]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_migrate.c
Merge tag 'devicetree-fixes-for-6.4-3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / gpu / drm / i915 / gt / intel_migrate.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5
6 #include "i915_drv.h"
7 #include "intel_context.h"
8 #include "intel_gpu_commands.h"
9 #include "intel_gt.h"
10 #include "intel_gtt.h"
11 #include "intel_migrate.h"
12 #include "intel_ring.h"
13 #include "gem/i915_gem_lmem.h"
14
15 struct insert_pte_data {
16         u64 offset;
17 };
18
19 #define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */
20
21 #define GET_CCS_BYTES(i915, size)       (HAS_FLAT_CCS(i915) ? \
22                                          DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0)
23 static bool engine_supports_migration(struct intel_engine_cs *engine)
24 {
25         if (!engine)
26                 return false;
27
28         /*
29          * We need the ability to prevent aribtration (MI_ARB_ON_OFF),
30          * the ability to write PTE using inline data (MI_STORE_DATA)
31          * and of course the ability to do the block transfer (blits).
32          */
33         GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS);
34
35         return true;
36 }
37
38 static void xehpsdv_toggle_pdes(struct i915_address_space *vm,
39                                 struct i915_page_table *pt,
40                                 void *data)
41 {
42         struct insert_pte_data *d = data;
43
44         /*
45          * Insert a dummy PTE into every PT that will map to LMEM to ensure
46          * we have a correctly setup PDE structure for later use.
47          */
48         vm->insert_page(vm, 0, d->offset, I915_CACHE_NONE, PTE_LM);
49         GEM_BUG_ON(!pt->is_compact);
50         d->offset += SZ_2M;
51 }
52
53 static void xehpsdv_insert_pte(struct i915_address_space *vm,
54                                struct i915_page_table *pt,
55                                void *data)
56 {
57         struct insert_pte_data *d = data;
58
59         /*
60          * We are playing tricks here, since the actual pt, from the hw
61          * pov, is only 256bytes with 32 entries, or 4096bytes with 512
62          * entries, but we are still guaranteed that the physical
63          * alignment is 64K underneath for the pt, and we are careful
64          * not to access the space in the void.
65          */
66         vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, PTE_LM);
67         d->offset += SZ_64K;
68 }
69
70 static void insert_pte(struct i915_address_space *vm,
71                        struct i915_page_table *pt,
72                        void *data)
73 {
74         struct insert_pte_data *d = data;
75
76         vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE,
77                         i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0);
78         d->offset += PAGE_SIZE;
79 }
80
81 static struct i915_address_space *migrate_vm(struct intel_gt *gt)
82 {
83         struct i915_vm_pt_stash stash = {};
84         struct i915_ppgtt *vm;
85         int err;
86         int i;
87
88         /*
89          * We construct a very special VM for use by all migration contexts,
90          * it is kept pinned so that it can be used at any time. As we need
91          * to pre-allocate the page directories for the migration VM, this
92          * limits us to only using a small number of prepared vma.
93          *
94          * To be able to pipeline and reschedule migration operations while
95          * avoiding unnecessary contention on the vm itself, the PTE updates
96          * are inline with the blits. All the blits use the same fixed
97          * addresses, with the backing store redirection being updated on the
98          * fly. Only 2 implicit vma are used for all migration operations.
99          *
100          * We lay the ppGTT out as:
101          *
102          *      [0, CHUNK_SZ) -> first object
103          *      [CHUNK_SZ, 2 * CHUNK_SZ) -> second object
104          *      [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE
105          *
106          * By exposing the dma addresses of the page directories themselves
107          * within the ppGTT, we are then able to rewrite the PTE prior to use.
108          * But the PTE update and subsequent migration operation must be atomic,
109          * i.e. within the same non-preemptible window so that we do not switch
110          * to another migration context that overwrites the PTE.
111          *
112          * This changes quite a bit on platforms with HAS_64K_PAGES support,
113          * where we instead have three windows, each CHUNK_SIZE in size. The
114          * first is reserved for mapping system-memory, and that just uses the
115          * 512 entry layout using 4K GTT pages. The other two windows just map
116          * lmem pages and must use the new compact 32 entry layout using 64K GTT
117          * pages, which ensures we can address any lmem object that the user
118          * throws at us. We then also use the xehpsdv_toggle_pdes as a way of
119          * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the
120          * compact layout for each of these page-tables, that fall within the
121          * [CHUNK_SIZE, 3 * CHUNK_SIZE) range.
122          *
123          * We lay the ppGTT out as:
124          *
125          * [0, CHUNK_SZ) -> first window/object, maps smem
126          * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src
127          * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst
128          *
129          * For the PTE window it's also quite different, since each PTE must
130          * point to some 64K page, one for each PT(since it's in lmem), and yet
131          * each is only <= 4096bytes, but since the unused space within that PTE
132          * range is never touched, this should be fine.
133          *
134          * So basically each PT now needs 64K of virtual memory, instead of 4K,
135          * which looks like:
136          *
137          * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE
138          */
139
140         vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY);
141         if (IS_ERR(vm))
142                 return ERR_CAST(vm);
143
144         if (!vm->vm.allocate_va_range || !vm->vm.foreach) {
145                 err = -ENODEV;
146                 goto err_vm;
147         }
148
149         if (HAS_64K_PAGES(gt->i915))
150                 stash.pt_sz = I915_GTT_PAGE_SIZE_64K;
151
152         /*
153          * Each engine instance is assigned its own chunk in the VM, so
154          * that we can run multiple instances concurrently
155          */
156         for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
157                 struct intel_engine_cs *engine;
158                 u64 base = (u64)i << 32;
159                 struct insert_pte_data d = {};
160                 struct i915_gem_ww_ctx ww;
161                 u64 sz;
162
163                 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
164                 if (!engine_supports_migration(engine))
165                         continue;
166
167                 /*
168                  * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need
169                  * 4x2 page directories for source/destination.
170                  */
171                 if (HAS_64K_PAGES(gt->i915))
172                         sz = 3 * CHUNK_SZ;
173                 else
174                         sz = 2 * CHUNK_SZ;
175                 d.offset = base + sz;
176
177                 /*
178                  * We need another page directory setup so that we can write
179                  * the 8x512 PTE in each chunk.
180                  */
181                 if (HAS_64K_PAGES(gt->i915))
182                         sz += (sz / SZ_2M) * SZ_64K;
183                 else
184                         sz += (sz >> 12) * sizeof(u64);
185
186                 err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz);
187                 if (err)
188                         goto err_vm;
189
190                 for_i915_gem_ww(&ww, err, true) {
191                         err = i915_vm_lock_objects(&vm->vm, &ww);
192                         if (err)
193                                 continue;
194                         err = i915_vm_map_pt_stash(&vm->vm, &stash);
195                         if (err)
196                                 continue;
197
198                         vm->vm.allocate_va_range(&vm->vm, &stash, base, sz);
199                 }
200                 i915_vm_free_pt_stash(&vm->vm, &stash);
201                 if (err)
202                         goto err_vm;
203
204                 /* Now allow the GPU to rewrite the PTE via its own ppGTT */
205                 if (HAS_64K_PAGES(gt->i915)) {
206                         vm->vm.foreach(&vm->vm, base, d.offset - base,
207                                        xehpsdv_insert_pte, &d);
208                         d.offset = base + CHUNK_SZ;
209                         vm->vm.foreach(&vm->vm,
210                                        d.offset,
211                                        2 * CHUNK_SZ,
212                                        xehpsdv_toggle_pdes, &d);
213                 } else {
214                         vm->vm.foreach(&vm->vm, base, d.offset - base,
215                                        insert_pte, &d);
216                 }
217         }
218
219         return &vm->vm;
220
221 err_vm:
222         i915_vm_put(&vm->vm);
223         return ERR_PTR(err);
224 }
225
226 static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt)
227 {
228         struct intel_engine_cs *engine;
229         int i;
230
231         for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
232                 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
233                 if (engine_supports_migration(engine))
234                         return engine;
235         }
236
237         return NULL;
238 }
239
240 static struct intel_context *pinned_context(struct intel_gt *gt)
241 {
242         static struct lock_class_key key;
243         struct intel_engine_cs *engine;
244         struct i915_address_space *vm;
245         struct intel_context *ce;
246
247         engine = first_copy_engine(gt);
248         if (!engine)
249                 return ERR_PTR(-ENODEV);
250
251         vm = migrate_vm(gt);
252         if (IS_ERR(vm))
253                 return ERR_CAST(vm);
254
255         ce = intel_engine_create_pinned_context(engine, vm, SZ_512K,
256                                                 I915_GEM_HWS_MIGRATE,
257                                                 &key, "migrate");
258         i915_vm_put(vm);
259         return ce;
260 }
261
262 int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt)
263 {
264         struct intel_context *ce;
265
266         memset(m, 0, sizeof(*m));
267
268         ce = pinned_context(gt);
269         if (IS_ERR(ce))
270                 return PTR_ERR(ce);
271
272         m->context = ce;
273         return 0;
274 }
275
276 static int random_index(unsigned int max)
277 {
278         return upper_32_bits(mul_u32_u32(get_random_u32(), max));
279 }
280
281 static struct intel_context *__migrate_engines(struct intel_gt *gt)
282 {
283         struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE];
284         struct intel_engine_cs *engine;
285         unsigned int count, i;
286
287         count = 0;
288         for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
289                 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
290                 if (engine_supports_migration(engine))
291                         engines[count++] = engine;
292         }
293
294         return intel_context_create(engines[random_index(count)]);
295 }
296
297 struct intel_context *intel_migrate_create_context(struct intel_migrate *m)
298 {
299         struct intel_context *ce;
300
301         /*
302          * We randomly distribute contexts across the engines upon constrction,
303          * as they all share the same pinned vm, and so in order to allow
304          * multiple blits to run in parallel, we must construct each blit
305          * to use a different range of the vm for its GTT. This has to be
306          * known at construction, so we can not use the late greedy load
307          * balancing of the virtual-engine.
308          */
309         ce = __migrate_engines(m->context->engine->gt);
310         if (IS_ERR(ce))
311                 return ce;
312
313         ce->ring = NULL;
314         ce->ring_size = SZ_256K;
315
316         i915_vm_put(ce->vm);
317         ce->vm = i915_vm_get(m->context->vm);
318
319         return ce;
320 }
321
322 static inline struct sgt_dma sg_sgt(struct scatterlist *sg)
323 {
324         dma_addr_t addr = sg_dma_address(sg);
325
326         return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) };
327 }
328
329 static int emit_no_arbitration(struct i915_request *rq)
330 {
331         u32 *cs;
332
333         cs = intel_ring_begin(rq, 2);
334         if (IS_ERR(cs))
335                 return PTR_ERR(cs);
336
337         /* Explicitly disable preemption for this request. */
338         *cs++ = MI_ARB_ON_OFF;
339         *cs++ = MI_NOOP;
340         intel_ring_advance(rq, cs);
341
342         return 0;
343 }
344
345 static int max_pte_pkt_size(struct i915_request *rq, int pkt)
346 {
347         struct intel_ring *ring = rq->ring;
348
349         pkt = min_t(int, pkt, (ring->space - rq->reserved_space) / sizeof(u32) + 5);
350         pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);
351
352         return pkt;
353 }
354
355 #define I915_EMIT_PTE_NUM_DWORDS 6
356
357 static int emit_pte(struct i915_request *rq,
358                     struct sgt_dma *it,
359                     enum i915_cache_level cache_level,
360                     bool is_lmem,
361                     u64 offset,
362                     int length)
363 {
364         bool has_64K_pages = HAS_64K_PAGES(rq->engine->i915);
365         const u64 encode = rq->context->vm->pte_encode(0, cache_level,
366                                                        is_lmem ? PTE_LM : 0);
367         struct intel_ring *ring = rq->ring;
368         int pkt, dword_length;
369         u32 total = 0;
370         u32 page_size;
371         u32 *hdr, *cs;
372
373         GEM_BUG_ON(GRAPHICS_VER(rq->engine->i915) < 8);
374
375         page_size = I915_GTT_PAGE_SIZE;
376         dword_length = 0x400;
377
378         /* Compute the page directory offset for the target address range */
379         if (has_64K_pages) {
380                 GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M));
381
382                 offset /= SZ_2M;
383                 offset *= SZ_64K;
384                 offset += 3 * CHUNK_SZ;
385
386                 if (is_lmem) {
387                         page_size = I915_GTT_PAGE_SIZE_64K;
388                         dword_length = 0x40;
389                 }
390         } else {
391                 offset >>= 12;
392                 offset *= sizeof(u64);
393                 offset += 2 * CHUNK_SZ;
394         }
395
396         offset += (u64)rq->engine->instance << 32;
397
398         cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS);
399         if (IS_ERR(cs))
400                 return PTR_ERR(cs);
401
402         /* Pack as many PTE updates as possible into a single MI command */
403         pkt = max_pte_pkt_size(rq, dword_length);
404
405         hdr = cs;
406         *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */
407         *cs++ = lower_32_bits(offset);
408         *cs++ = upper_32_bits(offset);
409
410         do {
411                 if (cs - hdr >= pkt) {
412                         int dword_rem;
413
414                         *hdr += cs - hdr - 2;
415                         *cs++ = MI_NOOP;
416
417                         ring->emit = (void *)cs - ring->vaddr;
418                         intel_ring_advance(rq, cs);
419                         intel_ring_update_space(ring);
420
421                         cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS);
422                         if (IS_ERR(cs))
423                                 return PTR_ERR(cs);
424
425                         dword_rem = dword_length;
426                         if (has_64K_pages) {
427                                 if (IS_ALIGNED(total, SZ_2M)) {
428                                         offset = round_up(offset, SZ_64K);
429                                 } else {
430                                         dword_rem = SZ_2M - (total & (SZ_2M - 1));
431                                         dword_rem /= page_size;
432                                         dword_rem *= 2;
433                                 }
434                         }
435
436                         pkt = max_pte_pkt_size(rq, dword_rem);
437
438                         hdr = cs;
439                         *cs++ = MI_STORE_DATA_IMM | REG_BIT(21);
440                         *cs++ = lower_32_bits(offset);
441                         *cs++ = upper_32_bits(offset);
442                 }
443
444                 GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size));
445
446                 *cs++ = lower_32_bits(encode | it->dma);
447                 *cs++ = upper_32_bits(encode | it->dma);
448
449                 offset += 8;
450                 total += page_size;
451
452                 it->dma += page_size;
453                 if (it->dma >= it->max) {
454                         it->sg = __sg_next(it->sg);
455                         if (!it->sg || sg_dma_len(it->sg) == 0)
456                                 break;
457
458                         it->dma = sg_dma_address(it->sg);
459                         it->max = it->dma + sg_dma_len(it->sg);
460                 }
461         } while (total < length);
462
463         *hdr += cs - hdr - 2;
464         *cs++ = MI_NOOP;
465
466         ring->emit = (void *)cs - ring->vaddr;
467         intel_ring_advance(rq, cs);
468         intel_ring_update_space(ring);
469
470         return total;
471 }
472
473 static bool wa_1209644611_applies(int ver, u32 size)
474 {
475         u32 height = size >> PAGE_SHIFT;
476
477         if (ver != 11)
478                 return false;
479
480         return height % 4 == 3 && height <= 8;
481 }
482
483 /**
484  * DOC: Flat-CCS - Memory compression for Local memory
485  *
486  * On Xe-HP and later devices, we use dedicated compression control state (CCS)
487  * stored in local memory for each surface, to support the 3D and media
488  * compression formats.
489  *
490  * The memory required for the CCS of the entire local memory is 1/256 of the
491  * local memory size. So before the kernel boot, the required memory is reserved
492  * for the CCS data and a secure register will be programmed with the CCS base
493  * address.
494  *
495  * Flat CCS data needs to be cleared when a lmem object is allocated.
496  * And CCS data can be copied in and out of CCS region through
497  * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly.
498  *
499  * I915 supports Flat-CCS on lmem only objects. When an objects has smem in
500  * its preference list, on memory pressure, i915 needs to migrate the lmem
501  * content into smem. If the lmem object is Flat-CCS compressed by userspace,
502  * then i915 needs to decompress it. But I915 lack the required information
503  * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects.
504  *
505  * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can
506  * be temporarily evicted to smem, along with the auxiliary CCS state, where
507  * it can be potentially swapped-out at a later point, if required.
508  * If userspace later touches the evicted pages, then we always move
509  * the backing memory back to lmem, which includes restoring the saved CCS state,
510  * and potentially performing any required swap-in.
511  *
512  * For the migration of the lmem objects with smem in placement list, such as
513  * {lmem, smem}, objects are treated as non Flat-CCS capable objects.
514  */
515
516 static inline u32 *i915_flush_dw(u32 *cmd, u32 flags)
517 {
518         *cmd++ = MI_FLUSH_DW | flags;
519         *cmd++ = 0;
520         *cmd++ = 0;
521
522         return cmd;
523 }
524
525 static int emit_copy_ccs(struct i915_request *rq,
526                          u32 dst_offset, u8 dst_access,
527                          u32 src_offset, u8 src_access, int size)
528 {
529         struct drm_i915_private *i915 = rq->engine->i915;
530         int mocs = rq->engine->gt->mocs.uc_index << 1;
531         u32 num_ccs_blks;
532         u32 *cs;
533
534         cs = intel_ring_begin(rq, 12);
535         if (IS_ERR(cs))
536                 return PTR_ERR(cs);
537
538         num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
539                                     NUM_CCS_BYTES_PER_BLOCK);
540         GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER);
541         cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
542
543         /*
544          * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS
545          * data in and out of the CCS region.
546          *
547          * We can copy at most 1024 blocks of 256 bytes using one
548          * XY_CTRL_SURF_COPY_BLT instruction.
549          *
550          * In case we need to copy more than 1024 blocks, we need to add
551          * another instruction to the same batch buffer.
552          *
553          * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS.
554          *
555          * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM.
556          */
557         *cs++ = XY_CTRL_SURF_COPY_BLT |
558                 src_access << SRC_ACCESS_TYPE_SHIFT |
559                 dst_access << DST_ACCESS_TYPE_SHIFT |
560                 ((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT;
561         *cs++ = src_offset;
562         *cs++ = rq->engine->instance |
563                 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
564         *cs++ = dst_offset;
565         *cs++ = rq->engine->instance |
566                 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
567
568         cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
569         *cs++ = MI_NOOP;
570
571         intel_ring_advance(rq, cs);
572
573         return 0;
574 }
575
576 static int emit_copy(struct i915_request *rq,
577                      u32 dst_offset, u32 src_offset, int size)
578 {
579         const int ver = GRAPHICS_VER(rq->engine->i915);
580         u32 instance = rq->engine->instance;
581         u32 *cs;
582
583         cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6);
584         if (IS_ERR(cs))
585                 return PTR_ERR(cs);
586
587         if (ver >= 9 && !wa_1209644611_applies(ver, size)) {
588                 *cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2);
589                 *cs++ = BLT_DEPTH_32 | PAGE_SIZE;
590                 *cs++ = 0;
591                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
592                 *cs++ = dst_offset;
593                 *cs++ = instance;
594                 *cs++ = 0;
595                 *cs++ = PAGE_SIZE;
596                 *cs++ = src_offset;
597                 *cs++ = instance;
598         } else if (ver >= 8) {
599                 *cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2);
600                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
601                 *cs++ = 0;
602                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
603                 *cs++ = dst_offset;
604                 *cs++ = instance;
605                 *cs++ = 0;
606                 *cs++ = PAGE_SIZE;
607                 *cs++ = src_offset;
608                 *cs++ = instance;
609         } else {
610                 GEM_BUG_ON(instance);
611                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
612                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
613                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE;
614                 *cs++ = dst_offset;
615                 *cs++ = PAGE_SIZE;
616                 *cs++ = src_offset;
617         }
618
619         intel_ring_advance(rq, cs);
620         return 0;
621 }
622
623 static u64 scatter_list_length(struct scatterlist *sg)
624 {
625         u64 len = 0;
626
627         while (sg && sg_dma_len(sg)) {
628                 len += sg_dma_len(sg);
629                 sg = sg_next(sg);
630         }
631
632         return len;
633 }
634
635 static int
636 calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem,
637                    u64 bytes_to_cpy, u64 ccs_bytes_to_cpy)
638 {
639         if (ccs_bytes_to_cpy && !src_is_lmem)
640                 /*
641                  * When CHUNK_SZ is passed all the pages upto CHUNK_SZ
642                  * will be taken for the blt. in Flat-ccs supported
643                  * platform Smem obj will have more pages than required
644                  * for main meory hence limit it to the required size
645                  * for main memory
646                  */
647                 return min_t(u64, bytes_to_cpy, CHUNK_SZ);
648         else
649                 return CHUNK_SZ;
650 }
651
652 static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy)
653 {
654         u64 len;
655
656         do {
657                 GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg));
658                 len = it->max - it->dma;
659                 if (len > bytes_to_cpy) {
660                         it->dma += bytes_to_cpy;
661                         break;
662                 }
663
664                 bytes_to_cpy -= len;
665
666                 it->sg = __sg_next(it->sg);
667                 it->dma = sg_dma_address(it->sg);
668                 it->max = it->dma + sg_dma_len(it->sg);
669         } while (bytes_to_cpy);
670 }
671
672 int
673 intel_context_migrate_copy(struct intel_context *ce,
674                            const struct i915_deps *deps,
675                            struct scatterlist *src,
676                            enum i915_cache_level src_cache_level,
677                            bool src_is_lmem,
678                            struct scatterlist *dst,
679                            enum i915_cache_level dst_cache_level,
680                            bool dst_is_lmem,
681                            struct i915_request **out)
682 {
683         struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs;
684         struct drm_i915_private *i915 = ce->engine->i915;
685         u64 ccs_bytes_to_cpy = 0, bytes_to_cpy;
686         enum i915_cache_level ccs_cache_level;
687         u32 src_offset, dst_offset;
688         u8 src_access, dst_access;
689         struct i915_request *rq;
690         u64 src_sz, dst_sz;
691         bool ccs_is_src, overwrite_ccs;
692         int err;
693
694         GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
695         GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem));
696         *out = NULL;
697
698         GEM_BUG_ON(ce->ring->size < SZ_64K);
699
700         src_sz = scatter_list_length(src);
701         bytes_to_cpy = src_sz;
702
703         if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) {
704                 src_access = !src_is_lmem && dst_is_lmem;
705                 dst_access = !src_access;
706
707                 dst_sz = scatter_list_length(dst);
708                 if (src_is_lmem) {
709                         it_ccs = it_dst;
710                         ccs_cache_level = dst_cache_level;
711                         ccs_is_src = false;
712                 } else if (dst_is_lmem) {
713                         bytes_to_cpy = dst_sz;
714                         it_ccs = it_src;
715                         ccs_cache_level = src_cache_level;
716                         ccs_is_src = true;
717                 }
718
719                 /*
720                  * When there is a eviction of ccs needed smem will have the
721                  * extra pages for the ccs data
722                  *
723                  * TO-DO: Want to move the size mismatch check to a WARN_ON,
724                  * but still we have some requests of smem->lmem with same size.
725                  * Need to fix it.
726                  */
727                 ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0;
728                 if (ccs_bytes_to_cpy)
729                         get_ccs_sg_sgt(&it_ccs, bytes_to_cpy);
730         }
731
732         overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem;
733
734         src_offset = 0;
735         dst_offset = CHUNK_SZ;
736         if (HAS_64K_PAGES(ce->engine->i915)) {
737                 src_offset = 0;
738                 dst_offset = 0;
739                 if (src_is_lmem)
740                         src_offset = CHUNK_SZ;
741                 if (dst_is_lmem)
742                         dst_offset = 2 * CHUNK_SZ;
743         }
744
745         do {
746                 int len;
747
748                 rq = i915_request_create(ce);
749                 if (IS_ERR(rq)) {
750                         err = PTR_ERR(rq);
751                         goto out_ce;
752                 }
753
754                 if (deps) {
755                         err = i915_request_await_deps(rq, deps);
756                         if (err)
757                                 goto out_rq;
758
759                         if (rq->engine->emit_init_breadcrumb) {
760                                 err = rq->engine->emit_init_breadcrumb(rq);
761                                 if (err)
762                                         goto out_rq;
763                         }
764
765                         deps = NULL;
766                 }
767
768                 /* The PTE updates + copy must not be interrupted. */
769                 err = emit_no_arbitration(rq);
770                 if (err)
771                         goto out_rq;
772
773                 src_sz = calculate_chunk_sz(i915, src_is_lmem,
774                                             bytes_to_cpy, ccs_bytes_to_cpy);
775
776                 len = emit_pte(rq, &it_src, src_cache_level, src_is_lmem,
777                                src_offset, src_sz);
778                 if (!len) {
779                         err = -EINVAL;
780                         goto out_rq;
781                 }
782                 if (len < 0) {
783                         err = len;
784                         goto out_rq;
785                 }
786
787                 err = emit_pte(rq, &it_dst, dst_cache_level, dst_is_lmem,
788                                dst_offset, len);
789                 if (err < 0)
790                         goto out_rq;
791                 if (err < len) {
792                         err = -EINVAL;
793                         goto out_rq;
794                 }
795
796                 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
797                 if (err)
798                         goto out_rq;
799
800                 err = emit_copy(rq, dst_offset, src_offset, len);
801                 if (err)
802                         goto out_rq;
803
804                 bytes_to_cpy -= len;
805
806                 if (ccs_bytes_to_cpy) {
807                         int ccs_sz;
808
809                         err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
810                         if (err)
811                                 goto out_rq;
812
813                         ccs_sz = GET_CCS_BYTES(i915, len);
814                         err = emit_pte(rq, &it_ccs, ccs_cache_level, false,
815                                        ccs_is_src ? src_offset : dst_offset,
816                                        ccs_sz);
817                         if (err < 0)
818                                 goto out_rq;
819                         if (err < ccs_sz) {
820                                 err = -EINVAL;
821                                 goto out_rq;
822                         }
823
824                         err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
825                         if (err)
826                                 goto out_rq;
827
828                         err = emit_copy_ccs(rq, dst_offset, dst_access,
829                                             src_offset, src_access, len);
830                         if (err)
831                                 goto out_rq;
832
833                         err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
834                         if (err)
835                                 goto out_rq;
836                         ccs_bytes_to_cpy -= ccs_sz;
837                 } else if (overwrite_ccs) {
838                         err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
839                         if (err)
840                                 goto out_rq;
841
842                         if (src_is_lmem) {
843                                 /*
844                                  * If the src is already in lmem, then we must
845                                  * be doing an lmem -> lmem transfer, and so
846                                  * should be safe to directly copy the CCS
847                                  * state. In this case we have either
848                                  * initialised the CCS aux state when first
849                                  * clearing the pages (since it is already
850                                  * allocated in lmem), or the user has
851                                  * potentially populated it, in which case we
852                                  * need to copy the CCS state as-is.
853                                  */
854                                 err = emit_copy_ccs(rq,
855                                                     dst_offset, INDIRECT_ACCESS,
856                                                     src_offset, INDIRECT_ACCESS,
857                                                     len);
858                         } else {
859                                 /*
860                                  * While we can't always restore/manage the CCS
861                                  * state, we still need to ensure we don't leak
862                                  * the CCS state from the previous user, so make
863                                  * sure we overwrite it with something.
864                                  */
865                                 err = emit_copy_ccs(rq,
866                                                     dst_offset, INDIRECT_ACCESS,
867                                                     dst_offset, DIRECT_ACCESS,
868                                                     len);
869                         }
870
871                         if (err)
872                                 goto out_rq;
873
874                         err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
875                         if (err)
876                                 goto out_rq;
877                 }
878
879                 /* Arbitration is re-enabled between requests. */
880 out_rq:
881                 if (*out)
882                         i915_request_put(*out);
883                 *out = i915_request_get(rq);
884                 i915_request_add(rq);
885
886                 if (err)
887                         break;
888
889                 if (!bytes_to_cpy && !ccs_bytes_to_cpy) {
890                         if (src_is_lmem)
891                                 WARN_ON(it_src.sg && sg_dma_len(it_src.sg));
892                         else
893                                 WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg));
894                         break;
895                 }
896
897                 if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) ||
898                             !it_dst.sg || !sg_dma_len(it_dst.sg) ||
899                             (ccs_bytes_to_cpy && (!it_ccs.sg ||
900                                                   !sg_dma_len(it_ccs.sg))))) {
901                         err = -EINVAL;
902                         break;
903                 }
904
905                 cond_resched();
906         } while (1);
907
908 out_ce:
909         return err;
910 }
911
912 static int emit_clear(struct i915_request *rq, u32 offset, int size,
913                       u32 value, bool is_lmem)
914 {
915         struct drm_i915_private *i915 = rq->engine->i915;
916         int mocs = rq->engine->gt->mocs.uc_index << 1;
917         const int ver = GRAPHICS_VER(i915);
918         int ring_sz;
919         u32 *cs;
920
921         GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX);
922
923         if (HAS_FLAT_CCS(i915) && ver >= 12)
924                 ring_sz = XY_FAST_COLOR_BLT_DW;
925         else if (ver >= 8)
926                 ring_sz = 8;
927         else
928                 ring_sz = 6;
929
930         cs = intel_ring_begin(rq, ring_sz);
931         if (IS_ERR(cs))
932                 return PTR_ERR(cs);
933
934         if (HAS_FLAT_CCS(i915) && ver >= 12) {
935                 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
936                         (XY_FAST_COLOR_BLT_DW - 2);
937                 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) |
938                         (PAGE_SIZE - 1);
939                 *cs++ = 0;
940                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
941                 *cs++ = offset;
942                 *cs++ = rq->engine->instance;
943                 *cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
944                 /* BG7 */
945                 *cs++ = value;
946                 *cs++ = 0;
947                 *cs++ = 0;
948                 *cs++ = 0;
949                 /* BG11 */
950                 *cs++ = 0;
951                 *cs++ = 0;
952                 /* BG13 */
953                 *cs++ = 0;
954                 *cs++ = 0;
955                 *cs++ = 0;
956         } else if (ver >= 8) {
957                 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2);
958                 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
959                 *cs++ = 0;
960                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
961                 *cs++ = offset;
962                 *cs++ = rq->engine->instance;
963                 *cs++ = value;
964                 *cs++ = MI_NOOP;
965         } else {
966                 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
967                 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
968                 *cs++ = 0;
969                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
970                 *cs++ = offset;
971                 *cs++ = value;
972         }
973
974         intel_ring_advance(rq, cs);
975         return 0;
976 }
977
978 int
979 intel_context_migrate_clear(struct intel_context *ce,
980                             const struct i915_deps *deps,
981                             struct scatterlist *sg,
982                             enum i915_cache_level cache_level,
983                             bool is_lmem,
984                             u32 value,
985                             struct i915_request **out)
986 {
987         struct drm_i915_private *i915 = ce->engine->i915;
988         struct sgt_dma it = sg_sgt(sg);
989         struct i915_request *rq;
990         u32 offset;
991         int err;
992
993         GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
994         *out = NULL;
995
996         GEM_BUG_ON(ce->ring->size < SZ_64K);
997
998         offset = 0;
999         if (HAS_64K_PAGES(i915) && is_lmem)
1000                 offset = CHUNK_SZ;
1001
1002         do {
1003                 int len;
1004
1005                 rq = i915_request_create(ce);
1006                 if (IS_ERR(rq)) {
1007                         err = PTR_ERR(rq);
1008                         goto out_ce;
1009                 }
1010
1011                 if (deps) {
1012                         err = i915_request_await_deps(rq, deps);
1013                         if (err)
1014                                 goto out_rq;
1015
1016                         if (rq->engine->emit_init_breadcrumb) {
1017                                 err = rq->engine->emit_init_breadcrumb(rq);
1018                                 if (err)
1019                                         goto out_rq;
1020                         }
1021
1022                         deps = NULL;
1023                 }
1024
1025                 /* The PTE updates + clear must not be interrupted. */
1026                 err = emit_no_arbitration(rq);
1027                 if (err)
1028                         goto out_rq;
1029
1030                 len = emit_pte(rq, &it, cache_level, is_lmem, offset, CHUNK_SZ);
1031                 if (len <= 0) {
1032                         err = len;
1033                         goto out_rq;
1034                 }
1035
1036                 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1037                 if (err)
1038                         goto out_rq;
1039
1040                 err = emit_clear(rq, offset, len, value, is_lmem);
1041                 if (err)
1042                         goto out_rq;
1043
1044                 if (HAS_FLAT_CCS(i915) && is_lmem && !value) {
1045                         /*
1046                          * copy the content of memory into corresponding
1047                          * ccs surface
1048                          */
1049                         err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset,
1050                                             DIRECT_ACCESS, len);
1051                         if (err)
1052                                 goto out_rq;
1053                 }
1054
1055                 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1056
1057                 /* Arbitration is re-enabled between requests. */
1058 out_rq:
1059                 if (*out)
1060                         i915_request_put(*out);
1061                 *out = i915_request_get(rq);
1062                 i915_request_add(rq);
1063                 if (err || !it.sg || !sg_dma_len(it.sg))
1064                         break;
1065
1066                 cond_resched();
1067         } while (1);
1068
1069 out_ce:
1070         return err;
1071 }
1072
1073 int intel_migrate_copy(struct intel_migrate *m,
1074                        struct i915_gem_ww_ctx *ww,
1075                        const struct i915_deps *deps,
1076                        struct scatterlist *src,
1077                        enum i915_cache_level src_cache_level,
1078                        bool src_is_lmem,
1079                        struct scatterlist *dst,
1080                        enum i915_cache_level dst_cache_level,
1081                        bool dst_is_lmem,
1082                        struct i915_request **out)
1083 {
1084         struct intel_context *ce;
1085         int err;
1086
1087         *out = NULL;
1088         if (!m->context)
1089                 return -ENODEV;
1090
1091         ce = intel_migrate_create_context(m);
1092         if (IS_ERR(ce))
1093                 ce = intel_context_get(m->context);
1094         GEM_BUG_ON(IS_ERR(ce));
1095
1096         err = intel_context_pin_ww(ce, ww);
1097         if (err)
1098                 goto out;
1099
1100         err = intel_context_migrate_copy(ce, deps,
1101                                          src, src_cache_level, src_is_lmem,
1102                                          dst, dst_cache_level, dst_is_lmem,
1103                                          out);
1104
1105         intel_context_unpin(ce);
1106 out:
1107         intel_context_put(ce);
1108         return err;
1109 }
1110
1111 int
1112 intel_migrate_clear(struct intel_migrate *m,
1113                     struct i915_gem_ww_ctx *ww,
1114                     const struct i915_deps *deps,
1115                     struct scatterlist *sg,
1116                     enum i915_cache_level cache_level,
1117                     bool is_lmem,
1118                     u32 value,
1119                     struct i915_request **out)
1120 {
1121         struct intel_context *ce;
1122         int err;
1123
1124         *out = NULL;
1125         if (!m->context)
1126                 return -ENODEV;
1127
1128         ce = intel_migrate_create_context(m);
1129         if (IS_ERR(ce))
1130                 ce = intel_context_get(m->context);
1131         GEM_BUG_ON(IS_ERR(ce));
1132
1133         err = intel_context_pin_ww(ce, ww);
1134         if (err)
1135                 goto out;
1136
1137         err = intel_context_migrate_clear(ce, deps, sg, cache_level,
1138                                           is_lmem, value, out);
1139
1140         intel_context_unpin(ce);
1141 out:
1142         intel_context_put(ce);
1143         return err;
1144 }
1145
1146 void intel_migrate_fini(struct intel_migrate *m)
1147 {
1148         struct intel_context *ce;
1149
1150         ce = fetch_and_zero(&m->context);
1151         if (!ce)
1152                 return;
1153
1154         intel_engine_destroy_pinned_context(ce);
1155 }
1156
1157 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1158 #include "selftest_migrate.c"
1159 #endif
This page took 0.1052 seconds and 4 git commands to generate.