2 * HID support for Linux
4 * Copyright (c) 1999 Andreas Gal
7 * Copyright (c) 2006-2012 Jiri Kosina
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
33 #include <linux/async.h>
35 #include <linux/hid.h>
36 #include <linux/hiddev.h>
37 #include <linux/hid-debug.h>
38 #include <linux/hidraw.h>
46 #define DRIVER_DESC "HID core driver"
49 module_param_named(debug, hid_debug, int, 0600);
50 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
51 EXPORT_SYMBOL_GPL(hid_debug);
53 static int hid_ignore_special_drivers = 0;
54 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
55 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
58 * Register a new report for a device.
61 struct hid_report *hid_register_report(struct hid_device *device,
62 unsigned int type, unsigned int id,
63 unsigned int application)
65 struct hid_report_enum *report_enum = device->report_enum + type;
66 struct hid_report *report;
68 if (id >= HID_MAX_IDS)
70 if (report_enum->report_id_hash[id])
71 return report_enum->report_id_hash[id];
73 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
78 report_enum->numbered = 1;
83 report->device = device;
84 report->application = application;
85 report_enum->report_id_hash[id] = report;
87 list_add_tail(&report->list, &report_enum->report_list);
91 EXPORT_SYMBOL_GPL(hid_register_report);
94 * Register a new field for this report.
97 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
99 struct hid_field *field;
101 if (report->maxfield == HID_MAX_FIELDS) {
102 hid_err(report->device, "too many fields in report\n");
106 field = kzalloc((sizeof(struct hid_field) +
107 usages * sizeof(struct hid_usage) +
108 values * sizeof(unsigned)), GFP_KERNEL);
112 field->index = report->maxfield++;
113 report->field[field->index] = field;
114 field->usage = (struct hid_usage *)(field + 1);
115 field->value = (s32 *)(field->usage + usages);
116 field->report = report;
122 * Open a collection. The type/usage is pushed on the stack.
125 static int open_collection(struct hid_parser *parser, unsigned type)
127 struct hid_collection *collection;
129 int collection_index;
131 usage = parser->local.usage[0];
133 if (parser->collection_stack_ptr == parser->collection_stack_size) {
134 unsigned int *collection_stack;
135 unsigned int new_size = parser->collection_stack_size +
136 HID_COLLECTION_STACK_SIZE;
138 collection_stack = krealloc(parser->collection_stack,
139 new_size * sizeof(unsigned int),
141 if (!collection_stack)
144 parser->collection_stack = collection_stack;
145 parser->collection_stack_size = new_size;
148 if (parser->device->maxcollection == parser->device->collection_size) {
149 collection = kmalloc(
150 array3_size(sizeof(struct hid_collection),
151 parser->device->collection_size,
154 if (collection == NULL) {
155 hid_err(parser->device, "failed to reallocate collection array\n");
158 memcpy(collection, parser->device->collection,
159 sizeof(struct hid_collection) *
160 parser->device->collection_size);
161 memset(collection + parser->device->collection_size, 0,
162 sizeof(struct hid_collection) *
163 parser->device->collection_size);
164 kfree(parser->device->collection);
165 parser->device->collection = collection;
166 parser->device->collection_size *= 2;
169 parser->collection_stack[parser->collection_stack_ptr++] =
170 parser->device->maxcollection;
172 collection_index = parser->device->maxcollection++;
173 collection = parser->device->collection + collection_index;
174 collection->type = type;
175 collection->usage = usage;
176 collection->level = parser->collection_stack_ptr - 1;
177 collection->parent_idx = (collection->level == 0) ? -1 :
178 parser->collection_stack[collection->level - 1];
180 if (type == HID_COLLECTION_APPLICATION)
181 parser->device->maxapplication++;
187 * Close a collection.
190 static int close_collection(struct hid_parser *parser)
192 if (!parser->collection_stack_ptr) {
193 hid_err(parser->device, "collection stack underflow\n");
196 parser->collection_stack_ptr--;
201 * Climb up the stack, search for the specified collection type
202 * and return the usage.
205 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
207 struct hid_collection *collection = parser->device->collection;
210 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
211 unsigned index = parser->collection_stack[n];
212 if (collection[index].type == type)
213 return collection[index].usage;
215 return 0; /* we know nothing about this usage type */
219 * Add a usage to the temporary parser table.
222 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
224 if (parser->local.usage_index >= HID_MAX_USAGES) {
225 hid_err(parser->device, "usage index exceeded\n");
228 parser->local.usage[parser->local.usage_index] = usage;
229 parser->local.usage_size[parser->local.usage_index] = size;
230 parser->local.collection_index[parser->local.usage_index] =
231 parser->collection_stack_ptr ?
232 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
233 parser->local.usage_index++;
238 * Register a new field for this report.
241 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
243 struct hid_report *report;
244 struct hid_field *field;
248 unsigned int application;
250 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
252 report = hid_register_report(parser->device, report_type,
253 parser->global.report_id, application);
255 hid_err(parser->device, "hid_register_report failed\n");
259 /* Handle both signed and unsigned cases properly */
260 if ((parser->global.logical_minimum < 0 &&
261 parser->global.logical_maximum <
262 parser->global.logical_minimum) ||
263 (parser->global.logical_minimum >= 0 &&
264 (__u32)parser->global.logical_maximum <
265 (__u32)parser->global.logical_minimum)) {
266 dbg_hid("logical range invalid 0x%x 0x%x\n",
267 parser->global.logical_minimum,
268 parser->global.logical_maximum);
272 offset = report->size;
273 report->size += parser->global.report_size * parser->global.report_count;
275 if (!parser->local.usage_index) /* Ignore padding fields */
278 usages = max_t(unsigned, parser->local.usage_index,
279 parser->global.report_count);
281 field = hid_register_field(report, usages, parser->global.report_count);
285 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
286 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
287 field->application = application;
289 for (i = 0; i < usages; i++) {
291 /* Duplicate the last usage we parsed if we have excess values */
292 if (i >= parser->local.usage_index)
293 j = parser->local.usage_index - 1;
294 field->usage[i].hid = parser->local.usage[j];
295 field->usage[i].collection_index =
296 parser->local.collection_index[j];
297 field->usage[i].usage_index = i;
298 field->usage[i].resolution_multiplier = 1;
301 field->maxusage = usages;
302 field->flags = flags;
303 field->report_offset = offset;
304 field->report_type = report_type;
305 field->report_size = parser->global.report_size;
306 field->report_count = parser->global.report_count;
307 field->logical_minimum = parser->global.logical_minimum;
308 field->logical_maximum = parser->global.logical_maximum;
309 field->physical_minimum = parser->global.physical_minimum;
310 field->physical_maximum = parser->global.physical_maximum;
311 field->unit_exponent = parser->global.unit_exponent;
312 field->unit = parser->global.unit;
318 * Read data value from item.
321 static u32 item_udata(struct hid_item *item)
323 switch (item->size) {
324 case 1: return item->data.u8;
325 case 2: return item->data.u16;
326 case 4: return item->data.u32;
331 static s32 item_sdata(struct hid_item *item)
333 switch (item->size) {
334 case 1: return item->data.s8;
335 case 2: return item->data.s16;
336 case 4: return item->data.s32;
342 * Process a global item.
345 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
349 case HID_GLOBAL_ITEM_TAG_PUSH:
351 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
352 hid_err(parser->device, "global environment stack overflow\n");
356 memcpy(parser->global_stack + parser->global_stack_ptr++,
357 &parser->global, sizeof(struct hid_global));
360 case HID_GLOBAL_ITEM_TAG_POP:
362 if (!parser->global_stack_ptr) {
363 hid_err(parser->device, "global environment stack underflow\n");
367 memcpy(&parser->global, parser->global_stack +
368 --parser->global_stack_ptr, sizeof(struct hid_global));
371 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
372 parser->global.usage_page = item_udata(item);
375 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
376 parser->global.logical_minimum = item_sdata(item);
379 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
380 if (parser->global.logical_minimum < 0)
381 parser->global.logical_maximum = item_sdata(item);
383 parser->global.logical_maximum = item_udata(item);
386 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
387 parser->global.physical_minimum = item_sdata(item);
390 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
391 if (parser->global.physical_minimum < 0)
392 parser->global.physical_maximum = item_sdata(item);
394 parser->global.physical_maximum = item_udata(item);
397 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
398 /* Many devices provide unit exponent as a two's complement
399 * nibble due to the common misunderstanding of HID
400 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
401 * both this and the standard encoding. */
402 raw_value = item_sdata(item);
403 if (!(raw_value & 0xfffffff0))
404 parser->global.unit_exponent = hid_snto32(raw_value, 4);
406 parser->global.unit_exponent = raw_value;
409 case HID_GLOBAL_ITEM_TAG_UNIT:
410 parser->global.unit = item_udata(item);
413 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
414 parser->global.report_size = item_udata(item);
415 if (parser->global.report_size > 256) {
416 hid_err(parser->device, "invalid report_size %d\n",
417 parser->global.report_size);
422 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
423 parser->global.report_count = item_udata(item);
424 if (parser->global.report_count > HID_MAX_USAGES) {
425 hid_err(parser->device, "invalid report_count %d\n",
426 parser->global.report_count);
431 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
432 parser->global.report_id = item_udata(item);
433 if (parser->global.report_id == 0 ||
434 parser->global.report_id >= HID_MAX_IDS) {
435 hid_err(parser->device, "report_id %u is invalid\n",
436 parser->global.report_id);
442 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
448 * Process a local item.
451 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
457 data = item_udata(item);
460 case HID_LOCAL_ITEM_TAG_DELIMITER:
464 * We treat items before the first delimiter
465 * as global to all usage sets (branch 0).
466 * In the moment we process only these global
467 * items and the first delimiter set.
469 if (parser->local.delimiter_depth != 0) {
470 hid_err(parser->device, "nested delimiters\n");
473 parser->local.delimiter_depth++;
474 parser->local.delimiter_branch++;
476 if (parser->local.delimiter_depth < 1) {
477 hid_err(parser->device, "bogus close delimiter\n");
480 parser->local.delimiter_depth--;
484 case HID_LOCAL_ITEM_TAG_USAGE:
486 if (parser->local.delimiter_branch > 1) {
487 dbg_hid("alternative usage ignored\n");
491 return hid_add_usage(parser, data, item->size);
493 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
495 if (parser->local.delimiter_branch > 1) {
496 dbg_hid("alternative usage ignored\n");
500 parser->local.usage_minimum = data;
503 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
505 if (parser->local.delimiter_branch > 1) {
506 dbg_hid("alternative usage ignored\n");
510 count = data - parser->local.usage_minimum;
511 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
513 * We do not warn if the name is not set, we are
514 * actually pre-scanning the device.
516 if (dev_name(&parser->device->dev))
517 hid_warn(parser->device,
518 "ignoring exceeding usage max\n");
519 data = HID_MAX_USAGES - parser->local.usage_index +
520 parser->local.usage_minimum - 1;
522 hid_err(parser->device,
523 "no more usage index available\n");
528 for (n = parser->local.usage_minimum; n <= data; n++)
529 if (hid_add_usage(parser, n, item->size)) {
530 dbg_hid("hid_add_usage failed\n");
537 dbg_hid("unknown local item tag 0x%x\n", item->tag);
544 * Concatenate Usage Pages into Usages where relevant:
545 * As per specification, 6.2.2.8: "When the parser encounters a main item it
546 * concatenates the last declared Usage Page with a Usage to form a complete
550 static void hid_concatenate_usage_page(struct hid_parser *parser)
554 for (i = 0; i < parser->local.usage_index; i++)
555 if (parser->local.usage_size[i] <= 2)
556 parser->local.usage[i] += parser->global.usage_page << 16;
560 * Process a main item.
563 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
568 hid_concatenate_usage_page(parser);
570 data = item_udata(item);
573 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
574 ret = open_collection(parser, data & 0xff);
576 case HID_MAIN_ITEM_TAG_END_COLLECTION:
577 ret = close_collection(parser);
579 case HID_MAIN_ITEM_TAG_INPUT:
580 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
582 case HID_MAIN_ITEM_TAG_OUTPUT:
583 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
585 case HID_MAIN_ITEM_TAG_FEATURE:
586 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
589 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
593 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
599 * Process a reserved item.
602 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
604 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
609 * Free a report and all registered fields. The field->usage and
610 * field->value table's are allocated behind the field, so we need
611 * only to free(field) itself.
614 static void hid_free_report(struct hid_report *report)
618 for (n = 0; n < report->maxfield; n++)
619 kfree(report->field[n]);
624 * Close report. This function returns the device
625 * state to the point prior to hid_open_report().
627 static void hid_close_report(struct hid_device *device)
631 for (i = 0; i < HID_REPORT_TYPES; i++) {
632 struct hid_report_enum *report_enum = device->report_enum + i;
634 for (j = 0; j < HID_MAX_IDS; j++) {
635 struct hid_report *report = report_enum->report_id_hash[j];
637 hid_free_report(report);
639 memset(report_enum, 0, sizeof(*report_enum));
640 INIT_LIST_HEAD(&report_enum->report_list);
643 kfree(device->rdesc);
644 device->rdesc = NULL;
647 kfree(device->collection);
648 device->collection = NULL;
649 device->collection_size = 0;
650 device->maxcollection = 0;
651 device->maxapplication = 0;
653 device->status &= ~HID_STAT_PARSED;
657 * Free a device structure, all reports, and all fields.
660 static void hid_device_release(struct device *dev)
662 struct hid_device *hid = to_hid_device(dev);
664 hid_close_report(hid);
665 kfree(hid->dev_rdesc);
670 * Fetch a report description item from the data stream. We support long
671 * items, though they are not used yet.
674 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
678 if ((end - start) <= 0)
683 item->type = (b >> 2) & 3;
684 item->tag = (b >> 4) & 15;
686 if (item->tag == HID_ITEM_TAG_LONG) {
688 item->format = HID_ITEM_FORMAT_LONG;
690 if ((end - start) < 2)
693 item->size = *start++;
694 item->tag = *start++;
696 if ((end - start) < item->size)
699 item->data.longdata = start;
704 item->format = HID_ITEM_FORMAT_SHORT;
707 switch (item->size) {
712 if ((end - start) < 1)
714 item->data.u8 = *start++;
718 if ((end - start) < 2)
720 item->data.u16 = get_unaligned_le16(start);
721 start = (__u8 *)((__le16 *)start + 1);
726 if ((end - start) < 4)
728 item->data.u32 = get_unaligned_le32(start);
729 start = (__u8 *)((__le32 *)start + 1);
736 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
738 struct hid_device *hid = parser->device;
740 if (usage == HID_DG_CONTACTID)
741 hid->group = HID_GROUP_MULTITOUCH;
744 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
746 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
747 parser->global.report_size == 8)
748 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
751 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
753 struct hid_device *hid = parser->device;
756 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
757 type == HID_COLLECTION_PHYSICAL)
758 hid->group = HID_GROUP_SENSOR_HUB;
760 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
761 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
762 hid->group == HID_GROUP_MULTITOUCH)
763 hid->group = HID_GROUP_GENERIC;
765 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
766 for (i = 0; i < parser->local.usage_index; i++)
767 if (parser->local.usage[i] == HID_GD_POINTER)
768 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
770 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
771 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
774 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
779 hid_concatenate_usage_page(parser);
781 data = item_udata(item);
784 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
785 hid_scan_collection(parser, data & 0xff);
787 case HID_MAIN_ITEM_TAG_END_COLLECTION:
789 case HID_MAIN_ITEM_TAG_INPUT:
790 /* ignore constant inputs, they will be ignored by hid-input */
791 if (data & HID_MAIN_ITEM_CONSTANT)
793 for (i = 0; i < parser->local.usage_index; i++)
794 hid_scan_input_usage(parser, parser->local.usage[i]);
796 case HID_MAIN_ITEM_TAG_OUTPUT:
798 case HID_MAIN_ITEM_TAG_FEATURE:
799 for (i = 0; i < parser->local.usage_index; i++)
800 hid_scan_feature_usage(parser, parser->local.usage[i]);
804 /* Reset the local parser environment */
805 memset(&parser->local, 0, sizeof(parser->local));
811 * Scan a report descriptor before the device is added to the bus.
812 * Sets device groups and other properties that determine what driver
815 static int hid_scan_report(struct hid_device *hid)
817 struct hid_parser *parser;
818 struct hid_item item;
819 __u8 *start = hid->dev_rdesc;
820 __u8 *end = start + hid->dev_rsize;
821 static int (*dispatch_type[])(struct hid_parser *parser,
822 struct hid_item *item) = {
829 parser = vzalloc(sizeof(struct hid_parser));
833 parser->device = hid;
834 hid->group = HID_GROUP_GENERIC;
837 * The parsing is simpler than the one in hid_open_report() as we should
838 * be robust against hid errors. Those errors will be raised by
839 * hid_open_report() anyway.
841 while ((start = fetch_item(start, end, &item)) != NULL)
842 dispatch_type[item.type](parser, &item);
845 * Handle special flags set during scanning.
847 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
848 (hid->group == HID_GROUP_MULTITOUCH))
849 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
852 * Vendor specific handlings
854 switch (hid->vendor) {
855 case USB_VENDOR_ID_WACOM:
856 hid->group = HID_GROUP_WACOM;
858 case USB_VENDOR_ID_SYNAPTICS:
859 if (hid->group == HID_GROUP_GENERIC)
860 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
861 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
863 * hid-rmi should take care of them,
866 hid->group = HID_GROUP_RMI;
870 kfree(parser->collection_stack);
876 * hid_parse_report - parse device report
878 * @device: hid device
879 * @start: report start
882 * Allocate the device report as read by the bus driver. This function should
883 * only be called from parse() in ll drivers.
885 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
887 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
890 hid->dev_rsize = size;
893 EXPORT_SYMBOL_GPL(hid_parse_report);
895 static const char * const hid_report_names[] = {
898 "HID_FEATURE_REPORT",
901 * hid_validate_values - validate existing device report's value indexes
903 * @device: hid device
904 * @type: which report type to examine
905 * @id: which report ID to examine (0 for first)
906 * @field_index: which report field to examine
907 * @report_counts: expected number of values
909 * Validate the number of values in a given field of a given report, after
912 struct hid_report *hid_validate_values(struct hid_device *hid,
913 unsigned int type, unsigned int id,
914 unsigned int field_index,
915 unsigned int report_counts)
917 struct hid_report *report;
919 if (type > HID_FEATURE_REPORT) {
920 hid_err(hid, "invalid HID report type %u\n", type);
924 if (id >= HID_MAX_IDS) {
925 hid_err(hid, "invalid HID report id %u\n", id);
930 * Explicitly not using hid_get_report() here since it depends on
931 * ->numbered being checked, which may not always be the case when
932 * drivers go to access report values.
936 * Validating on id 0 means we should examine the first
937 * report in the list.
940 hid->report_enum[type].report_list.next,
941 struct hid_report, list);
943 report = hid->report_enum[type].report_id_hash[id];
946 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
949 if (report->maxfield <= field_index) {
950 hid_err(hid, "not enough fields in %s %u\n",
951 hid_report_names[type], id);
954 if (report->field[field_index]->report_count < report_counts) {
955 hid_err(hid, "not enough values in %s %u field %u\n",
956 hid_report_names[type], id, field_index);
961 EXPORT_SYMBOL_GPL(hid_validate_values);
963 static int hid_calculate_multiplier(struct hid_device *hid,
964 struct hid_field *multiplier)
967 __s32 v = *multiplier->value;
968 __s32 lmin = multiplier->logical_minimum;
969 __s32 lmax = multiplier->logical_maximum;
970 __s32 pmin = multiplier->physical_minimum;
971 __s32 pmax = multiplier->physical_maximum;
974 * "Because OS implementations will generally divide the control's
975 * reported count by the Effective Resolution Multiplier, designers
976 * should take care not to establish a potential Effective
977 * Resolution Multiplier of zero."
978 * HID Usage Table, v1.12, Section 4.3.1, p31
980 if (lmax - lmin == 0)
983 * Handling the unit exponent is left as an exercise to whoever
984 * finds a device where that exponent is not 0.
986 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
987 if (unlikely(multiplier->unit_exponent != 0)) {
989 "unsupported Resolution Multiplier unit exponent %d\n",
990 multiplier->unit_exponent);
993 /* There are no devices with an effective multiplier > 255 */
994 if (unlikely(m == 0 || m > 255 || m < -255)) {
995 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1002 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1003 struct hid_field *field,
1004 struct hid_collection *multiplier_collection,
1005 int effective_multiplier)
1007 struct hid_collection *collection;
1008 struct hid_usage *usage;
1012 * If multiplier_collection is NULL, the multiplier applies
1013 * to all fields in the report.
1014 * Otherwise, it is the Logical Collection the multiplier applies to
1015 * but our field may be in a subcollection of that collection.
1017 for (i = 0; i < field->maxusage; i++) {
1018 usage = &field->usage[i];
1020 collection = &hid->collection[usage->collection_index];
1021 while (collection->parent_idx != -1 &&
1022 collection != multiplier_collection)
1023 collection = &hid->collection[collection->parent_idx];
1025 if (collection->parent_idx != -1 ||
1026 multiplier_collection == NULL)
1027 usage->resolution_multiplier = effective_multiplier;
1032 static void hid_apply_multiplier(struct hid_device *hid,
1033 struct hid_field *multiplier)
1035 struct hid_report_enum *rep_enum;
1036 struct hid_report *rep;
1037 struct hid_field *field;
1038 struct hid_collection *multiplier_collection;
1039 int effective_multiplier;
1043 * "The Resolution Multiplier control must be contained in the same
1044 * Logical Collection as the control(s) to which it is to be applied.
1045 * If no Resolution Multiplier is defined, then the Resolution
1046 * Multiplier defaults to 1. If more than one control exists in a
1047 * Logical Collection, the Resolution Multiplier is associated with
1048 * all controls in the collection. If no Logical Collection is
1049 * defined, the Resolution Multiplier is associated with all
1050 * controls in the report."
1051 * HID Usage Table, v1.12, Section 4.3.1, p30
1053 * Thus, search from the current collection upwards until we find a
1054 * logical collection. Then search all fields for that same parent
1055 * collection. Those are the fields the multiplier applies to.
1057 * If we have more than one multiplier, it will overwrite the
1058 * applicable fields later.
1060 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1061 while (multiplier_collection->parent_idx != -1 &&
1062 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1063 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1065 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1067 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1068 list_for_each_entry(rep, &rep_enum->report_list, list) {
1069 for (i = 0; i < rep->maxfield; i++) {
1070 field = rep->field[i];
1071 hid_apply_multiplier_to_field(hid, field,
1072 multiplier_collection,
1073 effective_multiplier);
1079 * hid_setup_resolution_multiplier - set up all resolution multipliers
1081 * @device: hid device
1083 * Search for all Resolution Multiplier Feature Reports and apply their
1084 * value to all matching Input items. This only updates the internal struct
1087 * The Resolution Multiplier is applied by the hardware. If the multiplier
1088 * is anything other than 1, the hardware will send pre-multiplied events
1089 * so that the same physical interaction generates an accumulated
1090 * accumulated_value = value * * multiplier
1091 * This may be achieved by sending
1092 * - "value * multiplier" for each event, or
1093 * - "value" but "multiplier" times as frequently, or
1094 * - a combination of the above
1095 * The only guarantee is that the same physical interaction always generates
1096 * an accumulated 'value * multiplier'.
1098 * This function must be called before any event processing and after
1099 * any SetRequest to the Resolution Multiplier.
1101 void hid_setup_resolution_multiplier(struct hid_device *hid)
1103 struct hid_report_enum *rep_enum;
1104 struct hid_report *rep;
1105 struct hid_usage *usage;
1108 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1109 list_for_each_entry(rep, &rep_enum->report_list, list) {
1110 for (i = 0; i < rep->maxfield; i++) {
1111 /* Ignore if report count is out of bounds. */
1112 if (rep->field[i]->report_count < 1)
1115 for (j = 0; j < rep->field[i]->maxusage; j++) {
1116 usage = &rep->field[i]->usage[j];
1117 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1118 hid_apply_multiplier(hid,
1124 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1127 * hid_open_report - open a driver-specific device report
1129 * @device: hid device
1131 * Parse a report description into a hid_device structure. Reports are
1132 * enumerated, fields are attached to these reports.
1133 * 0 returned on success, otherwise nonzero error value.
1135 * This function (or the equivalent hid_parse() macro) should only be
1136 * called from probe() in drivers, before starting the device.
1138 int hid_open_report(struct hid_device *device)
1140 struct hid_parser *parser;
1141 struct hid_item item;
1147 static int (*dispatch_type[])(struct hid_parser *parser,
1148 struct hid_item *item) = {
1155 if (WARN_ON(device->status & HID_STAT_PARSED))
1158 start = device->dev_rdesc;
1159 if (WARN_ON(!start))
1161 size = device->dev_rsize;
1163 buf = kmemdup(start, size, GFP_KERNEL);
1167 if (device->driver->report_fixup)
1168 start = device->driver->report_fixup(device, buf, &size);
1172 start = kmemdup(start, size, GFP_KERNEL);
1177 device->rdesc = start;
1178 device->rsize = size;
1180 parser = vzalloc(sizeof(struct hid_parser));
1186 parser->device = device;
1190 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1191 sizeof(struct hid_collection), GFP_KERNEL);
1192 if (!device->collection) {
1196 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1199 while ((start = fetch_item(start, end, &item)) != NULL) {
1201 if (item.format != HID_ITEM_FORMAT_SHORT) {
1202 hid_err(device, "unexpected long global item\n");
1206 if (dispatch_type[item.type](parser, &item)) {
1207 hid_err(device, "item %u %u %u %u parsing failed\n",
1208 item.format, (unsigned)item.size,
1209 (unsigned)item.type, (unsigned)item.tag);
1214 if (parser->collection_stack_ptr) {
1215 hid_err(device, "unbalanced collection at end of report description\n");
1218 if (parser->local.delimiter_depth) {
1219 hid_err(device, "unbalanced delimiter at end of report description\n");
1224 * fetch initial values in case the device's
1225 * default multiplier isn't the recommended 1
1227 hid_setup_resolution_multiplier(device);
1229 kfree(parser->collection_stack);
1231 device->status |= HID_STAT_PARSED;
1237 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1239 kfree(parser->collection_stack);
1242 hid_close_report(device);
1245 EXPORT_SYMBOL_GPL(hid_open_report);
1248 * Convert a signed n-bit integer to signed 32-bit integer. Common
1249 * cases are done through the compiler, the screwed things has to be
1253 static s32 snto32(__u32 value, unsigned n)
1256 case 8: return ((__s8)value);
1257 case 16: return ((__s16)value);
1258 case 32: return ((__s32)value);
1260 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1263 s32 hid_snto32(__u32 value, unsigned n)
1265 return snto32(value, n);
1267 EXPORT_SYMBOL_GPL(hid_snto32);
1270 * Convert a signed 32-bit integer to a signed n-bit integer.
1273 static u32 s32ton(__s32 value, unsigned n)
1275 s32 a = value >> (n - 1);
1277 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1278 return value & ((1 << n) - 1);
1282 * Extract/implement a data field from/to a little endian report (bit array).
1284 * Code sort-of follows HID spec:
1285 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1287 * While the USB HID spec allows unlimited length bit fields in "report
1288 * descriptors", most devices never use more than 16 bits.
1289 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1290 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1293 static u32 __extract(u8 *report, unsigned offset, int n)
1295 unsigned int idx = offset / 8;
1296 unsigned int bit_nr = 0;
1297 unsigned int bit_shift = offset % 8;
1298 int bits_to_copy = 8 - bit_shift;
1300 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1303 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1305 bit_nr += bits_to_copy;
1311 return value & mask;
1314 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1315 unsigned offset, unsigned n)
1318 hid_warn(hid, "hid_field_extract() called with n (%d) > 256! (%s)\n",
1323 return __extract(report, offset, n);
1325 EXPORT_SYMBOL_GPL(hid_field_extract);
1328 * "implement" : set bits in a little endian bit stream.
1329 * Same concepts as "extract" (see comments above).
1330 * The data mangled in the bit stream remains in little endian
1331 * order the whole time. It make more sense to talk about
1332 * endianness of register values by considering a register
1333 * a "cached" copy of the little endian bit stream.
1336 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1338 unsigned int idx = offset / 8;
1339 unsigned int bit_shift = offset % 8;
1340 int bits_to_set = 8 - bit_shift;
1342 while (n - bits_to_set >= 0) {
1343 report[idx] &= ~(0xff << bit_shift);
1344 report[idx] |= value << bit_shift;
1345 value >>= bits_to_set;
1354 u8 bit_mask = ((1U << n) - 1);
1355 report[idx] &= ~(bit_mask << bit_shift);
1356 report[idx] |= value << bit_shift;
1360 static void implement(const struct hid_device *hid, u8 *report,
1361 unsigned offset, unsigned n, u32 value)
1363 if (unlikely(n > 32)) {
1364 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1365 __func__, n, current->comm);
1367 } else if (n < 32) {
1368 u32 m = (1U << n) - 1;
1370 if (unlikely(value > m)) {
1372 "%s() called with too large value %d (n: %d)! (%s)\n",
1373 __func__, value, n, current->comm);
1379 __implement(report, offset, n, value);
1383 * Search an array for a value.
1386 static int search(__s32 *array, __s32 value, unsigned n)
1389 if (*array++ == value)
1396 * hid_match_report - check if driver's raw_event should be called
1399 * @report_type: type to match against
1401 * compare hid->driver->report_table->report_type to report->type
1403 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1405 const struct hid_report_id *id = hid->driver->report_table;
1407 if (!id) /* NULL means all */
1410 for (; id->report_type != HID_TERMINATOR; id++)
1411 if (id->report_type == HID_ANY_ID ||
1412 id->report_type == report->type)
1418 * hid_match_usage - check if driver's event should be called
1421 * @usage: usage to match against
1423 * compare hid->driver->usage_table->usage_{type,code} to
1424 * usage->usage_{type,code}
1426 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1428 const struct hid_usage_id *id = hid->driver->usage_table;
1430 if (!id) /* NULL means all */
1433 for (; id->usage_type != HID_ANY_ID - 1; id++)
1434 if ((id->usage_hid == HID_ANY_ID ||
1435 id->usage_hid == usage->hid) &&
1436 (id->usage_type == HID_ANY_ID ||
1437 id->usage_type == usage->type) &&
1438 (id->usage_code == HID_ANY_ID ||
1439 id->usage_code == usage->code))
1444 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1445 struct hid_usage *usage, __s32 value, int interrupt)
1447 struct hid_driver *hdrv = hid->driver;
1450 if (!list_empty(&hid->debug_list))
1451 hid_dump_input(hid, usage, value);
1453 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1454 ret = hdrv->event(hid, field, usage, value);
1457 hid_err(hid, "%s's event failed with %d\n",
1463 if (hid->claimed & HID_CLAIMED_INPUT)
1464 hidinput_hid_event(hid, field, usage, value);
1465 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1466 hid->hiddev_hid_event(hid, field, usage, value);
1470 * Analyse a received field, and fetch the data from it. The field
1471 * content is stored for next report processing (we do differential
1472 * reporting to the layer).
1475 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1476 __u8 *data, int interrupt)
1479 unsigned count = field->report_count;
1480 unsigned offset = field->report_offset;
1481 unsigned size = field->report_size;
1482 __s32 min = field->logical_minimum;
1483 __s32 max = field->logical_maximum;
1486 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1490 for (n = 0; n < count; n++) {
1492 value[n] = min < 0 ?
1493 snto32(hid_field_extract(hid, data, offset + n * size,
1495 hid_field_extract(hid, data, offset + n * size, size);
1497 /* Ignore report if ErrorRollOver */
1498 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1499 value[n] >= min && value[n] <= max &&
1500 value[n] - min < field->maxusage &&
1501 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1505 for (n = 0; n < count; n++) {
1507 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1508 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1512 if (field->value[n] >= min && field->value[n] <= max
1513 && field->value[n] - min < field->maxusage
1514 && field->usage[field->value[n] - min].hid
1515 && search(value, field->value[n], count))
1516 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1518 if (value[n] >= min && value[n] <= max
1519 && value[n] - min < field->maxusage
1520 && field->usage[value[n] - min].hid
1521 && search(field->value, value[n], count))
1522 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1525 memcpy(field->value, value, count * sizeof(__s32));
1531 * Output the field into the report.
1534 static void hid_output_field(const struct hid_device *hid,
1535 struct hid_field *field, __u8 *data)
1537 unsigned count = field->report_count;
1538 unsigned offset = field->report_offset;
1539 unsigned size = field->report_size;
1542 for (n = 0; n < count; n++) {
1543 if (field->logical_minimum < 0) /* signed values */
1544 implement(hid, data, offset + n * size, size,
1545 s32ton(field->value[n], size));
1546 else /* unsigned values */
1547 implement(hid, data, offset + n * size, size,
1553 * Create a report. 'data' has to be allocated using
1554 * hid_alloc_report_buf() so that it has proper size.
1557 void hid_output_report(struct hid_report *report, __u8 *data)
1562 *data++ = report->id;
1564 memset(data, 0, ((report->size - 1) >> 3) + 1);
1565 for (n = 0; n < report->maxfield; n++)
1566 hid_output_field(report->device, report->field[n], data);
1568 EXPORT_SYMBOL_GPL(hid_output_report);
1571 * Allocator for buffer that is going to be passed to hid_output_report()
1573 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1576 * 7 extra bytes are necessary to achieve proper functionality
1577 * of implement() working on 8 byte chunks
1580 u32 len = hid_report_len(report) + 7;
1582 return kmalloc(len, flags);
1584 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1587 * Set a field value. The report this field belongs to has to be
1588 * created and transferred to the device, to set this value in the
1592 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1599 size = field->report_size;
1601 hid_dump_input(field->report->device, field->usage + offset, value);
1603 if (offset >= field->report_count) {
1604 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1605 offset, field->report_count);
1608 if (field->logical_minimum < 0) {
1609 if (value != snto32(s32ton(value, size), size)) {
1610 hid_err(field->report->device, "value %d is out of range\n", value);
1614 field->value[offset] = value;
1617 EXPORT_SYMBOL_GPL(hid_set_field);
1619 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1622 struct hid_report *report;
1623 unsigned int n = 0; /* Normally report number is 0 */
1625 /* Device uses numbered reports, data[0] is report number */
1626 if (report_enum->numbered)
1629 report = report_enum->report_id_hash[n];
1631 dbg_hid("undefined report_id %u received\n", n);
1637 * Implement a generic .request() callback, using .raw_request()
1638 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1640 int __hid_request(struct hid_device *hid, struct hid_report *report,
1647 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1651 len = hid_report_len(report);
1653 if (reqtype == HID_REQ_SET_REPORT)
1654 hid_output_report(report, buf);
1656 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1657 report->type, reqtype);
1659 dbg_hid("unable to complete request: %d\n", ret);
1663 if (reqtype == HID_REQ_GET_REPORT)
1664 hid_input_report(hid, report->type, buf, ret, 0);
1672 EXPORT_SYMBOL_GPL(__hid_request);
1674 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1677 struct hid_report_enum *report_enum = hid->report_enum + type;
1678 struct hid_report *report;
1679 struct hid_driver *hdrv;
1681 u32 rsize, csize = size;
1685 report = hid_get_report(report_enum, data);
1689 if (report_enum->numbered) {
1694 rsize = ((report->size - 1) >> 3) + 1;
1696 if (rsize > HID_MAX_BUFFER_SIZE)
1697 rsize = HID_MAX_BUFFER_SIZE;
1699 if (csize < rsize) {
1700 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1702 memset(cdata + csize, 0, rsize - csize);
1705 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1706 hid->hiddev_report_event(hid, report);
1707 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1708 ret = hidraw_report_event(hid, data, size);
1713 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1714 for (a = 0; a < report->maxfield; a++)
1715 hid_input_field(hid, report->field[a], cdata, interrupt);
1717 if (hdrv && hdrv->report)
1718 hdrv->report(hid, report);
1721 if (hid->claimed & HID_CLAIMED_INPUT)
1722 hidinput_report_event(hid, report);
1726 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1729 * hid_input_report - report data from lower layer (usb, bt...)
1732 * @type: HID report type (HID_*_REPORT)
1733 * @data: report contents
1734 * @size: size of data parameter
1735 * @interrupt: distinguish between interrupt and control transfers
1737 * This is data entry for lower layers.
1739 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1741 struct hid_report_enum *report_enum;
1742 struct hid_driver *hdrv;
1743 struct hid_report *report;
1749 if (down_trylock(&hid->driver_input_lock))
1756 report_enum = hid->report_enum + type;
1760 dbg_hid("empty report\n");
1765 /* Avoid unnecessary overhead if debugfs is disabled */
1766 if (!list_empty(&hid->debug_list))
1767 hid_dump_report(hid, type, data, size);
1769 report = hid_get_report(report_enum, data);
1776 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1777 ret = hdrv->raw_event(hid, report, data, size);
1782 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1785 up(&hid->driver_input_lock);
1788 EXPORT_SYMBOL_GPL(hid_input_report);
1790 bool hid_match_one_id(const struct hid_device *hdev,
1791 const struct hid_device_id *id)
1793 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1794 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1795 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1796 (id->product == HID_ANY_ID || id->product == hdev->product);
1799 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1800 const struct hid_device_id *id)
1802 for (; id->bus; id++)
1803 if (hid_match_one_id(hdev, id))
1809 static const struct hid_device_id hid_hiddev_list[] = {
1810 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1811 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1815 static bool hid_hiddev(struct hid_device *hdev)
1817 return !!hid_match_id(hdev, hid_hiddev_list);
1822 read_report_descriptor(struct file *filp, struct kobject *kobj,
1823 struct bin_attribute *attr,
1824 char *buf, loff_t off, size_t count)
1826 struct device *dev = kobj_to_dev(kobj);
1827 struct hid_device *hdev = to_hid_device(dev);
1829 if (off >= hdev->rsize)
1832 if (off + count > hdev->rsize)
1833 count = hdev->rsize - off;
1835 memcpy(buf, hdev->rdesc + off, count);
1841 show_country(struct device *dev, struct device_attribute *attr,
1844 struct hid_device *hdev = to_hid_device(dev);
1846 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1849 static struct bin_attribute dev_bin_attr_report_desc = {
1850 .attr = { .name = "report_descriptor", .mode = 0444 },
1851 .read = read_report_descriptor,
1852 .size = HID_MAX_DESCRIPTOR_SIZE,
1855 static const struct device_attribute dev_attr_country = {
1856 .attr = { .name = "country", .mode = 0444 },
1857 .show = show_country,
1860 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1862 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1863 "Joystick", "Gamepad", "Keyboard", "Keypad",
1864 "Multi-Axis Controller"
1866 const char *type, *bus;
1872 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1873 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1874 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1875 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1876 if (hdev->bus != BUS_USB)
1877 connect_mask &= ~HID_CONNECT_HIDDEV;
1878 if (hid_hiddev(hdev))
1879 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1881 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1882 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1883 hdev->claimed |= HID_CLAIMED_INPUT;
1885 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1886 !hdev->hiddev_connect(hdev,
1887 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1888 hdev->claimed |= HID_CLAIMED_HIDDEV;
1889 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1890 hdev->claimed |= HID_CLAIMED_HIDRAW;
1892 if (connect_mask & HID_CONNECT_DRIVER)
1893 hdev->claimed |= HID_CLAIMED_DRIVER;
1895 /* Drivers with the ->raw_event callback set are not required to connect
1896 * to any other listener. */
1897 if (!hdev->claimed && !hdev->driver->raw_event) {
1898 hid_err(hdev, "device has no listeners, quitting\n");
1902 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1903 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1904 hdev->ff_init(hdev);
1907 if (hdev->claimed & HID_CLAIMED_INPUT)
1908 len += sprintf(buf + len, "input");
1909 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1910 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1911 ((struct hiddev *)hdev->hiddev)->minor);
1912 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1913 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1914 ((struct hidraw *)hdev->hidraw)->minor);
1917 for (i = 0; i < hdev->maxcollection; i++) {
1918 struct hid_collection *col = &hdev->collection[i];
1919 if (col->type == HID_COLLECTION_APPLICATION &&
1920 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1921 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1922 type = types[col->usage & 0xffff];
1927 switch (hdev->bus) {
1941 ret = device_create_file(&hdev->dev, &dev_attr_country);
1944 "can't create sysfs country code attribute err: %d\n", ret);
1946 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1947 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1948 type, hdev->name, hdev->phys);
1952 EXPORT_SYMBOL_GPL(hid_connect);
1954 void hid_disconnect(struct hid_device *hdev)
1956 device_remove_file(&hdev->dev, &dev_attr_country);
1957 if (hdev->claimed & HID_CLAIMED_INPUT)
1958 hidinput_disconnect(hdev);
1959 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1960 hdev->hiddev_disconnect(hdev);
1961 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1962 hidraw_disconnect(hdev);
1965 EXPORT_SYMBOL_GPL(hid_disconnect);
1968 * hid_hw_start - start underlying HW
1970 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1972 * Call this in probe function *after* hid_parse. This will setup HW
1973 * buffers and start the device (if not defeirred to device open).
1974 * hid_hw_stop must be called if this was successful.
1976 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1980 error = hdev->ll_driver->start(hdev);
1985 error = hid_connect(hdev, connect_mask);
1987 hdev->ll_driver->stop(hdev);
1994 EXPORT_SYMBOL_GPL(hid_hw_start);
1997 * hid_hw_stop - stop underlying HW
2000 * This is usually called from remove function or from probe when something
2001 * failed and hid_hw_start was called already.
2003 void hid_hw_stop(struct hid_device *hdev)
2005 hid_disconnect(hdev);
2006 hdev->ll_driver->stop(hdev);
2008 EXPORT_SYMBOL_GPL(hid_hw_stop);
2011 * hid_hw_open - signal underlying HW to start delivering events
2014 * Tell underlying HW to start delivering events from the device.
2015 * This function should be called sometime after successful call
2016 * to hid_hw_start().
2018 int hid_hw_open(struct hid_device *hdev)
2022 ret = mutex_lock_killable(&hdev->ll_open_lock);
2026 if (!hdev->ll_open_count++) {
2027 ret = hdev->ll_driver->open(hdev);
2029 hdev->ll_open_count--;
2032 mutex_unlock(&hdev->ll_open_lock);
2035 EXPORT_SYMBOL_GPL(hid_hw_open);
2038 * hid_hw_close - signal underlaying HW to stop delivering events
2042 * This function indicates that we are not interested in the events
2043 * from this device anymore. Delivery of events may or may not stop,
2044 * depending on the number of users still outstanding.
2046 void hid_hw_close(struct hid_device *hdev)
2048 mutex_lock(&hdev->ll_open_lock);
2049 if (!--hdev->ll_open_count)
2050 hdev->ll_driver->close(hdev);
2051 mutex_unlock(&hdev->ll_open_lock);
2053 EXPORT_SYMBOL_GPL(hid_hw_close);
2056 struct list_head list;
2057 struct hid_device_id id;
2061 * store_new_id - add a new HID device ID to this driver and re-probe devices
2062 * @driver: target device driver
2063 * @buf: buffer for scanning device ID data
2064 * @count: input size
2066 * Adds a new dynamic hid device ID to this driver,
2067 * and causes the driver to probe for all devices again.
2069 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2072 struct hid_driver *hdrv = to_hid_driver(drv);
2073 struct hid_dynid *dynid;
2074 __u32 bus, vendor, product;
2075 unsigned long driver_data = 0;
2078 ret = sscanf(buf, "%x %x %x %lx",
2079 &bus, &vendor, &product, &driver_data);
2083 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2087 dynid->id.bus = bus;
2088 dynid->id.group = HID_GROUP_ANY;
2089 dynid->id.vendor = vendor;
2090 dynid->id.product = product;
2091 dynid->id.driver_data = driver_data;
2093 spin_lock(&hdrv->dyn_lock);
2094 list_add_tail(&dynid->list, &hdrv->dyn_list);
2095 spin_unlock(&hdrv->dyn_lock);
2097 ret = driver_attach(&hdrv->driver);
2099 return ret ? : count;
2101 static DRIVER_ATTR_WO(new_id);
2103 static struct attribute *hid_drv_attrs[] = {
2104 &driver_attr_new_id.attr,
2107 ATTRIBUTE_GROUPS(hid_drv);
2109 static void hid_free_dynids(struct hid_driver *hdrv)
2111 struct hid_dynid *dynid, *n;
2113 spin_lock(&hdrv->dyn_lock);
2114 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2115 list_del(&dynid->list);
2118 spin_unlock(&hdrv->dyn_lock);
2121 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2122 struct hid_driver *hdrv)
2124 struct hid_dynid *dynid;
2126 spin_lock(&hdrv->dyn_lock);
2127 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2128 if (hid_match_one_id(hdev, &dynid->id)) {
2129 spin_unlock(&hdrv->dyn_lock);
2133 spin_unlock(&hdrv->dyn_lock);
2135 return hid_match_id(hdev, hdrv->id_table);
2137 EXPORT_SYMBOL_GPL(hid_match_device);
2139 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2141 struct hid_driver *hdrv = to_hid_driver(drv);
2142 struct hid_device *hdev = to_hid_device(dev);
2144 return hid_match_device(hdev, hdrv) != NULL;
2148 * hid_compare_device_paths - check if both devices share the same path
2149 * @hdev_a: hid device
2150 * @hdev_b: hid device
2151 * @separator: char to use as separator
2153 * Check if two devices share the same path up to the last occurrence of
2154 * the separator char. Both paths must exist (i.e., zero-length paths
2157 bool hid_compare_device_paths(struct hid_device *hdev_a,
2158 struct hid_device *hdev_b, char separator)
2160 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2161 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2163 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2166 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2168 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2170 static int hid_device_probe(struct device *dev)
2172 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2173 struct hid_device *hdev = to_hid_device(dev);
2174 const struct hid_device_id *id;
2177 if (down_interruptible(&hdev->driver_input_lock)) {
2181 hdev->io_started = false;
2183 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2185 if (!hdev->driver) {
2186 id = hid_match_device(hdev, hdrv);
2193 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2199 * hid-generic implements .match(), so if
2200 * hid_ignore_special_drivers is set, we can safely
2203 if (hid_ignore_special_drivers) {
2209 /* reset the quirks that has been previously set */
2210 hdev->quirks = hid_lookup_quirk(hdev);
2211 hdev->driver = hdrv;
2213 ret = hdrv->probe(hdev, id);
2214 } else { /* default probe */
2215 ret = hid_open_report(hdev);
2217 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2220 hid_close_report(hdev);
2221 hdev->driver = NULL;
2225 if (!hdev->io_started)
2226 up(&hdev->driver_input_lock);
2231 static int hid_device_remove(struct device *dev)
2233 struct hid_device *hdev = to_hid_device(dev);
2234 struct hid_driver *hdrv;
2237 if (down_interruptible(&hdev->driver_input_lock)) {
2241 hdev->io_started = false;
2243 hdrv = hdev->driver;
2247 else /* default remove */
2249 hid_close_report(hdev);
2250 hdev->driver = NULL;
2253 if (!hdev->io_started)
2254 up(&hdev->driver_input_lock);
2259 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2262 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2264 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2265 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2267 static DEVICE_ATTR_RO(modalias);
2269 static struct attribute *hid_dev_attrs[] = {
2270 &dev_attr_modalias.attr,
2273 static struct bin_attribute *hid_dev_bin_attrs[] = {
2274 &dev_bin_attr_report_desc,
2277 static const struct attribute_group hid_dev_group = {
2278 .attrs = hid_dev_attrs,
2279 .bin_attrs = hid_dev_bin_attrs,
2281 __ATTRIBUTE_GROUPS(hid_dev);
2283 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2285 struct hid_device *hdev = to_hid_device(dev);
2287 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2288 hdev->bus, hdev->vendor, hdev->product))
2291 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2294 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2297 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2300 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2301 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2307 struct bus_type hid_bus_type = {
2309 .dev_groups = hid_dev_groups,
2310 .drv_groups = hid_drv_groups,
2311 .match = hid_bus_match,
2312 .probe = hid_device_probe,
2313 .remove = hid_device_remove,
2314 .uevent = hid_uevent,
2316 EXPORT_SYMBOL(hid_bus_type);
2318 int hid_add_device(struct hid_device *hdev)
2320 static atomic_t id = ATOMIC_INIT(0);
2323 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2326 hdev->quirks = hid_lookup_quirk(hdev);
2328 /* we need to kill them here, otherwise they will stay allocated to
2329 * wait for coming driver */
2330 if (hid_ignore(hdev))
2334 * Check for the mandatory transport channel.
2336 if (!hdev->ll_driver->raw_request) {
2337 hid_err(hdev, "transport driver missing .raw_request()\n");
2342 * Read the device report descriptor once and use as template
2343 * for the driver-specific modifications.
2345 ret = hdev->ll_driver->parse(hdev);
2348 if (!hdev->dev_rdesc)
2352 * Scan generic devices for group information
2354 if (hid_ignore_special_drivers) {
2355 hdev->group = HID_GROUP_GENERIC;
2356 } else if (!hdev->group &&
2357 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2358 ret = hid_scan_report(hdev);
2360 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2363 /* XXX hack, any other cleaner solution after the driver core
2364 * is converted to allow more than 20 bytes as the device name? */
2365 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2366 hdev->vendor, hdev->product, atomic_inc_return(&id));
2369 * Try loading the module for the device before the add, so that we do
2370 * not first have hid-generic binding only to have it replaced
2371 * immediately afterwards with a specialized driver.
2373 if (!current_is_async())
2374 request_module("hid:b%04Xg%04Xv%08Xp%08X", hdev->bus,
2375 hdev->group, hdev->vendor, hdev->product);
2377 hid_debug_register(hdev, dev_name(&hdev->dev));
2378 ret = device_add(&hdev->dev);
2380 hdev->status |= HID_STAT_ADDED;
2382 hid_debug_unregister(hdev);
2386 EXPORT_SYMBOL_GPL(hid_add_device);
2389 * hid_allocate_device - allocate new hid device descriptor
2391 * Allocate and initialize hid device, so that hid_destroy_device might be
2394 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2397 struct hid_device *hid_allocate_device(void)
2399 struct hid_device *hdev;
2402 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2404 return ERR_PTR(ret);
2406 device_initialize(&hdev->dev);
2407 hdev->dev.release = hid_device_release;
2408 hdev->dev.bus = &hid_bus_type;
2409 device_enable_async_suspend(&hdev->dev);
2411 hid_close_report(hdev);
2413 init_waitqueue_head(&hdev->debug_wait);
2414 INIT_LIST_HEAD(&hdev->debug_list);
2415 spin_lock_init(&hdev->debug_list_lock);
2416 sema_init(&hdev->driver_input_lock, 1);
2417 mutex_init(&hdev->ll_open_lock);
2421 EXPORT_SYMBOL_GPL(hid_allocate_device);
2423 static void hid_remove_device(struct hid_device *hdev)
2425 if (hdev->status & HID_STAT_ADDED) {
2426 device_del(&hdev->dev);
2427 hid_debug_unregister(hdev);
2428 hdev->status &= ~HID_STAT_ADDED;
2430 kfree(hdev->dev_rdesc);
2431 hdev->dev_rdesc = NULL;
2432 hdev->dev_rsize = 0;
2436 * hid_destroy_device - free previously allocated device
2440 * If you allocate hid_device through hid_allocate_device, you should ever
2441 * free by this function.
2443 void hid_destroy_device(struct hid_device *hdev)
2445 hid_remove_device(hdev);
2446 put_device(&hdev->dev);
2448 EXPORT_SYMBOL_GPL(hid_destroy_device);
2451 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2453 struct hid_driver *hdrv = data;
2454 struct hid_device *hdev = to_hid_device(dev);
2456 if (hdev->driver == hdrv &&
2457 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2458 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2459 return device_reprobe(dev);
2464 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2466 struct hid_driver *hdrv = to_hid_driver(drv);
2469 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2470 __hid_bus_reprobe_drivers);
2476 static int __bus_removed_driver(struct device_driver *drv, void *data)
2478 return bus_rescan_devices(&hid_bus_type);
2481 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2482 const char *mod_name)
2486 hdrv->driver.name = hdrv->name;
2487 hdrv->driver.bus = &hid_bus_type;
2488 hdrv->driver.owner = owner;
2489 hdrv->driver.mod_name = mod_name;
2491 INIT_LIST_HEAD(&hdrv->dyn_list);
2492 spin_lock_init(&hdrv->dyn_lock);
2494 ret = driver_register(&hdrv->driver);
2497 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2498 __hid_bus_driver_added);
2502 EXPORT_SYMBOL_GPL(__hid_register_driver);
2504 void hid_unregister_driver(struct hid_driver *hdrv)
2506 driver_unregister(&hdrv->driver);
2507 hid_free_dynids(hdrv);
2509 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2511 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2513 int hid_check_keys_pressed(struct hid_device *hid)
2515 struct hid_input *hidinput;
2518 if (!(hid->claimed & HID_CLAIMED_INPUT))
2521 list_for_each_entry(hidinput, &hid->inputs, list) {
2522 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2523 if (hidinput->input->key[i])
2530 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2532 static int __init hid_init(void)
2537 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2538 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2540 ret = bus_register(&hid_bus_type);
2542 pr_err("can't register hid bus\n");
2546 ret = hidraw_init();
2554 bus_unregister(&hid_bus_type);
2559 static void __exit hid_exit(void)
2563 bus_unregister(&hid_bus_type);
2564 hid_quirks_exit(HID_BUS_ANY);
2567 module_init(hid_init);
2568 module_exit(hid_exit);
2570 MODULE_AUTHOR("Andreas Gal");
2571 MODULE_AUTHOR("Vojtech Pavlik");
2572 MODULE_AUTHOR("Jiri Kosina");
2573 MODULE_LICENSE("GPL");