2 * Based on arch/arm/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 #include <linux/extable.h>
22 #include <linux/signal.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
37 #include <asm/cmpxchg.h>
38 #include <asm/cpufeature.h>
39 #include <asm/exception.h>
40 #include <asm/debug-monitors.h>
42 #include <asm/sysreg.h>
43 #include <asm/system_misc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46 #include <asm/traps.h>
48 #include <acpi/ghes.h>
51 int (*fn)(unsigned long addr, unsigned int esr,
52 struct pt_regs *regs);
58 static const struct fault_info fault_info[];
60 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
62 return fault_info + (esr & 63);
66 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
70 /* kprobe_running() needs smp_processor_id() */
71 if (!user_mode(regs)) {
73 if (kprobe_running() && kprobe_fault_handler(regs, esr))
81 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
87 static void data_abort_decode(unsigned int esr)
89 pr_alert("Data abort info:\n");
91 if (esr & ESR_ELx_ISV) {
92 pr_alert(" Access size = %u byte(s)\n",
93 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
94 pr_alert(" SSE = %lu, SRT = %lu\n",
95 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
96 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
97 pr_alert(" SF = %lu, AR = %lu\n",
98 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
99 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
101 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
104 pr_alert(" CM = %lu, WnR = %lu\n",
105 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
106 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
109 static void mem_abort_decode(unsigned int esr)
111 pr_alert("Mem abort info:\n");
113 pr_alert(" ESR = 0x%08x\n", esr);
114 pr_alert(" Exception class = %s, IL = %u bits\n",
115 esr_get_class_string(esr),
116 (esr & ESR_ELx_IL) ? 32 : 16);
117 pr_alert(" SET = %lu, FnV = %lu\n",
118 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
119 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
120 pr_alert(" EA = %lu, S1PTW = %lu\n",
121 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
122 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
124 if (esr_is_data_abort(esr))
125 data_abort_decode(esr);
129 * Dump out the page tables associated with 'addr' in the currently active mm.
131 void show_pte(unsigned long addr)
133 struct mm_struct *mm;
137 if (addr < TASK_SIZE) {
139 mm = current->active_mm;
140 if (mm == &init_mm) {
141 pr_alert("[%016lx] user address but active_mm is swapper\n",
145 } else if (addr >= VA_START) {
149 pr_alert("[%016lx] address between user and kernel address ranges\n",
154 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
155 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
157 pgdp = pgd_offset(mm, addr);
158 pgd = READ_ONCE(*pgdp);
159 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
166 if (pgd_none(pgd) || pgd_bad(pgd))
169 pudp = pud_offset(pgdp, addr);
170 pud = READ_ONCE(*pudp);
171 pr_cont(", pud=%016llx", pud_val(pud));
172 if (pud_none(pud) || pud_bad(pud))
175 pmdp = pmd_offset(pudp, addr);
176 pmd = READ_ONCE(*pmdp);
177 pr_cont(", pmd=%016llx", pmd_val(pmd));
178 if (pmd_none(pmd) || pmd_bad(pmd))
181 ptep = pte_offset_map(pmdp, addr);
182 pte = READ_ONCE(*ptep);
183 pr_cont(", pte=%016llx", pte_val(pte));
191 * This function sets the access flags (dirty, accessed), as well as write
192 * permission, and only to a more permissive setting.
194 * It needs to cope with hardware update of the accessed/dirty state by other
195 * agents in the system and can safely skip the __sync_icache_dcache() call as,
196 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
198 * Returns whether or not the PTE actually changed.
200 int ptep_set_access_flags(struct vm_area_struct *vma,
201 unsigned long address, pte_t *ptep,
202 pte_t entry, int dirty)
204 pteval_t old_pteval, pteval;
205 pte_t pte = READ_ONCE(*ptep);
207 if (pte_same(pte, entry))
210 /* only preserve the access flags and write permission */
211 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
214 * Setting the flags must be done atomically to avoid racing with the
215 * hardware update of the access/dirty state. The PTE_RDONLY bit must
216 * be set to the most permissive (lowest value) of *ptep and entry
217 * (calculated as: a & b == ~(~a | ~b)).
219 pte_val(entry) ^= PTE_RDONLY;
220 pteval = pte_val(pte);
223 pteval ^= PTE_RDONLY;
224 pteval |= pte_val(entry);
225 pteval ^= PTE_RDONLY;
226 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
227 } while (pteval != old_pteval);
229 flush_tlb_fix_spurious_fault(vma, address);
233 static bool is_el1_instruction_abort(unsigned int esr)
235 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
238 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
241 unsigned int ec = ESR_ELx_EC(esr);
242 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
244 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
247 if (fsc_type == ESR_ELx_FSC_PERM)
250 if (addr < TASK_SIZE && system_uses_ttbr0_pan())
251 return fsc_type == ESR_ELx_FSC_FAULT &&
252 (regs->pstate & PSR_PAN_BIT);
257 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
258 struct pt_regs *regs)
263 * Are we prepared to handle this kernel fault?
264 * We are almost certainly not prepared to handle instruction faults.
266 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
271 if (is_permission_fault(esr, regs, addr)) {
272 if (esr & ESR_ELx_WNR)
273 msg = "write to read-only memory";
275 msg = "read from unreadable memory";
276 } else if (addr < PAGE_SIZE) {
277 msg = "NULL pointer dereference";
279 msg = "paging request";
282 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
285 mem_abort_decode(esr);
288 die("Oops", regs, esr);
293 static void __do_user_fault(struct siginfo *info, unsigned int esr)
295 current->thread.fault_address = (unsigned long)info->si_addr;
298 * If the faulting address is in the kernel, we must sanitize the ESR.
299 * From userspace's point of view, kernel-only mappings don't exist
300 * at all, so we report them as level 0 translation faults.
301 * (This is not quite the way that "no mapping there at all" behaves:
302 * an alignment fault not caused by the memory type would take
303 * precedence over translation fault for a real access to empty
304 * space. Unfortunately we can't easily distinguish "alignment fault
305 * not caused by memory type" from "alignment fault caused by memory
306 * type", so we ignore this wrinkle and just return the translation
309 if (current->thread.fault_address >= TASK_SIZE) {
310 switch (ESR_ELx_EC(esr)) {
311 case ESR_ELx_EC_DABT_LOW:
313 * These bits provide only information about the
314 * faulting instruction, which userspace knows already.
315 * We explicitly clear bits which are architecturally
316 * RES0 in case they are given meanings in future.
317 * We always report the ESR as if the fault was taken
318 * to EL1 and so ISV and the bits in ISS[23:14] are
319 * clear. (In fact it always will be a fault to EL1.)
321 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
322 ESR_ELx_CM | ESR_ELx_WNR;
323 esr |= ESR_ELx_FSC_FAULT;
325 case ESR_ELx_EC_IABT_LOW:
327 * Claim a level 0 translation fault.
328 * All other bits are architecturally RES0 for faults
329 * reported with that DFSC value, so we clear them.
331 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
332 esr |= ESR_ELx_FSC_FAULT;
336 * This should never happen (entry.S only brings us
337 * into this code for insn and data aborts from a lower
338 * exception level). Fail safe by not providing an ESR
339 * context record at all.
341 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
347 current->thread.fault_code = esr;
348 arm64_force_sig_info(info, esr_to_fault_info(esr)->name, current);
351 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
354 * If we are in kernel mode at this point, we have no context to
355 * handle this fault with.
357 if (user_mode(regs)) {
358 const struct fault_info *inf = esr_to_fault_info(esr);
359 struct siginfo si = {
360 .si_signo = inf->sig,
361 .si_code = inf->code,
362 .si_addr = (void __user *)addr,
365 __do_user_fault(&si, esr);
367 __do_kernel_fault(addr, esr, regs);
371 #define VM_FAULT_BADMAP 0x010000
372 #define VM_FAULT_BADACCESS 0x020000
374 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
375 unsigned int mm_flags, unsigned long vm_flags,
376 struct task_struct *tsk)
378 struct vm_area_struct *vma;
381 vma = find_vma(mm, addr);
382 fault = VM_FAULT_BADMAP;
385 if (unlikely(vma->vm_start > addr))
389 * Ok, we have a good vm_area for this memory access, so we can handle
394 * Check that the permissions on the VMA allow for the fault which
397 if (!(vma->vm_flags & vm_flags)) {
398 fault = VM_FAULT_BADACCESS;
402 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
405 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
411 static bool is_el0_instruction_abort(unsigned int esr)
413 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
416 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
417 struct pt_regs *regs)
419 struct task_struct *tsk;
420 struct mm_struct *mm;
422 int fault, major = 0;
423 unsigned long vm_flags = VM_READ | VM_WRITE;
424 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
426 if (notify_page_fault(regs, esr))
433 * If we're in an interrupt or have no user context, we must not take
436 if (faulthandler_disabled() || !mm)
440 mm_flags |= FAULT_FLAG_USER;
442 if (is_el0_instruction_abort(esr)) {
444 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
446 mm_flags |= FAULT_FLAG_WRITE;
449 if (addr < TASK_SIZE && is_permission_fault(esr, regs, addr)) {
450 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
451 if (regs->orig_addr_limit == KERNEL_DS)
452 die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
454 if (is_el1_instruction_abort(esr))
455 die("Attempting to execute userspace memory", regs, esr);
457 if (!search_exception_tables(regs->pc))
458 die("Accessing user space memory outside uaccess.h routines", regs, esr);
461 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
464 * As per x86, we may deadlock here. However, since the kernel only
465 * validly references user space from well defined areas of the code,
466 * we can bug out early if this is from code which shouldn't.
468 if (!down_read_trylock(&mm->mmap_sem)) {
469 if (!user_mode(regs) && !search_exception_tables(regs->pc))
472 down_read(&mm->mmap_sem);
475 * The above down_read_trylock() might have succeeded in which
476 * case, we'll have missed the might_sleep() from down_read().
479 #ifdef CONFIG_DEBUG_VM
480 if (!user_mode(regs) && !search_exception_tables(regs->pc))
485 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
486 major |= fault & VM_FAULT_MAJOR;
488 if (fault & VM_FAULT_RETRY) {
490 * If we need to retry but a fatal signal is pending,
491 * handle the signal first. We do not need to release
492 * the mmap_sem because it would already be released
493 * in __lock_page_or_retry in mm/filemap.c.
495 if (fatal_signal_pending(current)) {
496 if (!user_mode(regs))
502 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
505 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
506 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
507 mm_flags |= FAULT_FLAG_TRIED;
511 up_read(&mm->mmap_sem);
514 * Handle the "normal" (no error) case first.
516 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
517 VM_FAULT_BADACCESS)))) {
519 * Major/minor page fault accounting is only done
520 * once. If we go through a retry, it is extremely
521 * likely that the page will be found in page cache at
526 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
530 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
538 * If we are in kernel mode at this point, we have no context to
539 * handle this fault with.
541 if (!user_mode(regs))
544 if (fault & VM_FAULT_OOM) {
546 * We ran out of memory, call the OOM killer, and return to
547 * userspace (which will retry the fault, or kill us if we got
550 pagefault_out_of_memory();
555 si.si_addr = (void __user *)addr;
557 if (fault & VM_FAULT_SIGBUS) {
559 * We had some memory, but were unable to successfully fix up
562 si.si_signo = SIGBUS;
563 si.si_code = BUS_ADRERR;
564 } else if (fault & VM_FAULT_HWPOISON_LARGE) {
565 unsigned int hindex = VM_FAULT_GET_HINDEX(fault);
567 si.si_signo = SIGBUS;
568 si.si_code = BUS_MCEERR_AR;
569 si.si_addr_lsb = hstate_index_to_shift(hindex);
570 } else if (fault & VM_FAULT_HWPOISON) {
571 si.si_signo = SIGBUS;
572 si.si_code = BUS_MCEERR_AR;
573 si.si_addr_lsb = PAGE_SHIFT;
576 * Something tried to access memory that isn't in our memory
579 si.si_signo = SIGSEGV;
580 si.si_code = fault == VM_FAULT_BADACCESS ?
581 SEGV_ACCERR : SEGV_MAPERR;
584 __do_user_fault(&si, esr);
588 __do_kernel_fault(addr, esr, regs);
592 static int __kprobes do_translation_fault(unsigned long addr,
594 struct pt_regs *regs)
596 if (addr < TASK_SIZE)
597 return do_page_fault(addr, esr, regs);
599 do_bad_area(addr, esr, regs);
603 static int do_alignment_fault(unsigned long addr, unsigned int esr,
604 struct pt_regs *regs)
606 do_bad_area(addr, esr, regs);
610 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
612 return 1; /* "fault" */
615 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
618 const struct fault_info *inf;
620 inf = esr_to_fault_info(esr);
623 * Synchronous aborts may interrupt code which had interrupts masked.
624 * Before calling out into the wider kernel tell the interested
627 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
628 if (interrupts_enabled(regs))
633 if (interrupts_enabled(regs))
637 info.si_signo = inf->sig;
639 info.si_code = inf->code;
640 if (esr & ESR_ELx_FnV)
643 info.si_addr = (void __user *)addr;
644 arm64_notify_die(inf->name, regs, &info, esr);
649 static const struct fault_info fault_info[] = {
650 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
651 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
652 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
653 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
654 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
655 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
656 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
657 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
658 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
659 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
660 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
661 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
662 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
663 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
664 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
665 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
666 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
667 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
668 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
669 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
670 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
671 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
672 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
673 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
674 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
675 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
676 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
677 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
678 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
679 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
680 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
681 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
682 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
683 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
684 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
685 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
686 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
687 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
688 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
689 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
690 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
691 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
692 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
693 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
694 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
695 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
696 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
697 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
698 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
699 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
700 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
701 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
702 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
703 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
704 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
705 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
706 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
707 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
708 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
709 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
710 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
711 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
712 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
713 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
716 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
720 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
721 ret = ghes_notify_sea();
726 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
727 struct pt_regs *regs)
729 const struct fault_info *inf = esr_to_fault_info(esr);
732 if (!inf->fn(addr, esr, regs))
735 if (!user_mode(regs)) {
736 pr_alert("Unhandled fault at 0x%016lx\n", addr);
737 mem_abort_decode(esr);
741 info.si_signo = inf->sig;
743 info.si_code = inf->code;
744 info.si_addr = (void __user *)addr;
745 arm64_notify_die(inf->name, regs, &info, esr);
748 asmlinkage void __exception do_el0_irq_bp_hardening(void)
750 /* PC has already been checked in entry.S */
751 arm64_apply_bp_hardening();
754 asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
756 struct pt_regs *regs)
759 * We've taken an instruction abort from userspace and not yet
760 * re-enabled IRQs. If the address is a kernel address, apply
761 * BP hardening prior to enabling IRQs and pre-emption.
763 if (addr > TASK_SIZE)
764 arm64_apply_bp_hardening();
767 do_mem_abort(addr, esr, regs);
771 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
773 struct pt_regs *regs)
777 if (user_mode(regs)) {
778 if (instruction_pointer(regs) > TASK_SIZE)
779 arm64_apply_bp_hardening();
783 info.si_signo = SIGBUS;
785 info.si_code = BUS_ADRALN;
786 info.si_addr = (void __user *)addr;
787 arm64_notify_die("SP/PC alignment exception", regs, &info, esr);
790 int __init early_brk64(unsigned long addr, unsigned int esr,
791 struct pt_regs *regs);
794 * __refdata because early_brk64 is __init, but the reference to it is
795 * clobbered at arch_initcall time.
796 * See traps.c and debug-monitors.c:debug_traps_init().
798 static struct fault_info __refdata debug_fault_info[] = {
799 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
800 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
801 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
802 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
803 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
804 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
805 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
806 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
809 void __init hook_debug_fault_code(int nr,
810 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
811 int sig, int code, const char *name)
813 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
815 debug_fault_info[nr].fn = fn;
816 debug_fault_info[nr].sig = sig;
817 debug_fault_info[nr].code = code;
818 debug_fault_info[nr].name = name;
821 asmlinkage int __exception do_debug_exception(unsigned long addr,
823 struct pt_regs *regs)
825 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
830 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
831 * already disabled to preserve the last enabled/disabled addresses.
833 if (interrupts_enabled(regs))
834 trace_hardirqs_off();
836 if (user_mode(regs) && instruction_pointer(regs) > TASK_SIZE)
837 arm64_apply_bp_hardening();
839 if (!inf->fn(addr, esr, regs)) {
842 info.si_signo = inf->sig;
844 info.si_code = inf->code;
845 info.si_addr = (void __user *)addr;
846 arm64_notify_die(inf->name, regs, &info, esr);
850 if (interrupts_enabled(regs))
855 NOKPROBE_SYMBOL(do_debug_exception);
857 #ifdef CONFIG_ARM64_PAN
858 void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
861 * We modify PSTATE. This won't work from irq context as the PSTATE
862 * is discarded once we return from the exception.
864 WARN_ON_ONCE(in_interrupt());
866 config_sctlr_el1(SCTLR_EL1_SPAN, 0);
867 asm(SET_PSTATE_PAN(1));
869 #endif /* CONFIG_ARM64_PAN */