1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
32 struct anon_vma_chain;
35 struct writeback_control;
38 void init_mm_internals(void);
40 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
41 extern unsigned long max_mapnr;
43 static inline void set_max_mapnr(unsigned long limit)
48 static inline void set_max_mapnr(unsigned long limit) { }
51 extern unsigned long totalram_pages;
52 extern void * high_memory;
53 extern int page_cluster;
56 extern int sysctl_legacy_va_layout;
58 #define sysctl_legacy_va_layout 0
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 extern const int mmap_rnd_bits_min;
63 extern const int mmap_rnd_bits_max;
64 extern int mmap_rnd_bits __read_mostly;
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 extern const int mmap_rnd_compat_bits_min;
68 extern const int mmap_rnd_compat_bits_max;
69 extern int mmap_rnd_compat_bits __read_mostly;
73 #include <asm/pgtable.h>
74 #include <asm/processor.h>
77 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
81 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
85 #define lm_alias(x) __va(__pa_symbol(x))
89 * To prevent common memory management code establishing
90 * a zero page mapping on a read fault.
91 * This macro should be defined within <asm/pgtable.h>.
92 * s390 does this to prevent multiplexing of hardware bits
93 * related to the physical page in case of virtualization.
95 #ifndef mm_forbids_zeropage
96 #define mm_forbids_zeropage(X) (0)
100 * On some architectures it is expensive to call memset() for small sizes.
101 * Those architectures should provide their own implementation of "struct page"
102 * zeroing by defining this macro in <asm/pgtable.h>.
104 #ifndef mm_zero_struct_page
105 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
109 * Default maximum number of active map areas, this limits the number of vmas
110 * per mm struct. Users can overwrite this number by sysctl but there is a
113 * When a program's coredump is generated as ELF format, a section is created
114 * per a vma. In ELF, the number of sections is represented in unsigned short.
115 * This means the number of sections should be smaller than 65535 at coredump.
116 * Because the kernel adds some informative sections to a image of program at
117 * generating coredump, we need some margin. The number of extra sections is
118 * 1-3 now and depends on arch. We use "5" as safe margin, here.
120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121 * not a hard limit any more. Although some userspace tools can be surprised by
124 #define MAPCOUNT_ELF_CORE_MARGIN (5)
125 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
127 extern int sysctl_max_map_count;
129 extern unsigned long sysctl_user_reserve_kbytes;
130 extern unsigned long sysctl_admin_reserve_kbytes;
132 extern int sysctl_overcommit_memory;
133 extern int sysctl_overcommit_ratio;
134 extern unsigned long sysctl_overcommit_kbytes;
136 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
138 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
141 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
143 /* to align the pointer to the (next) page boundary */
144 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
146 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
147 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
150 * Linux kernel virtual memory manager primitives.
151 * The idea being to have a "virtual" mm in the same way
152 * we have a virtual fs - giving a cleaner interface to the
153 * mm details, and allowing different kinds of memory mappings
154 * (from shared memory to executable loading to arbitrary
158 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
159 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
160 void vm_area_free(struct vm_area_struct *);
163 extern struct rb_root nommu_region_tree;
164 extern struct rw_semaphore nommu_region_sem;
166 extern unsigned int kobjsize(const void *objp);
170 * vm_flags in vm_area_struct, see mm_types.h.
171 * When changing, update also include/trace/events/mmflags.h
173 #define VM_NONE 0x00000000
175 #define VM_READ 0x00000001 /* currently active flags */
176 #define VM_WRITE 0x00000002
177 #define VM_EXEC 0x00000004
178 #define VM_SHARED 0x00000008
180 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
181 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
182 #define VM_MAYWRITE 0x00000020
183 #define VM_MAYEXEC 0x00000040
184 #define VM_MAYSHARE 0x00000080
186 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
187 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
188 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
189 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
190 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
192 #define VM_LOCKED 0x00002000
193 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
195 /* Used by sys_madvise() */
196 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
197 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
199 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
200 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
201 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
202 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
203 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
204 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
205 #define VM_SYNC 0x00800000 /* Synchronous page faults */
206 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
207 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
208 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
210 #ifdef CONFIG_MEM_SOFT_DIRTY
211 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
213 # define VM_SOFTDIRTY 0
216 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
217 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
218 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
219 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
221 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
222 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
225 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
226 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
227 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
228 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
229 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
230 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
231 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
232 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
234 #ifdef CONFIG_ARCH_HAS_PKEYS
235 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
236 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
237 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
238 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
239 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
241 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
243 # define VM_PKEY_BIT4 0
245 #endif /* CONFIG_ARCH_HAS_PKEYS */
247 #if defined(CONFIG_X86)
248 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
249 #elif defined(CONFIG_PPC)
250 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
251 #elif defined(CONFIG_PARISC)
252 # define VM_GROWSUP VM_ARCH_1
253 #elif defined(CONFIG_IA64)
254 # define VM_GROWSUP VM_ARCH_1
255 #elif defined(CONFIG_SPARC64)
256 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
257 # define VM_ARCH_CLEAR VM_SPARC_ADI
258 #elif !defined(CONFIG_MMU)
259 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
262 #if defined(CONFIG_X86_INTEL_MPX)
263 /* MPX specific bounds table or bounds directory */
264 # define VM_MPX VM_HIGH_ARCH_4
266 # define VM_MPX VM_NONE
270 # define VM_GROWSUP VM_NONE
273 /* Bits set in the VMA until the stack is in its final location */
274 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
276 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
277 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
280 #ifdef CONFIG_STACK_GROWSUP
281 #define VM_STACK VM_GROWSUP
283 #define VM_STACK VM_GROWSDOWN
286 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
289 * Special vmas that are non-mergable, non-mlock()able.
290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
292 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
294 /* This mask defines which mm->def_flags a process can inherit its parent */
295 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
297 /* This mask is used to clear all the VMA flags used by mlock */
298 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
300 /* Arch-specific flags to clear when updating VM flags on protection change */
301 #ifndef VM_ARCH_CLEAR
302 # define VM_ARCH_CLEAR VM_NONE
304 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
307 * mapping from the currently active vm_flags protection bits (the
308 * low four bits) to a page protection mask..
310 extern pgprot_t protection_map[16];
312 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
313 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
314 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
315 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
316 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
317 #define FAULT_FLAG_TRIED 0x20 /* Second try */
318 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
319 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
320 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
322 #define FAULT_FLAG_TRACE \
323 { FAULT_FLAG_WRITE, "WRITE" }, \
324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
328 { FAULT_FLAG_TRIED, "TRIED" }, \
329 { FAULT_FLAG_USER, "USER" }, \
330 { FAULT_FLAG_REMOTE, "REMOTE" }, \
331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
334 * vm_fault is filled by the the pagefault handler and passed to the vma's
335 * ->fault function. The vma's ->fault is responsible for returning a bitmask
336 * of VM_FAULT_xxx flags that give details about how the fault was handled.
338 * MM layer fills up gfp_mask for page allocations but fault handler might
339 * alter it if its implementation requires a different allocation context.
341 * pgoff should be used in favour of virtual_address, if possible.
344 struct vm_area_struct *vma; /* Target VMA */
345 unsigned int flags; /* FAULT_FLAG_xxx flags */
346 gfp_t gfp_mask; /* gfp mask to be used for allocations */
347 pgoff_t pgoff; /* Logical page offset based on vma */
348 unsigned long address; /* Faulting virtual address */
349 pmd_t *pmd; /* Pointer to pmd entry matching
351 pud_t *pud; /* Pointer to pud entry matching
354 pte_t orig_pte; /* Value of PTE at the time of fault */
356 struct page *cow_page; /* Page handler may use for COW fault */
357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
358 struct page *page; /* ->fault handlers should return a
359 * page here, unless VM_FAULT_NOPAGE
360 * is set (which is also implied by
363 /* These three entries are valid only while holding ptl lock */
364 pte_t *pte; /* Pointer to pte entry matching
365 * the 'address'. NULL if the page
366 * table hasn't been allocated.
368 spinlock_t *ptl; /* Page table lock.
369 * Protects pte page table if 'pte'
370 * is not NULL, otherwise pmd.
372 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
373 * vm_ops->map_pages() calls
374 * alloc_set_pte() from atomic context.
375 * do_fault_around() pre-allocates
376 * page table to avoid allocation from
381 /* page entry size for vm->huge_fault() */
382 enum page_entry_size {
389 * These are the virtual MM functions - opening of an area, closing and
390 * unmapping it (needed to keep files on disk up-to-date etc), pointer
391 * to the functions called when a no-page or a wp-page exception occurs.
393 struct vm_operations_struct {
394 void (*open)(struct vm_area_struct * area);
395 void (*close)(struct vm_area_struct * area);
396 int (*split)(struct vm_area_struct * area, unsigned long addr);
397 int (*mremap)(struct vm_area_struct * area);
398 vm_fault_t (*fault)(struct vm_fault *vmf);
399 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
400 enum page_entry_size pe_size);
401 void (*map_pages)(struct vm_fault *vmf,
402 pgoff_t start_pgoff, pgoff_t end_pgoff);
403 unsigned long (*pagesize)(struct vm_area_struct * area);
405 /* notification that a previously read-only page is about to become
406 * writable, if an error is returned it will cause a SIGBUS */
407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
412 /* called by access_process_vm when get_user_pages() fails, typically
413 * for use by special VMAs that can switch between memory and hardware
415 int (*access)(struct vm_area_struct *vma, unsigned long addr,
416 void *buf, int len, int write);
418 /* Called by the /proc/PID/maps code to ask the vma whether it
419 * has a special name. Returning non-NULL will also cause this
420 * vma to be dumped unconditionally. */
421 const char *(*name)(struct vm_area_struct *vma);
425 * set_policy() op must add a reference to any non-NULL @new mempolicy
426 * to hold the policy upon return. Caller should pass NULL @new to
427 * remove a policy and fall back to surrounding context--i.e. do not
428 * install a MPOL_DEFAULT policy, nor the task or system default
431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
434 * get_policy() op must add reference [mpol_get()] to any policy at
435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
436 * in mm/mempolicy.c will do this automatically.
437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
440 * must return NULL--i.e., do not "fallback" to task or system default
443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
447 * Called by vm_normal_page() for special PTEs to find the
448 * page for @addr. This is useful if the default behavior
449 * (using pte_page()) would not find the correct page.
451 struct page *(*find_special_page)(struct vm_area_struct *vma,
455 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
457 static const struct vm_operations_struct dummy_vm_ops = {};
460 vma->vm_ops = &dummy_vm_ops;
461 INIT_LIST_HEAD(&vma->anon_vma_chain);
464 static inline void vma_set_anonymous(struct vm_area_struct *vma)
469 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
470 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
475 #define page_private(page) ((page)->private)
476 #define set_page_private(page, v) ((page)->private = (v))
478 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
479 static inline int pmd_devmap(pmd_t pmd)
483 static inline int pud_devmap(pud_t pud)
487 static inline int pgd_devmap(pgd_t pgd)
494 * FIXME: take this include out, include page-flags.h in
495 * files which need it (119 of them)
497 #include <linux/page-flags.h>
498 #include <linux/huge_mm.h>
501 * Methods to modify the page usage count.
503 * What counts for a page usage:
504 * - cache mapping (page->mapping)
505 * - private data (page->private)
506 * - page mapped in a task's page tables, each mapping
507 * is counted separately
509 * Also, many kernel routines increase the page count before a critical
510 * routine so they can be sure the page doesn't go away from under them.
514 * Drop a ref, return true if the refcount fell to zero (the page has no users)
516 static inline int put_page_testzero(struct page *page)
518 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
519 return page_ref_dec_and_test(page);
523 * Try to grab a ref unless the page has a refcount of zero, return false if
525 * This can be called when MMU is off so it must not access
526 * any of the virtual mappings.
528 static inline int get_page_unless_zero(struct page *page)
530 return page_ref_add_unless(page, 1, 0);
533 extern int page_is_ram(unsigned long pfn);
541 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
544 /* Support for virtually mapped pages */
545 struct page *vmalloc_to_page(const void *addr);
546 unsigned long vmalloc_to_pfn(const void *addr);
549 * Determine if an address is within the vmalloc range
551 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
552 * is no special casing required.
554 static inline bool is_vmalloc_addr(const void *x)
557 unsigned long addr = (unsigned long)x;
559 return addr >= VMALLOC_START && addr < VMALLOC_END;
565 extern int is_vmalloc_or_module_addr(const void *x);
567 static inline int is_vmalloc_or_module_addr(const void *x)
573 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
574 static inline void *kvmalloc(size_t size, gfp_t flags)
576 return kvmalloc_node(size, flags, NUMA_NO_NODE);
578 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
580 return kvmalloc_node(size, flags | __GFP_ZERO, node);
582 static inline void *kvzalloc(size_t size, gfp_t flags)
584 return kvmalloc(size, flags | __GFP_ZERO);
587 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
591 if (unlikely(check_mul_overflow(n, size, &bytes)))
594 return kvmalloc(bytes, flags);
597 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
599 return kvmalloc_array(n, size, flags | __GFP_ZERO);
602 extern void kvfree(const void *addr);
604 static inline atomic_t *compound_mapcount_ptr(struct page *page)
606 return &page[1].compound_mapcount;
609 static inline int compound_mapcount(struct page *page)
611 VM_BUG_ON_PAGE(!PageCompound(page), page);
612 page = compound_head(page);
613 return atomic_read(compound_mapcount_ptr(page)) + 1;
617 * The atomic page->_mapcount, starts from -1: so that transitions
618 * both from it and to it can be tracked, using atomic_inc_and_test
619 * and atomic_add_negative(-1).
621 static inline void page_mapcount_reset(struct page *page)
623 atomic_set(&(page)->_mapcount, -1);
626 int __page_mapcount(struct page *page);
628 static inline int page_mapcount(struct page *page)
630 VM_BUG_ON_PAGE(PageSlab(page), page);
632 if (unlikely(PageCompound(page)))
633 return __page_mapcount(page);
634 return atomic_read(&page->_mapcount) + 1;
637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
638 int total_mapcount(struct page *page);
639 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
641 static inline int total_mapcount(struct page *page)
643 return page_mapcount(page);
645 static inline int page_trans_huge_mapcount(struct page *page,
648 int mapcount = page_mapcount(page);
650 *total_mapcount = mapcount;
655 static inline struct page *virt_to_head_page(const void *x)
657 struct page *page = virt_to_page(x);
659 return compound_head(page);
662 void __put_page(struct page *page);
664 void put_pages_list(struct list_head *pages);
666 void split_page(struct page *page, unsigned int order);
669 * Compound pages have a destructor function. Provide a
670 * prototype for that function and accessor functions.
671 * These are _only_ valid on the head of a compound page.
673 typedef void compound_page_dtor(struct page *);
675 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
676 enum compound_dtor_id {
679 #ifdef CONFIG_HUGETLB_PAGE
682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
687 extern compound_page_dtor * const compound_page_dtors[];
689 static inline void set_compound_page_dtor(struct page *page,
690 enum compound_dtor_id compound_dtor)
692 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
693 page[1].compound_dtor = compound_dtor;
696 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
698 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
699 return compound_page_dtors[page[1].compound_dtor];
702 static inline unsigned int compound_order(struct page *page)
706 return page[1].compound_order;
709 static inline void set_compound_order(struct page *page, unsigned int order)
711 page[1].compound_order = order;
714 void free_compound_page(struct page *page);
718 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
719 * servicing faults for write access. In the normal case, do always want
720 * pte_mkwrite. But get_user_pages can cause write faults for mappings
721 * that do not have writing enabled, when used by access_process_vm.
723 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
725 if (likely(vma->vm_flags & VM_WRITE))
726 pte = pte_mkwrite(pte);
730 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
732 int finish_fault(struct vm_fault *vmf);
733 int finish_mkwrite_fault(struct vm_fault *vmf);
737 * Multiple processes may "see" the same page. E.g. for untouched
738 * mappings of /dev/null, all processes see the same page full of
739 * zeroes, and text pages of executables and shared libraries have
740 * only one copy in memory, at most, normally.
742 * For the non-reserved pages, page_count(page) denotes a reference count.
743 * page_count() == 0 means the page is free. page->lru is then used for
744 * freelist management in the buddy allocator.
745 * page_count() > 0 means the page has been allocated.
747 * Pages are allocated by the slab allocator in order to provide memory
748 * to kmalloc and kmem_cache_alloc. In this case, the management of the
749 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
750 * unless a particular usage is carefully commented. (the responsibility of
751 * freeing the kmalloc memory is the caller's, of course).
753 * A page may be used by anyone else who does a __get_free_page().
754 * In this case, page_count still tracks the references, and should only
755 * be used through the normal accessor functions. The top bits of page->flags
756 * and page->virtual store page management information, but all other fields
757 * are unused and could be used privately, carefully. The management of this
758 * page is the responsibility of the one who allocated it, and those who have
759 * subsequently been given references to it.
761 * The other pages (we may call them "pagecache pages") are completely
762 * managed by the Linux memory manager: I/O, buffers, swapping etc.
763 * The following discussion applies only to them.
765 * A pagecache page contains an opaque `private' member, which belongs to the
766 * page's address_space. Usually, this is the address of a circular list of
767 * the page's disk buffers. PG_private must be set to tell the VM to call
768 * into the filesystem to release these pages.
770 * A page may belong to an inode's memory mapping. In this case, page->mapping
771 * is the pointer to the inode, and page->index is the file offset of the page,
772 * in units of PAGE_SIZE.
774 * If pagecache pages are not associated with an inode, they are said to be
775 * anonymous pages. These may become associated with the swapcache, and in that
776 * case PG_swapcache is set, and page->private is an offset into the swapcache.
778 * In either case (swapcache or inode backed), the pagecache itself holds one
779 * reference to the page. Setting PG_private should also increment the
780 * refcount. The each user mapping also has a reference to the page.
782 * The pagecache pages are stored in a per-mapping radix tree, which is
783 * rooted at mapping->i_pages, and indexed by offset.
784 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
785 * lists, we instead now tag pages as dirty/writeback in the radix tree.
787 * All pagecache pages may be subject to I/O:
788 * - inode pages may need to be read from disk,
789 * - inode pages which have been modified and are MAP_SHARED may need
790 * to be written back to the inode on disk,
791 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
792 * modified may need to be swapped out to swap space and (later) to be read
797 * The zone field is never updated after free_area_init_core()
798 * sets it, so none of the operations on it need to be atomic.
801 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
802 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
803 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
804 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
805 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
808 * Define the bit shifts to access each section. For non-existent
809 * sections we define the shift as 0; that plus a 0 mask ensures
810 * the compiler will optimise away reference to them.
812 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
813 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
814 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
815 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
817 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
818 #ifdef NODE_NOT_IN_PAGE_FLAGS
819 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
820 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
821 SECTIONS_PGOFF : ZONES_PGOFF)
823 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
824 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
825 NODES_PGOFF : ZONES_PGOFF)
828 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
830 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
831 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
834 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
835 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
836 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
837 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
838 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
840 static inline enum zone_type page_zonenum(const struct page *page)
842 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
845 #ifdef CONFIG_ZONE_DEVICE
846 static inline bool is_zone_device_page(const struct page *page)
848 return page_zonenum(page) == ZONE_DEVICE;
851 static inline bool is_zone_device_page(const struct page *page)
857 #ifdef CONFIG_DEV_PAGEMAP_OPS
858 void dev_pagemap_get_ops(void);
859 void dev_pagemap_put_ops(void);
860 void __put_devmap_managed_page(struct page *page);
861 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
862 static inline bool put_devmap_managed_page(struct page *page)
864 if (!static_branch_unlikely(&devmap_managed_key))
866 if (!is_zone_device_page(page))
868 switch (page->pgmap->type) {
869 case MEMORY_DEVICE_PRIVATE:
870 case MEMORY_DEVICE_PUBLIC:
871 case MEMORY_DEVICE_FS_DAX:
872 __put_devmap_managed_page(page);
880 static inline bool is_device_private_page(const struct page *page)
882 return is_zone_device_page(page) &&
883 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
886 static inline bool is_device_public_page(const struct page *page)
888 return is_zone_device_page(page) &&
889 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
892 #else /* CONFIG_DEV_PAGEMAP_OPS */
893 static inline void dev_pagemap_get_ops(void)
897 static inline void dev_pagemap_put_ops(void)
901 static inline bool put_devmap_managed_page(struct page *page)
906 static inline bool is_device_private_page(const struct page *page)
911 static inline bool is_device_public_page(const struct page *page)
915 #endif /* CONFIG_DEV_PAGEMAP_OPS */
917 static inline void get_page(struct page *page)
919 page = compound_head(page);
921 * Getting a normal page or the head of a compound page
922 * requires to already have an elevated page->_refcount.
924 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
928 static inline void put_page(struct page *page)
930 page = compound_head(page);
933 * For devmap managed pages we need to catch refcount transition from
934 * 2 to 1, when refcount reach one it means the page is free and we
935 * need to inform the device driver through callback. See
936 * include/linux/memremap.h and HMM for details.
938 if (put_devmap_managed_page(page))
941 if (put_page_testzero(page))
945 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
946 #define SECTION_IN_PAGE_FLAGS
950 * The identification function is mainly used by the buddy allocator for
951 * determining if two pages could be buddies. We are not really identifying
952 * the zone since we could be using the section number id if we do not have
953 * node id available in page flags.
954 * We only guarantee that it will return the same value for two combinable
957 static inline int page_zone_id(struct page *page)
959 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
962 static inline int zone_to_nid(struct zone *zone)
971 #ifdef NODE_NOT_IN_PAGE_FLAGS
972 extern int page_to_nid(const struct page *page);
974 static inline int page_to_nid(const struct page *page)
976 struct page *p = (struct page *)page;
978 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
982 #ifdef CONFIG_NUMA_BALANCING
983 static inline int cpu_pid_to_cpupid(int cpu, int pid)
985 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
988 static inline int cpupid_to_pid(int cpupid)
990 return cpupid & LAST__PID_MASK;
993 static inline int cpupid_to_cpu(int cpupid)
995 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
998 static inline int cpupid_to_nid(int cpupid)
1000 return cpu_to_node(cpupid_to_cpu(cpupid));
1003 static inline bool cpupid_pid_unset(int cpupid)
1005 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1008 static inline bool cpupid_cpu_unset(int cpupid)
1010 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1013 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1015 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1018 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1019 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1020 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1022 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1025 static inline int page_cpupid_last(struct page *page)
1027 return page->_last_cpupid;
1029 static inline void page_cpupid_reset_last(struct page *page)
1031 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1034 static inline int page_cpupid_last(struct page *page)
1036 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1039 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1041 static inline void page_cpupid_reset_last(struct page *page)
1043 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1045 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1046 #else /* !CONFIG_NUMA_BALANCING */
1047 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1049 return page_to_nid(page); /* XXX */
1052 static inline int page_cpupid_last(struct page *page)
1054 return page_to_nid(page); /* XXX */
1057 static inline int cpupid_to_nid(int cpupid)
1062 static inline int cpupid_to_pid(int cpupid)
1067 static inline int cpupid_to_cpu(int cpupid)
1072 static inline int cpu_pid_to_cpupid(int nid, int pid)
1077 static inline bool cpupid_pid_unset(int cpupid)
1082 static inline void page_cpupid_reset_last(struct page *page)
1086 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1090 #endif /* CONFIG_NUMA_BALANCING */
1092 static inline struct zone *page_zone(const struct page *page)
1094 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1097 static inline pg_data_t *page_pgdat(const struct page *page)
1099 return NODE_DATA(page_to_nid(page));
1102 #ifdef SECTION_IN_PAGE_FLAGS
1103 static inline void set_page_section(struct page *page, unsigned long section)
1105 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1106 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1109 static inline unsigned long page_to_section(const struct page *page)
1111 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1115 static inline void set_page_zone(struct page *page, enum zone_type zone)
1117 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1118 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1121 static inline void set_page_node(struct page *page, unsigned long node)
1123 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1124 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1127 static inline void set_page_links(struct page *page, enum zone_type zone,
1128 unsigned long node, unsigned long pfn)
1130 set_page_zone(page, zone);
1131 set_page_node(page, node);
1132 #ifdef SECTION_IN_PAGE_FLAGS
1133 set_page_section(page, pfn_to_section_nr(pfn));
1138 static inline struct mem_cgroup *page_memcg(struct page *page)
1140 return page->mem_cgroup;
1142 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1144 WARN_ON_ONCE(!rcu_read_lock_held());
1145 return READ_ONCE(page->mem_cgroup);
1148 static inline struct mem_cgroup *page_memcg(struct page *page)
1152 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1154 WARN_ON_ONCE(!rcu_read_lock_held());
1160 * Some inline functions in vmstat.h depend on page_zone()
1162 #include <linux/vmstat.h>
1164 static __always_inline void *lowmem_page_address(const struct page *page)
1166 return page_to_virt(page);
1169 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1170 #define HASHED_PAGE_VIRTUAL
1173 #if defined(WANT_PAGE_VIRTUAL)
1174 static inline void *page_address(const struct page *page)
1176 return page->virtual;
1178 static inline void set_page_address(struct page *page, void *address)
1180 page->virtual = address;
1182 #define page_address_init() do { } while(0)
1185 #if defined(HASHED_PAGE_VIRTUAL)
1186 void *page_address(const struct page *page);
1187 void set_page_address(struct page *page, void *virtual);
1188 void page_address_init(void);
1191 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1192 #define page_address(page) lowmem_page_address(page)
1193 #define set_page_address(page, address) do { } while(0)
1194 #define page_address_init() do { } while(0)
1197 extern void *page_rmapping(struct page *page);
1198 extern struct anon_vma *page_anon_vma(struct page *page);
1199 extern struct address_space *page_mapping(struct page *page);
1201 extern struct address_space *__page_file_mapping(struct page *);
1204 struct address_space *page_file_mapping(struct page *page)
1206 if (unlikely(PageSwapCache(page)))
1207 return __page_file_mapping(page);
1209 return page->mapping;
1212 extern pgoff_t __page_file_index(struct page *page);
1215 * Return the pagecache index of the passed page. Regular pagecache pages
1216 * use ->index whereas swapcache pages use swp_offset(->private)
1218 static inline pgoff_t page_index(struct page *page)
1220 if (unlikely(PageSwapCache(page)))
1221 return __page_file_index(page);
1225 bool page_mapped(struct page *page);
1226 struct address_space *page_mapping(struct page *page);
1227 struct address_space *page_mapping_file(struct page *page);
1230 * Return true only if the page has been allocated with
1231 * ALLOC_NO_WATERMARKS and the low watermark was not
1232 * met implying that the system is under some pressure.
1234 static inline bool page_is_pfmemalloc(struct page *page)
1237 * Page index cannot be this large so this must be
1238 * a pfmemalloc page.
1240 return page->index == -1UL;
1244 * Only to be called by the page allocator on a freshly allocated
1247 static inline void set_page_pfmemalloc(struct page *page)
1252 static inline void clear_page_pfmemalloc(struct page *page)
1258 * Different kinds of faults, as returned by handle_mm_fault().
1259 * Used to decide whether a process gets delivered SIGBUS or
1260 * just gets major/minor fault counters bumped up.
1263 #define VM_FAULT_OOM 0x0001
1264 #define VM_FAULT_SIGBUS 0x0002
1265 #define VM_FAULT_MAJOR 0x0004
1266 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1267 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1268 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1269 #define VM_FAULT_SIGSEGV 0x0040
1271 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1272 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1273 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1274 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1275 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1276 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1277 * and needs fsync() to complete (for
1278 * synchronous page faults in DAX) */
1280 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1281 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1284 #define VM_FAULT_RESULT_TRACE \
1285 { VM_FAULT_OOM, "OOM" }, \
1286 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1287 { VM_FAULT_MAJOR, "MAJOR" }, \
1288 { VM_FAULT_WRITE, "WRITE" }, \
1289 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1290 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1291 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1292 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1293 { VM_FAULT_LOCKED, "LOCKED" }, \
1294 { VM_FAULT_RETRY, "RETRY" }, \
1295 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1296 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1297 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1299 /* Encode hstate index for a hwpoisoned large page */
1300 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1301 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1304 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1306 extern void pagefault_out_of_memory(void);
1308 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1311 * Flags passed to show_mem() and show_free_areas() to suppress output in
1314 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1316 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1318 extern bool can_do_mlock(void);
1319 extern int user_shm_lock(size_t, struct user_struct *);
1320 extern void user_shm_unlock(size_t, struct user_struct *);
1323 * Parameter block passed down to zap_pte_range in exceptional cases.
1325 struct zap_details {
1326 struct address_space *check_mapping; /* Check page->mapping if set */
1327 pgoff_t first_index; /* Lowest page->index to unmap */
1328 pgoff_t last_index; /* Highest page->index to unmap */
1331 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1332 pte_t pte, bool with_public_device);
1333 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1335 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1338 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1339 unsigned long size);
1340 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1341 unsigned long size);
1342 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1343 unsigned long start, unsigned long end);
1346 * mm_walk - callbacks for walk_page_range
1347 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1348 * this handler should only handle pud_trans_huge() puds.
1349 * the pmd_entry or pte_entry callbacks will be used for
1351 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1352 * this handler is required to be able to handle
1353 * pmd_trans_huge() pmds. They may simply choose to
1354 * split_huge_page() instead of handling it explicitly.
1355 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1356 * @pte_hole: if set, called for each hole at all levels
1357 * @hugetlb_entry: if set, called for each hugetlb entry
1358 * @test_walk: caller specific callback function to determine whether
1359 * we walk over the current vma or not. Returning 0
1360 * value means "do page table walk over the current vma,"
1361 * and a negative one means "abort current page table walk
1362 * right now." 1 means "skip the current vma."
1363 * @mm: mm_struct representing the target process of page table walk
1364 * @vma: vma currently walked (NULL if walking outside vmas)
1365 * @private: private data for callbacks' usage
1367 * (see the comment on walk_page_range() for more details)
1370 int (*pud_entry)(pud_t *pud, unsigned long addr,
1371 unsigned long next, struct mm_walk *walk);
1372 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1373 unsigned long next, struct mm_walk *walk);
1374 int (*pte_entry)(pte_t *pte, unsigned long addr,
1375 unsigned long next, struct mm_walk *walk);
1376 int (*pte_hole)(unsigned long addr, unsigned long next,
1377 struct mm_walk *walk);
1378 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1379 unsigned long addr, unsigned long next,
1380 struct mm_walk *walk);
1381 int (*test_walk)(unsigned long addr, unsigned long next,
1382 struct mm_walk *walk);
1383 struct mm_struct *mm;
1384 struct vm_area_struct *vma;
1388 int walk_page_range(unsigned long addr, unsigned long end,
1389 struct mm_walk *walk);
1390 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1391 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1392 unsigned long end, unsigned long floor, unsigned long ceiling);
1393 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1394 struct vm_area_struct *vma);
1395 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1396 unsigned long *start, unsigned long *end,
1397 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1398 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1399 unsigned long *pfn);
1400 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1401 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1402 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1403 void *buf, int len, int write);
1405 extern void truncate_pagecache(struct inode *inode, loff_t new);
1406 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1407 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1408 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1409 int truncate_inode_page(struct address_space *mapping, struct page *page);
1410 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1411 int invalidate_inode_page(struct page *page);
1414 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1415 unsigned int flags);
1416 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1417 unsigned long address, unsigned int fault_flags,
1419 void unmap_mapping_pages(struct address_space *mapping,
1420 pgoff_t start, pgoff_t nr, bool even_cows);
1421 void unmap_mapping_range(struct address_space *mapping,
1422 loff_t const holebegin, loff_t const holelen, int even_cows);
1424 static inline int handle_mm_fault(struct vm_area_struct *vma,
1425 unsigned long address, unsigned int flags)
1427 /* should never happen if there's no MMU */
1429 return VM_FAULT_SIGBUS;
1431 static inline int fixup_user_fault(struct task_struct *tsk,
1432 struct mm_struct *mm, unsigned long address,
1433 unsigned int fault_flags, bool *unlocked)
1435 /* should never happen if there's no MMU */
1439 static inline void unmap_mapping_pages(struct address_space *mapping,
1440 pgoff_t start, pgoff_t nr, bool even_cows) { }
1441 static inline void unmap_mapping_range(struct address_space *mapping,
1442 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1445 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1446 loff_t const holebegin, loff_t const holelen)
1448 unmap_mapping_range(mapping, holebegin, holelen, 0);
1451 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1452 void *buf, int len, unsigned int gup_flags);
1453 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1454 void *buf, int len, unsigned int gup_flags);
1455 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1456 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1458 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1459 unsigned long start, unsigned long nr_pages,
1460 unsigned int gup_flags, struct page **pages,
1461 struct vm_area_struct **vmas, int *locked);
1462 long get_user_pages(unsigned long start, unsigned long nr_pages,
1463 unsigned int gup_flags, struct page **pages,
1464 struct vm_area_struct **vmas);
1465 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1466 unsigned int gup_flags, struct page **pages, int *locked);
1467 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1468 struct page **pages, unsigned int gup_flags);
1469 #ifdef CONFIG_FS_DAX
1470 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1471 unsigned int gup_flags, struct page **pages,
1472 struct vm_area_struct **vmas);
1474 static inline long get_user_pages_longterm(unsigned long start,
1475 unsigned long nr_pages, unsigned int gup_flags,
1476 struct page **pages, struct vm_area_struct **vmas)
1478 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1480 #endif /* CONFIG_FS_DAX */
1482 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1483 struct page **pages);
1485 /* Container for pinned pfns / pages */
1486 struct frame_vector {
1487 unsigned int nr_allocated; /* Number of frames we have space for */
1488 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1489 bool got_ref; /* Did we pin pages by getting page ref? */
1490 bool is_pfns; /* Does array contain pages or pfns? */
1491 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1492 * pfns_vector_pages() or pfns_vector_pfns()
1496 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1497 void frame_vector_destroy(struct frame_vector *vec);
1498 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1499 unsigned int gup_flags, struct frame_vector *vec);
1500 void put_vaddr_frames(struct frame_vector *vec);
1501 int frame_vector_to_pages(struct frame_vector *vec);
1502 void frame_vector_to_pfns(struct frame_vector *vec);
1504 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1506 return vec->nr_frames;
1509 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1512 int err = frame_vector_to_pages(vec);
1515 return ERR_PTR(err);
1517 return (struct page **)(vec->ptrs);
1520 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1523 frame_vector_to_pfns(vec);
1524 return (unsigned long *)(vec->ptrs);
1528 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1529 struct page **pages);
1530 int get_kernel_page(unsigned long start, int write, struct page **pages);
1531 struct page *get_dump_page(unsigned long addr);
1533 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1534 extern void do_invalidatepage(struct page *page, unsigned int offset,
1535 unsigned int length);
1537 void __set_page_dirty(struct page *, struct address_space *, int warn);
1538 int __set_page_dirty_nobuffers(struct page *page);
1539 int __set_page_dirty_no_writeback(struct page *page);
1540 int redirty_page_for_writepage(struct writeback_control *wbc,
1542 void account_page_dirtied(struct page *page, struct address_space *mapping);
1543 void account_page_cleaned(struct page *page, struct address_space *mapping,
1544 struct bdi_writeback *wb);
1545 int set_page_dirty(struct page *page);
1546 int set_page_dirty_lock(struct page *page);
1547 void __cancel_dirty_page(struct page *page);
1548 static inline void cancel_dirty_page(struct page *page)
1550 /* Avoid atomic ops, locking, etc. when not actually needed. */
1551 if (PageDirty(page))
1552 __cancel_dirty_page(page);
1554 int clear_page_dirty_for_io(struct page *page);
1556 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1558 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1560 return !vma->vm_ops;
1565 * The vma_is_shmem is not inline because it is used only by slow
1566 * paths in userfault.
1568 bool vma_is_shmem(struct vm_area_struct *vma);
1570 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1573 int vma_is_stack_for_current(struct vm_area_struct *vma);
1575 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1576 unsigned long old_addr, struct vm_area_struct *new_vma,
1577 unsigned long new_addr, unsigned long len,
1578 bool need_rmap_locks);
1579 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1580 unsigned long end, pgprot_t newprot,
1581 int dirty_accountable, int prot_numa);
1582 extern int mprotect_fixup(struct vm_area_struct *vma,
1583 struct vm_area_struct **pprev, unsigned long start,
1584 unsigned long end, unsigned long newflags);
1587 * doesn't attempt to fault and will return short.
1589 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1590 struct page **pages);
1592 * per-process(per-mm_struct) statistics.
1594 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1596 long val = atomic_long_read(&mm->rss_stat.count[member]);
1598 #ifdef SPLIT_RSS_COUNTING
1600 * counter is updated in asynchronous manner and may go to minus.
1601 * But it's never be expected number for users.
1606 return (unsigned long)val;
1609 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1611 atomic_long_add(value, &mm->rss_stat.count[member]);
1614 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1616 atomic_long_inc(&mm->rss_stat.count[member]);
1619 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1621 atomic_long_dec(&mm->rss_stat.count[member]);
1624 /* Optimized variant when page is already known not to be PageAnon */
1625 static inline int mm_counter_file(struct page *page)
1627 if (PageSwapBacked(page))
1628 return MM_SHMEMPAGES;
1629 return MM_FILEPAGES;
1632 static inline int mm_counter(struct page *page)
1635 return MM_ANONPAGES;
1636 return mm_counter_file(page);
1639 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1641 return get_mm_counter(mm, MM_FILEPAGES) +
1642 get_mm_counter(mm, MM_ANONPAGES) +
1643 get_mm_counter(mm, MM_SHMEMPAGES);
1646 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1648 return max(mm->hiwater_rss, get_mm_rss(mm));
1651 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1653 return max(mm->hiwater_vm, mm->total_vm);
1656 static inline void update_hiwater_rss(struct mm_struct *mm)
1658 unsigned long _rss = get_mm_rss(mm);
1660 if ((mm)->hiwater_rss < _rss)
1661 (mm)->hiwater_rss = _rss;
1664 static inline void update_hiwater_vm(struct mm_struct *mm)
1666 if (mm->hiwater_vm < mm->total_vm)
1667 mm->hiwater_vm = mm->total_vm;
1670 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1672 mm->hiwater_rss = get_mm_rss(mm);
1675 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1676 struct mm_struct *mm)
1678 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1680 if (*maxrss < hiwater_rss)
1681 *maxrss = hiwater_rss;
1684 #if defined(SPLIT_RSS_COUNTING)
1685 void sync_mm_rss(struct mm_struct *mm);
1687 static inline void sync_mm_rss(struct mm_struct *mm)
1692 #ifndef __HAVE_ARCH_PTE_DEVMAP
1693 static inline int pte_devmap(pte_t pte)
1699 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1701 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1703 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1707 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1711 #ifdef __PAGETABLE_P4D_FOLDED
1712 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1713 unsigned long address)
1718 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1721 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1722 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1723 unsigned long address)
1727 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1728 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1731 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1733 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1735 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1738 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1740 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1744 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1745 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1746 unsigned long address)
1751 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1752 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1755 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1757 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1759 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1762 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1764 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1769 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1771 atomic_long_set(&mm->pgtables_bytes, 0);
1774 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1776 return atomic_long_read(&mm->pgtables_bytes);
1779 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1781 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1784 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1786 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1790 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1791 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1796 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1797 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1800 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1801 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1804 * The following ifdef needed to get the 4level-fixup.h header to work.
1805 * Remove it when 4level-fixup.h has been removed.
1807 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1809 #ifndef __ARCH_HAS_5LEVEL_HACK
1810 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1811 unsigned long address)
1813 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1814 NULL : p4d_offset(pgd, address);
1817 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1818 unsigned long address)
1820 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1821 NULL : pud_offset(p4d, address);
1823 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1825 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1827 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1828 NULL: pmd_offset(pud, address);
1830 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1832 #if USE_SPLIT_PTE_PTLOCKS
1833 #if ALLOC_SPLIT_PTLOCKS
1834 void __init ptlock_cache_init(void);
1835 extern bool ptlock_alloc(struct page *page);
1836 extern void ptlock_free(struct page *page);
1838 static inline spinlock_t *ptlock_ptr(struct page *page)
1842 #else /* ALLOC_SPLIT_PTLOCKS */
1843 static inline void ptlock_cache_init(void)
1847 static inline bool ptlock_alloc(struct page *page)
1852 static inline void ptlock_free(struct page *page)
1856 static inline spinlock_t *ptlock_ptr(struct page *page)
1860 #endif /* ALLOC_SPLIT_PTLOCKS */
1862 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1864 return ptlock_ptr(pmd_page(*pmd));
1867 static inline bool ptlock_init(struct page *page)
1870 * prep_new_page() initialize page->private (and therefore page->ptl)
1871 * with 0. Make sure nobody took it in use in between.
1873 * It can happen if arch try to use slab for page table allocation:
1874 * slab code uses page->slab_cache, which share storage with page->ptl.
1876 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1877 if (!ptlock_alloc(page))
1879 spin_lock_init(ptlock_ptr(page));
1883 /* Reset page->mapping so free_pages_check won't complain. */
1884 static inline void pte_lock_deinit(struct page *page)
1886 page->mapping = NULL;
1890 #else /* !USE_SPLIT_PTE_PTLOCKS */
1892 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1894 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1896 return &mm->page_table_lock;
1898 static inline void ptlock_cache_init(void) {}
1899 static inline bool ptlock_init(struct page *page) { return true; }
1900 static inline void pte_lock_deinit(struct page *page) {}
1901 #endif /* USE_SPLIT_PTE_PTLOCKS */
1903 static inline void pgtable_init(void)
1905 ptlock_cache_init();
1906 pgtable_cache_init();
1909 static inline bool pgtable_page_ctor(struct page *page)
1911 if (!ptlock_init(page))
1913 __SetPageTable(page);
1914 inc_zone_page_state(page, NR_PAGETABLE);
1918 static inline void pgtable_page_dtor(struct page *page)
1920 pte_lock_deinit(page);
1921 __ClearPageTable(page);
1922 dec_zone_page_state(page, NR_PAGETABLE);
1925 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1927 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1928 pte_t *__pte = pte_offset_map(pmd, address); \
1934 #define pte_unmap_unlock(pte, ptl) do { \
1939 #define pte_alloc(mm, pmd, address) \
1940 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1942 #define pte_alloc_map(mm, pmd, address) \
1943 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1945 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1946 (pte_alloc(mm, pmd, address) ? \
1947 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1949 #define pte_alloc_kernel(pmd, address) \
1950 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1951 NULL: pte_offset_kernel(pmd, address))
1953 #if USE_SPLIT_PMD_PTLOCKS
1955 static struct page *pmd_to_page(pmd_t *pmd)
1957 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1958 return virt_to_page((void *)((unsigned long) pmd & mask));
1961 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1963 return ptlock_ptr(pmd_to_page(pmd));
1966 static inline bool pgtable_pmd_page_ctor(struct page *page)
1968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1969 page->pmd_huge_pte = NULL;
1971 return ptlock_init(page);
1974 static inline void pgtable_pmd_page_dtor(struct page *page)
1976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1977 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1982 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1986 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1988 return &mm->page_table_lock;
1991 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1992 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1994 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1998 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2000 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2006 * No scalability reason to split PUD locks yet, but follow the same pattern
2007 * as the PMD locks to make it easier if we decide to. The VM should not be
2008 * considered ready to switch to split PUD locks yet; there may be places
2009 * which need to be converted from page_table_lock.
2011 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2013 return &mm->page_table_lock;
2016 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2018 spinlock_t *ptl = pud_lockptr(mm, pud);
2024 extern void __init pagecache_init(void);
2025 extern void free_area_init(unsigned long * zones_size);
2026 extern void free_area_init_node(int nid, unsigned long * zones_size,
2027 unsigned long zone_start_pfn, unsigned long *zholes_size);
2028 extern void free_initmem(void);
2031 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2032 * into the buddy system. The freed pages will be poisoned with pattern
2033 * "poison" if it's within range [0, UCHAR_MAX].
2034 * Return pages freed into the buddy system.
2036 extern unsigned long free_reserved_area(void *start, void *end,
2037 int poison, char *s);
2039 #ifdef CONFIG_HIGHMEM
2041 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2042 * and totalram_pages.
2044 extern void free_highmem_page(struct page *page);
2047 extern void adjust_managed_page_count(struct page *page, long count);
2048 extern void mem_init_print_info(const char *str);
2050 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2052 /* Free the reserved page into the buddy system, so it gets managed. */
2053 static inline void __free_reserved_page(struct page *page)
2055 ClearPageReserved(page);
2056 init_page_count(page);
2060 static inline void free_reserved_page(struct page *page)
2062 __free_reserved_page(page);
2063 adjust_managed_page_count(page, 1);
2066 static inline void mark_page_reserved(struct page *page)
2068 SetPageReserved(page);
2069 adjust_managed_page_count(page, -1);
2073 * Default method to free all the __init memory into the buddy system.
2074 * The freed pages will be poisoned with pattern "poison" if it's within
2075 * range [0, UCHAR_MAX].
2076 * Return pages freed into the buddy system.
2078 static inline unsigned long free_initmem_default(int poison)
2080 extern char __init_begin[], __init_end[];
2082 return free_reserved_area(&__init_begin, &__init_end,
2083 poison, "unused kernel");
2086 static inline unsigned long get_num_physpages(void)
2089 unsigned long phys_pages = 0;
2091 for_each_online_node(nid)
2092 phys_pages += node_present_pages(nid);
2097 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2099 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2100 * zones, allocate the backing mem_map and account for memory holes in a more
2101 * architecture independent manner. This is a substitute for creating the
2102 * zone_sizes[] and zholes_size[] arrays and passing them to
2103 * free_area_init_node()
2105 * An architecture is expected to register range of page frames backed by
2106 * physical memory with memblock_add[_node]() before calling
2107 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2108 * usage, an architecture is expected to do something like
2110 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2112 * for_each_valid_physical_page_range()
2113 * memblock_add_node(base, size, nid)
2114 * free_area_init_nodes(max_zone_pfns);
2116 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2117 * registered physical page range. Similarly
2118 * sparse_memory_present_with_active_regions() calls memory_present() for
2119 * each range when SPARSEMEM is enabled.
2121 * See mm/page_alloc.c for more information on each function exposed by
2122 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2124 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2125 unsigned long node_map_pfn_alignment(void);
2126 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2127 unsigned long end_pfn);
2128 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2129 unsigned long end_pfn);
2130 extern void get_pfn_range_for_nid(unsigned int nid,
2131 unsigned long *start_pfn, unsigned long *end_pfn);
2132 extern unsigned long find_min_pfn_with_active_regions(void);
2133 extern void free_bootmem_with_active_regions(int nid,
2134 unsigned long max_low_pfn);
2135 extern void sparse_memory_present_with_active_regions(int nid);
2137 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2139 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2140 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2141 static inline int __early_pfn_to_nid(unsigned long pfn,
2142 struct mminit_pfnnid_cache *state)
2147 /* please see mm/page_alloc.c */
2148 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2149 /* there is a per-arch backend function. */
2150 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2151 struct mminit_pfnnid_cache *state);
2154 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
2155 void zero_resv_unavail(void);
2157 static inline void zero_resv_unavail(void) {}
2160 extern void set_dma_reserve(unsigned long new_dma_reserve);
2161 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2162 enum memmap_context, struct vmem_altmap *);
2163 extern void setup_per_zone_wmarks(void);
2164 extern int __meminit init_per_zone_wmark_min(void);
2165 extern void mem_init(void);
2166 extern void __init mmap_init(void);
2167 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2168 extern long si_mem_available(void);
2169 extern void si_meminfo(struct sysinfo * val);
2170 extern void si_meminfo_node(struct sysinfo *val, int nid);
2171 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2172 extern unsigned long arch_reserved_kernel_pages(void);
2175 extern __printf(3, 4)
2176 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2178 extern void setup_per_cpu_pageset(void);
2180 extern void zone_pcp_update(struct zone *zone);
2181 extern void zone_pcp_reset(struct zone *zone);
2184 extern int min_free_kbytes;
2185 extern int watermark_scale_factor;
2188 extern atomic_long_t mmap_pages_allocated;
2189 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2191 /* interval_tree.c */
2192 void vma_interval_tree_insert(struct vm_area_struct *node,
2193 struct rb_root_cached *root);
2194 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2195 struct vm_area_struct *prev,
2196 struct rb_root_cached *root);
2197 void vma_interval_tree_remove(struct vm_area_struct *node,
2198 struct rb_root_cached *root);
2199 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2200 unsigned long start, unsigned long last);
2201 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2202 unsigned long start, unsigned long last);
2204 #define vma_interval_tree_foreach(vma, root, start, last) \
2205 for (vma = vma_interval_tree_iter_first(root, start, last); \
2206 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2208 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2209 struct rb_root_cached *root);
2210 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2211 struct rb_root_cached *root);
2212 struct anon_vma_chain *
2213 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2214 unsigned long start, unsigned long last);
2215 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2216 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2217 #ifdef CONFIG_DEBUG_VM_RB
2218 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2221 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2222 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2223 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2226 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2227 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2228 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2229 struct vm_area_struct *expand);
2230 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2231 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2233 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2235 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2236 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2237 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2238 struct mempolicy *, struct vm_userfaultfd_ctx);
2239 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2240 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2241 unsigned long addr, int new_below);
2242 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2243 unsigned long addr, int new_below);
2244 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2245 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2246 struct rb_node **, struct rb_node *);
2247 extern void unlink_file_vma(struct vm_area_struct *);
2248 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2249 unsigned long addr, unsigned long len, pgoff_t pgoff,
2250 bool *need_rmap_locks);
2251 extern void exit_mmap(struct mm_struct *);
2253 static inline int check_data_rlimit(unsigned long rlim,
2255 unsigned long start,
2256 unsigned long end_data,
2257 unsigned long start_data)
2259 if (rlim < RLIM_INFINITY) {
2260 if (((new - start) + (end_data - start_data)) > rlim)
2267 extern int mm_take_all_locks(struct mm_struct *mm);
2268 extern void mm_drop_all_locks(struct mm_struct *mm);
2270 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2271 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2272 extern struct file *get_task_exe_file(struct task_struct *task);
2274 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2275 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2277 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2278 const struct vm_special_mapping *sm);
2279 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2280 unsigned long addr, unsigned long len,
2281 unsigned long flags,
2282 const struct vm_special_mapping *spec);
2283 /* This is an obsolete alternative to _install_special_mapping. */
2284 extern int install_special_mapping(struct mm_struct *mm,
2285 unsigned long addr, unsigned long len,
2286 unsigned long flags, struct page **pages);
2288 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2290 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2291 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2292 struct list_head *uf);
2293 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2294 unsigned long len, unsigned long prot, unsigned long flags,
2295 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2296 struct list_head *uf);
2297 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2298 struct list_head *uf);
2300 static inline unsigned long
2301 do_mmap_pgoff(struct file *file, unsigned long addr,
2302 unsigned long len, unsigned long prot, unsigned long flags,
2303 unsigned long pgoff, unsigned long *populate,
2304 struct list_head *uf)
2306 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2310 extern int __mm_populate(unsigned long addr, unsigned long len,
2312 static inline void mm_populate(unsigned long addr, unsigned long len)
2315 (void) __mm_populate(addr, len, 1);
2318 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2321 /* These take the mm semaphore themselves */
2322 extern int __must_check vm_brk(unsigned long, unsigned long);
2323 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2324 extern int vm_munmap(unsigned long, size_t);
2325 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2326 unsigned long, unsigned long,
2327 unsigned long, unsigned long);
2329 struct vm_unmapped_area_info {
2330 #define VM_UNMAPPED_AREA_TOPDOWN 1
2331 unsigned long flags;
2332 unsigned long length;
2333 unsigned long low_limit;
2334 unsigned long high_limit;
2335 unsigned long align_mask;
2336 unsigned long align_offset;
2339 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2340 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2343 * Search for an unmapped address range.
2345 * We are looking for a range that:
2346 * - does not intersect with any VMA;
2347 * - is contained within the [low_limit, high_limit) interval;
2348 * - is at least the desired size.
2349 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2351 static inline unsigned long
2352 vm_unmapped_area(struct vm_unmapped_area_info *info)
2354 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2355 return unmapped_area_topdown(info);
2357 return unmapped_area(info);
2361 extern void truncate_inode_pages(struct address_space *, loff_t);
2362 extern void truncate_inode_pages_range(struct address_space *,
2363 loff_t lstart, loff_t lend);
2364 extern void truncate_inode_pages_final(struct address_space *);
2366 /* generic vm_area_ops exported for stackable file systems */
2367 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2368 extern void filemap_map_pages(struct vm_fault *vmf,
2369 pgoff_t start_pgoff, pgoff_t end_pgoff);
2370 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2372 /* mm/page-writeback.c */
2373 int __must_check write_one_page(struct page *page);
2374 void task_dirty_inc(struct task_struct *tsk);
2377 #define VM_MAX_READAHEAD 128 /* kbytes */
2378 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2380 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2381 pgoff_t offset, unsigned long nr_to_read);
2383 void page_cache_sync_readahead(struct address_space *mapping,
2384 struct file_ra_state *ra,
2387 unsigned long size);
2389 void page_cache_async_readahead(struct address_space *mapping,
2390 struct file_ra_state *ra,
2394 unsigned long size);
2396 extern unsigned long stack_guard_gap;
2397 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2398 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2400 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2401 extern int expand_downwards(struct vm_area_struct *vma,
2402 unsigned long address);
2404 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2406 #define expand_upwards(vma, address) (0)
2409 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2410 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2411 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2412 struct vm_area_struct **pprev);
2414 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2415 NULL if none. Assume start_addr < end_addr. */
2416 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2418 struct vm_area_struct * vma = find_vma(mm,start_addr);
2420 if (vma && end_addr <= vma->vm_start)
2425 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2427 unsigned long vm_start = vma->vm_start;
2429 if (vma->vm_flags & VM_GROWSDOWN) {
2430 vm_start -= stack_guard_gap;
2431 if (vm_start > vma->vm_start)
2437 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2439 unsigned long vm_end = vma->vm_end;
2441 if (vma->vm_flags & VM_GROWSUP) {
2442 vm_end += stack_guard_gap;
2443 if (vm_end < vma->vm_end)
2444 vm_end = -PAGE_SIZE;
2449 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2451 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2454 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2455 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2456 unsigned long vm_start, unsigned long vm_end)
2458 struct vm_area_struct *vma = find_vma(mm, vm_start);
2460 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2467 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2468 void vma_set_page_prot(struct vm_area_struct *vma);
2470 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2474 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2476 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2480 #ifdef CONFIG_NUMA_BALANCING
2481 unsigned long change_prot_numa(struct vm_area_struct *vma,
2482 unsigned long start, unsigned long end);
2485 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2486 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2487 unsigned long pfn, unsigned long size, pgprot_t);
2488 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2489 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2491 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2492 unsigned long pfn, pgprot_t pgprot);
2493 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2495 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2496 unsigned long addr, pfn_t pfn);
2497 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2499 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2500 unsigned long addr, struct page *page)
2502 int err = vm_insert_page(vma, addr, page);
2505 return VM_FAULT_OOM;
2506 if (err < 0 && err != -EBUSY)
2507 return VM_FAULT_SIGBUS;
2509 return VM_FAULT_NOPAGE;
2512 static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2513 unsigned long addr, pfn_t pfn)
2515 int err = vm_insert_mixed(vma, addr, pfn);
2518 return VM_FAULT_OOM;
2519 if (err < 0 && err != -EBUSY)
2520 return VM_FAULT_SIGBUS;
2522 return VM_FAULT_NOPAGE;
2525 static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2526 unsigned long addr, unsigned long pfn)
2528 int err = vm_insert_pfn(vma, addr, pfn);
2531 return VM_FAULT_OOM;
2532 if (err < 0 && err != -EBUSY)
2533 return VM_FAULT_SIGBUS;
2535 return VM_FAULT_NOPAGE;
2538 static inline vm_fault_t vmf_error(int err)
2541 return VM_FAULT_OOM;
2542 return VM_FAULT_SIGBUS;
2545 struct page *follow_page_mask(struct vm_area_struct *vma,
2546 unsigned long address, unsigned int foll_flags,
2547 unsigned int *page_mask);
2549 static inline struct page *follow_page(struct vm_area_struct *vma,
2550 unsigned long address, unsigned int foll_flags)
2552 unsigned int unused_page_mask;
2553 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2556 #define FOLL_WRITE 0x01 /* check pte is writable */
2557 #define FOLL_TOUCH 0x02 /* mark page accessed */
2558 #define FOLL_GET 0x04 /* do get_page on page */
2559 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2560 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2561 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2562 * and return without waiting upon it */
2563 #define FOLL_POPULATE 0x40 /* fault in page */
2564 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2565 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2566 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2567 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2568 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2569 #define FOLL_MLOCK 0x1000 /* lock present pages */
2570 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2571 #define FOLL_COW 0x4000 /* internal GUP flag */
2572 #define FOLL_ANON 0x8000 /* don't do file mappings */
2574 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2576 if (vm_fault & VM_FAULT_OOM)
2578 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2579 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2580 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2585 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2587 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2588 unsigned long size, pte_fn_t fn, void *data);
2591 #ifdef CONFIG_PAGE_POISONING
2592 extern bool page_poisoning_enabled(void);
2593 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2595 static inline bool page_poisoning_enabled(void) { return false; }
2596 static inline void kernel_poison_pages(struct page *page, int numpages,
2600 #ifdef CONFIG_DEBUG_PAGEALLOC
2601 extern bool _debug_pagealloc_enabled;
2602 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2604 static inline bool debug_pagealloc_enabled(void)
2606 return _debug_pagealloc_enabled;
2610 kernel_map_pages(struct page *page, int numpages, int enable)
2612 if (!debug_pagealloc_enabled())
2615 __kernel_map_pages(page, numpages, enable);
2617 #ifdef CONFIG_HIBERNATION
2618 extern bool kernel_page_present(struct page *page);
2619 #endif /* CONFIG_HIBERNATION */
2620 #else /* CONFIG_DEBUG_PAGEALLOC */
2622 kernel_map_pages(struct page *page, int numpages, int enable) {}
2623 #ifdef CONFIG_HIBERNATION
2624 static inline bool kernel_page_present(struct page *page) { return true; }
2625 #endif /* CONFIG_HIBERNATION */
2626 static inline bool debug_pagealloc_enabled(void)
2630 #endif /* CONFIG_DEBUG_PAGEALLOC */
2632 #ifdef __HAVE_ARCH_GATE_AREA
2633 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2634 extern int in_gate_area_no_mm(unsigned long addr);
2635 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2637 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2641 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2642 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2646 #endif /* __HAVE_ARCH_GATE_AREA */
2648 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2650 #ifdef CONFIG_SYSCTL
2651 extern int sysctl_drop_caches;
2652 int drop_caches_sysctl_handler(struct ctl_table *, int,
2653 void __user *, size_t *, loff_t *);
2656 void drop_slab(void);
2657 void drop_slab_node(int nid);
2660 #define randomize_va_space 0
2662 extern int randomize_va_space;
2665 const char * arch_vma_name(struct vm_area_struct *vma);
2666 void print_vma_addr(char *prefix, unsigned long rip);
2668 void *sparse_buffer_alloc(unsigned long size);
2669 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2670 struct vmem_altmap *altmap);
2671 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2672 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2673 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2674 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2675 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2676 void *vmemmap_alloc_block(unsigned long size, int node);
2678 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2679 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2680 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2681 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2683 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2684 struct vmem_altmap *altmap);
2685 void vmemmap_populate_print_last(void);
2686 #ifdef CONFIG_MEMORY_HOTPLUG
2687 void vmemmap_free(unsigned long start, unsigned long end,
2688 struct vmem_altmap *altmap);
2690 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2691 unsigned long nr_pages);
2694 MF_COUNT_INCREASED = 1 << 0,
2695 MF_ACTION_REQUIRED = 1 << 1,
2696 MF_MUST_KILL = 1 << 2,
2697 MF_SOFT_OFFLINE = 1 << 3,
2699 extern int memory_failure(unsigned long pfn, int flags);
2700 extern void memory_failure_queue(unsigned long pfn, int flags);
2701 extern int unpoison_memory(unsigned long pfn);
2702 extern int get_hwpoison_page(struct page *page);
2703 #define put_hwpoison_page(page) put_page(page)
2704 extern int sysctl_memory_failure_early_kill;
2705 extern int sysctl_memory_failure_recovery;
2706 extern void shake_page(struct page *p, int access);
2707 extern atomic_long_t num_poisoned_pages __read_mostly;
2708 extern int soft_offline_page(struct page *page, int flags);
2712 * Error handlers for various types of pages.
2715 MF_IGNORED, /* Error: cannot be handled */
2716 MF_FAILED, /* Error: handling failed */
2717 MF_DELAYED, /* Will be handled later */
2718 MF_RECOVERED, /* Successfully recovered */
2721 enum mf_action_page_type {
2723 MF_MSG_KERNEL_HIGH_ORDER,
2725 MF_MSG_DIFFERENT_COMPOUND,
2726 MF_MSG_POISONED_HUGE,
2729 MF_MSG_NON_PMD_HUGE,
2730 MF_MSG_UNMAP_FAILED,
2731 MF_MSG_DIRTY_SWAPCACHE,
2732 MF_MSG_CLEAN_SWAPCACHE,
2733 MF_MSG_DIRTY_MLOCKED_LRU,
2734 MF_MSG_CLEAN_MLOCKED_LRU,
2735 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2736 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2739 MF_MSG_TRUNCATED_LRU,
2745 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2746 extern void clear_huge_page(struct page *page,
2747 unsigned long addr_hint,
2748 unsigned int pages_per_huge_page);
2749 extern void copy_user_huge_page(struct page *dst, struct page *src,
2750 unsigned long addr_hint,
2751 struct vm_area_struct *vma,
2752 unsigned int pages_per_huge_page);
2753 extern long copy_huge_page_from_user(struct page *dst_page,
2754 const void __user *usr_src,
2755 unsigned int pages_per_huge_page,
2756 bool allow_pagefault);
2757 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2759 extern struct page_ext_operations debug_guardpage_ops;
2761 #ifdef CONFIG_DEBUG_PAGEALLOC
2762 extern unsigned int _debug_guardpage_minorder;
2763 extern bool _debug_guardpage_enabled;
2765 static inline unsigned int debug_guardpage_minorder(void)
2767 return _debug_guardpage_minorder;
2770 static inline bool debug_guardpage_enabled(void)
2772 return _debug_guardpage_enabled;
2775 static inline bool page_is_guard(struct page *page)
2777 struct page_ext *page_ext;
2779 if (!debug_guardpage_enabled())
2782 page_ext = lookup_page_ext(page);
2783 if (unlikely(!page_ext))
2786 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2789 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2790 static inline bool debug_guardpage_enabled(void) { return false; }
2791 static inline bool page_is_guard(struct page *page) { return false; }
2792 #endif /* CONFIG_DEBUG_PAGEALLOC */
2794 #if MAX_NUMNODES > 1
2795 void __init setup_nr_node_ids(void);
2797 static inline void setup_nr_node_ids(void) {}
2800 #endif /* __KERNEL__ */
2801 #endif /* _LINUX_MM_H */