2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
24 #include <trace/events/block.h>
26 #define DM_MSG_PREFIX "core"
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
35 static DEFINE_MUTEX(dm_mutex);
36 static const char *_name = DM_NAME;
38 static unsigned int major = 0;
39 static unsigned int _major = 0;
41 static DEFINE_SPINLOCK(_minor_lock);
44 * One of these is allocated per bio.
47 struct mapped_device *md;
51 unsigned long start_time;
52 spinlock_t endio_lock;
57 * One of these is allocated per target within a bio. Hopefully
58 * this will be simplified out one day.
67 * For request-based dm.
68 * One of these is allocated per request.
70 struct dm_rq_target_io {
71 struct mapped_device *md;
73 struct request *orig, clone;
79 * For request-based dm.
80 * One of these is allocated per bio.
82 struct dm_rq_clone_bio_info {
84 struct dm_rq_target_io *tio;
87 union map_info *dm_get_mapinfo(struct bio *bio)
89 if (bio && bio->bi_private)
90 return &((struct dm_target_io *)bio->bi_private)->info;
94 union map_info *dm_get_rq_mapinfo(struct request *rq)
96 if (rq && rq->end_io_data)
97 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
100 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
102 #define MINOR_ALLOCED ((void *)-1)
105 * Bits for the md->flags field.
107 #define DMF_BLOCK_IO_FOR_SUSPEND 0
108 #define DMF_SUSPENDED 1
110 #define DMF_FREEING 3
111 #define DMF_DELETING 4
112 #define DMF_NOFLUSH_SUSPENDING 5
115 * Work processed by per-device workqueue.
117 struct mapped_device {
118 struct rw_semaphore io_lock;
119 struct mutex suspend_lock;
126 struct request_queue *queue;
128 /* Protect queue and type against concurrent access. */
129 struct mutex type_lock;
131 struct gendisk *disk;
137 * A list of ios that arrived while we were suspended.
140 wait_queue_head_t wait;
141 struct work_struct work;
142 struct bio_list deferred;
143 spinlock_t deferred_lock;
146 * Processing queue (flush)
148 struct workqueue_struct *wq;
151 * The current mapping.
153 struct dm_table *map;
156 * io objects are allocated from here.
167 wait_queue_head_t eventq;
169 struct list_head uevent_list;
170 spinlock_t uevent_lock; /* Protect access to uevent_list */
173 * freeze/thaw support require holding onto a super block
175 struct super_block *frozen_sb;
176 struct block_device *bdev;
178 /* forced geometry settings */
179 struct hd_geometry geometry;
181 /* For saving the address of __make_request for request based dm */
182 make_request_fn *saved_make_request_fn;
187 /* zero-length flush that will be cloned and submitted to targets */
188 struct bio flush_bio;
192 * For mempools pre-allocation at the table loading time.
194 struct dm_md_mempools {
201 static struct kmem_cache *_io_cache;
202 static struct kmem_cache *_tio_cache;
203 static struct kmem_cache *_rq_tio_cache;
204 static struct kmem_cache *_rq_bio_info_cache;
206 static int __init local_init(void)
210 /* allocate a slab for the dm_ios */
211 _io_cache = KMEM_CACHE(dm_io, 0);
215 /* allocate a slab for the target ios */
216 _tio_cache = KMEM_CACHE(dm_target_io, 0);
218 goto out_free_io_cache;
220 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
222 goto out_free_tio_cache;
224 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
225 if (!_rq_bio_info_cache)
226 goto out_free_rq_tio_cache;
228 r = dm_uevent_init();
230 goto out_free_rq_bio_info_cache;
233 r = register_blkdev(_major, _name);
235 goto out_uevent_exit;
244 out_free_rq_bio_info_cache:
245 kmem_cache_destroy(_rq_bio_info_cache);
246 out_free_rq_tio_cache:
247 kmem_cache_destroy(_rq_tio_cache);
249 kmem_cache_destroy(_tio_cache);
251 kmem_cache_destroy(_io_cache);
256 static void local_exit(void)
258 kmem_cache_destroy(_rq_bio_info_cache);
259 kmem_cache_destroy(_rq_tio_cache);
260 kmem_cache_destroy(_tio_cache);
261 kmem_cache_destroy(_io_cache);
262 unregister_blkdev(_major, _name);
267 DMINFO("cleaned up");
270 static int (*_inits[])(void) __initdata = {
280 static void (*_exits[])(void) = {
290 static int __init dm_init(void)
292 const int count = ARRAY_SIZE(_inits);
296 for (i = 0; i < count; i++) {
311 static void __exit dm_exit(void)
313 int i = ARRAY_SIZE(_exits);
320 * Block device functions
322 int dm_deleting_md(struct mapped_device *md)
324 return test_bit(DMF_DELETING, &md->flags);
327 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
329 struct mapped_device *md;
331 mutex_lock(&dm_mutex);
332 spin_lock(&_minor_lock);
334 md = bdev->bd_disk->private_data;
338 if (test_bit(DMF_FREEING, &md->flags) ||
339 dm_deleting_md(md)) {
345 atomic_inc(&md->open_count);
348 spin_unlock(&_minor_lock);
349 mutex_unlock(&dm_mutex);
351 return md ? 0 : -ENXIO;
354 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
356 struct mapped_device *md = disk->private_data;
358 mutex_lock(&dm_mutex);
359 atomic_dec(&md->open_count);
361 mutex_unlock(&dm_mutex);
366 int dm_open_count(struct mapped_device *md)
368 return atomic_read(&md->open_count);
372 * Guarantees nothing is using the device before it's deleted.
374 int dm_lock_for_deletion(struct mapped_device *md)
378 spin_lock(&_minor_lock);
380 if (dm_open_count(md))
383 set_bit(DMF_DELETING, &md->flags);
385 spin_unlock(&_minor_lock);
390 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
392 struct mapped_device *md = bdev->bd_disk->private_data;
394 return dm_get_geometry(md, geo);
397 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
398 unsigned int cmd, unsigned long arg)
400 struct mapped_device *md = bdev->bd_disk->private_data;
401 struct dm_table *map = dm_get_live_table(md);
402 struct dm_target *tgt;
405 if (!map || !dm_table_get_size(map))
408 /* We only support devices that have a single target */
409 if (dm_table_get_num_targets(map) != 1)
412 tgt = dm_table_get_target(map, 0);
414 if (dm_suspended_md(md)) {
419 if (tgt->type->ioctl)
420 r = tgt->type->ioctl(tgt, cmd, arg);
428 static struct dm_io *alloc_io(struct mapped_device *md)
430 return mempool_alloc(md->io_pool, GFP_NOIO);
433 static void free_io(struct mapped_device *md, struct dm_io *io)
435 mempool_free(io, md->io_pool);
438 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
440 mempool_free(tio, md->tio_pool);
443 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
446 return mempool_alloc(md->tio_pool, gfp_mask);
449 static void free_rq_tio(struct dm_rq_target_io *tio)
451 mempool_free(tio, tio->md->tio_pool);
454 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
456 return mempool_alloc(md->io_pool, GFP_ATOMIC);
459 static void free_bio_info(struct dm_rq_clone_bio_info *info)
461 mempool_free(info, info->tio->md->io_pool);
464 static int md_in_flight(struct mapped_device *md)
466 return atomic_read(&md->pending[READ]) +
467 atomic_read(&md->pending[WRITE]);
470 static void start_io_acct(struct dm_io *io)
472 struct mapped_device *md = io->md;
474 int rw = bio_data_dir(io->bio);
476 io->start_time = jiffies;
478 cpu = part_stat_lock();
479 part_round_stats(cpu, &dm_disk(md)->part0);
481 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
484 static void end_io_acct(struct dm_io *io)
486 struct mapped_device *md = io->md;
487 struct bio *bio = io->bio;
488 unsigned long duration = jiffies - io->start_time;
490 int rw = bio_data_dir(bio);
492 cpu = part_stat_lock();
493 part_round_stats(cpu, &dm_disk(md)->part0);
494 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
498 * After this is decremented the bio must not be touched if it is
501 dm_disk(md)->part0.in_flight[rw] = pending =
502 atomic_dec_return(&md->pending[rw]);
503 pending += atomic_read(&md->pending[rw^0x1]);
505 /* nudge anyone waiting on suspend queue */
511 * Add the bio to the list of deferred io.
513 static void queue_io(struct mapped_device *md, struct bio *bio)
517 spin_lock_irqsave(&md->deferred_lock, flags);
518 bio_list_add(&md->deferred, bio);
519 spin_unlock_irqrestore(&md->deferred_lock, flags);
520 queue_work(md->wq, &md->work);
524 * Everyone (including functions in this file), should use this
525 * function to access the md->map field, and make sure they call
526 * dm_table_put() when finished.
528 struct dm_table *dm_get_live_table(struct mapped_device *md)
533 read_lock_irqsave(&md->map_lock, flags);
537 read_unlock_irqrestore(&md->map_lock, flags);
543 * Get the geometry associated with a dm device
545 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
553 * Set the geometry of a device.
555 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
557 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
559 if (geo->start > sz) {
560 DMWARN("Start sector is beyond the geometry limits.");
569 /*-----------------------------------------------------------------
571 * A more elegant soln is in the works that uses the queue
572 * merge fn, unfortunately there are a couple of changes to
573 * the block layer that I want to make for this. So in the
574 * interests of getting something for people to use I give
575 * you this clearly demarcated crap.
576 *---------------------------------------------------------------*/
578 static int __noflush_suspending(struct mapped_device *md)
580 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
584 * Decrements the number of outstanding ios that a bio has been
585 * cloned into, completing the original io if necc.
587 static void dec_pending(struct dm_io *io, int error)
592 struct mapped_device *md = io->md;
594 /* Push-back supersedes any I/O errors */
595 if (unlikely(error)) {
596 spin_lock_irqsave(&io->endio_lock, flags);
597 if (!(io->error > 0 && __noflush_suspending(md)))
599 spin_unlock_irqrestore(&io->endio_lock, flags);
602 if (atomic_dec_and_test(&io->io_count)) {
603 if (io->error == DM_ENDIO_REQUEUE) {
605 * Target requested pushing back the I/O.
607 spin_lock_irqsave(&md->deferred_lock, flags);
608 if (__noflush_suspending(md))
609 bio_list_add_head(&md->deferred, io->bio);
611 /* noflush suspend was interrupted. */
613 spin_unlock_irqrestore(&md->deferred_lock, flags);
616 io_error = io->error;
621 if (io_error == DM_ENDIO_REQUEUE)
624 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
626 * Preflush done for flush with data, reissue
629 bio->bi_rw &= ~REQ_FLUSH;
632 /* done with normal IO or empty flush */
633 trace_block_bio_complete(md->queue, bio);
634 bio_endio(bio, io_error);
639 static void clone_endio(struct bio *bio, int error)
642 struct dm_target_io *tio = bio->bi_private;
643 struct dm_io *io = tio->io;
644 struct mapped_device *md = tio->io->md;
645 dm_endio_fn endio = tio->ti->type->end_io;
647 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
651 r = endio(tio->ti, bio, error, &tio->info);
652 if (r < 0 || r == DM_ENDIO_REQUEUE)
654 * error and requeue request are handled
658 else if (r == DM_ENDIO_INCOMPLETE)
659 /* The target will handle the io */
662 DMWARN("unimplemented target endio return value: %d", r);
668 * Store md for cleanup instead of tio which is about to get freed.
670 bio->bi_private = md->bs;
674 dec_pending(io, error);
678 * Partial completion handling for request-based dm
680 static void end_clone_bio(struct bio *clone, int error)
682 struct dm_rq_clone_bio_info *info = clone->bi_private;
683 struct dm_rq_target_io *tio = info->tio;
684 struct bio *bio = info->orig;
685 unsigned int nr_bytes = info->orig->bi_size;
691 * An error has already been detected on the request.
692 * Once error occurred, just let clone->end_io() handle
698 * Don't notice the error to the upper layer yet.
699 * The error handling decision is made by the target driver,
700 * when the request is completed.
707 * I/O for the bio successfully completed.
708 * Notice the data completion to the upper layer.
712 * bios are processed from the head of the list.
713 * So the completing bio should always be rq->bio.
714 * If it's not, something wrong is happening.
716 if (tio->orig->bio != bio)
717 DMERR("bio completion is going in the middle of the request");
720 * Update the original request.
721 * Do not use blk_end_request() here, because it may complete
722 * the original request before the clone, and break the ordering.
724 blk_update_request(tio->orig, 0, nr_bytes);
728 * Don't touch any member of the md after calling this function because
729 * the md may be freed in dm_put() at the end of this function.
730 * Or do dm_get() before calling this function and dm_put() later.
732 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
734 atomic_dec(&md->pending[rw]);
736 /* nudge anyone waiting on suspend queue */
737 if (!md_in_flight(md))
741 blk_run_queue(md->queue);
744 * dm_put() must be at the end of this function. See the comment above
749 static void free_rq_clone(struct request *clone)
751 struct dm_rq_target_io *tio = clone->end_io_data;
753 blk_rq_unprep_clone(clone);
758 * Complete the clone and the original request.
759 * Must be called without queue lock.
761 static void dm_end_request(struct request *clone, int error)
763 int rw = rq_data_dir(clone);
764 struct dm_rq_target_io *tio = clone->end_io_data;
765 struct mapped_device *md = tio->md;
766 struct request *rq = tio->orig;
768 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
769 rq->errors = clone->errors;
770 rq->resid_len = clone->resid_len;
774 * We are using the sense buffer of the original
776 * So setting the length of the sense data is enough.
778 rq->sense_len = clone->sense_len;
781 free_rq_clone(clone);
782 blk_end_request_all(rq, error);
783 rq_completed(md, rw, true);
786 static void dm_unprep_request(struct request *rq)
788 struct request *clone = rq->special;
791 rq->cmd_flags &= ~REQ_DONTPREP;
793 free_rq_clone(clone);
797 * Requeue the original request of a clone.
799 void dm_requeue_unmapped_request(struct request *clone)
801 int rw = rq_data_dir(clone);
802 struct dm_rq_target_io *tio = clone->end_io_data;
803 struct mapped_device *md = tio->md;
804 struct request *rq = tio->orig;
805 struct request_queue *q = rq->q;
808 dm_unprep_request(rq);
810 spin_lock_irqsave(q->queue_lock, flags);
811 if (elv_queue_empty(q))
813 blk_requeue_request(q, rq);
814 spin_unlock_irqrestore(q->queue_lock, flags);
816 rq_completed(md, rw, 0);
818 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
820 static void __stop_queue(struct request_queue *q)
825 static void stop_queue(struct request_queue *q)
829 spin_lock_irqsave(q->queue_lock, flags);
831 spin_unlock_irqrestore(q->queue_lock, flags);
834 static void __start_queue(struct request_queue *q)
836 if (blk_queue_stopped(q))
840 static void start_queue(struct request_queue *q)
844 spin_lock_irqsave(q->queue_lock, flags);
846 spin_unlock_irqrestore(q->queue_lock, flags);
849 static void dm_done(struct request *clone, int error, bool mapped)
852 struct dm_rq_target_io *tio = clone->end_io_data;
853 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
855 if (mapped && rq_end_io)
856 r = rq_end_io(tio->ti, clone, error, &tio->info);
859 /* The target wants to complete the I/O */
860 dm_end_request(clone, r);
861 else if (r == DM_ENDIO_INCOMPLETE)
862 /* The target will handle the I/O */
864 else if (r == DM_ENDIO_REQUEUE)
865 /* The target wants to requeue the I/O */
866 dm_requeue_unmapped_request(clone);
868 DMWARN("unimplemented target endio return value: %d", r);
874 * Request completion handler for request-based dm
876 static void dm_softirq_done(struct request *rq)
879 struct request *clone = rq->completion_data;
880 struct dm_rq_target_io *tio = clone->end_io_data;
882 if (rq->cmd_flags & REQ_FAILED)
885 dm_done(clone, tio->error, mapped);
889 * Complete the clone and the original request with the error status
890 * through softirq context.
892 static void dm_complete_request(struct request *clone, int error)
894 struct dm_rq_target_io *tio = clone->end_io_data;
895 struct request *rq = tio->orig;
898 rq->completion_data = clone;
899 blk_complete_request(rq);
903 * Complete the not-mapped clone and the original request with the error status
904 * through softirq context.
905 * Target's rq_end_io() function isn't called.
906 * This may be used when the target's map_rq() function fails.
908 void dm_kill_unmapped_request(struct request *clone, int error)
910 struct dm_rq_target_io *tio = clone->end_io_data;
911 struct request *rq = tio->orig;
913 rq->cmd_flags |= REQ_FAILED;
914 dm_complete_request(clone, error);
916 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
919 * Called with the queue lock held
921 static void end_clone_request(struct request *clone, int error)
924 * For just cleaning up the information of the queue in which
925 * the clone was dispatched.
926 * The clone is *NOT* freed actually here because it is alloced from
927 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
929 __blk_put_request(clone->q, clone);
932 * Actual request completion is done in a softirq context which doesn't
933 * hold the queue lock. Otherwise, deadlock could occur because:
934 * - another request may be submitted by the upper level driver
935 * of the stacking during the completion
936 * - the submission which requires queue lock may be done
939 dm_complete_request(clone, error);
943 * Return maximum size of I/O possible at the supplied sector up to the current
946 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
948 sector_t target_offset = dm_target_offset(ti, sector);
950 return ti->len - target_offset;
953 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
955 sector_t len = max_io_len_target_boundary(sector, ti);
958 * Does the target need to split even further ?
962 sector_t offset = dm_target_offset(ti, sector);
963 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
972 static void __map_bio(struct dm_target *ti, struct bio *clone,
973 struct dm_target_io *tio)
977 struct mapped_device *md;
979 clone->bi_end_io = clone_endio;
980 clone->bi_private = tio;
983 * Map the clone. If r == 0 we don't need to do
984 * anything, the target has assumed ownership of
987 atomic_inc(&tio->io->io_count);
988 sector = clone->bi_sector;
989 r = ti->type->map(ti, clone, &tio->info);
990 if (r == DM_MAPIO_REMAPPED) {
991 /* the bio has been remapped so dispatch it */
993 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
994 tio->io->bio->bi_bdev->bd_dev, sector);
996 generic_make_request(clone);
997 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
998 /* error the io and bail out, or requeue it if needed */
1000 dec_pending(tio->io, r);
1002 * Store bio_set for cleanup.
1004 clone->bi_private = md->bs;
1008 DMWARN("unimplemented target map return value: %d", r);
1014 struct mapped_device *md;
1015 struct dm_table *map;
1019 sector_t sector_count;
1023 static void dm_bio_destructor(struct bio *bio)
1025 struct bio_set *bs = bio->bi_private;
1031 * Creates a little bio that just does part of a bvec.
1033 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1034 unsigned short idx, unsigned int offset,
1035 unsigned int len, struct bio_set *bs)
1038 struct bio_vec *bv = bio->bi_io_vec + idx;
1040 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1041 clone->bi_destructor = dm_bio_destructor;
1042 *clone->bi_io_vec = *bv;
1044 clone->bi_sector = sector;
1045 clone->bi_bdev = bio->bi_bdev;
1046 clone->bi_rw = bio->bi_rw;
1048 clone->bi_size = to_bytes(len);
1049 clone->bi_io_vec->bv_offset = offset;
1050 clone->bi_io_vec->bv_len = clone->bi_size;
1051 clone->bi_flags |= 1 << BIO_CLONED;
1053 if (bio_integrity(bio)) {
1054 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1055 bio_integrity_trim(clone,
1056 bio_sector_offset(bio, idx, offset), len);
1063 * Creates a bio that consists of range of complete bvecs.
1065 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1066 unsigned short idx, unsigned short bv_count,
1067 unsigned int len, struct bio_set *bs)
1071 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1072 __bio_clone(clone, bio);
1073 clone->bi_destructor = dm_bio_destructor;
1074 clone->bi_sector = sector;
1075 clone->bi_idx = idx;
1076 clone->bi_vcnt = idx + bv_count;
1077 clone->bi_size = to_bytes(len);
1078 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1080 if (bio_integrity(bio)) {
1081 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1083 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1084 bio_integrity_trim(clone,
1085 bio_sector_offset(bio, idx, 0), len);
1091 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1092 struct dm_target *ti)
1094 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1098 memset(&tio->info, 0, sizeof(tio->info));
1103 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1104 unsigned request_nr, sector_t len)
1106 struct dm_target_io *tio = alloc_tio(ci, ti);
1109 tio->info.target_request_nr = request_nr;
1112 * Discard requests require the bio's inline iovecs be initialized.
1113 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1114 * and discard, so no need for concern about wasted bvec allocations.
1116 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1117 __bio_clone(clone, ci->bio);
1118 clone->bi_destructor = dm_bio_destructor;
1120 clone->bi_sector = ci->sector;
1121 clone->bi_size = to_bytes(len);
1124 __map_bio(ti, clone, tio);
1127 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1128 unsigned num_requests, sector_t len)
1130 unsigned request_nr;
1132 for (request_nr = 0; request_nr < num_requests; request_nr++)
1133 __issue_target_request(ci, ti, request_nr, len);
1136 static int __clone_and_map_empty_flush(struct clone_info *ci)
1138 unsigned target_nr = 0;
1139 struct dm_target *ti;
1141 BUG_ON(bio_has_data(ci->bio));
1142 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1143 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1149 * Perform all io with a single clone.
1151 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1153 struct bio *clone, *bio = ci->bio;
1154 struct dm_target_io *tio;
1156 tio = alloc_tio(ci, ti);
1157 clone = clone_bio(bio, ci->sector, ci->idx,
1158 bio->bi_vcnt - ci->idx, ci->sector_count,
1160 __map_bio(ti, clone, tio);
1161 ci->sector_count = 0;
1164 static int __clone_and_map_discard(struct clone_info *ci)
1166 struct dm_target *ti;
1170 ti = dm_table_find_target(ci->map, ci->sector);
1171 if (!dm_target_is_valid(ti))
1175 * Even though the device advertised discard support,
1176 * reconfiguration might have changed that since the
1177 * check was performed.
1179 if (!ti->num_discard_requests)
1182 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1184 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1187 } while (ci->sector_count -= len);
1192 static int __clone_and_map(struct clone_info *ci)
1194 struct bio *clone, *bio = ci->bio;
1195 struct dm_target *ti;
1196 sector_t len = 0, max;
1197 struct dm_target_io *tio;
1199 if (unlikely(bio->bi_rw & REQ_DISCARD))
1200 return __clone_and_map_discard(ci);
1202 ti = dm_table_find_target(ci->map, ci->sector);
1203 if (!dm_target_is_valid(ti))
1206 max = max_io_len(ci->sector, ti);
1208 if (ci->sector_count <= max) {
1210 * Optimise for the simple case where we can do all of
1211 * the remaining io with a single clone.
1213 __clone_and_map_simple(ci, ti);
1215 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1217 * There are some bvecs that don't span targets.
1218 * Do as many of these as possible.
1221 sector_t remaining = max;
1224 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1225 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1227 if (bv_len > remaining)
1230 remaining -= bv_len;
1234 tio = alloc_tio(ci, ti);
1235 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1237 __map_bio(ti, clone, tio);
1240 ci->sector_count -= len;
1245 * Handle a bvec that must be split between two or more targets.
1247 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1248 sector_t remaining = to_sector(bv->bv_len);
1249 unsigned int offset = 0;
1253 ti = dm_table_find_target(ci->map, ci->sector);
1254 if (!dm_target_is_valid(ti))
1257 max = max_io_len(ci->sector, ti);
1260 len = min(remaining, max);
1262 tio = alloc_tio(ci, ti);
1263 clone = split_bvec(bio, ci->sector, ci->idx,
1264 bv->bv_offset + offset, len,
1267 __map_bio(ti, clone, tio);
1270 ci->sector_count -= len;
1271 offset += to_bytes(len);
1272 } while (remaining -= len);
1281 * Split the bio into several clones and submit it to targets.
1283 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1285 struct clone_info ci;
1288 ci.map = dm_get_live_table(md);
1289 if (unlikely(!ci.map)) {
1295 ci.io = alloc_io(md);
1297 atomic_set(&ci.io->io_count, 1);
1300 spin_lock_init(&ci.io->endio_lock);
1301 ci.sector = bio->bi_sector;
1302 ci.idx = bio->bi_idx;
1304 start_io_acct(ci.io);
1305 if (bio->bi_rw & REQ_FLUSH) {
1306 ci.bio = &ci.md->flush_bio;
1307 ci.sector_count = 0;
1308 error = __clone_and_map_empty_flush(&ci);
1309 /* dec_pending submits any data associated with flush */
1312 ci.sector_count = bio_sectors(bio);
1313 while (ci.sector_count && !error)
1314 error = __clone_and_map(&ci);
1317 /* drop the extra reference count */
1318 dec_pending(ci.io, error);
1319 dm_table_put(ci.map);
1321 /*-----------------------------------------------------------------
1323 *---------------------------------------------------------------*/
1325 static int dm_merge_bvec(struct request_queue *q,
1326 struct bvec_merge_data *bvm,
1327 struct bio_vec *biovec)
1329 struct mapped_device *md = q->queuedata;
1330 struct dm_table *map = dm_get_live_table(md);
1331 struct dm_target *ti;
1332 sector_t max_sectors;
1338 ti = dm_table_find_target(map, bvm->bi_sector);
1339 if (!dm_target_is_valid(ti))
1343 * Find maximum amount of I/O that won't need splitting
1345 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1346 (sector_t) BIO_MAX_SECTORS);
1347 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1352 * merge_bvec_fn() returns number of bytes
1353 * it can accept at this offset
1354 * max is precomputed maximal io size
1356 if (max_size && ti->type->merge)
1357 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1359 * If the target doesn't support merge method and some of the devices
1360 * provided their merge_bvec method (we know this by looking at
1361 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1362 * entries. So always set max_size to 0, and the code below allows
1365 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1374 * Always allow an entire first page
1376 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1377 max_size = biovec->bv_len;
1383 * The request function that just remaps the bio built up by
1386 static int _dm_request(struct request_queue *q, struct bio *bio)
1388 int rw = bio_data_dir(bio);
1389 struct mapped_device *md = q->queuedata;
1392 down_read(&md->io_lock);
1394 cpu = part_stat_lock();
1395 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1396 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1399 /* if we're suspended, we have to queue this io for later */
1400 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1401 up_read(&md->io_lock);
1403 if (bio_rw(bio) != READA)
1410 __split_and_process_bio(md, bio);
1411 up_read(&md->io_lock);
1415 static int dm_make_request(struct request_queue *q, struct bio *bio)
1417 struct mapped_device *md = q->queuedata;
1419 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1422 static int dm_request_based(struct mapped_device *md)
1424 return blk_queue_stackable(md->queue);
1427 static int dm_request(struct request_queue *q, struct bio *bio)
1429 struct mapped_device *md = q->queuedata;
1431 if (dm_request_based(md))
1432 return dm_make_request(q, bio);
1434 return _dm_request(q, bio);
1437 void dm_dispatch_request(struct request *rq)
1441 if (blk_queue_io_stat(rq->q))
1442 rq->cmd_flags |= REQ_IO_STAT;
1444 rq->start_time = jiffies;
1445 r = blk_insert_cloned_request(rq->q, rq);
1447 dm_complete_request(rq, r);
1449 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1451 static void dm_rq_bio_destructor(struct bio *bio)
1453 struct dm_rq_clone_bio_info *info = bio->bi_private;
1454 struct mapped_device *md = info->tio->md;
1456 free_bio_info(info);
1457 bio_free(bio, md->bs);
1460 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1463 struct dm_rq_target_io *tio = data;
1464 struct mapped_device *md = tio->md;
1465 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1470 info->orig = bio_orig;
1472 bio->bi_end_io = end_clone_bio;
1473 bio->bi_private = info;
1474 bio->bi_destructor = dm_rq_bio_destructor;
1479 static int setup_clone(struct request *clone, struct request *rq,
1480 struct dm_rq_target_io *tio)
1484 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1485 dm_rq_bio_constructor, tio);
1489 clone->cmd = rq->cmd;
1490 clone->cmd_len = rq->cmd_len;
1491 clone->sense = rq->sense;
1492 clone->buffer = rq->buffer;
1493 clone->end_io = end_clone_request;
1494 clone->end_io_data = tio;
1499 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1502 struct request *clone;
1503 struct dm_rq_target_io *tio;
1505 tio = alloc_rq_tio(md, gfp_mask);
1513 memset(&tio->info, 0, sizeof(tio->info));
1515 clone = &tio->clone;
1516 if (setup_clone(clone, rq, tio)) {
1526 * Called with the queue lock held.
1528 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1530 struct mapped_device *md = q->queuedata;
1531 struct request *clone;
1533 if (unlikely(rq->special)) {
1534 DMWARN("Already has something in rq->special.");
1535 return BLKPREP_KILL;
1538 clone = clone_rq(rq, md, GFP_ATOMIC);
1540 return BLKPREP_DEFER;
1542 rq->special = clone;
1543 rq->cmd_flags |= REQ_DONTPREP;
1550 * 0 : the request has been processed (not requeued)
1551 * !0 : the request has been requeued
1553 static int map_request(struct dm_target *ti, struct request *clone,
1554 struct mapped_device *md)
1556 int r, requeued = 0;
1557 struct dm_rq_target_io *tio = clone->end_io_data;
1560 * Hold the md reference here for the in-flight I/O.
1561 * We can't rely on the reference count by device opener,
1562 * because the device may be closed during the request completion
1563 * when all bios are completed.
1564 * See the comment in rq_completed() too.
1569 r = ti->type->map_rq(ti, clone, &tio->info);
1571 case DM_MAPIO_SUBMITTED:
1572 /* The target has taken the I/O to submit by itself later */
1574 case DM_MAPIO_REMAPPED:
1575 /* The target has remapped the I/O so dispatch it */
1576 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1577 blk_rq_pos(tio->orig));
1578 dm_dispatch_request(clone);
1580 case DM_MAPIO_REQUEUE:
1581 /* The target wants to requeue the I/O */
1582 dm_requeue_unmapped_request(clone);
1587 DMWARN("unimplemented target map return value: %d", r);
1591 /* The target wants to complete the I/O */
1592 dm_kill_unmapped_request(clone, r);
1600 * q->request_fn for request-based dm.
1601 * Called with the queue lock held.
1603 static void dm_request_fn(struct request_queue *q)
1605 struct mapped_device *md = q->queuedata;
1606 struct dm_table *map = dm_get_live_table(md);
1607 struct dm_target *ti;
1608 struct request *rq, *clone;
1612 * For suspend, check blk_queue_stopped() and increment
1613 * ->pending within a single queue_lock not to increment the
1614 * number of in-flight I/Os after the queue is stopped in
1617 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1618 rq = blk_peek_request(q);
1622 /* always use block 0 to find the target for flushes for now */
1624 if (!(rq->cmd_flags & REQ_FLUSH))
1625 pos = blk_rq_pos(rq);
1627 ti = dm_table_find_target(map, pos);
1628 BUG_ON(!dm_target_is_valid(ti));
1630 if (ti->type->busy && ti->type->busy(ti))
1633 blk_start_request(rq);
1634 clone = rq->special;
1635 atomic_inc(&md->pending[rq_data_dir(clone)]);
1637 spin_unlock(q->queue_lock);
1638 if (map_request(ti, clone, md))
1641 spin_lock_irq(q->queue_lock);
1647 spin_lock_irq(q->queue_lock);
1650 if (!elv_queue_empty(q))
1651 /* Some requests still remain, retry later */
1660 int dm_underlying_device_busy(struct request_queue *q)
1662 return blk_lld_busy(q);
1664 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1666 static int dm_lld_busy(struct request_queue *q)
1669 struct mapped_device *md = q->queuedata;
1670 struct dm_table *map = dm_get_live_table(md);
1672 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1675 r = dm_table_any_busy_target(map);
1682 static void dm_unplug_all(struct request_queue *q)
1684 struct mapped_device *md = q->queuedata;
1685 struct dm_table *map = dm_get_live_table(md);
1688 if (dm_request_based(md))
1689 generic_unplug_device(q);
1691 dm_table_unplug_all(map);
1696 static int dm_any_congested(void *congested_data, int bdi_bits)
1699 struct mapped_device *md = congested_data;
1700 struct dm_table *map;
1702 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1703 map = dm_get_live_table(md);
1706 * Request-based dm cares about only own queue for
1707 * the query about congestion status of request_queue
1709 if (dm_request_based(md))
1710 r = md->queue->backing_dev_info.state &
1713 r = dm_table_any_congested(map, bdi_bits);
1722 /*-----------------------------------------------------------------
1723 * An IDR is used to keep track of allocated minor numbers.
1724 *---------------------------------------------------------------*/
1725 static DEFINE_IDR(_minor_idr);
1727 static void free_minor(int minor)
1729 spin_lock(&_minor_lock);
1730 idr_remove(&_minor_idr, minor);
1731 spin_unlock(&_minor_lock);
1735 * See if the device with a specific minor # is free.
1737 static int specific_minor(int minor)
1741 if (minor >= (1 << MINORBITS))
1744 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1748 spin_lock(&_minor_lock);
1750 if (idr_find(&_minor_idr, minor)) {
1755 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1760 idr_remove(&_minor_idr, m);
1766 spin_unlock(&_minor_lock);
1770 static int next_free_minor(int *minor)
1774 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1778 spin_lock(&_minor_lock);
1780 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1784 if (m >= (1 << MINORBITS)) {
1785 idr_remove(&_minor_idr, m);
1793 spin_unlock(&_minor_lock);
1797 static const struct block_device_operations dm_blk_dops;
1799 static void dm_wq_work(struct work_struct *work);
1801 static void dm_init_md_queue(struct mapped_device *md)
1804 * Request-based dm devices cannot be stacked on top of bio-based dm
1805 * devices. The type of this dm device has not been decided yet.
1806 * The type is decided at the first table loading time.
1807 * To prevent problematic device stacking, clear the queue flag
1808 * for request stacking support until then.
1810 * This queue is new, so no concurrency on the queue_flags.
1812 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1814 md->queue->queuedata = md;
1815 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1816 md->queue->backing_dev_info.congested_data = md;
1817 blk_queue_make_request(md->queue, dm_request);
1818 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1819 md->queue->unplug_fn = dm_unplug_all;
1820 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1821 blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA);
1825 * Allocate and initialise a blank device with a given minor.
1827 static struct mapped_device *alloc_dev(int minor)
1830 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1834 DMWARN("unable to allocate device, out of memory.");
1838 if (!try_module_get(THIS_MODULE))
1839 goto bad_module_get;
1841 /* get a minor number for the dev */
1842 if (minor == DM_ANY_MINOR)
1843 r = next_free_minor(&minor);
1845 r = specific_minor(minor);
1849 md->type = DM_TYPE_NONE;
1850 init_rwsem(&md->io_lock);
1851 mutex_init(&md->suspend_lock);
1852 mutex_init(&md->type_lock);
1853 spin_lock_init(&md->deferred_lock);
1854 rwlock_init(&md->map_lock);
1855 atomic_set(&md->holders, 1);
1856 atomic_set(&md->open_count, 0);
1857 atomic_set(&md->event_nr, 0);
1858 atomic_set(&md->uevent_seq, 0);
1859 INIT_LIST_HEAD(&md->uevent_list);
1860 spin_lock_init(&md->uevent_lock);
1862 md->queue = blk_alloc_queue(GFP_KERNEL);
1866 dm_init_md_queue(md);
1868 md->disk = alloc_disk(1);
1872 atomic_set(&md->pending[0], 0);
1873 atomic_set(&md->pending[1], 0);
1874 init_waitqueue_head(&md->wait);
1875 INIT_WORK(&md->work, dm_wq_work);
1876 init_waitqueue_head(&md->eventq);
1878 md->disk->major = _major;
1879 md->disk->first_minor = minor;
1880 md->disk->fops = &dm_blk_dops;
1881 md->disk->queue = md->queue;
1882 md->disk->private_data = md;
1883 sprintf(md->disk->disk_name, "dm-%d", minor);
1885 format_dev_t(md->name, MKDEV(_major, minor));
1887 md->wq = create_singlethread_workqueue("kdmflush");
1891 md->bdev = bdget_disk(md->disk, 0);
1895 bio_init(&md->flush_bio);
1896 md->flush_bio.bi_bdev = md->bdev;
1897 md->flush_bio.bi_rw = WRITE_FLUSH;
1899 /* Populate the mapping, nobody knows we exist yet */
1900 spin_lock(&_minor_lock);
1901 old_md = idr_replace(&_minor_idr, md, minor);
1902 spin_unlock(&_minor_lock);
1904 BUG_ON(old_md != MINOR_ALLOCED);
1909 destroy_workqueue(md->wq);
1911 del_gendisk(md->disk);
1914 blk_cleanup_queue(md->queue);
1918 module_put(THIS_MODULE);
1924 static void unlock_fs(struct mapped_device *md);
1926 static void free_dev(struct mapped_device *md)
1928 int minor = MINOR(disk_devt(md->disk));
1932 destroy_workqueue(md->wq);
1934 mempool_destroy(md->tio_pool);
1936 mempool_destroy(md->io_pool);
1938 bioset_free(md->bs);
1939 blk_integrity_unregister(md->disk);
1940 del_gendisk(md->disk);
1943 spin_lock(&_minor_lock);
1944 md->disk->private_data = NULL;
1945 spin_unlock(&_minor_lock);
1948 blk_cleanup_queue(md->queue);
1949 module_put(THIS_MODULE);
1953 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1955 struct dm_md_mempools *p;
1957 if (md->io_pool && md->tio_pool && md->bs)
1958 /* the md already has necessary mempools */
1961 p = dm_table_get_md_mempools(t);
1962 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1964 md->io_pool = p->io_pool;
1966 md->tio_pool = p->tio_pool;
1972 /* mempool bind completed, now no need any mempools in the table */
1973 dm_table_free_md_mempools(t);
1977 * Bind a table to the device.
1979 static void event_callback(void *context)
1981 unsigned long flags;
1983 struct mapped_device *md = (struct mapped_device *) context;
1985 spin_lock_irqsave(&md->uevent_lock, flags);
1986 list_splice_init(&md->uevent_list, &uevents);
1987 spin_unlock_irqrestore(&md->uevent_lock, flags);
1989 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1991 atomic_inc(&md->event_nr);
1992 wake_up(&md->eventq);
1995 static void __set_size(struct mapped_device *md, sector_t size)
1997 set_capacity(md->disk, size);
1999 mutex_lock(&md->bdev->bd_inode->i_mutex);
2000 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2001 mutex_unlock(&md->bdev->bd_inode->i_mutex);
2005 * Returns old map, which caller must destroy.
2007 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2008 struct queue_limits *limits)
2010 struct dm_table *old_map;
2011 struct request_queue *q = md->queue;
2013 unsigned long flags;
2015 size = dm_table_get_size(t);
2018 * Wipe any geometry if the size of the table changed.
2020 if (size != get_capacity(md->disk))
2021 memset(&md->geometry, 0, sizeof(md->geometry));
2023 __set_size(md, size);
2025 dm_table_event_callback(t, event_callback, md);
2028 * The queue hasn't been stopped yet, if the old table type wasn't
2029 * for request-based during suspension. So stop it to prevent
2030 * I/O mapping before resume.
2031 * This must be done before setting the queue restrictions,
2032 * because request-based dm may be run just after the setting.
2034 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2037 __bind_mempools(md, t);
2039 write_lock_irqsave(&md->map_lock, flags);
2042 dm_table_set_restrictions(t, q, limits);
2043 write_unlock_irqrestore(&md->map_lock, flags);
2049 * Returns unbound table for the caller to free.
2051 static struct dm_table *__unbind(struct mapped_device *md)
2053 struct dm_table *map = md->map;
2054 unsigned long flags;
2059 dm_table_event_callback(map, NULL, NULL);
2060 write_lock_irqsave(&md->map_lock, flags);
2062 write_unlock_irqrestore(&md->map_lock, flags);
2068 * Constructor for a new device.
2070 int dm_create(int minor, struct mapped_device **result)
2072 struct mapped_device *md;
2074 md = alloc_dev(minor);
2085 * Functions to manage md->type.
2086 * All are required to hold md->type_lock.
2088 void dm_lock_md_type(struct mapped_device *md)
2090 mutex_lock(&md->type_lock);
2093 void dm_unlock_md_type(struct mapped_device *md)
2095 mutex_unlock(&md->type_lock);
2098 void dm_set_md_type(struct mapped_device *md, unsigned type)
2103 unsigned dm_get_md_type(struct mapped_device *md)
2109 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2111 static int dm_init_request_based_queue(struct mapped_device *md)
2113 struct request_queue *q = NULL;
2115 if (md->queue->elevator)
2118 /* Fully initialize the queue */
2119 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2124 md->saved_make_request_fn = md->queue->make_request_fn;
2125 dm_init_md_queue(md);
2126 blk_queue_softirq_done(md->queue, dm_softirq_done);
2127 blk_queue_prep_rq(md->queue, dm_prep_fn);
2128 blk_queue_lld_busy(md->queue, dm_lld_busy);
2130 elv_register_queue(md->queue);
2136 * Setup the DM device's queue based on md's type
2138 int dm_setup_md_queue(struct mapped_device *md)
2140 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2141 !dm_init_request_based_queue(md)) {
2142 DMWARN("Cannot initialize queue for request-based mapped device");
2149 static struct mapped_device *dm_find_md(dev_t dev)
2151 struct mapped_device *md;
2152 unsigned minor = MINOR(dev);
2154 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2157 spin_lock(&_minor_lock);
2159 md = idr_find(&_minor_idr, minor);
2160 if (md && (md == MINOR_ALLOCED ||
2161 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2162 dm_deleting_md(md) ||
2163 test_bit(DMF_FREEING, &md->flags))) {
2169 spin_unlock(&_minor_lock);
2174 struct mapped_device *dm_get_md(dev_t dev)
2176 struct mapped_device *md = dm_find_md(dev);
2184 void *dm_get_mdptr(struct mapped_device *md)
2186 return md->interface_ptr;
2189 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2191 md->interface_ptr = ptr;
2194 void dm_get(struct mapped_device *md)
2196 atomic_inc(&md->holders);
2197 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2200 const char *dm_device_name(struct mapped_device *md)
2204 EXPORT_SYMBOL_GPL(dm_device_name);
2206 static void __dm_destroy(struct mapped_device *md, bool wait)
2208 struct dm_table *map;
2212 spin_lock(&_minor_lock);
2213 map = dm_get_live_table(md);
2214 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2215 set_bit(DMF_FREEING, &md->flags);
2216 spin_unlock(&_minor_lock);
2218 if (!dm_suspended_md(md)) {
2219 dm_table_presuspend_targets(map);
2220 dm_table_postsuspend_targets(map);
2224 * Rare, but there may be I/O requests still going to complete,
2225 * for example. Wait for all references to disappear.
2226 * No one should increment the reference count of the mapped_device,
2227 * after the mapped_device state becomes DMF_FREEING.
2230 while (atomic_read(&md->holders))
2232 else if (atomic_read(&md->holders))
2233 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2234 dm_device_name(md), atomic_read(&md->holders));
2238 dm_table_destroy(__unbind(md));
2242 void dm_destroy(struct mapped_device *md)
2244 __dm_destroy(md, true);
2247 void dm_destroy_immediate(struct mapped_device *md)
2249 __dm_destroy(md, false);
2252 void dm_put(struct mapped_device *md)
2254 atomic_dec(&md->holders);
2256 EXPORT_SYMBOL_GPL(dm_put);
2258 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2261 DECLARE_WAITQUEUE(wait, current);
2263 dm_unplug_all(md->queue);
2265 add_wait_queue(&md->wait, &wait);
2268 set_current_state(interruptible);
2271 if (!md_in_flight(md))
2274 if (interruptible == TASK_INTERRUPTIBLE &&
2275 signal_pending(current)) {
2282 set_current_state(TASK_RUNNING);
2284 remove_wait_queue(&md->wait, &wait);
2290 * Process the deferred bios
2292 static void dm_wq_work(struct work_struct *work)
2294 struct mapped_device *md = container_of(work, struct mapped_device,
2298 down_read(&md->io_lock);
2300 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2301 spin_lock_irq(&md->deferred_lock);
2302 c = bio_list_pop(&md->deferred);
2303 spin_unlock_irq(&md->deferred_lock);
2308 up_read(&md->io_lock);
2310 if (dm_request_based(md))
2311 generic_make_request(c);
2313 __split_and_process_bio(md, c);
2315 down_read(&md->io_lock);
2318 up_read(&md->io_lock);
2321 static void dm_queue_flush(struct mapped_device *md)
2323 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2324 smp_mb__after_clear_bit();
2325 queue_work(md->wq, &md->work);
2329 * Swap in a new table, returning the old one for the caller to destroy.
2331 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2333 struct dm_table *map = ERR_PTR(-EINVAL);
2334 struct queue_limits limits;
2337 mutex_lock(&md->suspend_lock);
2339 /* device must be suspended */
2340 if (!dm_suspended_md(md))
2343 r = dm_calculate_queue_limits(table, &limits);
2349 map = __bind(md, table, &limits);
2352 mutex_unlock(&md->suspend_lock);
2357 * Functions to lock and unlock any filesystem running on the
2360 static int lock_fs(struct mapped_device *md)
2364 WARN_ON(md->frozen_sb);
2366 md->frozen_sb = freeze_bdev(md->bdev);
2367 if (IS_ERR(md->frozen_sb)) {
2368 r = PTR_ERR(md->frozen_sb);
2369 md->frozen_sb = NULL;
2373 set_bit(DMF_FROZEN, &md->flags);
2378 static void unlock_fs(struct mapped_device *md)
2380 if (!test_bit(DMF_FROZEN, &md->flags))
2383 thaw_bdev(md->bdev, md->frozen_sb);
2384 md->frozen_sb = NULL;
2385 clear_bit(DMF_FROZEN, &md->flags);
2389 * We need to be able to change a mapping table under a mounted
2390 * filesystem. For example we might want to move some data in
2391 * the background. Before the table can be swapped with
2392 * dm_bind_table, dm_suspend must be called to flush any in
2393 * flight bios and ensure that any further io gets deferred.
2396 * Suspend mechanism in request-based dm.
2398 * 1. Flush all I/Os by lock_fs() if needed.
2399 * 2. Stop dispatching any I/O by stopping the request_queue.
2400 * 3. Wait for all in-flight I/Os to be completed or requeued.
2402 * To abort suspend, start the request_queue.
2404 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2406 struct dm_table *map = NULL;
2408 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2409 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2411 mutex_lock(&md->suspend_lock);
2413 if (dm_suspended_md(md)) {
2418 map = dm_get_live_table(md);
2421 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2422 * This flag is cleared before dm_suspend returns.
2425 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2427 /* This does not get reverted if there's an error later. */
2428 dm_table_presuspend_targets(map);
2431 * Flush I/O to the device.
2432 * Any I/O submitted after lock_fs() may not be flushed.
2433 * noflush takes precedence over do_lockfs.
2434 * (lock_fs() flushes I/Os and waits for them to complete.)
2436 if (!noflush && do_lockfs) {
2443 * Here we must make sure that no processes are submitting requests
2444 * to target drivers i.e. no one may be executing
2445 * __split_and_process_bio. This is called from dm_request and
2448 * To get all processes out of __split_and_process_bio in dm_request,
2449 * we take the write lock. To prevent any process from reentering
2450 * __split_and_process_bio from dm_request and quiesce the thread
2451 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2452 * flush_workqueue(md->wq).
2454 down_write(&md->io_lock);
2455 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2456 up_write(&md->io_lock);
2459 * Stop md->queue before flushing md->wq in case request-based
2460 * dm defers requests to md->wq from md->queue.
2462 if (dm_request_based(md))
2463 stop_queue(md->queue);
2465 flush_workqueue(md->wq);
2468 * At this point no more requests are entering target request routines.
2469 * We call dm_wait_for_completion to wait for all existing requests
2472 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2474 down_write(&md->io_lock);
2476 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2477 up_write(&md->io_lock);
2479 /* were we interrupted ? */
2483 if (dm_request_based(md))
2484 start_queue(md->queue);
2487 goto out; /* pushback list is already flushed, so skip flush */
2491 * If dm_wait_for_completion returned 0, the device is completely
2492 * quiescent now. There is no request-processing activity. All new
2493 * requests are being added to md->deferred list.
2496 set_bit(DMF_SUSPENDED, &md->flags);
2498 dm_table_postsuspend_targets(map);
2504 mutex_unlock(&md->suspend_lock);
2508 int dm_resume(struct mapped_device *md)
2511 struct dm_table *map = NULL;
2513 mutex_lock(&md->suspend_lock);
2514 if (!dm_suspended_md(md))
2517 map = dm_get_live_table(md);
2518 if (!map || !dm_table_get_size(map))
2521 r = dm_table_resume_targets(map);
2528 * Flushing deferred I/Os must be done after targets are resumed
2529 * so that mapping of targets can work correctly.
2530 * Request-based dm is queueing the deferred I/Os in its request_queue.
2532 if (dm_request_based(md))
2533 start_queue(md->queue);
2537 clear_bit(DMF_SUSPENDED, &md->flags);
2539 dm_table_unplug_all(map);
2543 mutex_unlock(&md->suspend_lock);
2548 /*-----------------------------------------------------------------
2549 * Event notification.
2550 *---------------------------------------------------------------*/
2551 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2554 char udev_cookie[DM_COOKIE_LENGTH];
2555 char *envp[] = { udev_cookie, NULL };
2558 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2560 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2561 DM_COOKIE_ENV_VAR_NAME, cookie);
2562 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2567 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2569 return atomic_add_return(1, &md->uevent_seq);
2572 uint32_t dm_get_event_nr(struct mapped_device *md)
2574 return atomic_read(&md->event_nr);
2577 int dm_wait_event(struct mapped_device *md, int event_nr)
2579 return wait_event_interruptible(md->eventq,
2580 (event_nr != atomic_read(&md->event_nr)));
2583 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2585 unsigned long flags;
2587 spin_lock_irqsave(&md->uevent_lock, flags);
2588 list_add(elist, &md->uevent_list);
2589 spin_unlock_irqrestore(&md->uevent_lock, flags);
2593 * The gendisk is only valid as long as you have a reference
2596 struct gendisk *dm_disk(struct mapped_device *md)
2601 struct kobject *dm_kobject(struct mapped_device *md)
2607 * struct mapped_device should not be exported outside of dm.c
2608 * so use this check to verify that kobj is part of md structure
2610 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2612 struct mapped_device *md;
2614 md = container_of(kobj, struct mapped_device, kobj);
2615 if (&md->kobj != kobj)
2618 if (test_bit(DMF_FREEING, &md->flags) ||
2626 int dm_suspended_md(struct mapped_device *md)
2628 return test_bit(DMF_SUSPENDED, &md->flags);
2631 int dm_suspended(struct dm_target *ti)
2633 return dm_suspended_md(dm_table_get_md(ti->table));
2635 EXPORT_SYMBOL_GPL(dm_suspended);
2637 int dm_noflush_suspending(struct dm_target *ti)
2639 return __noflush_suspending(dm_table_get_md(ti->table));
2641 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2643 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2645 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2650 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2651 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2652 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2653 if (!pools->io_pool)
2654 goto free_pools_and_out;
2656 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2657 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2658 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2659 if (!pools->tio_pool)
2660 goto free_io_pool_and_out;
2662 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2663 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2665 goto free_tio_pool_and_out;
2669 free_tio_pool_and_out:
2670 mempool_destroy(pools->tio_pool);
2672 free_io_pool_and_out:
2673 mempool_destroy(pools->io_pool);
2681 void dm_free_md_mempools(struct dm_md_mempools *pools)
2687 mempool_destroy(pools->io_pool);
2689 if (pools->tio_pool)
2690 mempool_destroy(pools->tio_pool);
2693 bioset_free(pools->bs);
2698 static const struct block_device_operations dm_blk_dops = {
2699 .open = dm_blk_open,
2700 .release = dm_blk_close,
2701 .ioctl = dm_blk_ioctl,
2702 .getgeo = dm_blk_getgeo,
2703 .owner = THIS_MODULE
2706 EXPORT_SYMBOL(dm_get_mapinfo);
2711 module_init(dm_init);
2712 module_exit(dm_exit);
2714 module_param(major, uint, 0);
2715 MODULE_PARM_DESC(major, "The major number of the device mapper");
2716 MODULE_DESCRIPTION(DM_NAME " driver");
2718 MODULE_LICENSE("GPL");