1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
25 #include <asm/tlbflush.h>
28 #define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
78 hugetlb_report_usage(m, mm);
82 unsigned long task_vsize(struct mm_struct *mm)
84 return PAGE_SIZE * mm->total_vm;
87 unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
102 * Save get_task_policy() for show_numa_map().
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
106 struct task_struct *task = priv->task;
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
113 static void release_task_mempolicy(struct proc_maps_private *priv)
115 mpol_put(priv->task_mempolicy);
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
121 static void release_task_mempolicy(struct proc_maps_private *priv)
126 static void vma_stop(struct proc_maps_private *priv)
128 struct mm_struct *mm = priv->mm;
130 release_task_mempolicy(priv);
131 up_read(&mm->mmap_sem);
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
138 if (vma == priv->tail_vma)
140 return vma->vm_next ?: priv->tail_vma;
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
145 if (m->count < m->size) /* vma is copied successfully */
146 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
149 static void *m_start(struct seq_file *m, loff_t *ppos)
151 struct proc_maps_private *priv = m->private;
152 unsigned long last_addr = m->version;
153 struct mm_struct *mm;
154 struct vm_area_struct *vma;
155 unsigned int pos = *ppos;
157 /* See m_cache_vma(). Zero at the start or after lseek. */
158 if (last_addr == -1UL)
161 priv->task = get_proc_task(priv->inode);
163 return ERR_PTR(-ESRCH);
166 if (!mm || !mmget_not_zero(mm))
169 down_read(&mm->mmap_sem);
170 hold_task_mempolicy(priv);
171 priv->tail_vma = get_gate_vma(mm);
174 vma = find_vma(mm, last_addr - 1);
175 if (vma && vma->vm_start <= last_addr)
176 vma = m_next_vma(priv, vma);
182 if (pos < mm->map_count) {
183 for (vma = mm->mmap; pos; pos--) {
184 m->version = vma->vm_start;
190 /* we do not bother to update m->version in this case */
191 if (pos == mm->map_count && priv->tail_vma)
192 return priv->tail_vma;
198 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
200 struct proc_maps_private *priv = m->private;
201 struct vm_area_struct *next;
204 next = m_next_vma(priv, v);
210 static void m_stop(struct seq_file *m, void *v)
212 struct proc_maps_private *priv = m->private;
214 if (!IS_ERR_OR_NULL(v))
217 put_task_struct(priv->task);
222 static int proc_maps_open(struct inode *inode, struct file *file,
223 const struct seq_operations *ops, int psize)
225 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
231 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
232 if (IS_ERR(priv->mm)) {
233 int err = PTR_ERR(priv->mm);
235 seq_release_private(inode, file);
242 static int proc_map_release(struct inode *inode, struct file *file)
244 struct seq_file *seq = file->private_data;
245 struct proc_maps_private *priv = seq->private;
250 return seq_release_private(inode, file);
253 static int do_maps_open(struct inode *inode, struct file *file,
254 const struct seq_operations *ops)
256 return proc_maps_open(inode, file, ops,
257 sizeof(struct proc_maps_private));
261 * Indicate if the VMA is a stack for the given task; for
262 * /proc/PID/maps that is the stack of the main task.
264 static int is_stack(struct vm_area_struct *vma)
267 * We make no effort to guess what a given thread considers to be
268 * its "stack". It's not even well-defined for programs written
271 return vma->vm_start <= vma->vm_mm->start_stack &&
272 vma->vm_end >= vma->vm_mm->start_stack;
275 static void show_vma_header_prefix(struct seq_file *m,
276 unsigned long start, unsigned long end,
277 vm_flags_t flags, unsigned long long pgoff,
278 dev_t dev, unsigned long ino)
280 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
281 seq_put_hex_ll(m, NULL, start, 8);
282 seq_put_hex_ll(m, "-", end, 8);
284 seq_putc(m, flags & VM_READ ? 'r' : '-');
285 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
286 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
287 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
288 seq_put_hex_ll(m, " ", pgoff, 8);
289 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
290 seq_put_hex_ll(m, ":", MINOR(dev), 2);
291 seq_put_decimal_ull(m, " ", ino);
296 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
298 struct mm_struct *mm = vma->vm_mm;
299 struct file *file = vma->vm_file;
300 vm_flags_t flags = vma->vm_flags;
301 unsigned long ino = 0;
302 unsigned long long pgoff = 0;
303 unsigned long start, end;
305 const char *name = NULL;
308 struct inode *inode = file_inode(vma->vm_file);
309 dev = inode->i_sb->s_dev;
311 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
314 start = vma->vm_start;
316 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
319 * Print the dentry name for named mappings, and a
320 * special [heap] marker for the heap:
324 seq_file_path(m, file, "\n");
328 if (vma->vm_ops && vma->vm_ops->name) {
329 name = vma->vm_ops->name(vma);
334 name = arch_vma_name(vma);
341 if (vma->vm_start <= mm->brk &&
342 vma->vm_end >= mm->start_brk) {
359 static int show_map(struct seq_file *m, void *v)
366 static const struct seq_operations proc_pid_maps_op = {
373 static int pid_maps_open(struct inode *inode, struct file *file)
375 return do_maps_open(inode, file, &proc_pid_maps_op);
378 const struct file_operations proc_pid_maps_operations = {
379 .open = pid_maps_open,
382 .release = proc_map_release,
386 * Proportional Set Size(PSS): my share of RSS.
388 * PSS of a process is the count of pages it has in memory, where each
389 * page is divided by the number of processes sharing it. So if a
390 * process has 1000 pages all to itself, and 1000 shared with one other
391 * process, its PSS will be 1500.
393 * To keep (accumulated) division errors low, we adopt a 64bit
394 * fixed-point pss counter to minimize division errors. So (pss >>
395 * PSS_SHIFT) would be the real byte count.
397 * A shift of 12 before division means (assuming 4K page size):
398 * - 1M 3-user-pages add up to 8KB errors;
399 * - supports mapcount up to 2^24, or 16M;
400 * - supports PSS up to 2^52 bytes, or 4PB.
404 #ifdef CONFIG_PROC_PAGE_MONITOR
405 struct mem_size_stats {
406 unsigned long resident;
407 unsigned long shared_clean;
408 unsigned long shared_dirty;
409 unsigned long private_clean;
410 unsigned long private_dirty;
411 unsigned long referenced;
412 unsigned long anonymous;
413 unsigned long lazyfree;
414 unsigned long anonymous_thp;
415 unsigned long shmem_thp;
417 unsigned long shared_hugetlb;
418 unsigned long private_hugetlb;
422 bool check_shmem_swap;
425 static void smaps_account(struct mem_size_stats *mss, struct page *page,
426 bool compound, bool young, bool dirty)
428 int i, nr = compound ? 1 << compound_order(page) : 1;
429 unsigned long size = nr * PAGE_SIZE;
431 if (PageAnon(page)) {
432 mss->anonymous += size;
433 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
434 mss->lazyfree += size;
437 mss->resident += size;
438 /* Accumulate the size in pages that have been accessed. */
439 if (young || page_is_young(page) || PageReferenced(page))
440 mss->referenced += size;
443 * page_count(page) == 1 guarantees the page is mapped exactly once.
444 * If any subpage of the compound page mapped with PTE it would elevate
447 if (page_count(page) == 1) {
448 if (dirty || PageDirty(page))
449 mss->private_dirty += size;
451 mss->private_clean += size;
452 mss->pss += (u64)size << PSS_SHIFT;
456 for (i = 0; i < nr; i++, page++) {
457 int mapcount = page_mapcount(page);
460 if (dirty || PageDirty(page))
461 mss->shared_dirty += PAGE_SIZE;
463 mss->shared_clean += PAGE_SIZE;
464 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
466 if (dirty || PageDirty(page))
467 mss->private_dirty += PAGE_SIZE;
469 mss->private_clean += PAGE_SIZE;
470 mss->pss += PAGE_SIZE << PSS_SHIFT;
476 static int smaps_pte_hole(unsigned long addr, unsigned long end,
477 struct mm_walk *walk)
479 struct mem_size_stats *mss = walk->private;
481 mss->swap += shmem_partial_swap_usage(
482 walk->vma->vm_file->f_mapping, addr, end);
488 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
489 struct mm_walk *walk)
491 struct mem_size_stats *mss = walk->private;
492 struct vm_area_struct *vma = walk->vma;
493 struct page *page = NULL;
495 if (pte_present(*pte)) {
496 page = vm_normal_page(vma, addr, *pte);
497 } else if (is_swap_pte(*pte)) {
498 swp_entry_t swpent = pte_to_swp_entry(*pte);
500 if (!non_swap_entry(swpent)) {
503 mss->swap += PAGE_SIZE;
504 mapcount = swp_swapcount(swpent);
506 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
508 do_div(pss_delta, mapcount);
509 mss->swap_pss += pss_delta;
511 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
513 } else if (is_migration_entry(swpent))
514 page = migration_entry_to_page(swpent);
515 else if (is_device_private_entry(swpent))
516 page = device_private_entry_to_page(swpent);
517 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
518 && pte_none(*pte))) {
519 page = find_get_entry(vma->vm_file->f_mapping,
520 linear_page_index(vma, addr));
524 if (xa_is_value(page))
525 mss->swap += PAGE_SIZE;
535 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
540 struct mm_walk *walk)
542 struct mem_size_stats *mss = walk->private;
543 struct vm_area_struct *vma = walk->vma;
546 /* FOLL_DUMP will return -EFAULT on huge zero page */
547 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
548 if (IS_ERR_OR_NULL(page))
551 mss->anonymous_thp += HPAGE_PMD_SIZE;
552 else if (PageSwapBacked(page))
553 mss->shmem_thp += HPAGE_PMD_SIZE;
554 else if (is_zone_device_page(page))
557 VM_BUG_ON_PAGE(1, page);
558 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
561 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
562 struct mm_walk *walk)
567 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
568 struct mm_walk *walk)
570 struct vm_area_struct *vma = walk->vma;
574 ptl = pmd_trans_huge_lock(pmd, vma);
576 if (pmd_present(*pmd))
577 smaps_pmd_entry(pmd, addr, walk);
582 if (pmd_trans_unstable(pmd))
585 * The mmap_sem held all the way back in m_start() is what
586 * keeps khugepaged out of here and from collapsing things
589 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
590 for (; addr != end; pte++, addr += PAGE_SIZE)
591 smaps_pte_entry(pte, addr, walk);
592 pte_unmap_unlock(pte - 1, ptl);
598 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
601 * Don't forget to update Documentation/ on changes.
603 static const char mnemonics[BITS_PER_LONG][2] = {
605 * In case if we meet a flag we don't know about.
607 [0 ... (BITS_PER_LONG-1)] = "??",
609 [ilog2(VM_READ)] = "rd",
610 [ilog2(VM_WRITE)] = "wr",
611 [ilog2(VM_EXEC)] = "ex",
612 [ilog2(VM_SHARED)] = "sh",
613 [ilog2(VM_MAYREAD)] = "mr",
614 [ilog2(VM_MAYWRITE)] = "mw",
615 [ilog2(VM_MAYEXEC)] = "me",
616 [ilog2(VM_MAYSHARE)] = "ms",
617 [ilog2(VM_GROWSDOWN)] = "gd",
618 [ilog2(VM_PFNMAP)] = "pf",
619 [ilog2(VM_DENYWRITE)] = "dw",
620 #ifdef CONFIG_X86_INTEL_MPX
621 [ilog2(VM_MPX)] = "mp",
623 [ilog2(VM_LOCKED)] = "lo",
624 [ilog2(VM_IO)] = "io",
625 [ilog2(VM_SEQ_READ)] = "sr",
626 [ilog2(VM_RAND_READ)] = "rr",
627 [ilog2(VM_DONTCOPY)] = "dc",
628 [ilog2(VM_DONTEXPAND)] = "de",
629 [ilog2(VM_ACCOUNT)] = "ac",
630 [ilog2(VM_NORESERVE)] = "nr",
631 [ilog2(VM_HUGETLB)] = "ht",
632 [ilog2(VM_SYNC)] = "sf",
633 [ilog2(VM_ARCH_1)] = "ar",
634 [ilog2(VM_WIPEONFORK)] = "wf",
635 [ilog2(VM_DONTDUMP)] = "dd",
636 #ifdef CONFIG_MEM_SOFT_DIRTY
637 [ilog2(VM_SOFTDIRTY)] = "sd",
639 [ilog2(VM_MIXEDMAP)] = "mm",
640 [ilog2(VM_HUGEPAGE)] = "hg",
641 [ilog2(VM_NOHUGEPAGE)] = "nh",
642 [ilog2(VM_MERGEABLE)] = "mg",
643 [ilog2(VM_UFFD_MISSING)]= "um",
644 [ilog2(VM_UFFD_WP)] = "uw",
645 #ifdef CONFIG_ARCH_HAS_PKEYS
646 /* These come out via ProtectionKey: */
647 [ilog2(VM_PKEY_BIT0)] = "",
648 [ilog2(VM_PKEY_BIT1)] = "",
649 [ilog2(VM_PKEY_BIT2)] = "",
650 [ilog2(VM_PKEY_BIT3)] = "",
652 [ilog2(VM_PKEY_BIT4)] = "",
654 #endif /* CONFIG_ARCH_HAS_PKEYS */
658 seq_puts(m, "VmFlags: ");
659 for (i = 0; i < BITS_PER_LONG; i++) {
660 if (!mnemonics[i][0])
662 if (vma->vm_flags & (1UL << i)) {
663 seq_putc(m, mnemonics[i][0]);
664 seq_putc(m, mnemonics[i][1]);
671 #ifdef CONFIG_HUGETLB_PAGE
672 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
673 unsigned long addr, unsigned long end,
674 struct mm_walk *walk)
676 struct mem_size_stats *mss = walk->private;
677 struct vm_area_struct *vma = walk->vma;
678 struct page *page = NULL;
680 if (pte_present(*pte)) {
681 page = vm_normal_page(vma, addr, *pte);
682 } else if (is_swap_pte(*pte)) {
683 swp_entry_t swpent = pte_to_swp_entry(*pte);
685 if (is_migration_entry(swpent))
686 page = migration_entry_to_page(swpent);
687 else if (is_device_private_entry(swpent))
688 page = device_private_entry_to_page(swpent);
691 int mapcount = page_mapcount(page);
694 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
696 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
700 #endif /* HUGETLB_PAGE */
702 static void smap_gather_stats(struct vm_area_struct *vma,
703 struct mem_size_stats *mss)
705 struct mm_walk smaps_walk = {
706 .pmd_entry = smaps_pte_range,
707 #ifdef CONFIG_HUGETLB_PAGE
708 .hugetlb_entry = smaps_hugetlb_range,
713 smaps_walk.private = mss;
716 /* In case of smaps_rollup, reset the value from previous vma */
717 mss->check_shmem_swap = false;
718 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
720 * For shared or readonly shmem mappings we know that all
721 * swapped out pages belong to the shmem object, and we can
722 * obtain the swap value much more efficiently. For private
723 * writable mappings, we might have COW pages that are
724 * not affected by the parent swapped out pages of the shmem
725 * object, so we have to distinguish them during the page walk.
726 * Unless we know that the shmem object (or the part mapped by
727 * our VMA) has no swapped out pages at all.
729 unsigned long shmem_swapped = shmem_swap_usage(vma);
731 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
732 !(vma->vm_flags & VM_WRITE)) {
733 mss->swap += shmem_swapped;
735 mss->check_shmem_swap = true;
736 smaps_walk.pte_hole = smaps_pte_hole;
741 /* mmap_sem is held in m_start */
742 walk_page_vma(vma, &smaps_walk);
743 if (vma->vm_flags & VM_LOCKED)
744 mss->pss_locked += mss->pss;
747 #define SEQ_PUT_DEC(str, val) \
748 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
750 /* Show the contents common for smaps and smaps_rollup */
751 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
753 SEQ_PUT_DEC("Rss: ", mss->resident);
754 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
755 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
756 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
757 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
758 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
759 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
760 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
761 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
762 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
763 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
764 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
765 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
766 mss->private_hugetlb >> 10, 7);
767 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
768 SEQ_PUT_DEC(" kB\nSwapPss: ",
769 mss->swap_pss >> PSS_SHIFT);
770 SEQ_PUT_DEC(" kB\nLocked: ",
771 mss->pss_locked >> PSS_SHIFT);
772 seq_puts(m, " kB\n");
775 static int show_smap(struct seq_file *m, void *v)
777 struct vm_area_struct *vma = v;
778 struct mem_size_stats mss;
780 memset(&mss, 0, sizeof(mss));
782 smap_gather_stats(vma, &mss);
784 show_map_vma(m, vma);
786 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
787 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
788 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
789 seq_puts(m, " kB\n");
791 __show_smap(m, &mss);
793 seq_printf(m, "THPeligible: %d\n", transparent_hugepage_enabled(vma));
795 if (arch_pkeys_enabled())
796 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
797 show_smap_vma_flags(m, vma);
804 static int show_smaps_rollup(struct seq_file *m, void *v)
806 struct proc_maps_private *priv = m->private;
807 struct mem_size_stats mss;
808 struct mm_struct *mm;
809 struct vm_area_struct *vma;
810 unsigned long last_vma_end = 0;
813 priv->task = get_proc_task(priv->inode);
818 if (!mm || !mmget_not_zero(mm)) {
823 memset(&mss, 0, sizeof(mss));
825 down_read(&mm->mmap_sem);
826 hold_task_mempolicy(priv);
828 for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
829 smap_gather_stats(vma, &mss);
830 last_vma_end = vma->vm_end;
833 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
834 last_vma_end, 0, 0, 0, 0);
836 seq_puts(m, "[rollup]\n");
838 __show_smap(m, &mss);
840 release_task_mempolicy(priv);
841 up_read(&mm->mmap_sem);
845 put_task_struct(priv->task);
852 static const struct seq_operations proc_pid_smaps_op = {
859 static int pid_smaps_open(struct inode *inode, struct file *file)
861 return do_maps_open(inode, file, &proc_pid_smaps_op);
864 static int smaps_rollup_open(struct inode *inode, struct file *file)
867 struct proc_maps_private *priv;
869 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
873 ret = single_open(file, show_smaps_rollup, priv);
878 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
879 if (IS_ERR(priv->mm)) {
880 ret = PTR_ERR(priv->mm);
882 single_release(inode, file);
893 static int smaps_rollup_release(struct inode *inode, struct file *file)
895 struct seq_file *seq = file->private_data;
896 struct proc_maps_private *priv = seq->private;
902 return single_release(inode, file);
905 const struct file_operations proc_pid_smaps_operations = {
906 .open = pid_smaps_open,
909 .release = proc_map_release,
912 const struct file_operations proc_pid_smaps_rollup_operations = {
913 .open = smaps_rollup_open,
916 .release = smaps_rollup_release,
919 enum clear_refs_types {
923 CLEAR_REFS_SOFT_DIRTY,
924 CLEAR_REFS_MM_HIWATER_RSS,
928 struct clear_refs_private {
929 enum clear_refs_types type;
932 #ifdef CONFIG_MEM_SOFT_DIRTY
933 static inline void clear_soft_dirty(struct vm_area_struct *vma,
934 unsigned long addr, pte_t *pte)
937 * The soft-dirty tracker uses #PF-s to catch writes
938 * to pages, so write-protect the pte as well. See the
939 * Documentation/admin-guide/mm/soft-dirty.rst for full description
940 * of how soft-dirty works.
944 if (pte_present(ptent)) {
945 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
946 ptent = pte_wrprotect(ptent);
947 ptent = pte_clear_soft_dirty(ptent);
948 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
949 } else if (is_swap_pte(ptent)) {
950 ptent = pte_swp_clear_soft_dirty(ptent);
951 set_pte_at(vma->vm_mm, addr, pte, ptent);
955 static inline void clear_soft_dirty(struct vm_area_struct *vma,
956 unsigned long addr, pte_t *pte)
961 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
962 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
963 unsigned long addr, pmd_t *pmdp)
965 pmd_t old, pmd = *pmdp;
967 if (pmd_present(pmd)) {
968 /* See comment in change_huge_pmd() */
969 old = pmdp_invalidate(vma, addr, pmdp);
971 pmd = pmd_mkdirty(pmd);
973 pmd = pmd_mkyoung(pmd);
975 pmd = pmd_wrprotect(pmd);
976 pmd = pmd_clear_soft_dirty(pmd);
978 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
979 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
980 pmd = pmd_swp_clear_soft_dirty(pmd);
981 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
985 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
986 unsigned long addr, pmd_t *pmdp)
991 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
992 unsigned long end, struct mm_walk *walk)
994 struct clear_refs_private *cp = walk->private;
995 struct vm_area_struct *vma = walk->vma;
1000 ptl = pmd_trans_huge_lock(pmd, vma);
1002 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1003 clear_soft_dirty_pmd(vma, addr, pmd);
1007 if (!pmd_present(*pmd))
1010 page = pmd_page(*pmd);
1012 /* Clear accessed and referenced bits. */
1013 pmdp_test_and_clear_young(vma, addr, pmd);
1014 test_and_clear_page_young(page);
1015 ClearPageReferenced(page);
1021 if (pmd_trans_unstable(pmd))
1024 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1025 for (; addr != end; pte++, addr += PAGE_SIZE) {
1028 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1029 clear_soft_dirty(vma, addr, pte);
1033 if (!pte_present(ptent))
1036 page = vm_normal_page(vma, addr, ptent);
1040 /* Clear accessed and referenced bits. */
1041 ptep_test_and_clear_young(vma, addr, pte);
1042 test_and_clear_page_young(page);
1043 ClearPageReferenced(page);
1045 pte_unmap_unlock(pte - 1, ptl);
1050 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1051 struct mm_walk *walk)
1053 struct clear_refs_private *cp = walk->private;
1054 struct vm_area_struct *vma = walk->vma;
1056 if (vma->vm_flags & VM_PFNMAP)
1060 * Writing 1 to /proc/pid/clear_refs affects all pages.
1061 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1062 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1063 * Writing 4 to /proc/pid/clear_refs affects all pages.
1065 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1067 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1072 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1073 size_t count, loff_t *ppos)
1075 struct task_struct *task;
1076 char buffer[PROC_NUMBUF];
1077 struct mm_struct *mm;
1078 struct vm_area_struct *vma;
1079 enum clear_refs_types type;
1080 struct mmu_gather tlb;
1084 memset(buffer, 0, sizeof(buffer));
1085 if (count > sizeof(buffer) - 1)
1086 count = sizeof(buffer) - 1;
1087 if (copy_from_user(buffer, buf, count))
1089 rv = kstrtoint(strstrip(buffer), 10, &itype);
1092 type = (enum clear_refs_types)itype;
1093 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1096 task = get_proc_task(file_inode(file));
1099 mm = get_task_mm(task);
1101 struct mmu_notifier_range range;
1102 struct clear_refs_private cp = {
1105 struct mm_walk clear_refs_walk = {
1106 .pmd_entry = clear_refs_pte_range,
1107 .test_walk = clear_refs_test_walk,
1112 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1113 if (down_write_killable(&mm->mmap_sem)) {
1119 * Writing 5 to /proc/pid/clear_refs resets the peak
1120 * resident set size to this mm's current rss value.
1122 reset_mm_hiwater_rss(mm);
1123 up_write(&mm->mmap_sem);
1127 down_read(&mm->mmap_sem);
1128 tlb_gather_mmu(&tlb, mm, 0, -1);
1129 if (type == CLEAR_REFS_SOFT_DIRTY) {
1130 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1131 if (!(vma->vm_flags & VM_SOFTDIRTY))
1133 up_read(&mm->mmap_sem);
1134 if (down_write_killable(&mm->mmap_sem)) {
1138 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1139 vma->vm_flags &= ~VM_SOFTDIRTY;
1140 vma_set_page_prot(vma);
1142 downgrade_write(&mm->mmap_sem);
1146 mmu_notifier_range_init(&range, mm, 0, -1UL);
1147 mmu_notifier_invalidate_range_start(&range);
1149 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1150 if (type == CLEAR_REFS_SOFT_DIRTY)
1151 mmu_notifier_invalidate_range_end(&range);
1152 tlb_finish_mmu(&tlb, 0, -1);
1153 up_read(&mm->mmap_sem);
1157 put_task_struct(task);
1162 const struct file_operations proc_clear_refs_operations = {
1163 .write = clear_refs_write,
1164 .llseek = noop_llseek,
1171 struct pagemapread {
1172 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1173 pagemap_entry_t *buffer;
1177 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1178 #define PAGEMAP_WALK_MASK (PMD_MASK)
1180 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1181 #define PM_PFRAME_BITS 55
1182 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1183 #define PM_SOFT_DIRTY BIT_ULL(55)
1184 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1185 #define PM_FILE BIT_ULL(61)
1186 #define PM_SWAP BIT_ULL(62)
1187 #define PM_PRESENT BIT_ULL(63)
1189 #define PM_END_OF_BUFFER 1
1191 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1193 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1196 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1197 struct pagemapread *pm)
1199 pm->buffer[pm->pos++] = *pme;
1200 if (pm->pos >= pm->len)
1201 return PM_END_OF_BUFFER;
1205 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1206 struct mm_walk *walk)
1208 struct pagemapread *pm = walk->private;
1209 unsigned long addr = start;
1212 while (addr < end) {
1213 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1214 pagemap_entry_t pme = make_pme(0, 0);
1215 /* End of address space hole, which we mark as non-present. */
1216 unsigned long hole_end;
1219 hole_end = min(end, vma->vm_start);
1223 for (; addr < hole_end; addr += PAGE_SIZE) {
1224 err = add_to_pagemap(addr, &pme, pm);
1232 /* Addresses in the VMA. */
1233 if (vma->vm_flags & VM_SOFTDIRTY)
1234 pme = make_pme(0, PM_SOFT_DIRTY);
1235 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1236 err = add_to_pagemap(addr, &pme, pm);
1245 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1246 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1248 u64 frame = 0, flags = 0;
1249 struct page *page = NULL;
1251 if (pte_present(pte)) {
1253 frame = pte_pfn(pte);
1254 flags |= PM_PRESENT;
1255 page = _vm_normal_page(vma, addr, pte, true);
1256 if (pte_soft_dirty(pte))
1257 flags |= PM_SOFT_DIRTY;
1258 } else if (is_swap_pte(pte)) {
1260 if (pte_swp_soft_dirty(pte))
1261 flags |= PM_SOFT_DIRTY;
1262 entry = pte_to_swp_entry(pte);
1264 frame = swp_type(entry) |
1265 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1267 if (is_migration_entry(entry))
1268 page = migration_entry_to_page(entry);
1270 if (is_device_private_entry(entry))
1271 page = device_private_entry_to_page(entry);
1274 if (page && !PageAnon(page))
1276 if (page && page_mapcount(page) == 1)
1277 flags |= PM_MMAP_EXCLUSIVE;
1278 if (vma->vm_flags & VM_SOFTDIRTY)
1279 flags |= PM_SOFT_DIRTY;
1281 return make_pme(frame, flags);
1284 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1285 struct mm_walk *walk)
1287 struct vm_area_struct *vma = walk->vma;
1288 struct pagemapread *pm = walk->private;
1290 pte_t *pte, *orig_pte;
1293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1294 ptl = pmd_trans_huge_lock(pmdp, vma);
1296 u64 flags = 0, frame = 0;
1298 struct page *page = NULL;
1300 if (vma->vm_flags & VM_SOFTDIRTY)
1301 flags |= PM_SOFT_DIRTY;
1303 if (pmd_present(pmd)) {
1304 page = pmd_page(pmd);
1306 flags |= PM_PRESENT;
1307 if (pmd_soft_dirty(pmd))
1308 flags |= PM_SOFT_DIRTY;
1310 frame = pmd_pfn(pmd) +
1311 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1313 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1314 else if (is_swap_pmd(pmd)) {
1315 swp_entry_t entry = pmd_to_swp_entry(pmd);
1316 unsigned long offset;
1319 offset = swp_offset(entry) +
1320 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1321 frame = swp_type(entry) |
1322 (offset << MAX_SWAPFILES_SHIFT);
1325 if (pmd_swp_soft_dirty(pmd))
1326 flags |= PM_SOFT_DIRTY;
1327 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1328 page = migration_entry_to_page(entry);
1332 if (page && page_mapcount(page) == 1)
1333 flags |= PM_MMAP_EXCLUSIVE;
1335 for (; addr != end; addr += PAGE_SIZE) {
1336 pagemap_entry_t pme = make_pme(frame, flags);
1338 err = add_to_pagemap(addr, &pme, pm);
1342 if (flags & PM_PRESENT)
1344 else if (flags & PM_SWAP)
1345 frame += (1 << MAX_SWAPFILES_SHIFT);
1352 if (pmd_trans_unstable(pmdp))
1354 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1357 * We can assume that @vma always points to a valid one and @end never
1358 * goes beyond vma->vm_end.
1360 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1361 for (; addr < end; pte++, addr += PAGE_SIZE) {
1362 pagemap_entry_t pme;
1364 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1365 err = add_to_pagemap(addr, &pme, pm);
1369 pte_unmap_unlock(orig_pte, ptl);
1376 #ifdef CONFIG_HUGETLB_PAGE
1377 /* This function walks within one hugetlb entry in the single call */
1378 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1379 unsigned long addr, unsigned long end,
1380 struct mm_walk *walk)
1382 struct pagemapread *pm = walk->private;
1383 struct vm_area_struct *vma = walk->vma;
1384 u64 flags = 0, frame = 0;
1388 if (vma->vm_flags & VM_SOFTDIRTY)
1389 flags |= PM_SOFT_DIRTY;
1391 pte = huge_ptep_get(ptep);
1392 if (pte_present(pte)) {
1393 struct page *page = pte_page(pte);
1395 if (!PageAnon(page))
1398 if (page_mapcount(page) == 1)
1399 flags |= PM_MMAP_EXCLUSIVE;
1401 flags |= PM_PRESENT;
1403 frame = pte_pfn(pte) +
1404 ((addr & ~hmask) >> PAGE_SHIFT);
1407 for (; addr != end; addr += PAGE_SIZE) {
1408 pagemap_entry_t pme = make_pme(frame, flags);
1410 err = add_to_pagemap(addr, &pme, pm);
1413 if (pm->show_pfn && (flags & PM_PRESENT))
1421 #endif /* HUGETLB_PAGE */
1424 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1426 * For each page in the address space, this file contains one 64-bit entry
1427 * consisting of the following:
1429 * Bits 0-54 page frame number (PFN) if present
1430 * Bits 0-4 swap type if swapped
1431 * Bits 5-54 swap offset if swapped
1432 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1433 * Bit 56 page exclusively mapped
1435 * Bit 61 page is file-page or shared-anon
1436 * Bit 62 page swapped
1437 * Bit 63 page present
1439 * If the page is not present but in swap, then the PFN contains an
1440 * encoding of the swap file number and the page's offset into the
1441 * swap. Unmapped pages return a null PFN. This allows determining
1442 * precisely which pages are mapped (or in swap) and comparing mapped
1443 * pages between processes.
1445 * Efficient users of this interface will use /proc/pid/maps to
1446 * determine which areas of memory are actually mapped and llseek to
1447 * skip over unmapped regions.
1449 static ssize_t pagemap_read(struct file *file, char __user *buf,
1450 size_t count, loff_t *ppos)
1452 struct mm_struct *mm = file->private_data;
1453 struct pagemapread pm;
1454 struct mm_walk pagemap_walk = {};
1456 unsigned long svpfn;
1457 unsigned long start_vaddr;
1458 unsigned long end_vaddr;
1459 int ret = 0, copied = 0;
1461 if (!mm || !mmget_not_zero(mm))
1465 /* file position must be aligned */
1466 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1473 /* do not disclose physical addresses: attack vector */
1474 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1476 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1477 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1482 pagemap_walk.pmd_entry = pagemap_pmd_range;
1483 pagemap_walk.pte_hole = pagemap_pte_hole;
1484 #ifdef CONFIG_HUGETLB_PAGE
1485 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1487 pagemap_walk.mm = mm;
1488 pagemap_walk.private = ±
1491 svpfn = src / PM_ENTRY_BYTES;
1492 start_vaddr = svpfn << PAGE_SHIFT;
1493 end_vaddr = mm->task_size;
1495 /* watch out for wraparound */
1496 if (svpfn > mm->task_size >> PAGE_SHIFT)
1497 start_vaddr = end_vaddr;
1500 * The odds are that this will stop walking way
1501 * before end_vaddr, because the length of the
1502 * user buffer is tracked in "pm", and the walk
1503 * will stop when we hit the end of the buffer.
1506 while (count && (start_vaddr < end_vaddr)) {
1511 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1513 if (end < start_vaddr || end > end_vaddr)
1515 down_read(&mm->mmap_sem);
1516 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1517 up_read(&mm->mmap_sem);
1520 len = min(count, PM_ENTRY_BYTES * pm.pos);
1521 if (copy_to_user(buf, pm.buffer, len)) {
1530 if (!ret || ret == PM_END_OF_BUFFER)
1541 static int pagemap_open(struct inode *inode, struct file *file)
1543 struct mm_struct *mm;
1545 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1548 file->private_data = mm;
1552 static int pagemap_release(struct inode *inode, struct file *file)
1554 struct mm_struct *mm = file->private_data;
1561 const struct file_operations proc_pagemap_operations = {
1562 .llseek = mem_lseek, /* borrow this */
1563 .read = pagemap_read,
1564 .open = pagemap_open,
1565 .release = pagemap_release,
1567 #endif /* CONFIG_PROC_PAGE_MONITOR */
1572 unsigned long pages;
1574 unsigned long active;
1575 unsigned long writeback;
1576 unsigned long mapcount_max;
1577 unsigned long dirty;
1578 unsigned long swapcache;
1579 unsigned long node[MAX_NUMNODES];
1582 struct numa_maps_private {
1583 struct proc_maps_private proc_maps;
1584 struct numa_maps md;
1587 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1588 unsigned long nr_pages)
1590 int count = page_mapcount(page);
1592 md->pages += nr_pages;
1593 if (pte_dirty || PageDirty(page))
1594 md->dirty += nr_pages;
1596 if (PageSwapCache(page))
1597 md->swapcache += nr_pages;
1599 if (PageActive(page) || PageUnevictable(page))
1600 md->active += nr_pages;
1602 if (PageWriteback(page))
1603 md->writeback += nr_pages;
1606 md->anon += nr_pages;
1608 if (count > md->mapcount_max)
1609 md->mapcount_max = count;
1611 md->node[page_to_nid(page)] += nr_pages;
1614 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1620 if (!pte_present(pte))
1623 page = vm_normal_page(vma, addr, pte);
1627 if (PageReserved(page))
1630 nid = page_to_nid(page);
1631 if (!node_isset(nid, node_states[N_MEMORY]))
1637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1638 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1639 struct vm_area_struct *vma,
1645 if (!pmd_present(pmd))
1648 page = vm_normal_page_pmd(vma, addr, pmd);
1652 if (PageReserved(page))
1655 nid = page_to_nid(page);
1656 if (!node_isset(nid, node_states[N_MEMORY]))
1663 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1664 unsigned long end, struct mm_walk *walk)
1666 struct numa_maps *md = walk->private;
1667 struct vm_area_struct *vma = walk->vma;
1672 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1673 ptl = pmd_trans_huge_lock(pmd, vma);
1677 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1679 gather_stats(page, md, pmd_dirty(*pmd),
1680 HPAGE_PMD_SIZE/PAGE_SIZE);
1685 if (pmd_trans_unstable(pmd))
1688 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1690 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1693 gather_stats(page, md, pte_dirty(*pte), 1);
1695 } while (pte++, addr += PAGE_SIZE, addr != end);
1696 pte_unmap_unlock(orig_pte, ptl);
1700 #ifdef CONFIG_HUGETLB_PAGE
1701 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1702 unsigned long addr, unsigned long end, struct mm_walk *walk)
1704 pte_t huge_pte = huge_ptep_get(pte);
1705 struct numa_maps *md;
1708 if (!pte_present(huge_pte))
1711 page = pte_page(huge_pte);
1716 gather_stats(page, md, pte_dirty(huge_pte), 1);
1721 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1722 unsigned long addr, unsigned long end, struct mm_walk *walk)
1729 * Display pages allocated per node and memory policy via /proc.
1731 static int show_numa_map(struct seq_file *m, void *v)
1733 struct numa_maps_private *numa_priv = m->private;
1734 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1735 struct vm_area_struct *vma = v;
1736 struct numa_maps *md = &numa_priv->md;
1737 struct file *file = vma->vm_file;
1738 struct mm_struct *mm = vma->vm_mm;
1739 struct mm_walk walk = {
1740 .hugetlb_entry = gather_hugetlb_stats,
1741 .pmd_entry = gather_pte_stats,
1745 struct mempolicy *pol;
1752 /* Ensure we start with an empty set of numa_maps statistics. */
1753 memset(md, 0, sizeof(*md));
1755 pol = __get_vma_policy(vma, vma->vm_start);
1757 mpol_to_str(buffer, sizeof(buffer), pol);
1760 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1763 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1766 seq_puts(m, " file=");
1767 seq_file_path(m, file, "\n\t= ");
1768 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1769 seq_puts(m, " heap");
1770 } else if (is_stack(vma)) {
1771 seq_puts(m, " stack");
1774 if (is_vm_hugetlb_page(vma))
1775 seq_puts(m, " huge");
1777 /* mmap_sem is held by m_start */
1778 walk_page_vma(vma, &walk);
1784 seq_printf(m, " anon=%lu", md->anon);
1787 seq_printf(m, " dirty=%lu", md->dirty);
1789 if (md->pages != md->anon && md->pages != md->dirty)
1790 seq_printf(m, " mapped=%lu", md->pages);
1792 if (md->mapcount_max > 1)
1793 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1796 seq_printf(m, " swapcache=%lu", md->swapcache);
1798 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1799 seq_printf(m, " active=%lu", md->active);
1802 seq_printf(m, " writeback=%lu", md->writeback);
1804 for_each_node_state(nid, N_MEMORY)
1806 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1808 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1811 m_cache_vma(m, vma);
1815 static const struct seq_operations proc_pid_numa_maps_op = {
1819 .show = show_numa_map,
1822 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1824 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1825 sizeof(struct numa_maps_private));
1828 const struct file_operations proc_pid_numa_maps_operations = {
1829 .open = pid_numa_maps_open,
1831 .llseek = seq_lseek,
1832 .release = proc_map_release,
1835 #endif /* CONFIG_NUMA */