa_pstart,
5325                          pa->pa_len);
5326                 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5327                                         free, pa->pa_free);
5328                 /*
5329                  * pa is already deleted so we use the value obtained
5330                  * from the bitmap and continue.
5331                  */
5332         }
5333         atomic_add(free, &sbi->s_mb_discarded);
5334
5335         return 0;
5336 }
5337
5338 static noinline_for_stack int
5339 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5340                                 struct ext4_prealloc_space *pa)
5341 {
5342         struct super_block *sb = e4b->bd_sb;
5343         ext4_group_t group;
5344         ext4_grpblk_t bit;
5345
5346         trace_ext4_mb_release_group_pa(sb, pa);
5347         BUG_ON(pa->pa_deleted == 0);
5348         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5349         if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5350                 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5351                              e4b->bd_group, group, pa->pa_pstart);
5352                 return 0;
5353         }
5354         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5355         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5356         trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5357
5358         return 0;
5359 }
5360
5361 /*
5362  * releases all preallocations in given group
5363  *
5364  * first, we need to decide discard policy:
5365  * - when do we discard
5366  *   1) ENOSPC
5367  * - how many do we discard
5368  *   1) how many requested
5369  */
5370 static noinline_for_stack int
5371 ext4_mb_discard_group_preallocations(struct super_block *sb,
5372                                      ext4_group_t group, int *busy)
5373 {
5374         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5375         struct buffer_head *bitmap_bh = NULL;
5376         struct ext4_prealloc_space *pa, *tmp;
5377         LIST_HEAD(list);
5378         struct ext4_buddy e4b;
5379         struct ext4_inode_info *ei;
5380         int err;
5381         int free = 0;
5382
5383         if (!grp)
5384                 return 0;
5385         mb_debug(sb, "discard preallocation for group %u\n", group);
5386         if (list_empty(&grp->bb_prealloc_list))
5387                 goto out_dbg;
5388
5389         bitmap_bh = ext4_read_block_bitmap(sb, group);
5390         if (IS_ERR(bitmap_bh)) {
5391                 err = PTR_ERR(bitmap_bh);
5392                 ext4_error_err(sb, -err,
5393                                "Error %d reading block bitmap for %u",
5394                                err, group);
5395                 goto out_dbg;
5396         }
5397
5398         err = ext4_mb_load_buddy(sb, group, &e4b);
5399         if (err) {
5400                 ext4_warning(sb, "Error %d loading buddy information for %u",
5401                              err, group);
5402                 put_bh(bitmap_bh);
5403                 goto out_dbg;
5404         }
5405
5406         ext4_lock_group(sb, group);
5407         list_for_each_entry_safe(pa, tmp,
5408                                 &grp->bb_prealloc_list, pa_group_list) {
5409                 spin_lock(&pa->pa_lock);
5410                 if (atomic_read(&pa->pa_count)) {
5411                         spin_unlock(&pa->pa_lock);
5412                         *busy = 1;
5413                         continue;
5414                 }
5415                 if (pa->pa_deleted) {
5416                         spin_unlock(&pa->pa_lock);
5417                         continue;
5418                 }
5419
5420                 /* seems this one can be freed ... */
5421                 ext4_mb_mark_pa_deleted(sb, pa);
5422
5423                 if (!free)
5424                         this_cpu_inc(discard_pa_seq);
5425
5426                 /* we can trust pa_free ... */
5427                 free += pa->pa_free;
5428
5429                 spin_unlock(&pa->pa_lock);
5430
5431                 list_del(&pa->pa_group_list);
5432                 list_add(&pa->u.pa_tmp_list, &list);
5433         }
5434
5435         /* now free all selected PAs */
5436         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5437
5438                 /* remove from object (inode or locality group) */
5439                 if (pa->pa_type == MB_GROUP_PA) {
5440                         spin_lock(pa->pa_node_lock.lg_lock);
5441                         list_del_rcu(&pa->pa_node.lg_list);
5442                         spin_unlock(pa->pa_node_lock.lg_lock);
5443                 } else {
5444                         write_lock(pa->pa_node_lock.inode_lock);
5445                         ei = EXT4_I(pa->pa_inode);
5446                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5447                         write_unlock(pa->pa_node_lock.inode_lock);
5448                 }
5449
5450                 list_del(&pa->u.pa_tmp_list);
5451
5452                 if (pa->pa_type == MB_GROUP_PA) {
5453                         ext4_mb_release_group_pa(&e4b, pa);
5454                         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5455                 } else {
5456                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5457                         ext4_mb_pa_free(pa);
5458                 }
5459         }
5460
5461         ext4_unlock_group(sb, group);
5462         ext4_mb_unload_buddy(&e4b);
5463         put_bh(bitmap_bh);
5464 out_dbg:
5465         mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5466                  free, group, grp->bb_free);
5467         return free;
5468 }
5469
5470 /*
5471  * releases all non-used preallocated blocks for given inode
5472  *
5473  * It's important to discard preallocations under i_data_sem
5474  * We don't want another block to be served from the prealloc
5475  * space when we are discarding the inode prealloc space.
5476  *
5477  * FIXME!! Make sure it is valid at all the call sites
5478  */
5479 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5480 {
5481         struct ext4_inode_info *ei = EXT4_I(inode);
5482         struct super_block *sb = inode->i_sb;
5483         struct buffer_head *bitmap_bh = NULL;
5484         struct ext4_prealloc_space *pa, *tmp;
5485         ext4_group_t group = 0;
5486         LIST_HEAD(list);
5487         struct ext4_buddy e4b;
5488         struct rb_node *iter;
5489         int err;
5490
5491         if (!S_ISREG(inode->i_mode)) {
5492                 return;
5493         }
5494
5495         if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5496                 return;
5497
5498         mb_debug(sb, "discard preallocation for inode %lu\n",
5499                  inode->i_ino);
5500         trace_ext4_discard_preallocations(inode,
5501                         atomic_read(&ei->i_prealloc_active), needed);
5502
5503         if (needed == 0)
5504                 needed = UINT_MAX;
5505
5506 repeat:
5507         /* first, collect all pa's in the inode */
5508         write_lock(&ei->i_prealloc_lock);
5509         for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5510              iter = rb_next(iter)) {
5511                 pa = rb_entry(iter, struct ext4_prealloc_space,
5512                               pa_node.inode_node);
5513                 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5514
5515                 spin_lock(&pa->pa_lock);
5516                 if (atomic_read(&pa->pa_count)) {
5517                         /* this shouldn't happen often - nobody should
5518                          * use preallocation while we're discarding it */
5519                         spin_unlock(&pa->pa_lock);
5520                         write_unlock(&ei->i_prealloc_lock);
5521                         ext4_msg(sb, KERN_ERR,
5522                                  "uh-oh! used pa while discarding");
5523                         WARN_ON(1);
5524                         schedule_timeout_uninterruptible(HZ);
5525                         goto repeat;
5526
5527                 }
5528                 if (pa->pa_deleted == 0) {
5529                         ext4_mb_mark_pa_deleted(sb, pa);
5530                         spin_unlock(&pa->pa_lock);
5531                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5532                         list_add(&pa->u.pa_tmp_list, &list);
5533                         needed--;
5534                         continue;
5535                 }
5536
5537                 /* someone is deleting pa right now */
5538                 spin_unlock(&pa->pa_lock);
5539                 write_unlock(&ei->i_prealloc_lock);
5540
5541                 /* we have to wait here because pa_deleted
5542                  * doesn't mean pa is already unlinked from
5543                  * the list. as we might be called from
5544                  * ->clear_inode() the inode will get freed
5545                  * and concurrent thread which is unlinking
5546                  * pa from inode's list may access already
5547                  * freed memory, bad-bad-bad */
5548
5549                 /* XXX: if this happens too often, we can
5550                  * add a flag to force wait only in case
5551                  * of ->clear_inode(), but not in case of
5552                  * regular truncate */
5553                 schedule_timeout_uninterruptible(HZ);
5554                 goto repeat;
5555         }
5556         write_unlock(&ei->i_prealloc_lock);
5557
5558         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5559                 BUG_ON(pa->pa_type != MB_INODE_PA);
5560                 group = ext4_get_group_number(sb, pa->pa_pstart);
5561
5562                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5563                                              GFP_NOFS|__GFP_NOFAIL);
5564                 if (err) {
5565                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5566                                        err, group);
5567                         continue;
5568                 }
5569
5570                 bitmap_bh = ext4_read_block_bitmap(sb, group);
5571                 if (IS_ERR(bitmap_bh)) {
5572                         err = PTR_ERR(bitmap_bh);
5573                         ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5574                                        err, group);
5575                         ext4_mb_unload_buddy(&e4b);
5576                         continue;
5577                 }
5578
5579                 ext4_lock_group(sb, group);
5580                 list_del(&pa->pa_group_list);
5581                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5582                 ext4_unlock_group(sb, group);
5583
5584                 ext4_mb_unload_buddy(&e4b);
5585                 put_bh(bitmap_bh);
5586
5587                 list_del(&pa->u.pa_tmp_list);
5588                 ext4_mb_pa_free(pa);
5589         }
5590 }
5591
5592 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5593 {
5594         struct ext4_prealloc_space *pa;
5595
5596         BUG_ON(ext4_pspace_cachep == NULL);
5597         pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5598         if (!pa)
5599                 return -ENOMEM;
5600         atomic_set(&pa->pa_count, 1);
5601         ac->ac_pa = pa;
5602         return 0;
5603 }
5604
5605 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5606 {
5607         struct ext4_prealloc_space *pa = ac->ac_pa;
5608
5609         BUG_ON(!pa);
5610         ac->ac_pa = NULL;
5611         WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5612         /*
5613          * current function is only called due to an error or due to
5614          * len of found blocks < len of requested blocks hence the PA has not
5615          * been added to grp->bb_prealloc_list. So we don't need to lock it
5616          */
5617         pa->pa_deleted = 1;
5618         ext4_mb_pa_free(pa);
5619 }
5620
5621 #ifdef CONFIG_EXT4_DEBUG
5622 static inline void ext4_mb_show_pa(struct super_block *sb)
5623 {
5624         ext4_group_t i, ngroups;
5625
5626         if (ext4_forced_shutdown(sb))
5627                 return;
5628
5629         ngroups = ext4_get_groups_count(sb);
5630         mb_debug(sb, "groups: ");
5631         for (i = 0; i < ngroups; i++) {
5632                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5633                 struct ext4_prealloc_space *pa;
5634                 ext4_grpblk_t start;
5635                 struct list_head *cur;
5636
5637                 if (!grp)
5638                         continue;
5639                 ext4_lock_group(sb, i);
5640                 list_for_each(cur, &grp->bb_prealloc_list) {
5641                         pa = list_entry(cur, struct ext4_prealloc_space,
5642                                         pa_group_list);
5643                         spin_lock(&pa->pa_lock);
5644                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5645                                                      NULL, &start);
5646                         spin_unlock(&pa->pa_lock);
5647                         mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5648                                  pa->pa_len);
5649                 }
5650                 ext4_unlock_group(sb, i);
5651                 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5652                          grp->bb_fragments);
5653         }
5654 }
5655
5656 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5657 {
5658         struct super_block *sb = ac->ac_sb;
5659
5660         if (ext4_forced_shutdown(sb))
5661                 return;
5662
5663         mb_debug(sb, "Can't allocate:"
5664                         " Allocation context details:");
5665         mb_debug(sb, "status %u flags 0x%x",
5666                         ac->ac_status, ac->ac_flags);
5667         mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5668                         "goal %lu/%lu/%lu@%lu, "
5669                         "best %lu/%lu/%lu@%lu cr %d",
5670                         (unsigned long)ac->ac_o_ex.fe_group,
5671                         (unsigned long)ac->ac_o_ex.fe_start,
5672                         (unsigned long)ac->ac_o_ex.fe_len,
5673                         (unsigned long)ac->ac_o_ex.fe_logical,
5674                         (unsigned long)ac->ac_g_ex.fe_group,
5675                         (unsigned long)ac->ac_g_ex.fe_start,
5676                         (unsigned long)ac->ac_g_ex.fe_len,
5677                         (unsigned long)ac->ac_g_ex.fe_logical,
5678                         (unsigned long)ac->ac_b_ex.fe_group,
5679                         (unsigned long)ac->ac_b_ex.fe_start,
5680                         (unsigned long)ac->ac_b_ex.fe_len,
5681                         (unsigned long)ac->ac_b_ex.fe_logical,
5682                         (int)ac->ac_criteria);
5683         mb_debug(sb, "%u found", ac->ac_found);
5684         mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5685         if (ac->ac_pa)
5686                 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5687                          "group pa" : "inode pa");
5688         ext4_mb_show_pa(sb);
5689 }
5690 #else
5691 static inline void ext4_mb_show_pa(struct super_block *sb)
5692 {
5693 }
5694 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5695 {
5696         ext4_mb_show_pa(ac->ac_sb);
5697 }
5698 #endif
5699
5700 /*
5701  * We use locality group preallocation for small size file. The size of the
5702  * file is determined by the current size or the resulting size after
5703  * allocation which ever is larger
5704  *
5705  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5706  */
5707 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5708 {
5709         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5710         int bsbits = ac->ac_sb->s_blocksize_bits;
5711         loff_t size, isize;
5712         bool inode_pa_eligible, group_pa_eligible;
5713
5714         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5715                 return;
5716
5717         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5718                 return;
5719
5720         group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5721         inode_pa_eligible = true;
5722         size = extent_logical_end(sbi, &ac->ac_o_ex);
5723         isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5724                 >> bsbits;
5725
5726         /* No point in using inode preallocation for closed files */
5727         if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5728             !inode_is_open_for_write(ac->ac_inode))
5729                 inode_pa_eligible = false;
5730
5731         size = max(size, isize);
5732         /* Don't use group allocation for large files */
5733         if (size > sbi->s_mb_stream_request)
5734                 group_pa_eligible = false;
5735
5736         if (!group_pa_eligible) {
5737                 if (inode_pa_eligible)
5738                         ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5739                 else
5740                         ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5741                 return;
5742         }
5743
5744         BUG_ON(ac->ac_lg != NULL);
5745         /*
5746          * locality group prealloc space are per cpu. The reason for having
5747          * per cpu locality group is to reduce the contention between block
5748          * request from multiple CPUs.
5749          */
5750         ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5751
5752         /* we're going to use group allocation */
5753         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5754
5755         /* serialize all allocations in the group */
5756         mutex_lock(&ac->ac_lg->lg_mutex);
5757 }
5758
5759 static noinline_for_stack void
5760 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5761                                 struct ext4_allocation_request *ar)
5762 {
5763         struct super_block *sb = ar->inode->i_sb;
5764         struct ext4_sb_info *sbi = EXT4_SB(sb);
5765         struct ext4_super_block *es = sbi->s_es;
5766         ext4_group_t group;
5767         unsigned int len;
5768         ext4_fsblk_t goal;
5769         ext4_grpblk_t block;
5770
5771         /* we can't allocate > group size */
5772         len = ar->len;
5773
5774         /* just a dirty hack to filter too big requests  */
5775         if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5776                 len = EXT4_CLUSTERS_PER_GROUP(sb);
5777
5778         /* start searching from the goal */
5779         goal = ar->goal;
5780         if (goal < le32_to_cpu(es->s_first_data_block) ||
5781                         goal >= ext4_blocks_count(es))
5782                 goal = le32_to_cpu(es->s_first_data_block);
5783         ext4_get_group_no_and_offset(sb, goal, &group, &block);
5784
5785         /* set up allocation goals */
5786         ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5787         ac->ac_status = AC_STATUS_CONTINUE;
5788         ac->ac_sb = sb;
5789         ac->ac_inode = ar->inode;
5790         ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5791         ac->ac_o_ex.fe_group = group;
5792         ac->ac_o_ex.fe_start = block;
5793         ac->ac_o_ex.fe_len = len;
5794         ac->ac_g_ex = ac->ac_o_ex;
5795         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5796         ac->ac_flags = ar->flags;
5797
5798         /* we have to define context: we'll work with a file or
5799          * locality group. this is a policy, actually */
5800         ext4_mb_group_or_file(ac);
5801
5802         mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5803                         "left: %u/%u, right %u/%u to %swritable\n",
5804                         (unsigned) ar->len, (unsigned) ar->logical,
5805                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5806                         (unsigned) ar->lleft, (unsigned) ar->pleft,
5807                         (unsigned) ar->lright, (unsigned) ar->pright,
5808                         inode_is_open_for_write(ar->inode) ? "" : "non-");
5809 }
5810
5811 static noinline_for_stack void
5812 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5813                                         struct ext4_locality_group *lg,
5814                                         int order, int total_entries)
5815 {
5816         ext4_group_t group = 0;
5817         struct ext4_buddy e4b;
5818         LIST_HEAD(discard_list);
5819         struct ext4_prealloc_space *pa, *tmp;
5820
5821         mb_debug(sb, "discard locality group preallocation\n");
5822
5823         spin_lock(&lg->lg_prealloc_lock);
5824         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5825                                 pa_node.lg_list,
5826                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5827                 spin_lock(&pa->pa_lock);
5828                 if (atomic_read(&pa->pa_count)) {
5829                         /*
5830                          * This is the pa that we just used
5831                          * for block allocation. So don't
5832                          * free that
5833                          */
5834                         spin_unlock(&pa->pa_lock);
5835                         continue;
5836                 }
5837                 if (pa->pa_deleted) {
5838                         spin_unlock(&pa->pa_lock);
5839                         continue;
5840                 }
5841                 /* only lg prealloc space */
5842                 BUG_ON(pa->pa_type != MB_GROUP_PA);
5843
5844                 /* seems this one can be freed ... */
5845                 ext4_mb_mark_pa_deleted(sb, pa);
5846                 spin_unlock(&pa->pa_lock);
5847
5848                 list_del_rcu(&pa->pa_node.lg_list);
5849                 list_add(&pa->u.pa_tmp_list, &discard_list);
5850
5851                 total_entries--;
5852                 if (total_entries <= 5) {
5853                         /*
5854                          * we want to keep only 5 entries
5855                          * allowing it to grow to 8. This
5856                          * mak sure we don't call discard
5857                          * soon for this list.
5858                          */
5859                         break;
5860                 }
5861         }
5862         spin_unlock(&lg->lg_prealloc_lock);
5863
5864         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5865                 int err;
5866
5867                 group = ext4_get_group_number(sb, pa->pa_pstart);
5868                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5869                                              GFP_NOFS|__GFP_NOFAIL);
5870                 if (err) {
5871                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5872                                        err, group);
5873                         continue;
5874                 }
5875                 ext4_lock_group(sb, group);
5876                 list_del(&pa->pa_group_list);
5877                 ext4_mb_release_group_pa(&e4b, pa);
5878                 ext4_unlock_group(sb, group);
5879
5880                 ext4_mb_unload_buddy(&e4b);
5881                 list_del(&pa->u.pa_tmp_list);
5882                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5883         }
5884 }
5885
5886 /*
5887  * We have incremented pa_count. So it cannot be freed at this
5888  * point. Also we hold lg_mutex. So no parallel allocation is
5889  * possible from this lg. That means pa_free cannot be updated.
5890  *
5891  * A parallel ext4_mb_discard_group_preallocations is possible.
5892  * which can cause the lg_prealloc_list to be updated.
5893  */
5894
5895 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5896 {
5897         int order, added = 0, lg_prealloc_count = 1;
5898         struct super_block *sb = ac->ac_sb;
5899         struct ext4_locality_group *lg = ac->ac_lg;
5900         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5901
5902         order = fls(pa->pa_free) - 1;
5903         if (order > PREALLOC_TB_SIZE - 1)
5904                 /* The max size of hash table is PREALLOC_TB_SIZE */
5905                 order = PREALLOC_TB_SIZE - 1;
5906         /* Add the prealloc space to lg */
5907         spin_lock(&lg->lg_prealloc_lock);
5908         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5909                                 pa_node.lg_list,
5910                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5911                 spin_lock(&tmp_pa->pa_lock);
5912                 if (tmp_pa->pa_deleted) {
5913                         spin_unlock(&tmp_pa->pa_lock);
5914                         continue;
5915                 }
5916                 if (!added && pa->pa_free < tmp_pa->pa_free) {
5917                         /* Add to the tail of the previous entry */
5918                         list_add_tail_rcu(&pa->pa_node.lg_list,
5919                                                 &tmp_pa->pa_node.lg_list);
5920                         added = 1;
5921                         /*
5922                          * we want to count the total
5923                          * number of entries in the list
5924                          */
5925                 }
5926                 spin_unlock(&tmp_pa->pa_lock);
5927                 lg_prealloc_count++;
5928         }
5929         if (!added)
5930                 list_add_tail_rcu(&pa->pa_node.lg_list,
5931                                         &lg->lg_prealloc_list[order]);
5932         spin_unlock(&lg->lg_prealloc_lock);
5933
5934         /* Now trim the list to be not more than 8 elements */
5935         if (lg_prealloc_count > 8)
5936                 ext4_mb_discard_lg_preallocations(sb, lg,
5937                                                   order, lg_prealloc_count);
5938 }
5939
5940 /*
5941  * release all resource we used in allocation
5942  */
5943 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5944 {
5945         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5946         struct ext4_prealloc_space *pa = ac->ac_pa;
5947         if (pa) {
5948                 if (pa->pa_type == MB_GROUP_PA) {
5949                         /* see comment in ext4_mb_use_group_pa() */
5950                         spin_lock(&pa->pa_lock);
5951                         pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5952                         pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5953                         pa->pa_free -= ac->ac_b_ex.fe_len;
5954                         pa->pa_len -= ac->ac_b_ex.fe_len;
5955                         spin_unlock(&pa->pa_lock);
5956
5957                         /*
5958                          * We want to add the pa to the right bucket.
5959                          * Remove it from the list and while adding
5960                          * make sure the list to which we are adding
5961                          * doesn't grow big.
5962                          */
5963                         if (likely(pa->pa_free)) {
5964                                 spin_lock(pa->pa_node_lock.lg_lock);
5965                                 list_del_rcu(&pa->pa_node.lg_list);
5966                                 spin_unlock(pa->pa_node_lock.lg_lock);
5967                                 ext4_mb_add_n_trim(ac);
5968                         }
5969                 }
5970
5971                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
5972         }
5973         if (ac->ac_bitmap_page)
5974                 put_page(ac->ac_bitmap_page);
5975         if (ac->ac_buddy_page)
5976                 put_page(ac->ac_buddy_page);
5977         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5978                 mutex_unlock(&ac->ac_lg->lg_mutex);
5979         ext4_mb_collect_stats(ac);
5980         return 0;
5981 }
5982
5983 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5984 {
5985         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5986         int ret;
5987         int freed = 0, busy = 0;
5988         int retry = 0;
5989
5990         trace_ext4_mb_discard_preallocations(sb, needed);
5991
5992         if (needed == 0)
5993                 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5994  repeat:
5995         for (i = 0; i < ngroups && needed > 0; i++) {
5996                 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
5997                 freed += ret;
5998                 needed -= ret;
5999                 cond_resched();
6000         }
6001
6002         if (needed > 0 && busy && ++retry < 3) {
6003                 busy = 0;
6004                 goto repeat;
6005         }
6006
6007         return freed;
6008 }
6009
6010 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6011                         struct ext4_allocation_context *ac, u64 *seq)
6012 {
6013         int freed;
6014         u64 seq_retry = 0;
6015         bool ret = false;
6016
6017         freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6018         if (freed) {
6019                 ret = true;
6020                 goto out_dbg;
6021         }
6022         seq_retry = ext4_get_discard_pa_seq_sum();
6023         if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6024                 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6025                 *seq = seq_retry;
6026                 ret = true;
6027         }
6028
6029 out_dbg:
6030         mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6031         return ret;
6032 }
6033
6034 /*
6035  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6036  * linearly starting at the goal block and also excludes the blocks which
6037  * are going to be in use after fast commit replay.
6038  */
6039 static ext4_fsblk_t
6040 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6041 {
6042         struct buffer_head *bitmap_bh;
6043         struct super_block *sb = ar->inode->i_sb;
6044         struct ext4_sb_info *sbi = EXT4_SB(sb);
6045         ext4_group_t group, nr;
6046         ext4_grpblk_t blkoff;
6047         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6048         ext4_grpblk_t i = 0;
6049         ext4_fsblk_t goal, block;
6050         struct ext4_super_block *es = sbi->s_es;
6051
6052         goal = ar->goal;
6053         if (goal < le32_to_cpu(es->s_first_data_block) ||
6054                         goal >= ext4_blocks_count(es))
6055                 goal = le32_to_cpu(es->s_first_data_block);
6056
6057         ar->len = 0;
6058         ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6059         for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6060                 bitmap_bh = ext4_read_block_bitmap(sb, group);
6061                 if (IS_ERR(bitmap_bh)) {
6062                         *errp = PTR_ERR(bitmap_bh);
6063                         pr_warn("Failed to read block bitmap\n");
6064                         return 0;
6065                 }
6066
6067                 while (1) {
6068                         i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6069                                                 blkoff);
6070                         if (i >= max)
6071                                 break;
6072                         if (ext4_fc_replay_check_excluded(sb,
6073                                 ext4_group_first_block_no(sb, group) +
6074                                 EXT4_C2B(sbi, i))) {
6075                                 blkoff = i + 1;
6076                         } else
6077                                 break;
6078                 }
6079                 brelse(bitmap_bh);
6080                 if (i < max)
6081                         break;
6082
6083                 if (++group >= ext4_get_groups_count(sb))
6084                         group = 0;
6085
6086                 blkoff = 0;
6087         }
6088
6089         if (i >= max) {
6090                 *errp = -ENOSPC;
6091                 return 0;
6092         }
6093
6094         block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6095         ext4_mb_mark_bb(sb, block, 1, true);
6096         ar->len = 1;
6097
6098         return block;
6099 }
6100
6101 /*
6102  * Main entry point into mballoc to allocate blocks
6103  * it tries to use preallocation first, then falls back
6104  * to usual allocation
6105  */
6106 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6107                                 struct ext4_allocation_request *ar, int *errp)
6108 {
6109         struct ext4_allocation_context *ac = NULL;
6110         struct ext4_sb_info *sbi;
6111         struct super_block *sb;
6112         ext4_fsblk_t block = 0;
6113         unsigned int inquota = 0;
6114         unsigned int reserv_clstrs = 0;
6115         int retries = 0;
6116         u64 seq;
6117
6118         might_sleep();
6119         sb = ar->inode->i_sb;
6120         sbi = EXT4_SB(sb);
6121
6122         trace_ext4_request_blocks(ar);
6123         if (sbi->s_mount_state & EXT4_FC_REPLAY)
6124                 return ext4_mb_new_blocks_simple(ar, errp);
6125
6126         /* Allow to use superuser reservation for quota file */
6127         if (ext4_is_quota_file(ar->inode))
6128                 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6129
6130         if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6131                 /* Without delayed allocation we need to verify
6132                  * there is enough free blocks to do block allocation
6133                  * and verify allocation doesn't exceed the quota limits.
6134                  */
6135                 while (ar->len &&
6136                         ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6137
6138                         /* let others to free the space */
6139                         cond_resched();
6140                         ar->len = ar->len >> 1;
6141                 }
6142                 if (!ar->len) {
6143                         ext4_mb_show_pa(sb);
6144                         *errp = -ENOSPC;
6145                         return 0;
6146                 }
6147                 reserv_clstrs = ar->len;
6148                 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6149                         dquot_alloc_block_nofail(ar->inode,
6150                                                  EXT4_C2B(sbi, ar->len));
6151                 } else {
6152                         while (ar->len &&
6153                                 dquot_alloc_block(ar->inode,
6154                                                   EXT4_C2B(sbi, ar->len))) {
6155
6156                                 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6157                                 ar->len--;
6158                         }
6159                 }
6160                 inquota = ar->len;
6161                 if (ar->len == 0) {
6162                         *errp = -EDQUOT;
6163                         goto out;
6164                 }
6165         }
6166
6167         ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6168         if (!ac) {
6169                 ar->len = 0;
6170                 *errp = -ENOMEM;
6171                 goto out;
6172         }
6173
6174         ext4_mb_initialize_context(ac, ar);
6175
6176         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6177         seq = this_cpu_read(discard_pa_seq);
6178         if (!ext4_mb_use_preallocated(ac)) {
6179                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6180                 ext4_mb_normalize_request(ac, ar);
6181
6182                 *errp = ext4_mb_pa_alloc(ac);
6183                 if (*errp)
6184                         goto errout;
6185 repeat:
6186                 /* allocate space in core */
6187                 *errp = ext4_mb_regular_allocator(ac);
6188                 /*
6189                  * pa allocated above is added to grp->bb_prealloc_list only
6190                  * when we were able to allocate some block i.e. when
6191                  * ac->ac_status == AC_STATUS_FOUND.
6192                  * And error from above mean ac->ac_status != AC_STATUS_FOUND
6193                  * So we have to free this pa here itself.
6194                  */
6195                 if (*errp) {
6196                         ext4_mb_pa_put_free(ac);
6197                         ext4_discard_allocated_blocks(ac);
6198                         goto errout;
6199                 }
6200                 if (ac->ac_status == AC_STATUS_FOUND &&
6201                         ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6202                         ext4_mb_pa_put_free(ac);
6203         }
6204         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6205                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6206                 if (*errp) {
6207                         ext4_discard_allocated_blocks(ac);
6208                         goto errout;
6209                 } else {
6210                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6211                         ar->len = ac->ac_b_ex.fe_len;
6212                 }
6213         } else {
6214                 if (++retries < 3 &&
6215                     ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6216                         goto repeat;
6217                 /*
6218                  * If block allocation fails then the pa allocated above
6219                  * needs to be freed here itself.
6220                  */
6221                 ext4_mb_pa_put_free(ac);
6222                 *errp = -ENOSPC;
6223         }
6224
6225         if (*errp) {
6226 errout:
6227                 ac->ac_b_ex.fe_len = 0;
6228                 ar->len = 0;
6229                 ext4_mb_show_ac(ac);
6230         }
6231         ext4_mb_release_context(ac);
6232         kmem_cache_free(ext4_ac_cachep, ac);
6233 out:
6234         if (inquota && ar->len < inquota)
6235                 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6236         if (!ar->len) {
6237                 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6238                         /* release all the reserved blocks if non delalloc */
6239                         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6240                                                 reserv_clstrs);
6241         }
6242
6243         trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6244
6245         return block;
6246 }
6247
6248 /*
6249  * We can merge two free data extents only if the physical blocks
6250  * are contiguous, AND the extents were freed by the same transaction,
6251  * AND the blocks are associated with the same group.
6252  */
6253 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6254                                         struct ext4_free_data *entry,
6255                                         struct ext4_free_data *new_entry,
6256                                         struct rb_root *entry_rb_root)
6257 {
6258         if ((entry->efd_tid != new_entry->efd_tid) ||
6259             (entry->efd_group != new_entry->efd_group))
6260                 return;
6261         if (entry->efd_start_cluster + entry->efd_count ==
6262             new_entry->efd_start_cluster) {
6263                 new_entry->efd_start_cluster = entry->efd_start_cluster;
6264                 new_entry->efd_count += entry->efd_count;
6265         } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6266                    entry->efd_start_cluster) {
6267                 new_entry->efd_count += entry->efd_count;
6268         } else
6269                 return;
6270         spin_lock(&sbi->s_md_lock);
6271         list_del(&entry->efd_list);
6272         spin_unlock(&sbi->s_md_lock);
6273         rb_erase(&entry->efd_node, entry_rb_root);
6274         kmem_cache_free(ext4_free_data_cachep, entry);
6275 }
6276
6277 static noinline_for_stack void
6278 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6279                       struct ext4_free_data *new_entry)
6280 {
6281         ext4_group_t group = e4b->bd_group;
6282         ext4_grpblk_t cluster;
6283         ext4_grpblk_t clusters = new_entry->efd_count;
6284         struct ext4_free_data *entry;
6285         struct ext4_group_info *db = e4b->bd_info;
6286         struct super_block *sb = e4b->bd_sb;
6287         struct ext4_sb_info *sbi = EXT4_SB(sb);
6288         struct rb_node **n = &db->bb_free_root.rb_node, *node;
6289         struct rb_node *parent = NULL, *new_node;
6290
6291         BUG_ON(!ext4_handle_valid(handle));
6292         BUG_ON(e4b->bd_bitmap_page == NULL);
6293         BUG_ON(e4b->bd_buddy_page == NULL);
6294
6295         new_node = &new_entry->efd_node;
6296         cluster = new_entry->efd_start_cluster;
6297
6298         if (!*n) {
6299                 /* first free block exent. We need to
6300                    protect buddy cache from being freed,
6301                  * otherwise we'll refresh it from
6302                  * on-disk bitmap and lose not-yet-available
6303                  * blocks */
6304                 get_page(e4b->bd_buddy_page);
6305                 get_page(e4b->bd_bitmap_page);
6306         }
6307         while (*n) {
6308                 parent = *n;
6309                 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6310                 if (cluster < entry->efd_start_cluster)
6311                         n = &(*n)->rb_left;
6312                 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6313                         n = &(*n)->rb_right;
6314                 else {
6315                         ext4_grp_locked_error(sb, group, 0,
6316                                 ext4_group_first_block_no(sb, group) +
6317                                 EXT4_C2B(sbi, cluster),
6318                                 "Block already on to-be-freed list");
6319                         kmem_cache_free(ext4_free_data_cachep, new_entry);
6320                         return;
6321                 }
6322         }
6323
6324         rb_link_node(new_node, parent, n);
6325         rb_insert_color(new_node, &db->bb_free_root);
6326
6327         /* Now try to see the extent can be merged to left and right */
6328         node = rb_prev(new_node);
6329         if (node) {
6330                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6331                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6332                                             &(db->bb_free_root));
6333         }
6334
6335         node = rb_next(new_node);
6336         if (node) {
6337                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6338                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6339                                             &(db->bb_free_root));
6340         }
6341
6342         spin_lock(&sbi->s_md_lock);
6343         list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6344         sbi->s_mb_free_pending += clusters;
6345         spin_unlock(&sbi->s_md_lock);
6346 }
6347
6348 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6349                                         unsigned long count)
6350 {
6351         struct super_block *sb = inode->i_sb;
6352         ext4_group_t group;
6353         ext4_grpblk_t blkoff;
6354
6355         ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6356         ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6357                              EXT4_MB_BITMAP_MARKED_CHECK |
6358                              EXT4_MB_SYNC_UPDATE,
6359                              NULL);
6360 }
6361
6362 /**
6363  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6364  *                      Used by ext4_free_blocks()
6365  * @handle:             handle for this transaction
6366  * @inode:              inode
6367  * @block:              starting physical block to be freed
6368  * @count:              number of blocks to be freed
6369  * @flags:              flags used by ext4_free_blocks
6370  */
6371 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6372                                ext4_fsblk_t block, unsigned long count,
6373                                int flags)
6374 {
6375         struct super_block *sb = inode->i_sb;
6376         struct ext4_group_info *grp;
6377         unsigned int overflow;
6378         ext4_grpblk_t bit;
6379         ext4_group_t block_group;
6380         struct ext4_sb_info *sbi;
6381         struct ext4_buddy e4b;
6382         unsigned int count_clusters;
6383         int err = 0;
6384         int mark_flags = 0;
6385         ext4_grpblk_t changed;
6386
6387         sbi = EXT4_SB(sb);
6388
6389         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6390             !ext4_inode_block_valid(inode, block, count)) {
6391                 ext4_error(sb, "Freeing blocks in system zone - "
6392                            "Block = %llu, count = %lu", block, count);
6393                 /* err = 0. ext4_std_error should be a no op */
6394                 goto error_out;
6395         }
6396         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6397
6398 do_more:
6399         overflow = 0;
6400         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6401
6402         grp = ext4_get_group_info(sb, block_group);
6403         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6404                 return;
6405
6406         /*
6407          * Check to see if we are freeing blocks across a group
6408          * boundary.
6409          */
6410         if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6411                 overflow = EXT4_C2B(sbi, bit) + count -
6412                         EXT4_BLOCKS_PER_GROUP(sb);
6413                 count -= overflow;
6414                 /* The range changed so it's no longer validated */
6415                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6416         }
6417         count_clusters = EXT4_NUM_B2C(sbi, count);
6418         trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6419
6420         /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6421         err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6422                                      GFP_NOFS|__GFP_NOFAIL);
6423         if (err)
6424                 goto error_out;
6425
6426         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6427             !ext4_inode_block_valid(inode, block, count)) {
6428                 ext4_error(sb, "Freeing blocks in system zone - "
6429                            "Block = %llu, count = %lu", block, count);
6430                 /* err = 0. ext4_std_error should be a no op */
6431                 goto error_clean;
6432         }
6433
6434 #ifdef AGGRESSIVE_CHECK
6435         mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6436 #endif
6437         err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6438                                    count_clusters, mark_flags, &changed);
6439
6440
6441         if (err && changed == 0)
6442                 goto error_clean;
6443
6444 #ifdef AGGRESSIVE_CHECK
6445         BUG_ON(changed != count_clusters);
6446 #endif
6447
6448         /*
6449          * We need to make sure we don't reuse the freed block until after the
6450          * transaction is committed. We make an exception if the inode is to be
6451          * written in writeback mode since writeback mode has weak data
6452          * consistency guarantees.
6453          */
6454         if (ext4_handle_valid(handle) &&
6455             ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6456              !ext4_should_writeback_data(inode))) {
6457                 struct ext4_free_data *new_entry;
6458                 /*
6459                  * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6460                  * to fail.
6461                  */
6462                 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6463                                 GFP_NOFS|__GFP_NOFAIL);
6464                 new_entry->efd_start_cluster = bit;
6465                 new_entry->efd_group = block_group;
6466                 new_entry->efd_count = count_clusters;
6467                 new_entry->efd_tid = handle->h_transaction->t_tid;
6468
6469                 ext4_lock_group(sb, block_group);
6470                 ext4_mb_free_metadata(handle, &e4b, new_entry);
6471         } else {
6472                 if (test_opt(sb, DISCARD)) {
6473                         err = ext4_issue_discard(sb, block_group, bit,
6474                                                  count_clusters, NULL);
6475                         if (err && err != -EOPNOTSUPP)
6476                                 ext4_msg(sb, KERN_WARNING, "discard request in"
6477                                          " group:%u block:%d count:%lu failed"
6478                                          " with %d", block_group, bit, count,
6479                                          err);
6480                 } else
6481                         EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6482
6483                 ext4_lock_group(sb, block_group);
6484                 mb_free_blocks(inode, &e4b, bit, count_clusters);
6485         }
6486
6487         ext4_unlock_group(sb, block_group);
6488
6489         /*
6490          * on a bigalloc file system, defer the s_freeclusters_counter
6491          * update to the caller (ext4_remove_space and friends) so they
6492          * can determine if a cluster freed here should be rereserved
6493          */
6494         if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6495                 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6496                         dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6497                 percpu_counter_add(&sbi->s_freeclusters_counter,
6498                                    count_clusters);
6499         }
6500
6501         if (overflow && !err) {
6502                 block += count;
6503                 count = overflow;
6504                 ext4_mb_unload_buddy(&e4b);
6505                 /* The range changed so it's no longer validated */
6506                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6507                 goto do_more;
6508         }
6509
6510 error_clean:
6511         ext4_mb_unload_buddy(&e4b);
6512 error_out:
6513         ext4_std_error(sb, err);
6514 }
6515
6516 /**
6517  * ext4_free_blocks() -- Free given blocks and update quota
6518  * @handle:             handle for this transaction
6519  * @inode:              inode
6520  * @bh:                 optional buffer of the block to be freed
6521  * @block:              starting physical block to be freed
6522  * @count:              number of blocks to be freed
6523  * @flags:              flags used by ext4_free_blocks
6524  */
6525 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6526                       struct buffer_head *bh, ext4_fsblk_t block,
6527                       unsigned long count, int flags)
6528 {
6529         struct super_block *sb = inode->i_sb;
6530         unsigned int overflow;
6531         struct ext4_sb_info *sbi;
6532
6533         sbi = EXT4_SB(sb);
6534
6535         if (bh) {
6536                 if (block)
6537                         BUG_ON(block != bh->b_blocknr);
6538                 else
6539                         block = bh->b_blocknr;
6540         }
6541
6542         if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6543                 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6544                 return;
6545         }
6546
6547         might_sleep();
6548
6549         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6550             !ext4_inode_block_valid(inode, block, count)) {
6551                 ext4_error(sb, "Freeing blocks not in datazone - "
6552                            "block = %llu, count = %lu", block, count);
6553                 return;
6554         }
6555         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6556
6557         ext4_debug("freeing block %llu\n", block);
6558         trace_ext4_free_blocks(inode, block, count, flags);
6559
6560         if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6561                 BUG_ON(count > 1);
6562
6563                 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6564                             inode, bh, block);
6565         }
6566
6567         /*
6568          * If the extent to be freed does not begin on a cluster
6569          * boundary, we need to deal with partial clusters at the
6570          * beginning and end of the extent.  Normally we will free
6571          * blocks at the beginning or the end unless we are explicitly
6572          * requested to avoid doing so.
6573          */
6574         overflow = EXT4_PBLK_COFF(sbi, block);
6575         if (overflow) {
6576                 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6577                         overflow = sbi->s_cluster_ratio - overflow;
6578                         block += overflow;
6579                         if (count > overflow)
6580                                 count -= overflow;
6581                         else
6582                                 return;
6583                 } else {
6584                         block -= overflow;
6585                         count += overflow;
6586                 }
6587                 /* The range changed so it's no longer validated */
6588                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6589         }
6590         overflow = EXT4_LBLK_COFF(sbi, count);
6591         if (overflow) {
6592                 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6593                         if (count > overflow)
6594                                 count -= overflow;
6595                         else
6596                                 return;
6597                 } else
6598                         count += sbi->s_cluster_ratio - overflow;
6599                 /* The range changed so it's no longer validated */
6600                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6601         }
6602
6603         if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6604                 int i;
6605                 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6606
6607                 for (i = 0; i < count; i++) {
6608                         cond_resched();
6609                         if (is_metadata)
6610                                 bh = sb_find_get_block(inode->i_sb, block + i);
6611                         ext4_forget(handle, is_metadata, inode, bh, block + i);
6612                 }
6613         }
6614
6615         ext4_mb_clear_bb(handle, inode, block, count, flags);
6616 }
6617
6618 /**
6619  * ext4_group_add_blocks() -- Add given blocks to an existing group
6620  * @handle:                     handle to this transaction
6621  * @sb:                         super block
6622  * @block:                      start physical block to add to the block group
6623  * @count:                      number of blocks to free
6624  *
6625  * This marks the blocks as free in the bitmap and buddy.
6626  */
6627 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6628                          ext4_fsblk_t block, unsigned long count)
6629 {
6630         ext4_group_t block_group;
6631         ext4_grpblk_t bit;
6632         struct ext4_sb_info *sbi = EXT4_SB(sb);
6633         struct ext4_buddy e4b;
6634         int err = 0;
6635         ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6636         ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6637         unsigned long cluster_count = last_cluster - first_cluster + 1;
6638         ext4_grpblk_t changed;
6639
6640         ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6641
6642         if (cluster_count == 0)
6643                 return 0;
6644
6645         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6646         /*
6647          * Check to see if we are freeing blocks across a group
6648          * boundary.
6649          */
6650         if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6651                 ext4_warning(sb, "too many blocks added to group %u",
6652                              block_group);
6653                 err = -EINVAL;
6654                 goto error_out;
6655         }
6656
6657         err = ext4_mb_load_buddy(sb, block_group, &e4b);
6658         if (err)
6659                 goto error_out;
6660
6661         if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6662                 ext4_error(sb, "Adding blocks in system zones - "
6663                            "Block = %llu, count = %lu",
6664                            block, count);
6665                 err = -EINVAL;
6666                 goto error_clean;
6667         }
6668
6669         err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6670                                    cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6671                                    &changed);
6672         if (err && changed == 0)
6673                 goto error_clean;
6674
6675         if (changed != cluster_count)
6676                 ext4_error(sb, "bit already cleared in group %u", block_group);
6677
6678         ext4_lock_group(sb, block_group);
6679         mb_free_blocks(NULL, &e4b, bit, cluster_count);
6680         ext4_unlock_group(sb, block_group);
6681         percpu_counter_add(&sbi->s_freeclusters_counter,
6682                            changed);
6683
6684 error_clean:
6685         ext4_mb_unload_buddy(&e4b);
6686 error_out:
6687         ext4_std_error(sb, err);
6688         return err;
6689 }
6690
6691 /**
6692  * ext4_trim_extent -- function to TRIM one single free extent in the group
6693  * @sb:         super block for the file system
6694  * @start:      starting block of the free extent in the alloc. group
6695  * @count:      number of blocks to TRIM
6696  * @e4b:        ext4 buddy for the group
6697  *
6698  * Trim "count" blocks starting at "start" in the "group". To assure that no
6699  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6700  * be called with under the group lock.
6701  */
6702 static int ext4_trim_extent(struct super_block *sb,
6703                 int start, int count, struct ext4_buddy *e4b)
6704 __releases(bitlock)
6705 __acquires(bitlock)
6706 {
6707         struct ext4_free_extent ex;
6708         ext4_group_t group = e4b->bd_group;
6709         int ret = 0;
6710
6711         trace_ext4_trim_extent(sb, group, start, count);
6712
6713         assert_spin_locked(ext4_group_lock_ptr(sb, group));
6714
6715         ex.fe_start = start;
6716         ex.fe_group = group;
6717         ex.fe_len = count;
6718
6719         /*
6720          * Mark blocks used, so no one can reuse them while
6721          * being trimmed.
6722          */
6723         mb_mark_used(e4b, &ex);
6724         ext4_unlock_group(sb, group);
6725         ret = ext4_issue_discard(sb, group, start, count, NULL);
6726         ext4_lock_group(sb, group);
6727         mb_free_blocks(NULL, e4b, start, ex.fe_len);
6728         return ret;
6729 }
6730
6731 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6732                                            ext4_group_t grp)
6733 {
6734         if (grp < ext4_get_groups_count(sb))
6735                 return EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6736         return (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6737                 ext4_group_first_block_no(sb, grp) - 1) >>
6738                                         EXT4_CLUSTER_BITS(sb);
6739 }
6740
6741 static bool ext4_trim_interrupted(void)
6742 {
6743         return fatal_signal_pending(current) || freezing(current);
6744 }
6745
6746 static int ext4_try_to_trim_range(struct super_block *sb,
6747                 struct ext4_buddy *e4b, ext4_grpblk_t start,
6748                 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6749 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6750 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6751 {
6752         ext4_grpblk_t next, count, free_count;
6753         bool set_trimmed = false;
6754         void *bitmap;
6755
6756         bitmap = e4b->bd_bitmap;
6757         if (start == 0 && max >= ext4_last_grp_cluster(sb, e4b->bd_group))
6758                 set_trimmed = true;
6759         start = max(e4b->bd_info->bb_first_free, start);
6760         count = 0;
6761         free_count = 0;
6762
6763         while (start <= max) {
6764                 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6765                 if (start > max)
6766                         break;
6767                 next = mb_find_next_bit(bitmap, max + 1, start);
6768
6769                 if ((next - start) >= minblocks) {
6770                         int ret = ext4_trim_extent(sb, start, next - start, e4b);
6771
6772                         if (ret && ret != -EOPNOTSUPP)
6773                                 return count;
6774                         count += next - start;
6775                 }
6776                 free_count += next - start;
6777                 start = next + 1;
6778
6779                 if (ext4_trim_interrupted())
6780                         return count;
6781
6782                 if (need_resched()) {
6783                         ext4_unlock_group(sb, e4b->bd_group);
6784                         cond_resched();
6785                         ext4_lock_group(sb, e4b->bd_group);
6786                 }
6787
6788                 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6789                         break;
6790         }
6791
6792         if (set_trimmed)
6793                 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6794
6795         return count;
6796 }
6797
6798 /**
6799  * ext4_trim_all_free -- function to trim all free space in alloc. group
6800  * @sb:                 super block for file system
6801  * @group:              group to be trimmed
6802  * @start:              first group block to examine
6803  * @max:                last group block to examine
6804  * @minblocks:          minimum extent block count
6805  *
6806  * ext4_trim_all_free walks through group's block bitmap searching for free
6807  * extents. When the free extent is found, mark it as used in group buddy
6808  * bitmap. Then issue a TRIM command on this extent and free the extent in
6809  * the group buddy bitmap.
6810  */
6811 static ext4_grpblk_t
6812 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6813                    ext4_grpblk_t start, ext4_grpblk_t max,
6814                    ext4_grpblk_t minblocks)
6815 {
6816         struct ext4_buddy e4b;
6817         int ret;
6818
6819         trace_ext4_trim_all_free(sb, group, start, max);
6820
6821         ret = ext4_mb_load_buddy(sb, group, &e4b);
6822         if (ret) {
6823                 ext4_warning(sb, "Error %d loading buddy information for %u",
6824                              ret, group);
6825                 return ret;
6826         }
6827
6828         ext4_lock_group(sb, group);
6829
6830         if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6831             minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6832                 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6833         else
6834                 ret = 0;
6835
6836         ext4_unlock_group(sb, group);
6837         ext4_mb_unload_buddy(&e4b);
6838
6839         ext4_debug("trimmed %d blocks in the group %d\n",
6840                 ret, group);
6841
6842         return ret;
6843 }
6844
6845 /**
6846  * ext4_trim_fs() -- trim ioctl handle function
6847  * @sb:                 superblock for filesystem
6848  * @range:              fstrim_range structure
6849  *
6850  * start:       First Byte to trim
6851  * len:         number of Bytes to trim from start
6852  * minlen:      minimum extent length in Bytes
6853  * ext4_trim_fs goes through all allocation groups containing Bytes from
6854  * start to start+len. For each such a group ext4_trim_all_free function
6855  * is invoked to trim all free space.
6856  */
6857 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6858 {
6859         unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6860         struct ext4_group_info *grp;
6861         ext4_group_t group, first_group, last_group;
6862         ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6863         uint64_t start, end, minlen, trimmed = 0;
6864         ext4_fsblk_t first_data_blk =
6865                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6866         ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6867         int ret = 0;
6868
6869         start = range->start >> sb->s_blocksize_bits;
6870         end = start + (range->len >> sb->s_blocksize_bits) - 1;
6871         minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6872                               range->minlen >> sb->s_blocksize_bits);
6873
6874         if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6875             start >= max_blks ||
6876             range->len < sb->s_blocksize)
6877                 return -EINVAL;
6878         /* No point to try to trim less than discard granularity */
6879         if (range->minlen < discard_granularity) {
6880                 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6881                                 discard_granularity >> sb->s_blocksize_bits);
6882                 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6883                         goto out;
6884         }
6885         if (end >= max_blks - 1)
6886                 end = max_blks - 1;
6887         if (end <= first_data_blk)
6888                 goto out;
6889         if (start < first_data_blk)
6890                 start = first_data_blk;
6891
6892         /* Determine first and last group to examine based on start and end */
6893         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6894                                      &first_group, &first_cluster);
6895         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6896                                      &last_group, &last_cluster);
6897
6898         /* end now represents the last cluster to discard in this group */
6899         end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6900
6901         for (group = first_group; group <= last_group; group++) {
6902                 if (ext4_trim_interrupted())
6903                         break;
6904                 grp = ext4_get_group_info(sb, group);
6905                 if (!grp)
6906                         continue;
6907                 /* We only do this if the grp has never been initialized */
6908                 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6909                         ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6910                         if (ret)
6911                                 break;
6912                 }
6913
6914                 /*
6915                  * For all the groups except the last one, last cluster will
6916                  * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6917                  * change it for the last group, note that last_cluster is
6918                  * already computed earlier by ext4_get_group_no_and_offset()
6919                  */
6920                 if (group == last_group)
6921                         end = last_cluster;
6922                 if (grp->bb_free >= minlen) {
6923                         cnt = ext4_trim_all_free(sb, group, first_cluster,
6924                                                  end, minlen);
6925                         if (cnt < 0) {
6926                                 ret = cnt;
6927                                 break;
6928                         }
6929                         trimmed += cnt;
6930                 }
6931
6932                 /*
6933                  * For every group except the first one, we are sure
6934                  * that the first cluster to discard will be cluster #0.
6935                  */
6936                 first_cluster = 0;
6937         }
6938
6939         if (!ret)
6940                 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6941
6942 out:
6943         range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6944         return ret;
6945 }
6946
6947 /* Iterate all the free extents in the group. */
6948 int
6949 ext4_mballoc_query_range(
6950         struct super_block              *sb,
6951         ext4_group_t                    group,
6952         ext4_grpblk_t                   start,
6953         ext4_grpblk_t                   end,
6954         ext4_mballoc_query_range_fn     formatter,
6955         void                            *priv)
6956 {
6957         void                            *bitmap;
6958         ext4_grpblk_t                   next;
6959         struct ext4_buddy               e4b;
6960         int                             error;
6961
6962         error = ext4_mb_load_buddy(sb, group, &e4b);
6963         if (error)
6964                 return error;
6965         bitmap = e4b.bd_bitmap;
6966
6967         ext4_lock_group(sb, group);
6968
6969         start = max(e4b.bd_info->bb_first_free, start);
6970         if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6971                 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6972
6973         while (start <= end) {
6974                 start = mb_find_next_zero_bit(bitmap, end + 1, start);
6975                 if (start > end)
6976                         break;
6977                 next = mb_find_next_bit(bitmap, end + 1, start);
6978
6979                 ext4_unlock_group(sb, group);
6980                 error = formatter(sb, group, start, next - start, priv);
6981                 if (error)
6982                         goto out_unload;
6983                 ext4_lock_group(sb, group);
6984
6985                 start = next + 1;
6986         }
6987
6988         ext4_unlock_group(sb, group);
6989 out_unload:
6990         ext4_mb_unload_buddy(&e4b);
6991
6992         return error;
6993 }
6994
6995 #ifdef CONFIG_EXT4_KUNIT_TESTS
6996 #include "mballoc-test.c"
6997 #endif
This page took 0.439934 seconds and 4 git commands to generate.