1 // SPDX-License-Identifier: GPL-2.0
9 * mballoc.c contains the multiblocks allocation routines
12 #include "ext4_jbd2.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
25 * - test ext4_ext_search_left() and ext4_ext_search_right()
26 * - search for metadata in few groups
29 * - normalization should take into account whether file is still open
30 * - discard preallocations if no free space left (policy?)
31 * - don't normalize tails
33 * - reservation for superuser
36 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
37 * - track min/max extents in each group for better group selection
38 * - mb_mark_used() may allocate chunk right after splitting buddy
39 * - tree of groups sorted by number of free blocks
44 * The allocation request involve request for multiple number of blocks
45 * near to the goal(block) value specified.
47 * During initialization phase of the allocator we decide to use the
48 * group preallocation or inode preallocation depending on the size of
49 * the file. The size of the file could be the resulting file size we
50 * would have after allocation, or the current file size, which ever
51 * is larger. If the size is less than sbi->s_mb_stream_request we
52 * select to use the group preallocation. The default value of
53 * s_mb_stream_request is 16 blocks. This can also be tuned via
54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55 * terms of number of blocks.
57 * The main motivation for having small file use group preallocation is to
58 * ensure that we have small files closer together on the disk.
60 * First stage the allocator looks at the inode prealloc list,
61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62 * spaces for this particular inode. The inode prealloc space is
65 * pa_lstart -> the logical start block for this prealloc space
66 * pa_pstart -> the physical start block for this prealloc space
67 * pa_len -> length for this prealloc space (in clusters)
68 * pa_free -> free space available in this prealloc space (in clusters)
70 * The inode preallocation space is used looking at the _logical_ start
71 * block. If only the logical file block falls within the range of prealloc
72 * space we will consume the particular prealloc space. This makes sure that
73 * we have contiguous physical blocks representing the file blocks
75 * The important thing to be noted in case of inode prealloc space is that
76 * we don't modify the values associated to inode prealloc space except
79 * If we are not able to find blocks in the inode prealloc space and if we
80 * have the group allocation flag set then we look at the locality group
81 * prealloc space. These are per CPU prealloc list represented as
83 * ext4_sb_info.s_locality_groups[smp_processor_id()]
85 * The reason for having a per cpu locality group is to reduce the contention
86 * between CPUs. It is possible to get scheduled at this point.
88 * The locality group prealloc space is used looking at whether we have
89 * enough free space (pa_free) within the prealloc space.
91 * If we can't allocate blocks via inode prealloc or/and locality group
92 * prealloc then we look at the buddy cache. The buddy cache is represented
93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94 * mapped to the buddy and bitmap information regarding different
95 * groups. The buddy information is attached to buddy cache inode so that
96 * we can access them through the page cache. The information regarding
97 * each group is loaded via ext4_mb_load_buddy. The information involve
98 * block bitmap and buddy information. The information are stored in the
102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
105 * one block each for bitmap and buddy information. So for each group we
106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107 * blocksize) blocks. So it can have information regarding groups_per_page
108 * which is blocks_per_page/2
110 * The buddy cache inode is not stored on disk. The inode is thrown
111 * away when the filesystem is unmounted.
113 * We look for count number of blocks in the buddy cache. If we were able
114 * to locate that many free blocks we return with additional information
115 * regarding rest of the contiguous physical block available
117 * Before allocating blocks via buddy cache we normalize the request
118 * blocks. This ensure we ask for more blocks that we needed. The extra
119 * blocks that we get after allocation is added to the respective prealloc
120 * list. In case of inode preallocation we follow a list of heuristics
121 * based on file size. This can be found in ext4_mb_normalize_request. If
122 * we are doing a group prealloc we try to normalize the request to
123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
124 * dependent on the cluster size; for non-bigalloc file systems, it is
125 * 512 blocks. This can be tuned via
126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * smallest multiple of the stripe value (sbi->s_stripe) which is
130 * greater than the default mb_group_prealloc.
132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133 * structures in two data structures:
135 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
137 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
139 * This is an array of lists where the index in the array represents the
140 * largest free order in the buddy bitmap of the participating group infos of
141 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142 * number of buddy bitmap orders possible) number of lists. Group-infos are
143 * placed in appropriate lists.
145 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
147 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
149 * This is an array of lists where in the i-th list there are groups with
150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size
151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152 * Note that we don't bother with a special list for completely empty groups
153 * so we only have MB_NUM_ORDERS(sb) lists.
155 * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156 * structures to decide the order in which groups are to be traversed for
157 * fulfilling an allocation request.
159 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160 * >= the order of the request. We directly look at the largest free order list
161 * in the data structure (1) above where largest_free_order = order of the
162 * request. If that list is empty, we look at remaining list in the increasing
163 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164 * lookup in O(1) time.
166 * At CR_GOAL_LEN_FAST, we only consider groups where
167 * average fragment size > request size. So, we lookup a group which has average
168 * fragment size just above or equal to request size using our average fragment
169 * size group lists (data structure 2) in O(1) time.
171 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174 * fragment size > goal length. So before falling to the slower
175 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177 * enough average fragment size. This increases the chances of finding a
178 * suitable block group in O(1) time and results in faster allocation at the
179 * cost of reduced size of allocation.
181 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183 * CR_GOAL_LEN_FAST phase.
185 * The regular allocator (using the buddy cache) supports a few tunables.
187 * /sys/fs/ext4/<partition>/mb_min_to_scan
188 * /sys/fs/ext4/<partition>/mb_max_to_scan
189 * /sys/fs/ext4/<partition>/mb_order2_req
190 * /sys/fs/ext4/<partition>/mb_linear_limit
192 * The regular allocator uses buddy scan only if the request len is power of
193 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194 * value of s_mb_order2_reqs can be tuned via
195 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
196 * stripe size (sbi->s_stripe), we try to search for contiguous block in
197 * stripe size. This should result in better allocation on RAID setups. If
198 * not, we search in the specific group using bitmap for best extents. The
199 * tunable min_to_scan and max_to_scan control the behaviour here.
200 * min_to_scan indicate how long the mballoc __must__ look for a best
201 * extent and max_to_scan indicates how long the mballoc __can__ look for a
202 * best extent in the found extents. Searching for the blocks starts with
203 * the group specified as the goal value in allocation context via
204 * ac_g_ex. Each group is first checked based on the criteria whether it
205 * can be used for allocation. ext4_mb_good_group explains how the groups are
208 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209 * get traversed linearly. That may result in subsequent allocations being not
210 * close to each other. And so, the underlying device may get filled up in a
211 * non-linear fashion. While that may not matter on non-rotational devices, for
212 * rotational devices that may result in higher seek times. "mb_linear_limit"
213 * tells mballoc how many groups mballoc should search linearly before
214 * performing consulting above data structures for more efficient lookups. For
215 * non rotational devices, this value defaults to 0 and for rotational devices
216 * this is set to MB_DEFAULT_LINEAR_LIMIT.
218 * Both the prealloc space are getting populated as above. So for the first
219 * request we will hit the buddy cache which will result in this prealloc
220 * space getting filled. The prealloc space is then later used for the
221 * subsequent request.
225 * mballoc operates on the following data:
227 * - in-core buddy (actually includes buddy and bitmap)
228 * - preallocation descriptors (PAs)
230 * there are two types of preallocations:
232 * assiged to specific inode and can be used for this inode only.
233 * it describes part of inode's space preallocated to specific
234 * physical blocks. any block from that preallocated can be used
235 * independent. the descriptor just tracks number of blocks left
236 * unused. so, before taking some block from descriptor, one must
237 * make sure corresponded logical block isn't allocated yet. this
238 * also means that freeing any block within descriptor's range
239 * must discard all preallocated blocks.
241 * assigned to specific locality group which does not translate to
242 * permanent set of inodes: inode can join and leave group. space
243 * from this type of preallocation can be used for any inode. thus
244 * it's consumed from the beginning to the end.
246 * relation between them can be expressed as:
247 * in-core buddy = on-disk bitmap + preallocation descriptors
249 * this mean blocks mballoc considers used are:
250 * - allocated blocks (persistent)
251 * - preallocated blocks (non-persistent)
253 * consistency in mballoc world means that at any time a block is either
254 * free or used in ALL structures. notice: "any time" should not be read
255 * literally -- time is discrete and delimited by locks.
257 * to keep it simple, we don't use block numbers, instead we count number of
258 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
260 * all operations can be expressed as:
261 * - init buddy: buddy = on-disk + PAs
262 * - new PA: buddy += N; PA = N
263 * - use inode PA: on-disk += N; PA -= N
264 * - discard inode PA buddy -= on-disk - PA; PA = 0
265 * - use locality group PA on-disk += N; PA -= N
266 * - discard locality group PA buddy -= PA; PA = 0
267 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268 * is used in real operation because we can't know actual used
269 * bits from PA, only from on-disk bitmap
271 * if we follow this strict logic, then all operations above should be atomic.
272 * given some of them can block, we'd have to use something like semaphores
273 * killing performance on high-end SMP hardware. let's try to relax it using
274 * the following knowledge:
275 * 1) if buddy is referenced, it's already initialized
276 * 2) while block is used in buddy and the buddy is referenced,
277 * nobody can re-allocate that block
278 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279 * bit set and PA claims same block, it's OK. IOW, one can set bit in
280 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
283 * so, now we're building a concurrency table:
286 * blocks for PA are allocated in the buddy, buddy must be referenced
287 * until PA is linked to allocation group to avoid concurrent buddy init
289 * we need to make sure that either on-disk bitmap or PA has uptodate data
290 * given (3) we care that PA-=N operation doesn't interfere with init
292 * the simplest way would be to have buddy initialized by the discard
293 * - use locality group PA
294 * again PA-=N must be serialized with init
295 * - discard locality group PA
296 * the simplest way would be to have buddy initialized by the discard
299 * i_data_sem serializes them
301 * discard process must wait until PA isn't used by another process
302 * - use locality group PA
303 * some mutex should serialize them
304 * - discard locality group PA
305 * discard process must wait until PA isn't used by another process
308 * i_data_sem or another mutex should serializes them
310 * discard process must wait until PA isn't used by another process
311 * - use locality group PA
312 * nothing wrong here -- they're different PAs covering different blocks
313 * - discard locality group PA
314 * discard process must wait until PA isn't used by another process
316 * now we're ready to make few consequences:
317 * - PA is referenced and while it is no discard is possible
318 * - PA is referenced until block isn't marked in on-disk bitmap
319 * - PA changes only after on-disk bitmap
320 * - discard must not compete with init. either init is done before
321 * any discard or they're serialized somehow
322 * - buddy init as sum of on-disk bitmap and PAs is done atomically
324 * a special case when we've used PA to emptiness. no need to modify buddy
325 * in this case, but we should care about concurrent init
330 * Logic in few words:
335 * mark bits in on-disk bitmap
338 * - use preallocation:
339 * find proper PA (per-inode or group)
341 * mark bits in on-disk bitmap
347 * mark bits in on-disk bitmap
350 * - discard preallocations in group:
352 * move them onto local list
353 * load on-disk bitmap
355 * remove PA from object (inode or locality group)
356 * mark free blocks in-core
358 * - discard inode's preallocations:
365 * - bitlock on a group (group)
366 * - object (inode/locality) (object)
368 * - cr_power2_aligned lists lock (cr_power2_aligned)
369 * - cr_goal_len_fast lists lock (cr_goal_len_fast)
379 * - release consumed pa:
384 * - generate in-core bitmap:
388 * - discard all for given object (inode, locality group):
393 * - discard all for given group:
399 * - allocation path (ext4_mb_regular_allocator)
401 * cr_power2_aligned/cr_goal_len_fast
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
407 /* We create slab caches for groupinfo data structures based on the
408 * superblock block size. There will be one per mounted filesystem for
409 * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 ext4_group_t group, enum criteria cr);
426 static int ext4_try_to_trim_range(struct super_block *sb,
427 struct ext4_buddy *e4b, ext4_grpblk_t start,
428 ext4_grpblk_t max, ext4_grpblk_t minblocks);
431 * The algorithm using this percpu seq counter goes below:
432 * 1. We sample the percpu discard_pa_seq counter before trying for block
433 * allocation in ext4_mb_new_blocks().
434 * 2. We increment this percpu discard_pa_seq counter when we either allocate
435 * or free these blocks i.e. while marking those blocks as used/free in
436 * mb_mark_used()/mb_free_blocks().
437 * 3. We also increment this percpu seq counter when we successfully identify
438 * that the bb_prealloc_list is not empty and hence proceed for discarding
439 * of those PAs inside ext4_mb_discard_group_preallocations().
441 * Now to make sure that the regular fast path of block allocation is not
442 * affected, as a small optimization we only sample the percpu seq counter
443 * on that cpu. Only when the block allocation fails and when freed blocks
444 * found were 0, that is when we sample percpu seq counter for all cpus using
445 * below function ext4_get_discard_pa_seq_sum(). This happens after making
446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
454 for_each_possible_cpu(__cpu)
455 __seq += per_cpu(discard_pa_seq, __cpu);
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
461 #if BITS_PER_LONG == 64
462 *bit += ((unsigned long) addr & 7UL) << 3;
463 addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465 *bit += ((unsigned long) addr & 3UL) << 3;
466 addr = (void *) ((unsigned long) addr & ~3UL);
468 #error "how many bits you are?!"
473 static inline int mb_test_bit(int bit, void *addr)
476 * ext4_test_bit on architecture like powerpc
477 * needs unsigned long aligned address
479 addr = mb_correct_addr_and_bit(&bit, addr);
480 return ext4_test_bit(bit, addr);
483 static inline void mb_set_bit(int bit, void *addr)
485 addr = mb_correct_addr_and_bit(&bit, addr);
486 ext4_set_bit(bit, addr);
489 static inline void mb_clear_bit(int bit, void *addr)
491 addr = mb_correct_addr_and_bit(&bit, addr);
492 ext4_clear_bit(bit, addr);
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
497 addr = mb_correct_addr_and_bit(&bit, addr);
498 return ext4_test_and_clear_bit(bit, addr);
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
503 int fix = 0, ret, tmpmax;
504 addr = mb_correct_addr_and_bit(&fix, addr);
508 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
514 static inline int mb_find_next_bit(void *addr, int max, int start)
516 int fix = 0, ret, tmpmax;
517 addr = mb_correct_addr_and_bit(&fix, addr);
521 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
531 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
534 if (order > e4b->bd_blkbits + 1) {
539 /* at order 0 we see each particular block */
541 *max = 1 << (e4b->bd_blkbits + 3);
542 return e4b->bd_bitmap;
545 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 int first, int count)
556 struct super_block *sb = e4b->bd_sb;
558 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
560 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 for (i = 0; i < count; i++) {
562 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 ext4_fsblk_t blocknr;
565 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 ext4_grp_locked_error(sb, e4b->bd_group,
568 inode ? inode->i_ino : 0,
570 "freeing block already freed "
573 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
574 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
576 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
584 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
586 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 for (i = 0; i < count; i++) {
588 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
595 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
597 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 unsigned char *b1, *b2;
600 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 b2 = (unsigned char *) bitmap;
602 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 if (b1[i] != b2[i]) {
604 ext4_msg(e4b->bd_sb, KERN_ERR,
605 "corruption in group %u "
606 "at byte %u(%u): %x in copy != %x "
608 e4b->bd_group, i, i * 8, b1[i], b2[i]);
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 struct ext4_group_info *grp, ext4_group_t group)
618 struct buffer_head *bh;
620 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
624 bh = ext4_read_block_bitmap(sb, group);
625 if (IS_ERR_OR_NULL(bh)) {
626 kfree(grp->bb_bitmap);
627 grp->bb_bitmap = NULL;
631 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
637 kfree(grp->bb_bitmap);
641 static inline void mb_free_blocks_double(struct inode *inode,
642 struct ext4_buddy *e4b, int first, int count)
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 int first, int count)
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 struct ext4_group_info *grp, ext4_group_t group)
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
668 #ifdef AGGRESSIVE_CHECK
670 #define MB_CHECK_ASSERT(assert) \
674 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675 function, file, line, # assert); \
680 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 const char *function, int line)
683 struct super_block *sb = e4b->bd_sb;
684 int order = e4b->bd_blkbits + 1;
691 struct ext4_group_info *grp;
694 struct list_head *cur;
698 if (e4b->bd_info->bb_check_counter++ % 10)
702 buddy = mb_find_buddy(e4b, order, &max);
703 MB_CHECK_ASSERT(buddy);
704 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 MB_CHECK_ASSERT(buddy2);
706 MB_CHECK_ASSERT(buddy != buddy2);
707 MB_CHECK_ASSERT(max * 2 == max2);
710 for (i = 0; i < max; i++) {
712 if (mb_test_bit(i, buddy)) {
713 /* only single bit in buddy2 may be 0 */
714 if (!mb_test_bit(i << 1, buddy2)) {
716 mb_test_bit((i<<1)+1, buddy2));
721 /* both bits in buddy2 must be 1 */
722 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
725 for (j = 0; j < (1 << order); j++) {
726 k = (i * (1 << order)) + j;
728 !mb_test_bit(k, e4b->bd_bitmap));
732 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
737 buddy = mb_find_buddy(e4b, 0, &max);
738 for (i = 0; i < max; i++) {
739 if (!mb_test_bit(i, buddy)) {
740 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
748 /* check used bits only */
749 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 buddy2 = mb_find_buddy(e4b, j, &max2);
752 MB_CHECK_ASSERT(k < max2);
753 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
756 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
759 grp = ext4_get_group_info(sb, e4b->bd_group);
762 list_for_each(cur, &grp->bb_prealloc_list) {
763 ext4_group_t groupnr;
764 struct ext4_prealloc_space *pa;
765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 for (i = 0; i < pa->pa_len; i++)
769 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
773 #undef MB_CHECK_ASSERT
774 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
775 __FILE__, __func__, __LINE__)
777 #define mb_check_buddy(e4b)
781 * Divide blocks started from @first with length @len into
782 * smaller chunks with power of 2 blocks.
783 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
784 * then increase bb_counters[] for corresponded chunk size.
786 static void ext4_mb_mark_free_simple(struct super_block *sb,
787 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
788 struct ext4_group_info *grp)
790 struct ext4_sb_info *sbi = EXT4_SB(sb);
796 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
798 border = 2 << sb->s_blocksize_bits;
801 /* find how many blocks can be covered since this position */
802 max = ffs(first | border) - 1;
804 /* find how many blocks of power 2 we need to mark */
811 /* mark multiblock chunks only */
812 grp->bb_counters[min]++;
814 mb_clear_bit(first >> min,
815 buddy + sbi->s_mb_offsets[min]);
822 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
827 * We don't bother with a special lists groups with only 1 block free
828 * extents and for completely empty groups.
830 order = fls(len) - 2;
833 if (order == MB_NUM_ORDERS(sb))
838 /* Move group to appropriate avg_fragment_size list */
840 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
842 struct ext4_sb_info *sbi = EXT4_SB(sb);
845 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
848 new_order = mb_avg_fragment_size_order(sb,
849 grp->bb_free / grp->bb_fragments);
850 if (new_order == grp->bb_avg_fragment_size_order)
853 if (grp->bb_avg_fragment_size_order != -1) {
854 write_lock(&sbi->s_mb_avg_fragment_size_locks[
855 grp->bb_avg_fragment_size_order]);
856 list_del(&grp->bb_avg_fragment_size_node);
857 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
858 grp->bb_avg_fragment_size_order]);
860 grp->bb_avg_fragment_size_order = new_order;
861 write_lock(&sbi->s_mb_avg_fragment_size_locks[
862 grp->bb_avg_fragment_size_order]);
863 list_add_tail(&grp->bb_avg_fragment_size_node,
864 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
865 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
866 grp->bb_avg_fragment_size_order]);
870 * Choose next group by traversing largest_free_order lists. Updates *new_cr if
871 * cr level needs an update.
873 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
874 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
876 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
877 struct ext4_group_info *iter;
880 if (ac->ac_status == AC_STATUS_FOUND)
883 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
884 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
886 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
887 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
890 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
891 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
894 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
895 bb_largest_free_order_node) {
897 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
898 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
899 *group = iter->bb_group;
900 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
901 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
905 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
908 /* Increment cr and search again if no group is found */
909 *new_cr = CR_GOAL_LEN_FAST;
913 * Find a suitable group of given order from the average fragments list.
915 static struct ext4_group_info *
916 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
918 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
919 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
920 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
921 struct ext4_group_info *grp = NULL, *iter;
922 enum criteria cr = ac->ac_criteria;
924 if (list_empty(frag_list))
926 read_lock(frag_list_lock);
927 if (list_empty(frag_list)) {
928 read_unlock(frag_list_lock);
931 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
933 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
934 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
939 read_unlock(frag_list_lock);
944 * Choose next group by traversing average fragment size list of suitable
945 * order. Updates *new_cr if cr level needs an update.
947 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
948 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
950 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
951 struct ext4_group_info *grp = NULL;
954 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
956 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
959 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
960 i < MB_NUM_ORDERS(ac->ac_sb); i++) {
961 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
963 *group = grp->bb_group;
964 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
970 * CR_BEST_AVAIL_LEN works based on the concept that we have
971 * a larger normalized goal len request which can be trimmed to
972 * a smaller goal len such that it can still satisfy original
973 * request len. However, allocation request for non-regular
974 * files never gets normalized.
975 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
977 if (ac->ac_flags & EXT4_MB_HINT_DATA)
978 *new_cr = CR_BEST_AVAIL_LEN;
980 *new_cr = CR_GOAL_LEN_SLOW;
984 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
985 * order we have and proactively trim the goal request length to that order to
986 * find a suitable group faster.
988 * This optimizes allocation speed at the cost of slightly reduced
989 * preallocations. However, we make sure that we don't trim the request too
990 * much and fall to CR_GOAL_LEN_SLOW in that case.
992 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
993 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
995 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
996 struct ext4_group_info *grp = NULL;
997 int i, order, min_order;
998 unsigned long num_stripe_clusters = 0;
1000 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1001 if (sbi->s_mb_stats)
1002 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1006 * mb_avg_fragment_size_order() returns order in a way that makes
1007 * retrieving back the length using (1 << order) inaccurate. Hence, use
1008 * fls() instead since we need to know the actual length while modifying
1011 order = fls(ac->ac_g_ex.fe_len) - 1;
1012 min_order = order - sbi->s_mb_best_avail_max_trim_order;
1016 if (sbi->s_stripe > 0) {
1018 * We are assuming that stripe size is always a multiple of
1019 * cluster ratio otherwise __ext4_fill_super exists early.
1021 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1022 if (1 << min_order < num_stripe_clusters)
1024 * We consider 1 order less because later we round
1025 * up the goal len to num_stripe_clusters
1027 min_order = fls(num_stripe_clusters) - 1;
1030 if (1 << min_order < ac->ac_o_ex.fe_len)
1031 min_order = fls(ac->ac_o_ex.fe_len);
1033 for (i = order; i >= min_order; i--) {
1036 * Scale down goal len to make sure we find something
1037 * in the free fragments list. Basically, reduce
1040 ac->ac_g_ex.fe_len = 1 << i;
1042 if (num_stripe_clusters > 0) {
1044 * Try to round up the adjusted goal length to
1045 * stripe size (in cluster units) multiple for
1048 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1049 num_stripe_clusters);
1052 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1053 ac->ac_g_ex.fe_len);
1055 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1057 *group = grp->bb_group;
1058 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1063 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1064 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1065 *new_cr = CR_GOAL_LEN_SLOW;
1068 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1070 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1072 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1074 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1080 * Return next linear group for allocation. If linear traversal should not be
1081 * performed, this function just returns the same group
1084 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1085 ext4_group_t ngroups)
1087 if (!should_optimize_scan(ac))
1088 goto inc_and_return;
1090 if (ac->ac_groups_linear_remaining) {
1091 ac->ac_groups_linear_remaining--;
1092 goto inc_and_return;
1098 * Artificially restricted ngroups for non-extent
1099 * files makes group > ngroups possible on first loop.
1101 return group + 1 >= ngroups ? 0 : group + 1;
1105 * ext4_mb_choose_next_group: choose next group for allocation.
1107 * @ac Allocation Context
1108 * @new_cr This is an output parameter. If the there is no good group
1109 * available at current CR level, this field is updated to indicate
1110 * the new cr level that should be used.
1111 * @group This is an input / output parameter. As an input it indicates the
1112 * next group that the allocator intends to use for allocation. As
1113 * output, this field indicates the next group that should be used as
1114 * determined by the optimization functions.
1115 * @ngroups Total number of groups
1117 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1118 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1120 *new_cr = ac->ac_criteria;
1122 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1123 *group = next_linear_group(ac, *group, ngroups);
1127 if (*new_cr == CR_POWER2_ALIGNED) {
1128 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1129 } else if (*new_cr == CR_GOAL_LEN_FAST) {
1130 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1131 } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1132 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1135 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1136 * bb_free. But until that happens, we should never come here.
1143 * Cache the order of the largest free extent we have available in this block
1147 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1149 struct ext4_sb_info *sbi = EXT4_SB(sb);
1152 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1153 if (grp->bb_counters[i] > 0)
1155 /* No need to move between order lists? */
1156 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1157 i == grp->bb_largest_free_order) {
1158 grp->bb_largest_free_order = i;
1162 if (grp->bb_largest_free_order >= 0) {
1163 write_lock(&sbi->s_mb_largest_free_orders_locks[
1164 grp->bb_largest_free_order]);
1165 list_del_init(&grp->bb_largest_free_order_node);
1166 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1167 grp->bb_largest_free_order]);
1169 grp->bb_largest_free_order = i;
1170 if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1171 write_lock(&sbi->s_mb_largest_free_orders_locks[
1172 grp->bb_largest_free_order]);
1173 list_add_tail(&grp->bb_largest_free_order_node,
1174 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1175 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1176 grp->bb_largest_free_order]);
1180 static noinline_for_stack
1181 void ext4_mb_generate_buddy(struct super_block *sb,
1182 void *buddy, void *bitmap, ext4_group_t group,
1183 struct ext4_group_info *grp)
1185 struct ext4_sb_info *sbi = EXT4_SB(sb);
1186 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1187 ext4_grpblk_t i = 0;
1188 ext4_grpblk_t first;
1191 unsigned fragments = 0;
1192 unsigned long long period = get_cycles();
1194 /* initialize buddy from bitmap which is aggregation
1195 * of on-disk bitmap and preallocations */
1196 i = mb_find_next_zero_bit(bitmap, max, 0);
1197 grp->bb_first_free = i;
1201 i = mb_find_next_bit(bitmap, max, i);
1205 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1207 grp->bb_counters[0]++;
1209 i = mb_find_next_zero_bit(bitmap, max, i);
1211 grp->bb_fragments = fragments;
1213 if (free != grp->bb_free) {
1214 ext4_grp_locked_error(sb, group, 0, 0,
1215 "block bitmap and bg descriptor "
1216 "inconsistent: %u vs %u free clusters",
1217 free, grp->bb_free);
1219 * If we intend to continue, we consider group descriptor
1220 * corrupt and update bb_free using bitmap value
1222 grp->bb_free = free;
1223 ext4_mark_group_bitmap_corrupted(sb, group,
1224 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1226 mb_set_largest_free_order(sb, grp);
1227 mb_update_avg_fragment_size(sb, grp);
1229 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1231 period = get_cycles() - period;
1232 atomic_inc(&sbi->s_mb_buddies_generated);
1233 atomic64_add(period, &sbi->s_mb_generation_time);
1236 /* The buddy information is attached the buddy cache inode
1237 * for convenience. The information regarding each group
1238 * is loaded via ext4_mb_load_buddy. The information involve
1239 * block bitmap and buddy information. The information are
1240 * stored in the inode as
1243 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1246 * one block each for bitmap and buddy information.
1247 * So for each group we take up 2 blocks. A page can
1248 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
1249 * So it can have information regarding groups_per_page which
1250 * is blocks_per_page/2
1252 * Locking note: This routine takes the block group lock of all groups
1253 * for this page; do not hold this lock when calling this routine!
1256 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1258 ext4_group_t ngroups;
1259 unsigned int blocksize;
1260 int blocks_per_page;
1261 int groups_per_page;
1264 ext4_group_t first_group, group;
1266 struct super_block *sb;
1267 struct buffer_head *bhs;
1268 struct buffer_head **bh = NULL;
1269 struct inode *inode;
1272 struct ext4_group_info *grinfo;
1274 inode = page->mapping->host;
1276 ngroups = ext4_get_groups_count(sb);
1277 blocksize = i_blocksize(inode);
1278 blocks_per_page = PAGE_SIZE / blocksize;
1280 mb_debug(sb, "init page %lu\n", page->index);
1282 groups_per_page = blocks_per_page >> 1;
1283 if (groups_per_page == 0)
1284 groups_per_page = 1;
1286 /* allocate buffer_heads to read bitmaps */
1287 if (groups_per_page > 1) {
1288 i = sizeof(struct buffer_head *) * groups_per_page;
1289 bh = kzalloc(i, gfp);
1295 first_group = page->index * blocks_per_page / 2;
1297 /* read all groups the page covers into the cache */
1298 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1299 if (group >= ngroups)
1302 grinfo = ext4_get_group_info(sb, group);
1306 * If page is uptodate then we came here after online resize
1307 * which added some new uninitialized group info structs, so
1308 * we must skip all initialized uptodate buddies on the page,
1309 * which may be currently in use by an allocating task.
1311 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1315 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1316 if (IS_ERR(bh[i])) {
1317 err = PTR_ERR(bh[i]);
1321 mb_debug(sb, "read bitmap for group %u\n", group);
1324 /* wait for I/O completion */
1325 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1330 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1335 first_block = page->index * blocks_per_page;
1336 for (i = 0; i < blocks_per_page; i++) {
1337 group = (first_block + i) >> 1;
1338 if (group >= ngroups)
1341 if (!bh[group - first_group])
1342 /* skip initialized uptodate buddy */
1345 if (!buffer_verified(bh[group - first_group]))
1346 /* Skip faulty bitmaps */
1351 * data carry information regarding this
1352 * particular group in the format specified
1356 data = page_address(page) + (i * blocksize);
1357 bitmap = bh[group - first_group]->b_data;
1360 * We place the buddy block and bitmap block
1363 grinfo = ext4_get_group_info(sb, group);
1365 err = -EFSCORRUPTED;
1368 if ((first_block + i) & 1) {
1369 /* this is block of buddy */
1370 BUG_ON(incore == NULL);
1371 mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1372 group, page->index, i * blocksize);
1373 trace_ext4_mb_buddy_bitmap_load(sb, group);
1374 grinfo->bb_fragments = 0;
1375 memset(grinfo->bb_counters, 0,
1376 sizeof(*grinfo->bb_counters) *
1377 (MB_NUM_ORDERS(sb)));
1379 * incore got set to the group block bitmap below
1381 ext4_lock_group(sb, group);
1382 /* init the buddy */
1383 memset(data, 0xff, blocksize);
1384 ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1385 ext4_unlock_group(sb, group);
1388 /* this is block of bitmap */
1389 BUG_ON(incore != NULL);
1390 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1391 group, page->index, i * blocksize);
1392 trace_ext4_mb_bitmap_load(sb, group);
1394 /* see comments in ext4_mb_put_pa() */
1395 ext4_lock_group(sb, group);
1396 memcpy(data, bitmap, blocksize);
1398 /* mark all preallocated blks used in in-core bitmap */
1399 ext4_mb_generate_from_pa(sb, data, group);
1400 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1401 ext4_unlock_group(sb, group);
1403 /* set incore so that the buddy information can be
1404 * generated using this
1409 SetPageUptodate(page);
1413 for (i = 0; i < groups_per_page; i++)
1422 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1423 * on the same buddy page doesn't happen whild holding the buddy page lock.
1424 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1425 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1427 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1428 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1430 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1431 int block, pnum, poff;
1432 int blocks_per_page;
1435 e4b->bd_buddy_page = NULL;
1436 e4b->bd_bitmap_page = NULL;
1438 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1440 * the buddy cache inode stores the block bitmap
1441 * and buddy information in consecutive blocks.
1442 * So for each group we need two blocks.
1445 pnum = block / blocks_per_page;
1446 poff = block % blocks_per_page;
1447 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1450 BUG_ON(page->mapping != inode->i_mapping);
1451 e4b->bd_bitmap_page = page;
1452 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1454 if (blocks_per_page >= 2) {
1455 /* buddy and bitmap are on the same page */
1460 pnum = block / blocks_per_page;
1461 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1464 BUG_ON(page->mapping != inode->i_mapping);
1465 e4b->bd_buddy_page = page;
1469 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1471 if (e4b->bd_bitmap_page) {
1472 unlock_page(e4b->bd_bitmap_page);
1473 put_page(e4b->bd_bitmap_page);
1475 if (e4b->bd_buddy_page) {
1476 unlock_page(e4b->bd_buddy_page);
1477 put_page(e4b->bd_buddy_page);
1482 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1483 * block group lock of all groups for this page; do not hold the BG lock when
1484 * calling this routine!
1486 static noinline_for_stack
1487 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1490 struct ext4_group_info *this_grp;
1491 struct ext4_buddy e4b;
1496 mb_debug(sb, "init group %u\n", group);
1497 this_grp = ext4_get_group_info(sb, group);
1499 return -EFSCORRUPTED;
1502 * This ensures that we don't reinit the buddy cache
1503 * page which map to the group from which we are already
1504 * allocating. If we are looking at the buddy cache we would
1505 * have taken a reference using ext4_mb_load_buddy and that
1506 * would have pinned buddy page to page cache.
1507 * The call to ext4_mb_get_buddy_page_lock will mark the
1510 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1511 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1513 * somebody initialized the group
1514 * return without doing anything
1519 page = e4b.bd_bitmap_page;
1520 ret = ext4_mb_init_cache(page, NULL, gfp);
1523 if (!PageUptodate(page)) {
1528 if (e4b.bd_buddy_page == NULL) {
1530 * If both the bitmap and buddy are in
1531 * the same page we don't need to force
1537 /* init buddy cache */
1538 page = e4b.bd_buddy_page;
1539 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1542 if (!PageUptodate(page)) {
1547 ext4_mb_put_buddy_page_lock(&e4b);
1552 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1553 * block group lock of all groups for this page; do not hold the BG lock when
1554 * calling this routine!
1556 static noinline_for_stack int
1557 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1558 struct ext4_buddy *e4b, gfp_t gfp)
1560 int blocks_per_page;
1566 struct ext4_group_info *grp;
1567 struct ext4_sb_info *sbi = EXT4_SB(sb);
1568 struct inode *inode = sbi->s_buddy_cache;
1571 mb_debug(sb, "load group %u\n", group);
1573 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1574 grp = ext4_get_group_info(sb, group);
1576 return -EFSCORRUPTED;
1578 e4b->bd_blkbits = sb->s_blocksize_bits;
1581 e4b->bd_group = group;
1582 e4b->bd_buddy_page = NULL;
1583 e4b->bd_bitmap_page = NULL;
1585 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1587 * we need full data about the group
1588 * to make a good selection
1590 ret = ext4_mb_init_group(sb, group, gfp);
1596 * the buddy cache inode stores the block bitmap
1597 * and buddy information in consecutive blocks.
1598 * So for each group we need two blocks.
1601 pnum = block / blocks_per_page;
1602 poff = block % blocks_per_page;
1604 /* we could use find_or_create_page(), but it locks page
1605 * what we'd like to avoid in fast path ... */
1606 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1607 if (page == NULL || !PageUptodate(page)) {
1610 * drop the page reference and try
1611 * to get the page with lock. If we
1612 * are not uptodate that implies
1613 * somebody just created the page but
1614 * is yet to initialize the same. So
1615 * wait for it to initialize.
1618 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1620 if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1621 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1622 /* should never happen */
1627 if (!PageUptodate(page)) {
1628 ret = ext4_mb_init_cache(page, NULL, gfp);
1633 mb_cmp_bitmaps(e4b, page_address(page) +
1634 (poff * sb->s_blocksize));
1643 if (!PageUptodate(page)) {
1648 /* Pages marked accessed already */
1649 e4b->bd_bitmap_page = page;
1650 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1653 pnum = block / blocks_per_page;
1654 poff = block % blocks_per_page;
1656 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1657 if (page == NULL || !PageUptodate(page)) {
1660 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1662 if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1663 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1664 /* should never happen */
1669 if (!PageUptodate(page)) {
1670 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1684 if (!PageUptodate(page)) {
1689 /* Pages marked accessed already */
1690 e4b->bd_buddy_page = page;
1691 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1698 if (e4b->bd_bitmap_page)
1699 put_page(e4b->bd_bitmap_page);
1701 e4b->bd_buddy = NULL;
1702 e4b->bd_bitmap = NULL;
1706 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1707 struct ext4_buddy *e4b)
1709 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1712 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1714 if (e4b->bd_bitmap_page)
1715 put_page(e4b->bd_bitmap_page);
1716 if (e4b->bd_buddy_page)
1717 put_page(e4b->bd_buddy_page);
1721 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1726 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1727 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1729 while (order <= e4b->bd_blkbits + 1) {
1730 bb = mb_find_buddy(e4b, order, &max);
1731 if (!mb_test_bit(block >> order, bb)) {
1732 /* this block is part of buddy of order 'order' */
1740 static void mb_clear_bits(void *bm, int cur, int len)
1746 if ((cur & 31) == 0 && (len - cur) >= 32) {
1747 /* fast path: clear whole word at once */
1748 addr = bm + (cur >> 3);
1753 mb_clear_bit(cur, bm);
1758 /* clear bits in given range
1759 * will return first found zero bit if any, -1 otherwise
1761 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1768 if ((cur & 31) == 0 && (len - cur) >= 32) {
1769 /* fast path: clear whole word at once */
1770 addr = bm + (cur >> 3);
1771 if (*addr != (__u32)(-1) && zero_bit == -1)
1772 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1777 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1785 void mb_set_bits(void *bm, int cur, int len)
1791 if ((cur & 31) == 0 && (len - cur) >= 32) {
1792 /* fast path: set whole word at once */
1793 addr = bm + (cur >> 3);
1798 mb_set_bit(cur, bm);
1803 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1805 if (mb_test_bit(*bit + side, bitmap)) {
1806 mb_clear_bit(*bit, bitmap);
1812 mb_set_bit(*bit, bitmap);
1817 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1821 void *buddy = mb_find_buddy(e4b, order, &max);
1826 /* Bits in range [first; last] are known to be set since
1827 * corresponding blocks were allocated. Bits in range
1828 * (first; last) will stay set because they form buddies on
1829 * upper layer. We just deal with borders if they don't
1830 * align with upper layer and then go up.
1831 * Releasing entire group is all about clearing
1832 * single bit of highest order buddy.
1836 * ---------------------------------
1838 * ---------------------------------
1839 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1840 * ---------------------------------
1842 * \_____________________/
1844 * Neither [1] nor [6] is aligned to above layer.
1845 * Left neighbour [0] is free, so mark it busy,
1846 * decrease bb_counters and extend range to
1848 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1849 * mark [6] free, increase bb_counters and shrink range to
1851 * Then shift range to [0; 2], go up and do the same.
1856 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1858 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1863 buddy2 = mb_find_buddy(e4b, order, &max);
1865 mb_clear_bits(buddy, first, last - first + 1);
1866 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1875 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1876 int first, int count)
1878 int left_is_free = 0;
1879 int right_is_free = 0;
1881 int last = first + count - 1;
1882 struct super_block *sb = e4b->bd_sb;
1884 if (WARN_ON(count == 0))
1886 BUG_ON(last >= (sb->s_blocksize << 3));
1887 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1888 /* Don't bother if the block group is corrupt. */
1889 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1892 mb_check_buddy(e4b);
1893 mb_free_blocks_double(inode, e4b, first, count);
1895 this_cpu_inc(discard_pa_seq);
1896 e4b->bd_info->bb_free += count;
1897 if (first < e4b->bd_info->bb_first_free)
1898 e4b->bd_info->bb_first_free = first;
1900 /* access memory sequentially: check left neighbour,
1901 * clear range and then check right neighbour
1904 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1905 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1906 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1907 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1909 if (unlikely(block != -1)) {
1910 struct ext4_sb_info *sbi = EXT4_SB(sb);
1911 ext4_fsblk_t blocknr;
1913 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1914 blocknr += EXT4_C2B(sbi, block);
1915 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1916 ext4_grp_locked_error(sb, e4b->bd_group,
1917 inode ? inode->i_ino : 0,
1919 "freeing already freed block (bit %u); block bitmap corrupt.",
1921 ext4_mark_group_bitmap_corrupted(
1923 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1928 /* let's maintain fragments counter */
1929 if (left_is_free && right_is_free)
1930 e4b->bd_info->bb_fragments--;
1931 else if (!left_is_free && !right_is_free)
1932 e4b->bd_info->bb_fragments++;
1934 /* buddy[0] == bd_bitmap is a special case, so handle
1935 * it right away and let mb_buddy_mark_free stay free of
1936 * zero order checks.
1937 * Check if neighbours are to be coaleasced,
1938 * adjust bitmap bb_counters and borders appropriately.
1941 first += !left_is_free;
1942 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1945 last -= !right_is_free;
1946 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1950 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1953 mb_set_largest_free_order(sb, e4b->bd_info);
1954 mb_update_avg_fragment_size(sb, e4b->bd_info);
1955 mb_check_buddy(e4b);
1958 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1959 int needed, struct ext4_free_extent *ex)
1965 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1968 buddy = mb_find_buddy(e4b, 0, &max);
1969 BUG_ON(buddy == NULL);
1970 BUG_ON(block >= max);
1971 if (mb_test_bit(block, buddy)) {
1978 /* find actual order */
1979 order = mb_find_order_for_block(e4b, block);
1980 block = block >> order;
1982 ex->fe_len = 1 << order;
1983 ex->fe_start = block << order;
1984 ex->fe_group = e4b->bd_group;
1986 /* calc difference from given start */
1987 next = next - ex->fe_start;
1989 ex->fe_start += next;
1991 while (needed > ex->fe_len &&
1992 mb_find_buddy(e4b, order, &max)) {
1994 if (block + 1 >= max)
1997 next = (block + 1) * (1 << order);
1998 if (mb_test_bit(next, e4b->bd_bitmap))
2001 order = mb_find_order_for_block(e4b, next);
2003 block = next >> order;
2004 ex->fe_len += 1 << order;
2007 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2008 /* Should never happen! (but apparently sometimes does?!?) */
2010 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2011 "corruption or bug in mb_find_extent "
2012 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2013 block, order, needed, ex->fe_group, ex->fe_start,
2014 ex->fe_len, ex->fe_logical);
2022 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2028 int start = ex->fe_start;
2029 int len = ex->fe_len;
2035 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2036 BUG_ON(e4b->bd_group != ex->fe_group);
2037 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2038 mb_check_buddy(e4b);
2039 mb_mark_used_double(e4b, start, len);
2041 this_cpu_inc(discard_pa_seq);
2042 e4b->bd_info->bb_free -= len;
2043 if (e4b->bd_info->bb_first_free == start)
2044 e4b->bd_info->bb_first_free += len;
2046 /* let's maintain fragments counter */
2048 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2049 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2050 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2052 e4b->bd_info->bb_fragments++;
2053 else if (!mlen && !max)
2054 e4b->bd_info->bb_fragments--;
2056 /* let's maintain buddy itself */
2059 ord = mb_find_order_for_block(e4b, start);
2061 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2062 /* the whole chunk may be allocated at once! */
2065 buddy = mb_find_buddy(e4b, ord, &max);
2068 BUG_ON((start >> ord) >= max);
2069 mb_set_bit(start >> ord, buddy);
2070 e4b->bd_info->bb_counters[ord]--;
2077 /* store for history */
2079 ret = len | (ord << 16);
2081 /* we have to split large buddy */
2083 buddy = mb_find_buddy(e4b, ord, &max);
2084 mb_set_bit(start >> ord, buddy);
2085 e4b->bd_info->bb_counters[ord]--;
2088 cur = (start >> ord) & ~1U;
2089 buddy = mb_find_buddy(e4b, ord, &max);
2090 mb_clear_bit(cur, buddy);
2091 mb_clear_bit(cur + 1, buddy);
2092 e4b->bd_info->bb_counters[ord]++;
2093 e4b->bd_info->bb_counters[ord]++;
2096 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2098 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2099 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2100 mb_check_buddy(e4b);
2106 * Must be called under group lock!
2108 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2109 struct ext4_buddy *e4b)
2111 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2114 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2115 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2117 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2118 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2119 ret = mb_mark_used(e4b, &ac->ac_b_ex);
2121 /* preallocation can change ac_b_ex, thus we store actually
2122 * allocated blocks for history */
2123 ac->ac_f_ex = ac->ac_b_ex;
2125 ac->ac_status = AC_STATUS_FOUND;
2126 ac->ac_tail = ret & 0xffff;
2127 ac->ac_buddy = ret >> 16;
2130 * take the page reference. We want the page to be pinned
2131 * so that we don't get a ext4_mb_init_cache_call for this
2132 * group until we update the bitmap. That would mean we
2133 * double allocate blocks. The reference is dropped
2134 * in ext4_mb_release_context
2136 ac->ac_bitmap_page = e4b->bd_bitmap_page;
2137 get_page(ac->ac_bitmap_page);
2138 ac->ac_buddy_page = e4b->bd_buddy_page;
2139 get_page(ac->ac_buddy_page);
2140 /* store last allocated for subsequent stream allocation */
2141 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2142 spin_lock(&sbi->s_md_lock);
2143 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2144 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2145 spin_unlock(&sbi->s_md_lock);
2148 * As we've just preallocated more space than
2149 * user requested originally, we store allocated
2150 * space in a special descriptor.
2152 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2153 ext4_mb_new_preallocation(ac);
2157 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2158 struct ext4_buddy *e4b,
2161 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2162 struct ext4_free_extent *bex = &ac->ac_b_ex;
2163 struct ext4_free_extent *gex = &ac->ac_g_ex;
2165 if (ac->ac_status == AC_STATUS_FOUND)
2168 * We don't want to scan for a whole year
2170 if (ac->ac_found > sbi->s_mb_max_to_scan &&
2171 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2172 ac->ac_status = AC_STATUS_BREAK;
2177 * Haven't found good chunk so far, let's continue
2179 if (bex->fe_len < gex->fe_len)
2182 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2183 ext4_mb_use_best_found(ac, e4b);
2187 * The routine checks whether found extent is good enough. If it is,
2188 * then the extent gets marked used and flag is set to the context
2189 * to stop scanning. Otherwise, the extent is compared with the
2190 * previous found extent and if new one is better, then it's stored
2191 * in the context. Later, the best found extent will be used, if
2192 * mballoc can't find good enough extent.
2194 * The algorithm used is roughly as follows:
2196 * * If free extent found is exactly as big as goal, then
2197 * stop the scan and use it immediately
2199 * * If free extent found is smaller than goal, then keep retrying
2200 * upto a max of sbi->s_mb_max_to_scan times (default 200). After
2201 * that stop scanning and use whatever we have.
2203 * * If free extent found is bigger than goal, then keep retrying
2204 * upto a max of sbi->s_mb_min_to_scan times (default 10) before
2205 * stopping the scan and using the extent.
2208 * FIXME: real allocation policy is to be designed yet!
2210 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2211 struct ext4_free_extent *ex,
2212 struct ext4_buddy *e4b)
2214 struct ext4_free_extent *bex = &ac->ac_b_ex;
2215 struct ext4_free_extent *gex = &ac->ac_g_ex;
2217 BUG_ON(ex->fe_len <= 0);
2218 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2219 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2220 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2223 ac->ac_cX_found[ac->ac_criteria]++;
2226 * The special case - take what you catch first
2228 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2230 ext4_mb_use_best_found(ac, e4b);
2235 * Let's check whether the chuck is good enough
2237 if (ex->fe_len == gex->fe_len) {
2239 ext4_mb_use_best_found(ac, e4b);
2244 * If this is first found extent, just store it in the context
2246 if (bex->fe_len == 0) {
2252 * If new found extent is better, store it in the context
2254 if (bex->fe_len < gex->fe_len) {
2255 /* if the request isn't satisfied, any found extent
2256 * larger than previous best one is better */
2257 if (ex->fe_len > bex->fe_len)
2259 } else if (ex->fe_len > gex->fe_len) {
2260 /* if the request is satisfied, then we try to find
2261 * an extent that still satisfy the request, but is
2262 * smaller than previous one */
2263 if (ex->fe_len < bex->fe_len)
2267 ext4_mb_check_limits(ac, e4b, 0);
2270 static noinline_for_stack
2271 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2272 struct ext4_buddy *e4b)
2274 struct ext4_free_extent ex = ac->ac_b_ex;
2275 ext4_group_t group = ex.fe_group;
2279 BUG_ON(ex.fe_len <= 0);
2280 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2284 ext4_lock_group(ac->ac_sb, group);
2285 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2289 ext4_mb_use_best_found(ac, e4b);
2292 ext4_unlock_group(ac->ac_sb, group);
2293 ext4_mb_unload_buddy(e4b);
2296 static noinline_for_stack
2297 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2298 struct ext4_buddy *e4b)
2300 ext4_group_t group = ac->ac_g_ex.fe_group;
2303 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2304 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2305 struct ext4_free_extent ex;
2308 return -EFSCORRUPTED;
2309 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2311 if (grp->bb_free == 0)
2314 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2318 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2319 ext4_mb_unload_buddy(e4b);
2323 ext4_lock_group(ac->ac_sb, group);
2324 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2325 ac->ac_g_ex.fe_len, &ex);
2326 ex.fe_logical = 0xDEADFA11; /* debug value */
2328 if (max >= ac->ac_g_ex.fe_len &&
2329 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2332 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2333 /* use do_div to get remainder (would be 64-bit modulo) */
2334 if (do_div(start, sbi->s_stripe) == 0) {
2337 ext4_mb_use_best_found(ac, e4b);
2339 } else if (max >= ac->ac_g_ex.fe_len) {
2340 BUG_ON(ex.fe_len <= 0);
2341 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2342 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2345 ext4_mb_use_best_found(ac, e4b);
2346 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2347 /* Sometimes, caller may want to merge even small
2348 * number of blocks to an existing extent */
2349 BUG_ON(ex.fe_len <= 0);
2350 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2351 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2354 ext4_mb_use_best_found(ac, e4b);
2356 ext4_unlock_group(ac->ac_sb, group);
2357 ext4_mb_unload_buddy(e4b);
2363 * The routine scans buddy structures (not bitmap!) from given order
2364 * to max order and tries to find big enough chunk to satisfy the req
2366 static noinline_for_stack
2367 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2368 struct ext4_buddy *e4b)
2370 struct super_block *sb = ac->ac_sb;
2371 struct ext4_group_info *grp = e4b->bd_info;
2377 BUG_ON(ac->ac_2order <= 0);
2378 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2379 if (grp->bb_counters[i] == 0)
2382 buddy = mb_find_buddy(e4b, i, &max);
2383 if (WARN_RATELIMIT(buddy == NULL,
2384 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2387 k = mb_find_next_zero_bit(buddy, max, 0);
2389 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2390 "%d free clusters of order %d. But found 0",
2391 grp->bb_counters[i], i);
2392 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2394 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2398 ac->ac_cX_found[ac->ac_criteria]++;
2400 ac->ac_b_ex.fe_len = 1 << i;
2401 ac->ac_b_ex.fe_start = k << i;
2402 ac->ac_b_ex.fe_group = e4b->bd_group;
2404 ext4_mb_use_best_found(ac, e4b);
2406 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2408 if (EXT4_SB(sb)->s_mb_stats)
2409 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2416 * The routine scans the group and measures all found extents.
2417 * In order to optimize scanning, caller must pass number of
2418 * free blocks in the group, so the routine can know upper limit.
2420 static noinline_for_stack
2421 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2422 struct ext4_buddy *e4b)
2424 struct super_block *sb = ac->ac_sb;
2425 void *bitmap = e4b->bd_bitmap;
2426 struct ext4_free_extent ex;
2430 free = e4b->bd_info->bb_free;
2431 if (WARN_ON(free <= 0))
2434 i = e4b->bd_info->bb_first_free;
2436 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2437 i = mb_find_next_zero_bit(bitmap,
2438 EXT4_CLUSTERS_PER_GROUP(sb), i);
2439 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2441 * IF we have corrupt bitmap, we won't find any
2442 * free blocks even though group info says we
2445 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2446 "%d free clusters as per "
2447 "group info. But bitmap says 0",
2449 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2450 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2454 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2456 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2457 * sure that this group will have a large enough
2458 * continuous free extent, so skip over the smaller free
2461 j = mb_find_next_bit(bitmap,
2462 EXT4_CLUSTERS_PER_GROUP(sb), i);
2465 if (freelen < ac->ac_g_ex.fe_len) {
2472 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2473 if (WARN_ON(ex.fe_len <= 0))
2475 if (free < ex.fe_len) {
2476 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2477 "%d free clusters as per "
2478 "group info. But got %d blocks",
2480 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2481 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2483 * The number of free blocks differs. This mostly
2484 * indicate that the bitmap is corrupt. So exit
2485 * without claiming the space.
2489 ex.fe_logical = 0xDEADC0DE; /* debug value */
2490 ext4_mb_measure_extent(ac, &ex, e4b);
2496 ext4_mb_check_limits(ac, e4b, 1);
2500 * This is a special case for storages like raid5
2501 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2503 static noinline_for_stack
2504 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2505 struct ext4_buddy *e4b)
2507 struct super_block *sb = ac->ac_sb;
2508 struct ext4_sb_info *sbi = EXT4_SB(sb);
2509 void *bitmap = e4b->bd_bitmap;
2510 struct ext4_free_extent ex;
2511 ext4_fsblk_t first_group_block;
2513 ext4_grpblk_t i, stripe;
2516 BUG_ON(sbi->s_stripe == 0);
2518 /* find first stripe-aligned block in group */
2519 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2521 a = first_group_block + sbi->s_stripe - 1;
2522 do_div(a, sbi->s_stripe);
2523 i = (a * sbi->s_stripe) - first_group_block;
2525 stripe = EXT4_B2C(sbi, sbi->s_stripe);
2526 i = EXT4_B2C(sbi, i);
2527 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2528 if (!mb_test_bit(i, bitmap)) {
2529 max = mb_find_extent(e4b, i, stripe, &ex);
2530 if (max >= stripe) {
2532 ac->ac_cX_found[ac->ac_criteria]++;
2533 ex.fe_logical = 0xDEADF00D; /* debug value */
2535 ext4_mb_use_best_found(ac, e4b);
2544 * This is also called BEFORE we load the buddy bitmap.
2545 * Returns either 1 or 0 indicating that the group is either suitable
2546 * for the allocation or not.
2548 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2549 ext4_group_t group, enum criteria cr)
2551 ext4_grpblk_t free, fragments;
2552 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2553 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2555 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2557 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2560 free = grp->bb_free;
2564 fragments = grp->bb_fragments;
2569 case CR_POWER2_ALIGNED:
2570 BUG_ON(ac->ac_2order == 0);
2572 /* Avoid using the first bg of a flexgroup for data files */
2573 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2574 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2575 ((group % flex_size) == 0))
2578 if (free < ac->ac_g_ex.fe_len)
2581 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2584 if (grp->bb_largest_free_order < ac->ac_2order)
2588 case CR_GOAL_LEN_FAST:
2589 case CR_BEST_AVAIL_LEN:
2590 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2593 case CR_GOAL_LEN_SLOW:
2594 if (free >= ac->ac_g_ex.fe_len)
2607 * This could return negative error code if something goes wrong
2608 * during ext4_mb_init_group(). This should not be called with
2609 * ext4_lock_group() held.
2611 * Note: because we are conditionally operating with the group lock in
2612 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2613 * function using __acquire and __release. This means we need to be
2614 * super careful before messing with the error path handling via "goto
2617 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2618 ext4_group_t group, enum criteria cr)
2620 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2621 struct super_block *sb = ac->ac_sb;
2622 struct ext4_sb_info *sbi = EXT4_SB(sb);
2623 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2628 return -EFSCORRUPTED;
2629 if (sbi->s_mb_stats)
2630 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2632 ext4_lock_group(sb, group);
2633 __release(ext4_group_lock_ptr(sb, group));
2635 free = grp->bb_free;
2639 * In all criterias except CR_ANY_FREE we try to avoid groups that
2640 * can't possibly satisfy the full goal request due to insufficient
2643 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2645 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2648 __acquire(ext4_group_lock_ptr(sb, group));
2649 ext4_unlock_group(sb, group);
2652 /* We only do this if the grp has never been initialized */
2653 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2654 struct ext4_group_desc *gdp =
2655 ext4_get_group_desc(sb, group, NULL);
2659 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2660 * search to find large good chunks almost for free. If buddy
2661 * data is not ready, then this optimization makes no sense. But
2662 * we never skip the first block group in a flex_bg, since this
2663 * gets used for metadata block allocation, and we want to make
2664 * sure we locate metadata blocks in the first block group in
2665 * the flex_bg if possible.
2667 if (!ext4_mb_cr_expensive(cr) &&
2668 (!sbi->s_log_groups_per_flex ||
2669 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2670 !(ext4_has_group_desc_csum(sb) &&
2671 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2673 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2679 ext4_lock_group(sb, group);
2680 __release(ext4_group_lock_ptr(sb, group));
2682 ret = ext4_mb_good_group(ac, group, cr);
2685 __acquire(ext4_group_lock_ptr(sb, group));
2686 ext4_unlock_group(sb, group);
2692 * Start prefetching @nr block bitmaps starting at @group.
2693 * Return the next group which needs to be prefetched.
2695 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2696 unsigned int nr, int *cnt)
2698 ext4_group_t ngroups = ext4_get_groups_count(sb);
2699 struct buffer_head *bh;
2700 struct blk_plug plug;
2702 blk_start_plug(&plug);
2704 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2706 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2709 * Prefetch block groups with free blocks; but don't
2710 * bother if it is marked uninitialized on disk, since
2711 * it won't require I/O to read. Also only try to
2712 * prefetch once, so we avoid getblk() call, which can
2715 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2716 EXT4_MB_GRP_NEED_INIT(grp) &&
2717 ext4_free_group_clusters(sb, gdp) > 0 ) {
2718 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2719 if (bh && !IS_ERR(bh)) {
2720 if (!buffer_uptodate(bh) && cnt)
2725 if (++group >= ngroups)
2728 blk_finish_plug(&plug);
2733 * Prefetching reads the block bitmap into the buffer cache; but we
2734 * need to make sure that the buddy bitmap in the page cache has been
2735 * initialized. Note that ext4_mb_init_group() will block if the I/O
2736 * is not yet completed, or indeed if it was not initiated by
2737 * ext4_mb_prefetch did not start the I/O.
2739 * TODO: We should actually kick off the buddy bitmap setup in a work
2740 * queue when the buffer I/O is completed, so that we don't block
2741 * waiting for the block allocation bitmap read to finish when
2742 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2744 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2747 struct ext4_group_desc *gdp;
2748 struct ext4_group_info *grp;
2752 group = ext4_get_groups_count(sb);
2754 gdp = ext4_get_group_desc(sb, group, NULL);
2755 grp = ext4_get_group_info(sb, group);
2757 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2758 ext4_free_group_clusters(sb, gdp) > 0) {
2759 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2765 static noinline_for_stack int
2766 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2768 ext4_group_t prefetch_grp = 0, ngroups, group, i;
2769 enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2770 int err = 0, first_err = 0;
2771 unsigned int nr = 0, prefetch_ios = 0;
2772 struct ext4_sb_info *sbi;
2773 struct super_block *sb;
2774 struct ext4_buddy e4b;
2779 ngroups = ext4_get_groups_count(sb);
2780 /* non-extent files are limited to low blocks/groups */
2781 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2782 ngroups = sbi->s_blockfile_groups;
2784 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2786 /* first, try the goal */
2787 err = ext4_mb_find_by_goal(ac, &e4b);
2788 if (err || ac->ac_status == AC_STATUS_FOUND)
2791 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2795 * ac->ac_2order is set only if the fe_len is a power of 2
2796 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2797 * so that we try exact allocation using buddy.
2799 i = fls(ac->ac_g_ex.fe_len);
2802 * We search using buddy data only if the order of the request
2803 * is greater than equal to the sbi_s_mb_order2_reqs
2804 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2805 * We also support searching for power-of-two requests only for
2806 * requests upto maximum buddy size we have constructed.
2808 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2809 if (is_power_of_2(ac->ac_g_ex.fe_len))
2810 ac->ac_2order = array_index_nospec(i - 1,
2814 /* if stream allocation is enabled, use global goal */
2815 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2816 /* TBD: may be hot point */
2817 spin_lock(&sbi->s_md_lock);
2818 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2819 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2820 spin_unlock(&sbi->s_md_lock);
2824 * Let's just scan groups to find more-less suitable blocks We
2825 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2826 * aligned, in which case let's do that faster approach first.
2829 cr = CR_POWER2_ALIGNED;
2831 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2832 ac->ac_criteria = cr;
2834 * searching for the right group start
2835 * from the goal value specified
2837 group = ac->ac_g_ex.fe_group;
2838 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2839 prefetch_grp = group;
2841 for (i = 0, new_cr = cr; i < ngroups; i++,
2842 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2852 * Batch reads of the block allocation bitmaps
2853 * to get multiple READs in flight; limit
2854 * prefetching at inexpensive CR, otherwise mballoc
2855 * can spend a lot of time loading imperfect groups
2857 if ((prefetch_grp == group) &&
2858 (ext4_mb_cr_expensive(cr) ||
2859 prefetch_ios < sbi->s_mb_prefetch_limit)) {
2860 nr = sbi->s_mb_prefetch;
2861 if (ext4_has_feature_flex_bg(sb)) {
2862 nr = 1 << sbi->s_log_groups_per_flex;
2863 nr -= group & (nr - 1);
2864 nr = min(nr, sbi->s_mb_prefetch);
2866 prefetch_grp = ext4_mb_prefetch(sb, group,
2870 /* This now checks without needing the buddy page */
2871 ret = ext4_mb_good_group_nolock(ac, group, cr);
2878 err = ext4_mb_load_buddy(sb, group, &e4b);
2882 ext4_lock_group(sb, group);
2885 * We need to check again after locking the
2888 ret = ext4_mb_good_group(ac, group, cr);
2890 ext4_unlock_group(sb, group);
2891 ext4_mb_unload_buddy(&e4b);
2895 ac->ac_groups_scanned++;
2896 if (cr == CR_POWER2_ALIGNED)
2897 ext4_mb_simple_scan_group(ac, &e4b);
2898 else if ((cr == CR_GOAL_LEN_FAST ||
2899 cr == CR_BEST_AVAIL_LEN) &&
2901 !(ac->ac_g_ex.fe_len %
2902 EXT4_B2C(sbi, sbi->s_stripe)))
2903 ext4_mb_scan_aligned(ac, &e4b);
2905 ext4_mb_complex_scan_group(ac, &e4b);
2907 ext4_unlock_group(sb, group);
2908 ext4_mb_unload_buddy(&e4b);
2910 if (ac->ac_status != AC_STATUS_CONTINUE)
2913 /* Processed all groups and haven't found blocks */
2914 if (sbi->s_mb_stats && i == ngroups)
2915 atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2917 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2918 /* Reset goal length to original goal length before
2919 * falling into CR_GOAL_LEN_SLOW */
2920 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2923 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2924 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2926 * We've been searching too long. Let's try to allocate
2927 * the best chunk we've found so far
2929 ext4_mb_try_best_found(ac, &e4b);
2930 if (ac->ac_status != AC_STATUS_FOUND) {
2932 * Someone more lucky has already allocated it.
2933 * The only thing we can do is just take first
2936 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2937 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2938 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2939 ac->ac_b_ex.fe_len, lost);
2941 ac->ac_b_ex.fe_group = 0;
2942 ac->ac_b_ex.fe_start = 0;
2943 ac->ac_b_ex.fe_len = 0;
2944 ac->ac_status = AC_STATUS_CONTINUE;
2945 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2951 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2952 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2954 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2957 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2958 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2959 ac->ac_flags, cr, err);
2962 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2967 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2969 struct super_block *sb = pde_data(file_inode(seq->file));
2972 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2975 return (void *) ((unsigned long) group);
2978 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2980 struct super_block *sb = pde_data(file_inode(seq->file));
2984 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2987 return (void *) ((unsigned long) group);
2990 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2992 struct super_block *sb = pde_data(file_inode(seq->file));
2993 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2995 int err, buddy_loaded = 0;
2996 struct ext4_buddy e4b;
2997 struct ext4_group_info *grinfo;
2998 unsigned char blocksize_bits = min_t(unsigned char,
2999 sb->s_blocksize_bits,
3000 EXT4_MAX_BLOCK_LOG_SIZE);
3002 struct ext4_group_info info;
3003 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3008 seq_puts(seq, "#group: free frags first ["
3009 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
3010 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
3012 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3013 sizeof(struct ext4_group_info);
3015 grinfo = ext4_get_group_info(sb, group);
3018 /* Load the group info in memory only if not already loaded. */
3019 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3020 err = ext4_mb_load_buddy(sb, group, &e4b);
3022 seq_printf(seq, "#%-5u: I/O error\n", group);
3028 memcpy(&sg, grinfo, i);
3031 ext4_mb_unload_buddy(&e4b);
3033 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3034 sg.info.bb_fragments, sg.info.bb_first_free);
3035 for (i = 0; i <= 13; i++)
3036 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3037 sg.info.bb_counters[i] : 0);
3038 seq_puts(seq, " ]\n");
3043 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3047 const struct seq_operations ext4_mb_seq_groups_ops = {
3048 .start = ext4_mb_seq_groups_start,
3049 .next = ext4_mb_seq_groups_next,
3050 .stop = ext4_mb_seq_groups_stop,
3051 .show = ext4_mb_seq_groups_show,
3054 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3056 struct super_block *sb = seq->private;
3057 struct ext4_sb_info *sbi = EXT4_SB(sb);
3059 seq_puts(seq, "mballoc:\n");
3060 if (!sbi->s_mb_stats) {
3061 seq_puts(seq, "\tmb stats collection turned off.\n");
3064 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3067 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3068 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3070 seq_printf(seq, "\tgroups_scanned: %u\n",
3071 atomic_read(&sbi->s_bal_groups_scanned));
3073 /* CR_POWER2_ALIGNED stats */
3074 seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3075 seq_printf(seq, "\t\thits: %llu\n",
3076 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3078 seq, "\t\tgroups_considered: %llu\n",
3080 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3081 seq_printf(seq, "\t\textents_scanned: %u\n",
3082 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3083 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3084 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3085 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3086 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3088 /* CR_GOAL_LEN_FAST stats */
3089 seq_puts(seq, "\tcr_goal_fast_stats:\n");
3090 seq_printf(seq, "\t\thits: %llu\n",
3091 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3092 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3094 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3095 seq_printf(seq, "\t\textents_scanned: %u\n",
3096 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3097 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3098 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3099 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3100 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3102 /* CR_BEST_AVAIL_LEN stats */
3103 seq_puts(seq, "\tcr_best_avail_stats:\n");
3104 seq_printf(seq, "\t\thits: %llu\n",
3105 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3107 seq, "\t\tgroups_considered: %llu\n",
3109 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3110 seq_printf(seq, "\t\textents_scanned: %u\n",
3111 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3112 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3113 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3114 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3115 atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3117 /* CR_GOAL_LEN_SLOW stats */
3118 seq_puts(seq, "\tcr_goal_slow_stats:\n");
3119 seq_printf(seq, "\t\thits: %llu\n",
3120 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3121 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3123 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3124 seq_printf(seq, "\t\textents_scanned: %u\n",
3125 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3126 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3127 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3129 /* CR_ANY_FREE stats */
3130 seq_puts(seq, "\tcr_any_free_stats:\n");
3131 seq_printf(seq, "\t\thits: %llu\n",
3132 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3134 seq, "\t\tgroups_considered: %llu\n",
3135 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3136 seq_printf(seq, "\t\textents_scanned: %u\n",
3137 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3138 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3139 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3142 seq_printf(seq, "\textents_scanned: %u\n",
3143 atomic_read(&sbi->s_bal_ex_scanned));
3144 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3145 seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3146 atomic_read(&sbi->s_bal_len_goals));
3147 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3148 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3149 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3150 seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3151 atomic_read(&sbi->s_mb_buddies_generated),
3152 ext4_get_groups_count(sb));
3153 seq_printf(seq, "\tbuddies_time_used: %llu\n",
3154 atomic64_read(&sbi->s_mb_generation_time));
3155 seq_printf(seq, "\tpreallocated: %u\n",
3156 atomic_read(&sbi->s_mb_preallocated));
3157 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3161 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3162 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3164 struct super_block *sb = pde_data(file_inode(seq->file));
3165 unsigned long position;
3167 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3169 position = *pos + 1;
3170 return (void *) ((unsigned long) position);
3173 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3175 struct super_block *sb = pde_data(file_inode(seq->file));
3176 unsigned long position;
3179 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3181 position = *pos + 1;
3182 return (void *) ((unsigned long) position);
3185 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3187 struct super_block *sb = pde_data(file_inode(seq->file));
3188 struct ext4_sb_info *sbi = EXT4_SB(sb);
3189 unsigned long position = ((unsigned long) v);
3190 struct ext4_group_info *grp;
3194 if (position >= MB_NUM_ORDERS(sb)) {
3195 position -= MB_NUM_ORDERS(sb);
3197 seq_puts(seq, "avg_fragment_size_lists:\n");
3200 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3201 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3202 bb_avg_fragment_size_node)
3204 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3205 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3206 (unsigned int)position, count);
3210 if (position == 0) {
3211 seq_printf(seq, "optimize_scan: %d\n",
3212 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3213 seq_puts(seq, "max_free_order_lists:\n");
3216 read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3217 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3218 bb_largest_free_order_node)
3220 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3221 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3222 (unsigned int)position, count);
3227 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3231 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3232 .start = ext4_mb_seq_structs_summary_start,
3233 .next = ext4_mb_seq_structs_summary_next,
3234 .stop = ext4_mb_seq_structs_summary_stop,
3235 .show = ext4_mb_seq_structs_summary_show,
3238 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3240 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3241 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3248 * Allocate the top-level s_group_info array for the specified number
3251 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3253 struct ext4_sb_info *sbi = EXT4_SB(sb);
3255 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3257 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3258 EXT4_DESC_PER_BLOCK_BITS(sb);
3259 if (size <= sbi->s_group_info_size)
3262 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3263 new_groupinfo = kvzalloc(size, GFP_KERNEL);
3264 if (!new_groupinfo) {
3265 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3269 old_groupinfo = rcu_dereference(sbi->s_group_info);
3271 memcpy(new_groupinfo, old_groupinfo,
3272 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3274 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3275 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3277 ext4_kvfree_array_rcu(old_groupinfo);
3278 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3279 sbi->s_group_info_size);
3283 /* Create and initialize ext4_group_info data for the given group. */
3284 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3285 struct ext4_group_desc *desc)
3289 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3290 struct ext4_sb_info *sbi = EXT4_SB(sb);
3291 struct ext4_group_info **meta_group_info;
3292 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3295 * First check if this group is the first of a reserved block.
3296 * If it's true, we have to allocate a new table of pointers
3297 * to ext4_group_info structures
3299 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3300 metalen = sizeof(*meta_group_info) <<
3301 EXT4_DESC_PER_BLOCK_BITS(sb);
3302 meta_group_info = kmalloc(metalen, GFP_NOFS);
3303 if (meta_group_info == NULL) {
3304 ext4_msg(sb, KERN_ERR, "can't allocate mem "
3305 "for a buddy group");
3309 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3313 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3314 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3316 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3317 if (meta_group_info[i] == NULL) {
3318 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3319 goto exit_group_info;
3321 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3322 &(meta_group_info[i]->bb_state));
3325 * initialize bb_free to be able to skip
3326 * empty groups without initialization
3328 if (ext4_has_group_desc_csum(sb) &&
3329 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3330 meta_group_info[i]->bb_free =
3331 ext4_free_clusters_after_init(sb, group, desc);
3333 meta_group_info[i]->bb_free =
3334 ext4_free_group_clusters(sb, desc);
3337 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3338 init_rwsem(&meta_group_info[i]->alloc_sem);
3339 meta_group_info[i]->bb_free_root = RB_ROOT;
3340 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3341 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3342 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
3343 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */
3344 meta_group_info[i]->bb_group = group;
3346 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3350 /* If a meta_group_info table has been allocated, release it now */
3351 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3352 struct ext4_group_info ***group_info;
3355 group_info = rcu_dereference(sbi->s_group_info);
3356 kfree(group_info[idx]);
3357 group_info[idx] = NULL;
3361 } /* ext4_mb_add_groupinfo */
3363 static int ext4_mb_init_backend(struct super_block *sb)
3365 ext4_group_t ngroups = ext4_get_groups_count(sb);
3367 struct ext4_sb_info *sbi = EXT4_SB(sb);
3369 struct ext4_group_desc *desc;
3370 struct ext4_group_info ***group_info;
3371 struct kmem_cache *cachep;
3373 err = ext4_mb_alloc_groupinfo(sb, ngroups);
3377 sbi->s_buddy_cache = new_inode(sb);
3378 if (sbi->s_buddy_cache == NULL) {
3379 ext4_msg(sb, KERN_ERR, "can't get new inode");
3382 /* To avoid potentially colliding with an valid on-disk inode number,
3383 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
3384 * not in the inode hash, so it should never be found by iget(), but
3385 * this will avoid confusion if it ever shows up during debugging. */
3386 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3387 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3388 for (i = 0; i < ngroups; i++) {
3390 desc = ext4_get_group_desc(sb, i, NULL);
3392 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3395 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3399 if (ext4_has_feature_flex_bg(sb)) {
3400 /* a single flex group is supposed to be read by a single IO.
3401 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3402 * unsigned integer, so the maximum shift is 32.
3404 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3405 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3408 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3409 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3410 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3412 sbi->s_mb_prefetch = 32;
3414 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3415 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3416 /* now many real IOs to prefetch within a single allocation at cr=0
3417 * given cr=0 is an CPU-related optimization we shouldn't try to
3418 * load too many groups, at some point we should start to use what
3419 * we've got in memory.
3420 * with an average random access time 5ms, it'd take a second to get
3421 * 200 groups (* N with flex_bg), so let's make this limit 4
3423 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3424 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3425 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3430 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3432 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3435 kmem_cache_free(cachep, grp);
3437 i = sbi->s_group_info_size;
3439 group_info = rcu_dereference(sbi->s_group_info);
3441 kfree(group_info[i]);
3443 iput(sbi->s_buddy_cache);
3446 kvfree(rcu_dereference(sbi->s_group_info));
3451 static void ext4_groupinfo_destroy_slabs(void)
3455 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3456 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3457 ext4_groupinfo_caches[i] = NULL;
3461 static int ext4_groupinfo_create_slab(size_t size)
3463 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3465 int blocksize_bits = order_base_2(size);
3466 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3467 struct kmem_cache *cachep;
3469 if (cache_index >= NR_GRPINFO_CACHES)
3472 if (unlikely(cache_index < 0))
3475 mutex_lock(&ext4_grpinfo_slab_create_mutex);
3476 if (ext4_groupinfo_caches[cache_index]) {
3477 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3478 return 0; /* Already created */
3481 slab_size = offsetof(struct ext4_group_info,
3482 bb_counters[blocksize_bits + 2]);
3484 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3485 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3488 ext4_groupinfo_caches[cache_index] = cachep;
3490 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3493 "EXT4-fs: no memory for groupinfo slab cache\n");
3500 static void ext4_discard_work(struct work_struct *work)
3502 struct ext4_sb_info *sbi = container_of(work,
3503 struct ext4_sb_info, s_discard_work);
3504 struct super_block *sb = sbi->s_sb;
3505 struct ext4_free_data *fd, *nfd;
3506 struct ext4_buddy e4b;
3507 LIST_HEAD(discard_list);
3508 ext4_group_t grp, load_grp;
3511 spin_lock(&sbi->s_md_lock);
3512 list_splice_init(&sbi->s_discard_list, &discard_list);
3513 spin_unlock(&sbi->s_md_lock);
3515 load_grp = UINT_MAX;
3516 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3518 * If filesystem is umounting or no memory or suffering
3519 * from no space, give up the discard
3521 if ((sb->s_flags & SB_ACTIVE) && !err &&
3522 !atomic_read(&sbi->s_retry_alloc_pending)) {
3523 grp = fd->efd_group;
3524 if (grp != load_grp) {
3525 if (load_grp != UINT_MAX)
3526 ext4_mb_unload_buddy(&e4b);
3528 err = ext4_mb_load_buddy(sb, grp, &e4b);
3530 kmem_cache_free(ext4_free_data_cachep, fd);
3531 load_grp = UINT_MAX;
3538 ext4_lock_group(sb, grp);
3539 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3540 fd->efd_start_cluster + fd->efd_count - 1, 1);
3541 ext4_unlock_group(sb, grp);
3543 kmem_cache_free(ext4_free_data_cachep, fd);
3546 if (load_grp != UINT_MAX)
3547 ext4_mb_unload_buddy(&e4b);
3550 int ext4_mb_init(struct super_block *sb)
3552 struct ext4_sb_info *sbi = EXT4_SB(sb);
3554 unsigned offset, offset_incr;
3558 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3560 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3561 if (sbi->s_mb_offsets == NULL) {
3566 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3567 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3568 if (sbi->s_mb_maxs == NULL) {
3573 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3577 /* order 0 is regular bitmap */
3578 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3579 sbi->s_mb_offsets[0] = 0;
3583 offset_incr = 1 << (sb->s_blocksize_bits - 1);
3584 max = sb->s_blocksize << 2;
3586 sbi->s_mb_offsets[i] = offset;
3587 sbi->s_mb_maxs[i] = max;
3588 offset += offset_incr;
3589 offset_incr = offset_incr >> 1;
3592 } while (i < MB_NUM_ORDERS(sb));
3594 sbi->s_mb_avg_fragment_size =
3595 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3597 if (!sbi->s_mb_avg_fragment_size) {
3601 sbi->s_mb_avg_fragment_size_locks =
3602 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3604 if (!sbi->s_mb_avg_fragment_size_locks) {
3608 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3609 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3610 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3612 sbi->s_mb_largest_free_orders =
3613 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3615 if (!sbi->s_mb_largest_free_orders) {
3619 sbi->s_mb_largest_free_orders_locks =
3620 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3622 if (!sbi->s_mb_largest_free_orders_locks) {
3626 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3627 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3628 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3631 spin_lock_init(&sbi->s_md_lock);
3632 sbi->s_mb_free_pending = 0;
3633 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3634 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3635 INIT_LIST_HEAD(&sbi->s_discard_list);
3636 INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3637 atomic_set(&sbi->s_retry_alloc_pending, 0);
3639 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3640 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3641 sbi->s_mb_stats = MB_DEFAULT_STATS;
3642 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3643 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3644 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3647 * The default group preallocation is 512, which for 4k block
3648 * sizes translates to 2 megabytes. However for bigalloc file
3649 * systems, this is probably too big (i.e, if the cluster size
3650 * is 1 megabyte, then group preallocation size becomes half a
3651 * gigabyte!). As a default, we will keep a two megabyte
3652 * group pralloc size for cluster sizes up to 64k, and after
3653 * that, we will force a minimum group preallocation size of
3654 * 32 clusters. This translates to 8 megs when the cluster
3655 * size is 256k, and 32 megs when the cluster size is 1 meg,
3656 * which seems reasonable as a default.
3658 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3659 sbi->s_cluster_bits, 32);
3661 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3662 * to the lowest multiple of s_stripe which is bigger than
3663 * the s_mb_group_prealloc as determined above. We want
3664 * the preallocation size to be an exact multiple of the
3665 * RAID stripe size so that preallocations don't fragment
3668 if (sbi->s_stripe > 1) {
3669 sbi->s_mb_group_prealloc = roundup(
3670 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3673 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3674 if (sbi->s_locality_groups == NULL) {
3678 for_each_possible_cpu(i) {
3679 struct ext4_locality_group *lg;
3680 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3681 mutex_init(&lg->lg_mutex);
3682 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3683 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3684 spin_lock_init(&lg->lg_prealloc_lock);
3687 if (bdev_nonrot(sb->s_bdev))
3688 sbi->s_mb_max_linear_groups = 0;
3690 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3691 /* init file for buddy data */
3692 ret = ext4_mb_init_backend(sb);
3694 goto out_free_locality_groups;
3698 out_free_locality_groups:
3699 free_percpu(sbi->s_locality_groups);
3700 sbi->s_locality_groups = NULL;
3702 kfree(sbi->s_mb_avg_fragment_size);
3703 kfree(sbi->s_mb_avg_fragment_size_locks);
3704 kfree(sbi->s_mb_largest_free_orders);
3705 kfree(sbi->s_mb_largest_free_orders_locks);
3706 kfree(sbi->s_mb_offsets);
3707 sbi->s_mb_offsets = NULL;
3708 kfree(sbi->s_mb_maxs);
3709 sbi->s_mb_maxs = NULL;
3713 /* need to called with the ext4 group lock held */
3714 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3716 struct ext4_prealloc_space *pa;
3717 struct list_head *cur, *tmp;
3720 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3721 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3722 list_del(&pa->pa_group_list);
3724 kmem_cache_free(ext4_pspace_cachep, pa);
3729 int ext4_mb_release(struct super_block *sb)
3731 ext4_group_t ngroups = ext4_get_groups_count(sb);
3733 int num_meta_group_infos;
3734 struct ext4_group_info *grinfo, ***group_info;
3735 struct ext4_sb_info *sbi = EXT4_SB(sb);
3736 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3739 if (test_opt(sb, DISCARD)) {
3741 * wait the discard work to drain all of ext4_free_data
3743 flush_work(&sbi->s_discard_work);
3744 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3747 if (sbi->s_group_info) {
3748 for (i = 0; i < ngroups; i++) {
3750 grinfo = ext4_get_group_info(sb, i);
3753 mb_group_bb_bitmap_free(grinfo);
3754 ext4_lock_group(sb, i);
3755 count = ext4_mb_cleanup_pa(grinfo);
3757 mb_debug(sb, "mballoc: %d PAs left\n",
3759 ext4_unlock_group(sb, i);
3760 kmem_cache_free(cachep, grinfo);
3762 num_meta_group_infos = (ngroups +
3763 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3764 EXT4_DESC_PER_BLOCK_BITS(sb);
3766 group_info = rcu_dereference(sbi->s_group_info);
3767 for (i = 0; i < num_meta_group_infos; i++)
3768 kfree(group_info[i]);
3772 kfree(sbi->s_mb_avg_fragment_size);
3773 kfree(sbi->s_mb_avg_fragment_size_locks);
3774 kfree(sbi->s_mb_largest_free_orders);
3775 kfree(sbi->s_mb_largest_free_orders_locks);
3776 kfree(sbi->s_mb_offsets);
3777 kfree(sbi->s_mb_maxs);
3778 iput(sbi->s_buddy_cache);
3779 if (sbi->s_mb_stats) {
3780 ext4_msg(sb, KERN_INFO,
3781 "mballoc: %u blocks %u reqs (%u success)",
3782 atomic_read(&sbi->s_bal_allocated),
3783 atomic_read(&sbi->s_bal_reqs),
3784 atomic_read(&sbi->s_bal_success));
3785 ext4_msg(sb, KERN_INFO,
3786 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3787 "%u 2^N hits, %u breaks, %u lost",
3788 atomic_read(&sbi->s_bal_ex_scanned),
3789 atomic_read(&sbi->s_bal_groups_scanned),
3790 atomic_read(&sbi->s_bal_goals),
3791 atomic_read(&sbi->s_bal_2orders),
3792 atomic_read(&sbi->s_bal_breaks),
3793 atomic_read(&sbi->s_mb_lost_chunks));
3794 ext4_msg(sb, KERN_INFO,
3795 "mballoc: %u generated and it took %llu",
3796 atomic_read(&sbi->s_mb_buddies_generated),
3797 atomic64_read(&sbi->s_mb_generation_time));
3798 ext4_msg(sb, KERN_INFO,
3799 "mballoc: %u preallocated, %u discarded",
3800 atomic_read(&sbi->s_mb_preallocated),
3801 atomic_read(&sbi->s_mb_discarded));
3804 free_percpu(sbi->s_locality_groups);
3809 static inline int ext4_issue_discard(struct super_block *sb,
3810 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3813 ext4_fsblk_t discard_block;
3815 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3816 ext4_group_first_block_no(sb, block_group));
3817 count = EXT4_C2B(EXT4_SB(sb), count);
3818 trace_ext4_discard_blocks(sb,
3819 (unsigned long long) discard_block, count);
3821 return __blkdev_issue_discard(sb->s_bdev,
3822 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3823 (sector_t)count << (sb->s_blocksize_bits - 9),
3826 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3829 static void ext4_free_data_in_buddy(struct super_block *sb,
3830 struct ext4_free_data *entry)
3832 struct ext4_buddy e4b;
3833 struct ext4_group_info *db;
3836 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3837 entry->efd_count, entry->efd_group, entry);
3839 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3840 /* we expect to find existing buddy because it's pinned */
3843 spin_lock(&EXT4_SB(sb)->s_md_lock);
3844 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3845 spin_unlock(&EXT4_SB(sb)->s_md_lock);
3848 /* there are blocks to put in buddy to make them really free */
3849 count += entry->efd_count;
3850 ext4_lock_group(sb, entry->efd_group);
3851 /* Take it out of per group rb tree */
3852 rb_erase(&entry->efd_node, &(db->bb_free_root));
3853 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3856 * Clear the trimmed flag for the group so that the next
3857 * ext4_trim_fs can trim it.
3858 * If the volume is mounted with -o discard, online discard
3859 * is supported and the free blocks will be trimmed online.
3861 if (!test_opt(sb, DISCARD))
3862 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3864 if (!db->bb_free_root.rb_node) {
3865 /* No more items in the per group rb tree
3866 * balance refcounts from ext4_mb_free_metadata()
3868 put_page(e4b.bd_buddy_page);
3869 put_page(e4b.bd_bitmap_page);
3871 ext4_unlock_group(sb, entry->efd_group);
3872 ext4_mb_unload_buddy(&e4b);
3874 mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3878 * This function is called by the jbd2 layer once the commit has finished,
3879 * so we know we can free the blocks that were released with that commit.
3881 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3883 struct ext4_sb_info *sbi = EXT4_SB(sb);
3884 struct ext4_free_data *entry, *tmp;
3885 LIST_HEAD(freed_data_list);
3886 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3889 list_replace_init(s_freed_head, &freed_data_list);
3891 list_for_each_entry(entry, &freed_data_list, efd_list)
3892 ext4_free_data_in_buddy(sb, entry);
3894 if (test_opt(sb, DISCARD)) {
3895 spin_lock(&sbi->s_md_lock);
3896 wake = list_empty(&sbi->s_discard_list);
3897 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3898 spin_unlock(&sbi->s_md_lock);
3900 queue_work(system_unbound_wq, &sbi->s_discard_work);
3902 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3903 kmem_cache_free(ext4_free_data_cachep, entry);
3907 int __init ext4_init_mballoc(void)
3909 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3910 SLAB_RECLAIM_ACCOUNT);
3911 if (ext4_pspace_cachep == NULL)
3914 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3915 SLAB_RECLAIM_ACCOUNT);
3916 if (ext4_ac_cachep == NULL)
3919 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3920 SLAB_RECLAIM_ACCOUNT);
3921 if (ext4_free_data_cachep == NULL)
3927 kmem_cache_destroy(ext4_ac_cachep);
3929 kmem_cache_destroy(ext4_pspace_cachep);
3934 void ext4_exit_mballoc(void)
3937 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3938 * before destroying the slab cache.
3941 kmem_cache_destroy(ext4_pspace_cachep);
3942 kmem_cache_destroy(ext4_ac_cachep);
3943 kmem_cache_destroy(ext4_free_data_cachep);
3944 ext4_groupinfo_destroy_slabs();
3947 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3948 #define EXT4_MB_SYNC_UPDATE 0x0002
3950 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3951 ext4_group_t group, ext4_grpblk_t blkoff,
3952 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3954 struct ext4_sb_info *sbi = EXT4_SB(sb);
3955 struct buffer_head *bitmap_bh = NULL;
3956 struct ext4_group_desc *gdp;
3957 struct buffer_head *gdp_bh;
3959 unsigned int i, already, changed = len;
3961 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3962 handle, sb, state, group, blkoff, len,
3963 flags, ret_changed);
3967 bitmap_bh = ext4_read_block_bitmap(sb, group);
3968 if (IS_ERR(bitmap_bh))
3969 return PTR_ERR(bitmap_bh);
3972 BUFFER_TRACE(bitmap_bh, "getting write access");
3973 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3980 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3985 BUFFER_TRACE(gdp_bh, "get_write_access");
3986 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
3992 ext4_lock_group(sb, group);
3993 if (ext4_has_group_desc_csum(sb) &&
3994 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3995 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3996 ext4_free_group_clusters_set(sb, gdp,
3997 ext4_free_clusters_after_init(sb, group, gdp));
4000 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4002 for (i = 0; i < len; i++)
4003 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4006 changed = len - already;
4010 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4011 ext4_free_group_clusters_set(sb, gdp,
4012 ext4_free_group_clusters(sb, gdp) - changed);
4014 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4015 ext4_free_group_clusters_set(sb, gdp,
4016 ext4_free_group_clusters(sb, gdp) + changed);
4019 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4020 ext4_group_desc_csum_set(sb, group, gdp);
4021 ext4_unlock_group(sb, group);
4023 *ret_changed = changed;
4025 if (sbi->s_log_groups_per_flex) {
4026 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4027 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4028 s_flex_groups, flex_group);
4031 atomic64_sub(changed, &fg->free_clusters);
4033 atomic64_add(changed, &fg->free_clusters);
4036 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4039 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4043 if (flags & EXT4_MB_SYNC_UPDATE) {
4044 sync_dirty_buffer(bitmap_bh);
4045 sync_dirty_buffer(gdp_bh);
4054 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4055 * Returns 0 if success or error code
4057 static noinline_for_stack int
4058 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4059 handle_t *handle, unsigned int reserv_clstrs)
4061 struct ext4_group_desc *gdp;
4062 struct ext4_sb_info *sbi;
4063 struct super_block *sb;
4067 ext4_grpblk_t changed;
4069 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4070 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4075 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4078 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4079 ext4_free_group_clusters(sb, gdp));
4081 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4082 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4083 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4084 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4085 "fs metadata", block, block+len);
4086 /* File system mounted not to panic on error
4087 * Fix the bitmap and return EFSCORRUPTED
4088 * We leak some of the blocks here.
4090 err = ext4_mb_mark_context(handle, sb, true,
4091 ac->ac_b_ex.fe_group,
4092 ac->ac_b_ex.fe_start,
4096 err = -EFSCORRUPTED;
4100 #ifdef AGGRESSIVE_CHECK
4101 flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4103 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4104 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4107 if (err && changed == 0)
4110 #ifdef AGGRESSIVE_CHECK
4111 BUG_ON(changed != ac->ac_b_ex.fe_len);
4113 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4115 * Now reduce the dirty block count also. Should not go negative
4117 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4118 /* release all the reserved blocks if non delalloc */
4119 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4126 * Idempotent helper for Ext4 fast commit replay path to set the state of
4127 * blocks in bitmaps and update counters.
4129 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4130 int len, bool state)
4132 struct ext4_sb_info *sbi = EXT4_SB(sb);
4134 ext4_grpblk_t blkoff;
4136 unsigned int clen, thisgrp_len;
4139 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4142 * Check to see if we are freeing blocks across a group
4144 * In case of flex_bg, this can happen that (block, len) may
4145 * span across more than one group. In that case we need to
4146 * get the corresponding group metadata to work with.
4147 * For this we have goto again loop.
4149 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4150 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4151 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4153 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4154 ext4_error(sb, "Marking blocks in system zone - "
4155 "Block = %llu, len = %u",
4156 block, thisgrp_len);
4160 err = ext4_mb_mark_context(NULL, sb, state,
4161 group, blkoff, clen,
4162 EXT4_MB_BITMAP_MARKED_CHECK |
4163 EXT4_MB_SYNC_UPDATE,
4168 block += thisgrp_len;
4175 * here we normalize request for locality group
4176 * Group request are normalized to s_mb_group_prealloc, which goes to
4177 * s_strip if we set the same via mount option.
4178 * s_mb_group_prealloc can be configured via
4179 * /sys/fs/ext4/<partition>/mb_group_prealloc
4181 * XXX: should we try to preallocate more than the group has now?
4183 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4185 struct super_block *sb = ac->ac_sb;
4186 struct ext4_locality_group *lg = ac->ac_lg;
4189 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4190 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4194 * This function returns the next element to look at during inode
4195 * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4196 * (ei->i_prealloc_lock)
4198 * new_start The start of the range we want to compare
4199 * cur_start The existing start that we are comparing against
4200 * node The node of the rb_tree
4202 static inline struct rb_node*
4203 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4205 if (new_start < cur_start)
4206 return node->rb_left;
4208 return node->rb_right;
4212 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4213 ext4_lblk_t start, loff_t end)
4215 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4216 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4217 struct ext4_prealloc_space *tmp_pa;
4218 ext4_lblk_t tmp_pa_start;
4220 struct rb_node *iter;
4222 read_lock(&ei->i_prealloc_lock);
4223 for (iter = ei->i_prealloc_node.rb_node; iter;
4224 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4225 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4226 pa_node.inode_node);
4227 tmp_pa_start = tmp_pa->pa_lstart;
4228 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4230 spin_lock(&tmp_pa->pa_lock);
4231 if (tmp_pa->pa_deleted == 0)
4232 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4233 spin_unlock(&tmp_pa->pa_lock);
4235 read_unlock(&ei->i_prealloc_lock);
4239 * Given an allocation context "ac" and a range "start", "end", check
4240 * and adjust boundaries if the range overlaps with any of the existing
4241 * preallocatoins stored in the corresponding inode of the allocation context.
4244 * ac allocation context
4245 * start start of the new range
4246 * end end of the new range
4249 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4250 ext4_lblk_t *start, loff_t *end)
4252 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4253 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4254 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4255 struct rb_node *iter;
4256 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4257 loff_t new_end, tmp_pa_end, left_pa_end = -1;
4263 * Adjust the normalized range so that it doesn't overlap with any
4264 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4265 * so it doesn't change underneath us.
4267 read_lock(&ei->i_prealloc_lock);
4269 /* Step 1: find any one immediate neighboring PA of the normalized range */
4270 for (iter = ei->i_prealloc_node.rb_node; iter;
4271 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4272 tmp_pa_start, iter)) {
4273 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4274 pa_node.inode_node);
4275 tmp_pa_start = tmp_pa->pa_lstart;
4276 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4278 /* PA must not overlap original request */
4279 spin_lock(&tmp_pa->pa_lock);
4280 if (tmp_pa->pa_deleted == 0)
4281 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4282 ac->ac_o_ex.fe_logical < tmp_pa_start));
4283 spin_unlock(&tmp_pa->pa_lock);
4287 * Step 2: check if the found PA is left or right neighbor and
4288 * get the other neighbor
4291 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4292 struct rb_node *tmp;
4295 tmp = rb_next(&left_pa->pa_node.inode_node);
4297 right_pa = rb_entry(tmp,
4298 struct ext4_prealloc_space,
4299 pa_node.inode_node);
4302 struct rb_node *tmp;
4305 tmp = rb_prev(&right_pa->pa_node.inode_node);
4307 left_pa = rb_entry(tmp,
4308 struct ext4_prealloc_space,
4309 pa_node.inode_node);
4314 /* Step 3: get the non deleted neighbors */
4316 for (iter = &left_pa->pa_node.inode_node;;
4317 iter = rb_prev(iter)) {
4323 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4324 pa_node.inode_node);
4326 spin_lock(&tmp_pa->pa_lock);
4327 if (tmp_pa->pa_deleted == 0) {
4328 spin_unlock(&tmp_pa->pa_lock);
4331 spin_unlock(&tmp_pa->pa_lock);
4336 for (iter = &right_pa->pa_node.inode_node;;
4337 iter = rb_next(iter)) {
4343 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4344 pa_node.inode_node);
4346 spin_lock(&tmp_pa->pa_lock);
4347 if (tmp_pa->pa_deleted == 0) {
4348 spin_unlock(&tmp_pa->pa_lock);
4351 spin_unlock(&tmp_pa->pa_lock);
4356 left_pa_end = pa_logical_end(sbi, left_pa);
4357 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4361 right_pa_start = right_pa->pa_lstart;
4362 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4365 /* Step 4: trim our normalized range to not overlap with the neighbors */
4367 if (left_pa_end > new_start)
4368 new_start = left_pa_end;
4372 if (right_pa_start < new_end)
4373 new_end = right_pa_start;
4375 read_unlock(&ei->i_prealloc_lock);
4377 /* XXX: extra loop to check we really don't overlap preallocations */
4378 ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4385 * Normalization means making request better in terms of
4386 * size and alignment
4388 static noinline_for_stack void
4389 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4390 struct ext4_allocation_request *ar)
4392 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4393 struct ext4_super_block *es = sbi->s_es;
4395 loff_t size, start_off, end;
4396 loff_t orig_size __maybe_unused;
4399 /* do normalize only data requests, metadata requests
4400 do not need preallocation */
4401 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4404 /* sometime caller may want exact blocks */
4405 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4408 /* caller may indicate that preallocation isn't
4409 * required (it's a tail, for example) */
4410 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4413 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4414 ext4_mb_normalize_group_request(ac);
4418 bsbits = ac->ac_sb->s_blocksize_bits;
4420 /* first, let's learn actual file size
4421 * given current request is allocated */
4422 size = extent_logical_end(sbi, &ac->ac_o_ex);
4423 size = size << bsbits;
4424 if (size < i_size_read(ac->ac_inode))
4425 size = i_size_read(ac->ac_inode);
4428 /* max size of free chunks */
4431 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
4432 (req <= (size) || max <= (chunk_size))
4434 /* first, try to predict filesize */
4435 /* XXX: should this table be tunable? */
4437 if (size <= 16 * 1024) {
4439 } else if (size <= 32 * 1024) {
4441 } else if (size <= 64 * 1024) {
4443 } else if (size <= 128 * 1024) {
4445 } else if (size <= 256 * 1024) {
4447 } else if (size <= 512 * 1024) {
4449 } else if (size <= 1024 * 1024) {
4451 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4452 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4453 (21 - bsbits)) << 21;
4454 size = 2 * 1024 * 1024;
4455 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4456 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4457 (22 - bsbits)) << 22;
4458 size = 4 * 1024 * 1024;
4459 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4460 (8<<20)>>bsbits, max, 8 * 1024)) {
4461 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4462 (23 - bsbits)) << 23;
4463 size = 8 * 1024 * 1024;
4465 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4466 size = (loff_t) EXT4_C2B(sbi,
4467 ac->ac_o_ex.fe_len) << bsbits;
4469 size = size >> bsbits;
4470 start = start_off >> bsbits;
4473 * For tiny groups (smaller than 8MB) the chosen allocation
4474 * alignment may be larger than group size. Make sure the
4475 * alignment does not move allocation to a different group which
4476 * makes mballoc fail assertions later.
4478 start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4479 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4481 /* don't cover already allocated blocks in selected range */
4482 if (ar->pleft && start <= ar->lleft) {
4483 size -= ar->lleft + 1 - start;
4484 start = ar->lleft + 1;
4486 if (ar->pright && start + size - 1 >= ar->lright)
4487 size -= start + size - ar->lright;
4490 * Trim allocation request for filesystems with artificially small
4493 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4494 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4498 ext4_mb_pa_adjust_overlap(ac, &start, &end);
4503 * In this function "start" and "size" are normalized for better
4504 * alignment and length such that we could preallocate more blocks.
4505 * This normalization is done such that original request of
4506 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4507 * "size" boundaries.
4508 * (Note fe_len can be relaxed since FS block allocation API does not
4509 * provide gurantee on number of contiguous blocks allocation since that
4510 * depends upon free space left, etc).
4511 * In case of inode pa, later we use the allocated blocks
4512 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4513 * range of goal/best blocks [start, size] to put it at the
4514 * ac_o_ex.fe_logical extent of this inode.
4515 * (See ext4_mb_use_inode_pa() for more details)
4517 if (start + size <= ac->ac_o_ex.fe_logical ||
4518 start > ac->ac_o_ex.fe_logical) {
4519 ext4_msg(ac->ac_sb, KERN_ERR,
4520 "start %lu, size %lu, fe_logical %lu",
4521 (unsigned long) start, (unsigned long) size,
4522 (unsigned long) ac->ac_o_ex.fe_logical);
4525 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4527 /* now prepare goal request */
4529 /* XXX: is it better to align blocks WRT to logical
4530 * placement or satisfy big request as is */
4531 ac->ac_g_ex.fe_logical = start;
4532 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4533 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4535 /* define goal start in order to merge */
4536 if (ar->pright && (ar->lright == (start + size)) &&
4537 ar->pright >= size &&
4538 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4539 /* merge to the right */
4540 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4541 &ac->ac_g_ex.fe_group,
4542 &ac->ac_g_ex.fe_start);
4543 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4545 if (ar->pleft && (ar->lleft + 1 == start) &&
4546 ar->pleft + 1 < ext4_blocks_count(es)) {
4547 /* merge to the left */
4548 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4549 &ac->ac_g_ex.fe_group,
4550 &ac->ac_g_ex.fe_start);
4551 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4554 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4558 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4560 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4562 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4563 atomic_inc(&sbi->s_bal_reqs);
4564 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4565 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4566 atomic_inc(&sbi->s_bal_success);
4568 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4569 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4570 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4573 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4574 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4575 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4576 atomic_inc(&sbi->s_bal_goals);
4577 /* did we allocate as much as normalizer originally wanted? */
4578 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4579 atomic_inc(&sbi->s_bal_len_goals);
4581 if (ac->ac_found > sbi->s_mb_max_to_scan)
4582 atomic_inc(&sbi->s_bal_breaks);
4585 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4586 trace_ext4_mballoc_alloc(ac);
4588 trace_ext4_mballoc_prealloc(ac);
4592 * Called on failure; free up any blocks from the inode PA for this
4593 * context. We don't need this for MB_GROUP_PA because we only change
4594 * pa_free in ext4_mb_release_context(), but on failure, we've already
4595 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4597 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4599 struct ext4_prealloc_space *pa = ac->ac_pa;
4600 struct ext4_buddy e4b;
4604 if (ac->ac_f_ex.fe_len == 0)
4606 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4607 if (WARN_RATELIMIT(err,
4608 "ext4: mb_load_buddy failed (%d)", err))
4610 * This should never happen since we pin the
4611 * pages in the ext4_allocation_context so
4612 * ext4_mb_load_buddy() should never fail.
4615 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4616 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4617 ac->ac_f_ex.fe_len);
4618 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4619 ext4_mb_unload_buddy(&e4b);
4622 if (pa->pa_type == MB_INODE_PA) {
4623 spin_lock(&pa->pa_lock);
4624 pa->pa_free += ac->ac_b_ex.fe_len;
4625 spin_unlock(&pa->pa_lock);
4630 * use blocks preallocated to inode
4632 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4633 struct ext4_prealloc_space *pa)
4635 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4640 /* found preallocated blocks, use them */
4641 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4642 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4643 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4644 len = EXT4_NUM_B2C(sbi, end - start);
4645 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4646 &ac->ac_b_ex.fe_start);
4647 ac->ac_b_ex.fe_len = len;
4648 ac->ac_status = AC_STATUS_FOUND;
4651 BUG_ON(start < pa->pa_pstart);
4652 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4653 BUG_ON(pa->pa_free < len);
4654 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4657 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4661 * use blocks preallocated to locality group
4663 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4664 struct ext4_prealloc_space *pa)
4666 unsigned int len = ac->ac_o_ex.fe_len;
4668 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4669 &ac->ac_b_ex.fe_group,
4670 &ac->ac_b_ex.fe_start);
4671 ac->ac_b_ex.fe_len = len;
4672 ac->ac_status = AC_STATUS_FOUND;
4675 /* we don't correct pa_pstart or pa_len here to avoid
4676 * possible race when the group is being loaded concurrently
4677 * instead we correct pa later, after blocks are marked
4678 * in on-disk bitmap -- see ext4_mb_release_context()
4679 * Other CPUs are prevented from allocating from this pa by lg_mutex
4681 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4682 pa->pa_lstart, len, pa);
4686 * Return the prealloc space that have minimal distance
4687 * from the goal block. @cpa is the prealloc
4688 * space that is having currently known minimal distance
4689 * from the goal block.
4691 static struct ext4_prealloc_space *
4692 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4693 struct ext4_prealloc_space *pa,
4694 struct ext4_prealloc_space *cpa)
4696 ext4_fsblk_t cur_distance, new_distance;
4699 atomic_inc(&pa->pa_count);
4702 cur_distance = abs(goal_block - cpa->pa_pstart);
4703 new_distance = abs(goal_block - pa->pa_pstart);
4705 if (cur_distance <= new_distance)
4708 /* drop the previous reference */
4709 atomic_dec(&cpa->pa_count);
4710 atomic_inc(&pa->pa_count);
4715 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4718 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4719 struct ext4_prealloc_space *pa)
4721 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4724 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4728 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4729 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4730 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4731 * consistent with ext4_mb_find_by_goal.
4733 start = pa->pa_pstart +
4734 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4735 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4738 if (ac->ac_g_ex.fe_len > pa->pa_len -
4739 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4746 * search goal blocks in preallocated space
4748 static noinline_for_stack bool
4749 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4751 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4753 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4754 struct ext4_locality_group *lg;
4755 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4756 struct rb_node *iter;
4757 ext4_fsblk_t goal_block;
4759 /* only data can be preallocated */
4760 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4764 * first, try per-file preallocation by searching the inode pa rbtree.
4766 * Here, we can't do a direct traversal of the tree because
4767 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4768 * deleted and that can cause direct traversal to skip some entries.
4770 read_lock(&ei->i_prealloc_lock);
4772 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4777 * Step 1: Find a pa with logical start immediately adjacent to the
4778 * original logical start. This could be on the left or right.
4780 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4782 for (iter = ei->i_prealloc_node.rb_node; iter;
4783 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4784 tmp_pa->pa_lstart, iter)) {
4785 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4786 pa_node.inode_node);
4790 * Step 2: The adjacent pa might be to the right of logical start, find
4791 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4792 * logical start is towards the left of original request's logical start
4794 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4795 struct rb_node *tmp;
4796 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4799 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4800 pa_node.inode_node);
4803 * If there is no adjacent pa to the left then finding
4804 * an overlapping pa is not possible hence stop searching
4811 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4814 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4815 * the first non deleted adjacent pa. After this step we should have a
4816 * valid tmp_pa which is guaranteed to be non deleted.
4818 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4821 * no non deleted left adjacent pa, so stop searching
4826 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4827 pa_node.inode_node);
4828 spin_lock(&tmp_pa->pa_lock);
4829 if (tmp_pa->pa_deleted == 0) {
4831 * We will keep holding the pa_lock from
4832 * this point on because we don't want group discard
4833 * to delete this pa underneath us. Since group
4834 * discard is anyways an ENOSPC operation it
4835 * should be okay for it to wait a few more cycles.
4839 spin_unlock(&tmp_pa->pa_lock);
4843 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4844 BUG_ON(tmp_pa->pa_deleted == 1);
4847 * Step 4: We now have the non deleted left adjacent pa. Only this
4848 * pa can possibly satisfy the request hence check if it overlaps
4849 * original logical start and stop searching if it doesn't.
4851 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4852 spin_unlock(&tmp_pa->pa_lock);
4856 /* non-extent files can't have physical blocks past 2^32 */
4857 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4858 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4859 EXT4_MAX_BLOCK_FILE_PHYS)) {
4861 * Since PAs don't overlap, we won't find any other PA to
4864 spin_unlock(&tmp_pa->pa_lock);
4868 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4869 atomic_inc(&tmp_pa->pa_count);
4870 ext4_mb_use_inode_pa(ac, tmp_pa);
4871 spin_unlock(&tmp_pa->pa_lock);
4872 read_unlock(&ei->i_prealloc_lock);
4876 * We found a valid overlapping pa but couldn't use it because
4877 * it had no free blocks. This should ideally never happen
4880 * 1. When a new inode pa is added to rbtree it must have
4881 * pa_free > 0 since otherwise we won't actually need
4884 * 2. An inode pa that is in the rbtree can only have it's
4885 * pa_free become zero when another thread calls:
4886 * ext4_mb_new_blocks
4887 * ext4_mb_use_preallocated
4888 * ext4_mb_use_inode_pa
4890 * 3. Further, after the above calls make pa_free == 0, we will
4891 * immediately remove it from the rbtree in:
4892 * ext4_mb_new_blocks
4893 * ext4_mb_release_context
4896 * 4. Since the pa_free becoming 0 and pa_free getting removed
4897 * from tree both happen in ext4_mb_new_blocks, which is always
4898 * called with i_data_sem held for data allocations, we can be
4899 * sure that another process will never see a pa in rbtree with
4902 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4904 spin_unlock(&tmp_pa->pa_lock);
4906 read_unlock(&ei->i_prealloc_lock);
4908 /* can we use group allocation? */
4909 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4912 /* inode may have no locality group for some reason */
4916 order = fls(ac->ac_o_ex.fe_len) - 1;
4917 if (order > PREALLOC_TB_SIZE - 1)
4918 /* The max size of hash table is PREALLOC_TB_SIZE */
4919 order = PREALLOC_TB_SIZE - 1;
4921 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4923 * search for the prealloc space that is having
4924 * minimal distance from the goal block.
4926 for (i = order; i < PREALLOC_TB_SIZE; i++) {
4928 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4930 spin_lock(&tmp_pa->pa_lock);
4931 if (tmp_pa->pa_deleted == 0 &&
4932 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4934 cpa = ext4_mb_check_group_pa(goal_block,
4937 spin_unlock(&tmp_pa->pa_lock);
4942 ext4_mb_use_group_pa(ac, cpa);
4949 * the function goes through all preallocation in this group and marks them
4950 * used in in-core bitmap. buddy must be generated from this bitmap
4951 * Need to be called with ext4 group lock held
4953 static noinline_for_stack
4954 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4957 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4958 struct ext4_prealloc_space *pa;
4959 struct list_head *cur;
4960 ext4_group_t groupnr;
4961 ext4_grpblk_t start;
4962 int preallocated = 0;
4968 /* all form of preallocation discards first load group,
4969 * so the only competing code is preallocation use.
4970 * we don't need any locking here
4971 * notice we do NOT ignore preallocations with pa_deleted
4972 * otherwise we could leave used blocks available for
4973 * allocation in buddy when concurrent ext4_mb_put_pa()
4974 * is dropping preallocation
4976 list_for_each(cur, &grp->bb_prealloc_list) {
4977 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4978 spin_lock(&pa->pa_lock);
4979 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4982 spin_unlock(&pa->pa_lock);
4983 if (unlikely(len == 0))
4985 BUG_ON(groupnr != group);
4986 mb_set_bits(bitmap, start, len);
4987 preallocated += len;
4989 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4992 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4993 struct ext4_prealloc_space *pa)
4995 struct ext4_inode_info *ei;
4997 if (pa->pa_deleted) {
4998 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4999 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5006 if (pa->pa_type == MB_INODE_PA) {
5007 ei = EXT4_I(pa->pa_inode);
5008 atomic_dec(&ei->i_prealloc_active);
5012 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5015 BUG_ON(atomic_read(&pa->pa_count));
5016 BUG_ON(pa->pa_deleted == 0);
5017 kmem_cache_free(ext4_pspace_cachep, pa);
5020 static void ext4_mb_pa_callback(struct rcu_head *head)
5022 struct ext4_prealloc_space *pa;
5024 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5025 ext4_mb_pa_free(pa);
5029 * drops a reference to preallocated space descriptor
5030 * if this was the last reference and the space is consumed
5032 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5033 struct super_block *sb, struct ext4_prealloc_space *pa)
5036 ext4_fsblk_t grp_blk;
5037 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5039 /* in this short window concurrent discard can set pa_deleted */
5040 spin_lock(&pa->pa_lock);
5041 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5042 spin_unlock(&pa->pa_lock);
5046 if (pa->pa_deleted == 1) {
5047 spin_unlock(&pa->pa_lock);
5051 ext4_mb_mark_pa_deleted(sb, pa);
5052 spin_unlock(&pa->pa_lock);
5054 grp_blk = pa->pa_pstart;
5056 * If doing group-based preallocation, pa_pstart may be in the
5057 * next group when pa is used up
5059 if (pa->pa_type == MB_GROUP_PA)
5062 grp = ext4_get_group_number(sb, grp_blk);
5067 * P1 (buddy init) P2 (regular allocation)
5068 * find block B in PA
5069 * copy on-disk bitmap to buddy
5070 * mark B in on-disk bitmap
5071 * drop PA from group
5072 * mark all PAs in buddy
5074 * thus, P1 initializes buddy with B available. to prevent this
5075 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5078 ext4_lock_group(sb, grp);
5079 list_del(&pa->pa_group_list);
5080 ext4_unlock_group(sb, grp);
5082 if (pa->pa_type == MB_INODE_PA) {
5083 write_lock(pa->pa_node_lock.inode_lock);
5084 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5085 write_unlock(pa->pa_node_lock.inode_lock);
5086 ext4_mb_pa_free(pa);
5088 spin_lock(pa->pa_node_lock.lg_lock);
5089 list_del_rcu(&pa->pa_node.lg_list);
5090 spin_unlock(pa->pa_node_lock.lg_lock);
5091 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5095 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5097 struct rb_node **iter = &root->rb_node, *parent = NULL;
5098 struct ext4_prealloc_space *iter_pa, *new_pa;
5099 ext4_lblk_t iter_start, new_start;
5102 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5103 pa_node.inode_node);
5104 new_pa = rb_entry(new, struct ext4_prealloc_space,
5105 pa_node.inode_node);
5106 iter_start = iter_pa->pa_lstart;
5107 new_start = new_pa->pa_lstart;
5110 if (new_start < iter_start)
5111 iter = &((*iter)->rb_left);
5113 iter = &((*iter)->rb_right);
5116 rb_link_node(new, parent, iter);
5117 rb_insert_color(new, root);
5121 * creates new preallocated space for given inode
5123 static noinline_for_stack void
5124 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5126 struct super_block *sb = ac->ac_sb;
5127 struct ext4_sb_info *sbi = EXT4_SB(sb);
5128 struct ext4_prealloc_space *pa;
5129 struct ext4_group_info *grp;
5130 struct ext4_inode_info *ei;
5132 /* preallocate only when found space is larger then requested */
5133 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5134 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5135 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5136 BUG_ON(ac->ac_pa == NULL);
5140 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5141 struct ext4_free_extent ex = {
5142 .fe_logical = ac->ac_g_ex.fe_logical,
5143 .fe_len = ac->ac_orig_goal_len,
5145 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5147 /* we can't allocate as much as normalizer wants.
5148 * so, found space must get proper lstart
5149 * to cover original request */
5150 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5151 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5154 * Use the below logic for adjusting best extent as it keeps
5155 * fragmentation in check while ensuring logical range of best
5156 * extent doesn't overflow out of goal extent:
5158 * 1. Check if best ex can be kept at end of goal (before
5159 * cr_best_avail trimmed it) and still cover original start
5160 * 2. Else, check if best ex can be kept at start of goal and
5161 * still cover original start
5162 * 3. Else, keep the best ex at start of original request.
5164 ex.fe_len = ac->ac_b_ex.fe_len;
5166 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5167 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5170 ex.fe_logical = ac->ac_g_ex.fe_logical;
5171 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
5174 ex.fe_logical = ac->ac_o_ex.fe_logical;
5176 ac->ac_b_ex.fe_logical = ex.fe_logical;
5178 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5179 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5180 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5183 pa->pa_lstart = ac->ac_b_ex.fe_logical;
5184 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5185 pa->pa_len = ac->ac_b_ex.fe_len;
5186 pa->pa_free = pa->pa_len;
5187 spin_lock_init(&pa->pa_lock);
5188 INIT_LIST_HEAD(&pa->pa_group_list);
5190 pa->pa_type = MB_INODE_PA;
5192 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5193 pa->pa_len, pa->pa_lstart);
5194 trace_ext4_mb_new_inode_pa(ac, pa);
5196 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5197 ext4_mb_use_inode_pa(ac, pa);
5199 ei = EXT4_I(ac->ac_inode);
5200 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5204 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5205 pa->pa_inode = ac->ac_inode;
5207 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5209 write_lock(pa->pa_node_lock.inode_lock);
5210 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5211 write_unlock(pa->pa_node_lock.inode_lock);
5212 atomic_inc(&ei->i_prealloc_active);
5216 * creates new preallocated space for locality group inodes belongs to
5218 static noinline_for_stack void
5219 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5221 struct super_block *sb = ac->ac_sb;
5222 struct ext4_locality_group *lg;
5223 struct ext4_prealloc_space *pa;
5224 struct ext4_group_info *grp;
5226 /* preallocate only when found space is larger then requested */
5227 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5228 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5229 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5230 BUG_ON(ac->ac_pa == NULL);
5234 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5235 pa->pa_lstart = pa->pa_pstart;
5236 pa->pa_len = ac->ac_b_ex.fe_len;
5237 pa->pa_free = pa->pa_len;
5238 spin_lock_init(&pa->pa_lock);
5239 INIT_LIST_HEAD(&pa->pa_node.lg_list);
5240 INIT_LIST_HEAD(&pa->pa_group_list);
5242 pa->pa_type = MB_GROUP_PA;
5244 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5245 pa->pa_len, pa->pa_lstart);
5246 trace_ext4_mb_new_group_pa(ac, pa);
5248 ext4_mb_use_group_pa(ac, pa);
5249 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5251 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5257 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5258 pa->pa_inode = NULL;
5260 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5263 * We will later add the new pa to the right bucket
5264 * after updating the pa_free in ext4_mb_release_context
5268 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5270 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5271 ext4_mb_new_group_pa(ac);
5273 ext4_mb_new_inode_pa(ac);
5277 * finds all unused blocks in on-disk bitmap, frees them in
5278 * in-core bitmap and buddy.
5279 * @pa must be unlinked from inode and group lists, so that
5280 * nobody else can find/use it.
5281 * the caller MUST hold group/inode locks.
5282 * TODO: optimize the case when there are no in-core structures yet
5284 static noinline_for_stack int
5285 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5286 struct ext4_prealloc_space *pa)
5288 struct super_block *sb = e4b->bd_sb;
5289 struct ext4_sb_info *sbi = EXT4_SB(sb);
5294 unsigned long long grp_blk_start;
5297 BUG_ON(pa->pa_deleted == 0);
5298 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5299 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5300 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5301 end = bit + pa->pa_len;
5304 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5307 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5308 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5309 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5310 (unsigned) next - bit, (unsigned) group);
5313 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5314 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5315 EXT4_C2B(sbi, bit)),
5317 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5320 if (free != pa->pa_free) {
5321 ext4_msg(e4b->bd_sb, KERN_CRIT,
5322 "pa %p: logic %lu, phys. %lu, len %d",
5323 pa, (unsigned long) pa->pa_lstart,
5324 (unsigned long) pa->pa_pstart,
5326 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5329 * pa is already deleted so we use the value obtained
5330 * from the bitmap and continue.
5333 atomic_add(free, &sbi->s_mb_discarded);
5338 static noinline_for_stack int
5339 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5340 struct ext4_prealloc_space *pa)
5342 struct super_block *sb = e4b->bd_sb;
5346 trace_ext4_mb_release_group_pa(sb, pa);
5347 BUG_ON(pa->pa_deleted == 0);
5348 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5349 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5350 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5351 e4b->bd_group, group, pa->pa_pstart);
5354 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5355 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5356 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5362 * releases all preallocations in given group
5364 * first, we need to decide discard policy:
5365 * - when do we discard
5367 * - how many do we discard
5368 * 1) how many requested
5370 static noinline_for_stack int
5371 ext4_mb_discard_group_preallocations(struct super_block *sb,
5372 ext4_group_t group, int *busy)
5374 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5375 struct buffer_head *bitmap_bh = NULL;
5376 struct ext4_prealloc_space *pa, *tmp;
5378 struct ext4_buddy e4b;
5379 struct ext4_inode_info *ei;
5385 mb_debug(sb, "discard preallocation for group %u\n", group);
5386 if (list_empty(&grp->bb_prealloc_list))
5389 bitmap_bh = ext4_read_block_bitmap(sb, group);
5390 if (IS_ERR(bitmap_bh)) {
5391 err = PTR_ERR(bitmap_bh);
5392 ext4_error_err(sb, -err,
5393 "Error %d reading block bitmap for %u",
5398 err = ext4_mb_load_buddy(sb, group, &e4b);
5400 ext4_warning(sb, "Error %d loading buddy information for %u",
5406 ext4_lock_group(sb, group);
5407 list_for_each_entry_safe(pa, tmp,
5408 &grp->bb_prealloc_list, pa_group_list) {
5409 spin_lock(&pa->pa_lock);
5410 if (atomic_read(&pa->pa_count)) {
5411 spin_unlock(&pa->pa_lock);
5415 if (pa->pa_deleted) {
5416 spin_unlock(&pa->pa_lock);
5420 /* seems this one can be freed ... */
5421 ext4_mb_mark_pa_deleted(sb, pa);
5424 this_cpu_inc(discard_pa_seq);
5426 /* we can trust pa_free ... */
5427 free += pa->pa_free;
5429 spin_unlock(&pa->pa_lock);
5431 list_del(&pa->pa_group_list);
5432 list_add(&pa->u.pa_tmp_list, &list);
5435 /* now free all selected PAs */
5436 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5438 /* remove from object (inode or locality group) */
5439 if (pa->pa_type == MB_GROUP_PA) {
5440 spin_lock(pa->pa_node_lock.lg_lock);
5441 list_del_rcu(&pa->pa_node.lg_list);
5442 spin_unlock(pa->pa_node_lock.lg_lock);
5444 write_lock(pa->pa_node_lock.inode_lock);
5445 ei = EXT4_I(pa->pa_inode);
5446 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5447 write_unlock(pa->pa_node_lock.inode_lock);
5450 list_del(&pa->u.pa_tmp_list);
5452 if (pa->pa_type == MB_GROUP_PA) {
5453 ext4_mb_release_group_pa(&e4b, pa);
5454 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5456 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5457 ext4_mb_pa_free(pa);
5461 ext4_unlock_group(sb, group);
5462 ext4_mb_unload_buddy(&e4b);
5465 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5466 free, group, grp->bb_free);
5471 * releases all non-used preallocated blocks for given inode
5473 * It's important to discard preallocations under i_data_sem
5474 * We don't want another block to be served from the prealloc
5475 * space when we are discarding the inode prealloc space.
5477 * FIXME!! Make sure it is valid at all the call sites
5479 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5481 struct ext4_inode_info *ei = EXT4_I(inode);
5482 struct super_block *sb = inode->i_sb;
5483 struct buffer_head *bitmap_bh = NULL;
5484 struct ext4_prealloc_space *pa, *tmp;
5485 ext4_group_t group = 0;
5487 struct ext4_buddy e4b;
5488 struct rb_node *iter;
5491 if (!S_ISREG(inode->i_mode)) {
5495 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5498 mb_debug(sb, "discard preallocation for inode %lu\n",
5500 trace_ext4_discard_preallocations(inode,
5501 atomic_read(&ei->i_prealloc_active), needed);
5507 /* first, collect all pa's in the inode */
5508 write_lock(&ei->i_prealloc_lock);
5509 for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5510 iter = rb_next(iter)) {
5511 pa = rb_entry(iter, struct ext4_prealloc_space,
5512 pa_node.inode_node);
5513 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5515 spin_lock(&pa->pa_lock);
5516 if (atomic_read(&pa->pa_count)) {
5517 /* this shouldn't happen often - nobody should
5518 * use preallocation while we're discarding it */
5519 spin_unlock(&pa->pa_lock);
5520 write_unlock(&ei->i_prealloc_lock);
5521 ext4_msg(sb, KERN_ERR,
5522 "uh-oh! used pa while discarding");
5524 schedule_timeout_uninterruptible(HZ);
5528 if (pa->pa_deleted == 0) {
5529 ext4_mb_mark_pa_deleted(sb, pa);
5530 spin_unlock(&pa->pa_lock);
5531 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5532 list_add(&pa->u.pa_tmp_list, &list);
5537 /* someone is deleting pa right now */
5538 spin_unlock(&pa->pa_lock);
5539 write_unlock(&ei->i_prealloc_lock);
5541 /* we have to wait here because pa_deleted
5542 * doesn't mean pa is already unlinked from
5543 * the list. as we might be called from
5544 * ->clear_inode() the inode will get freed
5545 * and concurrent thread which is unlinking
5546 * pa from inode's list may access already
5547 * freed memory, bad-bad-bad */
5549 /* XXX: if this happens too often, we can
5550 * add a flag to force wait only in case
5551 * of ->clear_inode(), but not in case of
5552 * regular truncate */
5553 schedule_timeout_uninterruptible(HZ);
5556 write_unlock(&ei->i_prealloc_lock);
5558 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5559 BUG_ON(pa->pa_type != MB_INODE_PA);
5560 group = ext4_get_group_number(sb, pa->pa_pstart);
5562 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5563 GFP_NOFS|__GFP_NOFAIL);
5565 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5570 bitmap_bh = ext4_read_block_bitmap(sb, group);
5571 if (IS_ERR(bitmap_bh)) {
5572 err = PTR_ERR(bitmap_bh);
5573 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5575 ext4_mb_unload_buddy(&e4b);
5579 ext4_lock_group(sb, group);
5580 list_del(&pa->pa_group_list);
5581 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5582 ext4_unlock_group(sb, group);
5584 ext4_mb_unload_buddy(&e4b);
5587 list_del(&pa->u.pa_tmp_list);
5588 ext4_mb_pa_free(pa);
5592 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5594 struct ext4_prealloc_space *pa;
5596 BUG_ON(ext4_pspace_cachep == NULL);
5597 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5600 atomic_set(&pa->pa_count, 1);
5605 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5607 struct ext4_prealloc_space *pa = ac->ac_pa;
5611 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5613 * current function is only called due to an error or due to
5614 * len of found blocks < len of requested blocks hence the PA has not
5615 * been added to grp->bb_prealloc_list. So we don't need to lock it
5618 ext4_mb_pa_free(pa);
5621 #ifdef CONFIG_EXT4_DEBUG
5622 static inline void ext4_mb_show_pa(struct super_block *sb)
5624 ext4_group_t i, ngroups;
5626 if (ext4_forced_shutdown(sb))
5629 ngroups = ext4_get_groups_count(sb);
5630 mb_debug(sb, "groups: ");
5631 for (i = 0; i < ngroups; i++) {
5632 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5633 struct ext4_prealloc_space *pa;
5634 ext4_grpblk_t start;
5635 struct list_head *cur;
5639 ext4_lock_group(sb, i);
5640 list_for_each(cur, &grp->bb_prealloc_list) {
5641 pa = list_entry(cur, struct ext4_prealloc_space,
5643 spin_lock(&pa->pa_lock);
5644 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5646 spin_unlock(&pa->pa_lock);
5647 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5650 ext4_unlock_group(sb, i);
5651 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5656 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5658 struct super_block *sb = ac->ac_sb;
5660 if (ext4_forced_shutdown(sb))
5663 mb_debug(sb, "Can't allocate:"
5664 " Allocation context details:");
5665 mb_debug(sb, "status %u flags 0x%x",
5666 ac->ac_status, ac->ac_flags);
5667 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5668 "goal %lu/%lu/%lu@%lu, "
5669 "best %lu/%lu/%lu@%lu cr %d",
5670 (unsigned long)ac->ac_o_ex.fe_group,
5671 (unsigned long)ac->ac_o_ex.fe_start,
5672 (unsigned long)ac->ac_o_ex.fe_len,
5673 (unsigned long)ac->ac_o_ex.fe_logical,
5674 (unsigned long)ac->ac_g_ex.fe_group,
5675 (unsigned long)ac->ac_g_ex.fe_start,
5676 (unsigned long)ac->ac_g_ex.fe_len,
5677 (unsigned long)ac->ac_g_ex.fe_logical,
5678 (unsigned long)ac->ac_b_ex.fe_group,
5679 (unsigned long)ac->ac_b_ex.fe_start,
5680 (unsigned long)ac->ac_b_ex.fe_len,
5681 (unsigned long)ac->ac_b_ex.fe_logical,
5682 (int)ac->ac_criteria);
5683 mb_debug(sb, "%u found", ac->ac_found);
5684 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5686 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5687 "group pa" : "inode pa");
5688 ext4_mb_show_pa(sb);
5691 static inline void ext4_mb_show_pa(struct super_block *sb)
5694 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5696 ext4_mb_show_pa(ac->ac_sb);
5701 * We use locality group preallocation for small size file. The size of the
5702 * file is determined by the current size or the resulting size after
5703 * allocation which ever is larger
5705 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5707 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5709 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5710 int bsbits = ac->ac_sb->s_blocksize_bits;
5712 bool inode_pa_eligible, group_pa_eligible;
5714 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5717 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5720 group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5721 inode_pa_eligible = true;
5722 size = extent_logical_end(sbi, &ac->ac_o_ex);
5723 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5726 /* No point in using inode preallocation for closed files */
5727 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5728 !inode_is_open_for_write(ac->ac_inode))
5729 inode_pa_eligible = false;
5731 size = max(size, isize);
5732 /* Don't use group allocation for large files */
5733 if (size > sbi->s_mb_stream_request)
5734 group_pa_eligible = false;
5736 if (!group_pa_eligible) {
5737 if (inode_pa_eligible)
5738 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5740 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5744 BUG_ON(ac->ac_lg != NULL);
5746 * locality group prealloc space are per cpu. The reason for having
5747 * per cpu locality group is to reduce the contention between block
5748 * request from multiple CPUs.
5750 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5752 /* we're going to use group allocation */
5753 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5755 /* serialize all allocations in the group */
5756 mutex_lock(&ac->ac_lg->lg_mutex);
5759 static noinline_for_stack void
5760 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5761 struct ext4_allocation_request *ar)
5763 struct super_block *sb = ar->inode->i_sb;
5764 struct ext4_sb_info *sbi = EXT4_SB(sb);
5765 struct ext4_super_block *es = sbi->s_es;
5769 ext4_grpblk_t block;
5771 /* we can't allocate > group size */
5774 /* just a dirty hack to filter too big requests */
5775 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5776 len = EXT4_CLUSTERS_PER_GROUP(sb);
5778 /* start searching from the goal */
5780 if (goal < le32_to_cpu(es->s_first_data_block) ||
5781 goal >= ext4_blocks_count(es))
5782 goal = le32_to_cpu(es->s_first_data_block);
5783 ext4_get_group_no_and_offset(sb, goal, &group, &block);
5785 /* set up allocation goals */
5786 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5787 ac->ac_status = AC_STATUS_CONTINUE;
5789 ac->ac_inode = ar->inode;
5790 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5791 ac->ac_o_ex.fe_group = group;
5792 ac->ac_o_ex.fe_start = block;
5793 ac->ac_o_ex.fe_len = len;
5794 ac->ac_g_ex = ac->ac_o_ex;
5795 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5796 ac->ac_flags = ar->flags;
5798 /* we have to define context: we'll work with a file or
5799 * locality group. this is a policy, actually */
5800 ext4_mb_group_or_file(ac);
5802 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5803 "left: %u/%u, right %u/%u to %swritable\n",
5804 (unsigned) ar->len, (unsigned) ar->logical,
5805 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5806 (unsigned) ar->lleft, (unsigned) ar->pleft,
5807 (unsigned) ar->lright, (unsigned) ar->pright,
5808 inode_is_open_for_write(ar->inode) ? "" : "non-");
5811 static noinline_for_stack void
5812 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5813 struct ext4_locality_group *lg,
5814 int order, int total_entries)
5816 ext4_group_t group = 0;
5817 struct ext4_buddy e4b;
5818 LIST_HEAD(discard_list);
5819 struct ext4_prealloc_space *pa, *tmp;
5821 mb_debug(sb, "discard locality group preallocation\n");
5823 spin_lock(&lg->lg_prealloc_lock);
5824 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5826 lockdep_is_held(&lg->lg_prealloc_lock)) {
5827 spin_lock(&pa->pa_lock);
5828 if (atomic_read(&pa->pa_count)) {
5830 * This is the pa that we just used
5831 * for block allocation. So don't
5834 spin_unlock(&pa->pa_lock);
5837 if (pa->pa_deleted) {
5838 spin_unlock(&pa->pa_lock);
5841 /* only lg prealloc space */
5842 BUG_ON(pa->pa_type != MB_GROUP_PA);
5844 /* seems this one can be freed ... */
5845 ext4_mb_mark_pa_deleted(sb, pa);
5846 spin_unlock(&pa->pa_lock);
5848 list_del_rcu(&pa->pa_node.lg_list);
5849 list_add(&pa->u.pa_tmp_list, &discard_list);
5852 if (total_entries <= 5) {
5854 * we want to keep only 5 entries
5855 * allowing it to grow to 8. This
5856 * mak sure we don't call discard
5857 * soon for this list.
5862 spin_unlock(&lg->lg_prealloc_lock);
5864 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5867 group = ext4_get_group_number(sb, pa->pa_pstart);
5868 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5869 GFP_NOFS|__GFP_NOFAIL);
5871 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5875 ext4_lock_group(sb, group);
5876 list_del(&pa->pa_group_list);
5877 ext4_mb_release_group_pa(&e4b, pa);
5878 ext4_unlock_group(sb, group);
5880 ext4_mb_unload_buddy(&e4b);
5881 list_del(&pa->u.pa_tmp_list);
5882 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5887 * We have incremented pa_count. So it cannot be freed at this
5888 * point. Also we hold lg_mutex. So no parallel allocation is
5889 * possible from this lg. That means pa_free cannot be updated.
5891 * A parallel ext4_mb_discard_group_preallocations is possible.
5892 * which can cause the lg_prealloc_list to be updated.
5895 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5897 int order, added = 0, lg_prealloc_count = 1;
5898 struct super_block *sb = ac->ac_sb;
5899 struct ext4_locality_group *lg = ac->ac_lg;
5900 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5902 order = fls(pa->pa_free) - 1;
5903 if (order > PREALLOC_TB_SIZE - 1)
5904 /* The max size of hash table is PREALLOC_TB_SIZE */
5905 order = PREALLOC_TB_SIZE - 1;
5906 /* Add the prealloc space to lg */
5907 spin_lock(&lg->lg_prealloc_lock);
5908 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5910 lockdep_is_held(&lg->lg_prealloc_lock)) {
5911 spin_lock(&tmp_pa->pa_lock);
5912 if (tmp_pa->pa_deleted) {
5913 spin_unlock(&tmp_pa->pa_lock);
5916 if (!added && pa->pa_free < tmp_pa->pa_free) {
5917 /* Add to the tail of the previous entry */
5918 list_add_tail_rcu(&pa->pa_node.lg_list,
5919 &tmp_pa->pa_node.lg_list);
5922 * we want to count the total
5923 * number of entries in the list
5926 spin_unlock(&tmp_pa->pa_lock);
5927 lg_prealloc_count++;
5930 list_add_tail_rcu(&pa->pa_node.lg_list,
5931 &lg->lg_prealloc_list[order]);
5932 spin_unlock(&lg->lg_prealloc_lock);
5934 /* Now trim the list to be not more than 8 elements */
5935 if (lg_prealloc_count > 8)
5936 ext4_mb_discard_lg_preallocations(sb, lg,
5937 order, lg_prealloc_count);
5941 * release all resource we used in allocation
5943 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5945 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5946 struct ext4_prealloc_space *pa = ac->ac_pa;
5948 if (pa->pa_type == MB_GROUP_PA) {
5949 /* see comment in ext4_mb_use_group_pa() */
5950 spin_lock(&pa->pa_lock);
5951 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5952 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5953 pa->pa_free -= ac->ac_b_ex.fe_len;
5954 pa->pa_len -= ac->ac_b_ex.fe_len;
5955 spin_unlock(&pa->pa_lock);
5958 * We want to add the pa to the right bucket.
5959 * Remove it from the list and while adding
5960 * make sure the list to which we are adding
5963 if (likely(pa->pa_free)) {
5964 spin_lock(pa->pa_node_lock.lg_lock);
5965 list_del_rcu(&pa->pa_node.lg_list);
5966 spin_unlock(pa->pa_node_lock.lg_lock);
5967 ext4_mb_add_n_trim(ac);
5971 ext4_mb_put_pa(ac, ac->ac_sb, pa);
5973 if (ac->ac_bitmap_page)
5974 put_page(ac->ac_bitmap_page);
5975 if (ac->ac_buddy_page)
5976 put_page(ac->ac_buddy_page);
5977 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5978 mutex_unlock(&ac->ac_lg->lg_mutex);
5979 ext4_mb_collect_stats(ac);
5983 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5985 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5987 int freed = 0, busy = 0;
5990 trace_ext4_mb_discard_preallocations(sb, needed);
5993 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5995 for (i = 0; i < ngroups && needed > 0; i++) {
5996 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6002 if (needed > 0 && busy && ++retry < 3) {
6010 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6011 struct ext4_allocation_context *ac, u64 *seq)
6017 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6022 seq_retry = ext4_get_discard_pa_seq_sum();
6023 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6024 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6030 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6035 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6036 * linearly starting at the goal block and also excludes the blocks which
6037 * are going to be in use after fast commit replay.
6040 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6042 struct buffer_head *bitmap_bh;
6043 struct super_block *sb = ar->inode->i_sb;
6044 struct ext4_sb_info *sbi = EXT4_SB(sb);
6045 ext4_group_t group, nr;
6046 ext4_grpblk_t blkoff;
6047 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6048 ext4_grpblk_t i = 0;
6049 ext4_fsblk_t goal, block;
6050 struct ext4_super_block *es = sbi->s_es;
6053 if (goal < le32_to_cpu(es->s_first_data_block) ||
6054 goal >= ext4_blocks_count(es))
6055 goal = le32_to_cpu(es->s_first_data_block);
6058 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6059 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6060 bitmap_bh = ext4_read_block_bitmap(sb, group);
6061 if (IS_ERR(bitmap_bh)) {
6062 *errp = PTR_ERR(bitmap_bh);
6063 pr_warn("Failed to read block bitmap\n");
6068 i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6072 if (ext4_fc_replay_check_excluded(sb,
6073 ext4_group_first_block_no(sb, group) +
6074 EXT4_C2B(sbi, i))) {
6083 if (++group >= ext4_get_groups_count(sb))
6094 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6095 ext4_mb_mark_bb(sb, block, 1, true);
6102 * Main entry point into mballoc to allocate blocks
6103 * it tries to use preallocation first, then falls back
6104 * to usual allocation
6106 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6107 struct ext4_allocation_request *ar, int *errp)
6109 struct ext4_allocation_context *ac = NULL;
6110 struct ext4_sb_info *sbi;
6111 struct super_block *sb;
6112 ext4_fsblk_t block = 0;
6113 unsigned int inquota = 0;
6114 unsigned int reserv_clstrs = 0;
6119 sb = ar->inode->i_sb;
6122 trace_ext4_request_blocks(ar);
6123 if (sbi->s_mount_state & EXT4_FC_REPLAY)
6124 return ext4_mb_new_blocks_simple(ar, errp);
6126 /* Allow to use superuser reservation for quota file */
6127 if (ext4_is_quota_file(ar->inode))
6128 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6130 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6131 /* Without delayed allocation we need to verify
6132 * there is enough free blocks to do block allocation
6133 * and verify allocation doesn't exceed the quota limits.
6136 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6138 /* let others to free the space */
6140 ar->len = ar->len >> 1;
6143 ext4_mb_show_pa(sb);
6147 reserv_clstrs = ar->len;
6148 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6149 dquot_alloc_block_nofail(ar->inode,
6150 EXT4_C2B(sbi, ar->len));
6153 dquot_alloc_block(ar->inode,
6154 EXT4_C2B(sbi, ar->len))) {
6156 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6167 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6174 ext4_mb_initialize_context(ac, ar);
6176 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6177 seq = this_cpu_read(discard_pa_seq);
6178 if (!ext4_mb_use_preallocated(ac)) {
6179 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6180 ext4_mb_normalize_request(ac, ar);
6182 *errp = ext4_mb_pa_alloc(ac);
6186 /* allocate space in core */
6187 *errp = ext4_mb_regular_allocator(ac);
6189 * pa allocated above is added to grp->bb_prealloc_list only
6190 * when we were able to allocate some block i.e. when
6191 * ac->ac_status == AC_STATUS_FOUND.
6192 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6193 * So we have to free this pa here itself.
6196 ext4_mb_pa_put_free(ac);
6197 ext4_discard_allocated_blocks(ac);
6200 if (ac->ac_status == AC_STATUS_FOUND &&
6201 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6202 ext4_mb_pa_put_free(ac);
6204 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6205 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6207 ext4_discard_allocated_blocks(ac);
6210 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6211 ar->len = ac->ac_b_ex.fe_len;
6214 if (++retries < 3 &&
6215 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6218 * If block allocation fails then the pa allocated above
6219 * needs to be freed here itself.
6221 ext4_mb_pa_put_free(ac);
6227 ac->ac_b_ex.fe_len = 0;
6229 ext4_mb_show_ac(ac);
6231 ext4_mb_release_context(ac);
6232 kmem_cache_free(ext4_ac_cachep, ac);
6234 if (inquota && ar->len < inquota)
6235 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6237 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6238 /* release all the reserved blocks if non delalloc */
6239 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6243 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6249 * We can merge two free data extents only if the physical blocks
6250 * are contiguous, AND the extents were freed by the same transaction,
6251 * AND the blocks are associated with the same group.
6253 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6254 struct ext4_free_data *entry,
6255 struct ext4_free_data *new_entry,
6256 struct rb_root *entry_rb_root)
6258 if ((entry->efd_tid != new_entry->efd_tid) ||
6259 (entry->efd_group != new_entry->efd_group))
6261 if (entry->efd_start_cluster + entry->efd_count ==
6262 new_entry->efd_start_cluster) {
6263 new_entry->efd_start_cluster = entry->efd_start_cluster;
6264 new_entry->efd_count += entry->efd_count;
6265 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6266 entry->efd_start_cluster) {
6267 new_entry->efd_count += entry->efd_count;
6270 spin_lock(&sbi->s_md_lock);
6271 list_del(&entry->efd_list);
6272 spin_unlock(&sbi->s_md_lock);
6273 rb_erase(&entry->efd_node, entry_rb_root);
6274 kmem_cache_free(ext4_free_data_cachep, entry);
6277 static noinline_for_stack void
6278 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6279 struct ext4_free_data *new_entry)
6281 ext4_group_t group = e4b->bd_group;
6282 ext4_grpblk_t cluster;
6283 ext4_grpblk_t clusters = new_entry->efd_count;
6284 struct ext4_free_data *entry;
6285 struct ext4_group_info *db = e4b->bd_info;
6286 struct super_block *sb = e4b->bd_sb;
6287 struct ext4_sb_info *sbi = EXT4_SB(sb);
6288 struct rb_node **n = &db->bb_free_root.rb_node, *node;
6289 struct rb_node *parent = NULL, *new_node;
6291 BUG_ON(!ext4_handle_valid(handle));
6292 BUG_ON(e4b->bd_bitmap_page == NULL);
6293 BUG_ON(e4b->bd_buddy_page == NULL);
6295 new_node = &new_entry->efd_node;
6296 cluster = new_entry->efd_start_cluster;
6299 /* first free block exent. We need to
6300 protect buddy cache from being freed,
6301 * otherwise we'll refresh it from
6302 * on-disk bitmap and lose not-yet-available
6304 get_page(e4b->bd_buddy_page);
6305 get_page(e4b->bd_bitmap_page);
6309 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6310 if (cluster < entry->efd_start_cluster)
6312 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6313 n = &(*n)->rb_right;
6315 ext4_grp_locked_error(sb, group, 0,
6316 ext4_group_first_block_no(sb, group) +
6317 EXT4_C2B(sbi, cluster),
6318 "Block already on to-be-freed list");
6319 kmem_cache_free(ext4_free_data_cachep, new_entry);
6324 rb_link_node(new_node, parent, n);
6325 rb_insert_color(new_node, &db->bb_free_root);
6327 /* Now try to see the extent can be merged to left and right */
6328 node = rb_prev(new_node);
6330 entry = rb_entry(node, struct ext4_free_data, efd_node);
6331 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6332 &(db->bb_free_root));
6335 node = rb_next(new_node);
6337 entry = rb_entry(node, struct ext4_free_data, efd_node);
6338 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6339 &(db->bb_free_root));
6342 spin_lock(&sbi->s_md_lock);
6343 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6344 sbi->s_mb_free_pending += clusters;
6345 spin_unlock(&sbi->s_md_lock);
6348 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6349 unsigned long count)
6351 struct super_block *sb = inode->i_sb;
6353 ext4_grpblk_t blkoff;
6355 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6356 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6357 EXT4_MB_BITMAP_MARKED_CHECK |
6358 EXT4_MB_SYNC_UPDATE,
6363 * ext4_mb_clear_bb() -- helper function for freeing blocks.
6364 * Used by ext4_free_blocks()
6365 * @handle: handle for this transaction
6367 * @block: starting physical block to be freed
6368 * @count: number of blocks to be freed
6369 * @flags: flags used by ext4_free_blocks
6371 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6372 ext4_fsblk_t block, unsigned long count,
6375 struct super_block *sb = inode->i_sb;
6376 struct ext4_group_info *grp;
6377 unsigned int overflow;
6379 ext4_group_t block_group;
6380 struct ext4_sb_info *sbi;
6381 struct ext4_buddy e4b;
6382 unsigned int count_clusters;
6385 ext4_grpblk_t changed;
6389 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6390 !ext4_inode_block_valid(inode, block, count)) {
6391 ext4_error(sb, "Freeing blocks in system zone - "
6392 "Block = %llu, count = %lu", block, count);
6393 /* err = 0. ext4_std_error should be a no op */
6396 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6400 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6402 grp = ext4_get_group_info(sb, block_group);
6403 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6407 * Check to see if we are freeing blocks across a group
6410 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6411 overflow = EXT4_C2B(sbi, bit) + count -
6412 EXT4_BLOCKS_PER_GROUP(sb);
6414 /* The range changed so it's no longer validated */
6415 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6417 count_clusters = EXT4_NUM_B2C(sbi, count);
6418 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6420 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6421 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6422 GFP_NOFS|__GFP_NOFAIL);
6426 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6427 !ext4_inode_block_valid(inode, block, count)) {
6428 ext4_error(sb, "Freeing blocks in system zone - "
6429 "Block = %llu, count = %lu", block, count);
6430 /* err = 0. ext4_std_error should be a no op */
6434 #ifdef AGGRESSIVE_CHECK
6435 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6437 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6438 count_clusters, mark_flags, &changed);
6441 if (err && changed == 0)
6444 #ifdef AGGRESSIVE_CHECK
6445 BUG_ON(changed != count_clusters);
6449 * We need to make sure we don't reuse the freed block until after the
6450 * transaction is committed. We make an exception if the inode is to be
6451 * written in writeback mode since writeback mode has weak data
6452 * consistency guarantees.
6454 if (ext4_handle_valid(handle) &&
6455 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6456 !ext4_should_writeback_data(inode))) {
6457 struct ext4_free_data *new_entry;
6459 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6462 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6463 GFP_NOFS|__GFP_NOFAIL);
6464 new_entry->efd_start_cluster = bit;
6465 new_entry->efd_group = block_group;
6466 new_entry->efd_count = count_clusters;
6467 new_entry->efd_tid = handle->h_transaction->t_tid;
6469 ext4_lock_group(sb, block_group);
6470 ext4_mb_free_metadata(handle, &e4b, new_entry);
6472 if (test_opt(sb, DISCARD)) {
6473 err = ext4_issue_discard(sb, block_group, bit,
6474 count_clusters, NULL);
6475 if (err && err != -EOPNOTSUPP)
6476 ext4_msg(sb, KERN_WARNING, "discard request in"
6477 " group:%u block:%d count:%lu failed"
6478 " with %d", block_group, bit, count,
6481 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6483 ext4_lock_group(sb, block_group);
6484 mb_free_blocks(inode, &e4b, bit, count_clusters);
6487 ext4_unlock_group(sb, block_group);
6490 * on a bigalloc file system, defer the s_freeclusters_counter
6491 * update to the caller (ext4_remove_space and friends) so they
6492 * can determine if a cluster freed here should be rereserved
6494 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6495 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6496 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6497 percpu_counter_add(&sbi->s_freeclusters_counter,
6501 if (overflow && !err) {
6504 ext4_mb_unload_buddy(&e4b);
6505 /* The range changed so it's no longer validated */
6506 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6511 ext4_mb_unload_buddy(&e4b);
6513 ext4_std_error(sb, err);
6517 * ext4_free_blocks() -- Free given blocks and update quota
6518 * @handle: handle for this transaction
6520 * @bh: optional buffer of the block to be freed
6521 * @block: starting physical block to be freed
6522 * @count: number of blocks to be freed
6523 * @flags: flags used by ext4_free_blocks
6525 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6526 struct buffer_head *bh, ext4_fsblk_t block,
6527 unsigned long count, int flags)
6529 struct super_block *sb = inode->i_sb;
6530 unsigned int overflow;
6531 struct ext4_sb_info *sbi;
6537 BUG_ON(block != bh->b_blocknr);
6539 block = bh->b_blocknr;
6542 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6543 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6549 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6550 !ext4_inode_block_valid(inode, block, count)) {
6551 ext4_error(sb, "Freeing blocks not in datazone - "
6552 "block = %llu, count = %lu", block, count);
6555 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6557 ext4_debug("freeing block %llu\n", block);
6558 trace_ext4_free_blocks(inode, block, count, flags);
6560 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6563 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6568 * If the extent to be freed does not begin on a cluster
6569 * boundary, we need to deal with partial clusters at the
6570 * beginning and end of the extent. Normally we will free
6571 * blocks at the beginning or the end unless we are explicitly
6572 * requested to avoid doing so.
6574 overflow = EXT4_PBLK_COFF(sbi, block);
6576 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6577 overflow = sbi->s_cluster_ratio - overflow;
6579 if (count > overflow)
6587 /* The range changed so it's no longer validated */
6588 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6590 overflow = EXT4_LBLK_COFF(sbi, count);
6592 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6593 if (count > overflow)
6598 count += sbi->s_cluster_ratio - overflow;
6599 /* The range changed so it's no longer validated */
6600 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6603 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6605 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6607 for (i = 0; i < count; i++) {
6610 bh = sb_find_get_block(inode->i_sb, block + i);
6611 ext4_forget(handle, is_metadata, inode, bh, block + i);
6615 ext4_mb_clear_bb(handle, inode, block, count, flags);
6619 * ext4_group_add_blocks() -- Add given blocks to an existing group
6620 * @handle: handle to this transaction
6622 * @block: start physical block to add to the block group
6623 * @count: number of blocks to free
6625 * This marks the blocks as free in the bitmap and buddy.
6627 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6628 ext4_fsblk_t block, unsigned long count)
6630 ext4_group_t block_group;
6632 struct ext4_sb_info *sbi = EXT4_SB(sb);
6633 struct ext4_buddy e4b;
6635 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6636 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6637 unsigned long cluster_count = last_cluster - first_cluster + 1;
6638 ext4_grpblk_t changed;
6640 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6642 if (cluster_count == 0)
6645 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6647 * Check to see if we are freeing blocks across a group
6650 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6651 ext4_warning(sb, "too many blocks added to group %u",
6657 err = ext4_mb_load_buddy(sb, block_group, &e4b);
6661 if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6662 ext4_error(sb, "Adding blocks in system zones - "
6663 "Block = %llu, count = %lu",
6669 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6670 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6672 if (err && changed == 0)
6675 if (changed != cluster_count)
6676 ext4_error(sb, "bit already cleared in group %u", block_group);
6678 ext4_lock_group(sb, block_group);
6679 mb_free_blocks(NULL, &e4b, bit, cluster_count);
6680 ext4_unlock_group(sb, block_group);
6681 percpu_counter_add(&sbi->s_freeclusters_counter,
6685 ext4_mb_unload_buddy(&e4b);
6687 ext4_std_error(sb, err);
6692 * ext4_trim_extent -- function to TRIM one single free extent in the group
6693 * @sb: super block for the file system
6694 * @start: starting block of the free extent in the alloc. group
6695 * @count: number of blocks to TRIM
6696 * @e4b: ext4 buddy for the group
6698 * Trim "count" blocks starting at "start" in the "group". To assure that no
6699 * one will allocate those blocks, mark it as used in buddy bitmap. This must
6700 * be called with under the group lock.
6702 static int ext4_trim_extent(struct super_block *sb,
6703 int start, int count, struct ext4_buddy *e4b)
6707 struct ext4_free_extent ex;
6708 ext4_group_t group = e4b->bd_group;
6711 trace_ext4_trim_extent(sb, group, start, count);
6713 assert_spin_locked(ext4_group_lock_ptr(sb, group));
6715 ex.fe_start = start;
6716 ex.fe_group = group;
6720 * Mark blocks used, so no one can reuse them while
6723 mb_mark_used(e4b, &ex);
6724 ext4_unlock_group(sb, group);
6725 ret = ext4_issue_discard(sb, group, start, count, NULL);
6726 ext4_lock_group(sb, group);
6727 mb_free_blocks(NULL, e4b, start, ex.fe_len);
6731 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6734 if (grp < ext4_get_groups_count(sb))
6735 return EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6736 return (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6737 ext4_group_first_block_no(sb, grp) - 1) >>
6738 EXT4_CLUSTER_BITS(sb);
6741 static bool ext4_trim_interrupted(void)
6743 return fatal_signal_pending(current) || freezing(current);
6746 static int ext4_try_to_trim_range(struct super_block *sb,
6747 struct ext4_buddy *e4b, ext4_grpblk_t start,
6748 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6749 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6750 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6752 ext4_grpblk_t next, count, free_count;
6753 bool set_trimmed = false;
6756 bitmap = e4b->bd_bitmap;
6757 if (start == 0 && max >= ext4_last_grp_cluster(sb, e4b->bd_group))
6759 start = max(e4b->bd_info->bb_first_free, start);
6763 while (start <= max) {
6764 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6767 next = mb_find_next_bit(bitmap, max + 1, start);
6769 if ((next - start) >= minblocks) {
6770 int ret = ext4_trim_extent(sb, start, next - start, e4b);
6772 if (ret && ret != -EOPNOTSUPP)
6774 count += next - start;
6776 free_count += next - start;
6779 if (ext4_trim_interrupted())
6782 if (need_resched()) {
6783 ext4_unlock_group(sb, e4b->bd_group);
6785 ext4_lock_group(sb, e4b->bd_group);
6788 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6793 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6799 * ext4_trim_all_free -- function to trim all free space in alloc. group
6800 * @sb: super block for file system
6801 * @group: group to be trimmed
6802 * @start: first group block to examine
6803 * @max: last group block to examine
6804 * @minblocks: minimum extent block count
6806 * ext4_trim_all_free walks through group's block bitmap searching for free
6807 * extents. When the free extent is found, mark it as used in group buddy
6808 * bitmap. Then issue a TRIM command on this extent and free the extent in
6809 * the group buddy bitmap.
6811 static ext4_grpblk_t
6812 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6813 ext4_grpblk_t start, ext4_grpblk_t max,
6814 ext4_grpblk_t minblocks)
6816 struct ext4_buddy e4b;
6819 trace_ext4_trim_all_free(sb, group, start, max);
6821 ret = ext4_mb_load_buddy(sb, group, &e4b);
6823 ext4_warning(sb, "Error %d loading buddy information for %u",
6828 ext4_lock_group(sb, group);
6830 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6831 minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6832 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6836 ext4_unlock_group(sb, group);
6837 ext4_mb_unload_buddy(&e4b);
6839 ext4_debug("trimmed %d blocks in the group %d\n",
6846 * ext4_trim_fs() -- trim ioctl handle function
6847 * @sb: superblock for filesystem
6848 * @range: fstrim_range structure
6850 * start: First Byte to trim
6851 * len: number of Bytes to trim from start
6852 * minlen: minimum extent length in Bytes
6853 * ext4_trim_fs goes through all allocation groups containing Bytes from
6854 * start to start+len. For each such a group ext4_trim_all_free function
6855 * is invoked to trim all free space.
6857 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6859 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6860 struct ext4_group_info *grp;
6861 ext4_group_t group, first_group, last_group;
6862 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6863 uint64_t start, end, minlen, trimmed = 0;
6864 ext4_fsblk_t first_data_blk =
6865 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6866 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6869 start = range->start >> sb->s_blocksize_bits;
6870 end = start + (range->len >> sb->s_blocksize_bits) - 1;
6871 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6872 range->minlen >> sb->s_blocksize_bits);
6874 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6875 start >= max_blks ||
6876 range->len < sb->s_blocksize)
6878 /* No point to try to trim less than discard granularity */
6879 if (range->minlen < discard_granularity) {
6880 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6881 discard_granularity >> sb->s_blocksize_bits);
6882 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6885 if (end >= max_blks - 1)
6887 if (end <= first_data_blk)
6889 if (start < first_data_blk)
6890 start = first_data_blk;
6892 /* Determine first and last group to examine based on start and end */
6893 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6894 &first_group, &first_cluster);
6895 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6896 &last_group, &last_cluster);
6898 /* end now represents the last cluster to discard in this group */
6899 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6901 for (group = first_group; group <= last_group; group++) {
6902 if (ext4_trim_interrupted())
6904 grp = ext4_get_group_info(sb, group);
6907 /* We only do this if the grp has never been initialized */
6908 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6909 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6915 * For all the groups except the last one, last cluster will
6916 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6917 * change it for the last group, note that last_cluster is
6918 * already computed earlier by ext4_get_group_no_and_offset()
6920 if (group == last_group)
6922 if (grp->bb_free >= minlen) {
6923 cnt = ext4_trim_all_free(sb, group, first_cluster,
6933 * For every group except the first one, we are sure
6934 * that the first cluster to discard will be cluster #0.
6940 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6943 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6947 /* Iterate all the free extents in the group. */
6949 ext4_mballoc_query_range(
6950 struct super_block *sb,
6952 ext4_grpblk_t start,
6954 ext4_mballoc_query_range_fn formatter,
6959 struct ext4_buddy e4b;
6962 error = ext4_mb_load_buddy(sb, group, &e4b);
6965 bitmap = e4b.bd_bitmap;
6967 ext4_lock_group(sb, group);
6969 start = max(e4b.bd_info->bb_first_free, start);
6970 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6971 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6973 while (start <= end) {
6974 start = mb_find_next_zero_bit(bitmap, end + 1, start);
6977 next = mb_find_next_bit(bitmap, end + 1, start);
6979 ext4_unlock_group(sb, group);
6980 error = formatter(sb, group, start, next - start, priv);
6983 ext4_lock_group(sb, group);
6988 ext4_unlock_group(sb, group);
6990 ext4_mb_unload_buddy(&e4b);
6995 #ifdef CONFIG_EXT4_KUNIT_TESTS
6996 #include "mballoc-test.c"