3 * Library for filesystems writers.
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h>
17 #include <asm/uaccess.h>
19 static inline int simple_positive(struct dentry *dentry)
21 return dentry->d_inode && !d_unhashed(dentry);
24 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
27 struct inode *inode = dentry->d_inode;
28 generic_fillattr(inode, stat);
29 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
35 buf->f_type = dentry->d_sb->s_magic;
36 buf->f_bsize = PAGE_CACHE_SIZE;
37 buf->f_namelen = NAME_MAX;
42 * Retaining negative dentries for an in-memory filesystem just wastes
43 * memory and lookup time: arrange for them to be deleted immediately.
45 static int simple_delete_dentry(const struct dentry *dentry)
51 * Lookup the data. This is trivial - if the dentry didn't already
52 * exist, we know it is negative. Set d_op to delete negative dentries.
54 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
56 static const struct dentry_operations simple_dentry_operations = {
57 .d_delete = simple_delete_dentry,
60 if (dentry->d_name.len > NAME_MAX)
61 return ERR_PTR(-ENAMETOOLONG);
62 d_set_d_op(dentry, &simple_dentry_operations);
67 int dcache_dir_open(struct inode *inode, struct file *file)
69 static struct qstr cursor_name = {.len = 1, .name = "."};
71 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
73 return file->private_data ? 0 : -ENOMEM;
76 int dcache_dir_close(struct inode *inode, struct file *file)
78 dput(file->private_data);
82 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
84 struct dentry *dentry = file->f_path.dentry;
85 mutex_lock(&dentry->d_inode->i_mutex);
88 offset += file->f_pos;
93 mutex_unlock(&dentry->d_inode->i_mutex);
96 if (offset != file->f_pos) {
98 if (file->f_pos >= 2) {
100 struct dentry *cursor = file->private_data;
101 loff_t n = file->f_pos - 2;
103 spin_lock(&dentry->d_lock);
104 /* d_lock not required for cursor */
105 list_del(&cursor->d_u.d_child);
106 p = dentry->d_subdirs.next;
107 while (n && p != &dentry->d_subdirs) {
109 next = list_entry(p, struct dentry, d_u.d_child);
110 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
111 if (simple_positive(next))
113 spin_unlock(&next->d_lock);
116 list_add_tail(&cursor->d_u.d_child, p);
117 spin_unlock(&dentry->d_lock);
120 mutex_unlock(&dentry->d_inode->i_mutex);
124 /* Relationship between i_mode and the DT_xxx types */
125 static inline unsigned char dt_type(struct inode *inode)
127 return (inode->i_mode >> 12) & 15;
131 * Directory is locked and all positive dentries in it are safe, since
132 * for ramfs-type trees they can't go away without unlink() or rmdir(),
133 * both impossible due to the lock on directory.
136 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
138 struct dentry *dentry = filp->f_path.dentry;
139 struct dentry *cursor = filp->private_data;
140 struct list_head *p, *q = &cursor->d_u.d_child;
146 ino = dentry->d_inode->i_ino;
147 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
153 ino = parent_ino(dentry);
154 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
160 spin_lock(&dentry->d_lock);
161 if (filp->f_pos == 2)
162 list_move(q, &dentry->d_subdirs);
164 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
166 next = list_entry(p, struct dentry, d_u.d_child);
167 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
168 if (!simple_positive(next)) {
169 spin_unlock(&next->d_lock);
173 spin_unlock(&next->d_lock);
174 spin_unlock(&dentry->d_lock);
175 if (filldir(dirent, next->d_name.name,
176 next->d_name.len, filp->f_pos,
177 next->d_inode->i_ino,
178 dt_type(next->d_inode)) < 0)
180 spin_lock(&dentry->d_lock);
181 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
182 /* next is still alive */
184 spin_unlock(&next->d_lock);
188 spin_unlock(&dentry->d_lock);
193 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
198 const struct file_operations simple_dir_operations = {
199 .open = dcache_dir_open,
200 .release = dcache_dir_close,
201 .llseek = dcache_dir_lseek,
202 .read = generic_read_dir,
203 .readdir = dcache_readdir,
207 const struct inode_operations simple_dir_inode_operations = {
208 .lookup = simple_lookup,
211 static const struct super_operations simple_super_operations = {
212 .statfs = simple_statfs,
216 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
217 * will never be mountable)
219 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
220 const struct super_operations *ops, unsigned long magic)
222 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
223 struct dentry *dentry;
225 struct qstr d_name = {.name = name, .len = strlen(name)};
230 s->s_flags = MS_NOUSER;
231 s->s_maxbytes = MAX_LFS_FILESIZE;
232 s->s_blocksize = PAGE_SIZE;
233 s->s_blocksize_bits = PAGE_SHIFT;
235 s->s_op = ops ? ops : &simple_super_operations;
241 * since this is the first inode, make it number 1. New inodes created
242 * after this must take care not to collide with it (by passing
243 * max_reserved of 1 to iunique).
246 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
247 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
248 dentry = d_alloc(NULL, &d_name);
254 dentry->d_parent = dentry;
255 d_instantiate(dentry, root);
257 s->s_flags |= MS_ACTIVE;
258 return dget(s->s_root);
261 deactivate_locked_super(s);
262 return ERR_PTR(-ENOMEM);
265 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
267 struct inode *inode = old_dentry->d_inode;
269 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
273 d_instantiate(dentry, inode);
277 int simple_empty(struct dentry *dentry)
279 struct dentry *child;
282 spin_lock(&dentry->d_lock);
283 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
284 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
285 if (simple_positive(child)) {
286 spin_unlock(&child->d_lock);
289 spin_unlock(&child->d_lock);
293 spin_unlock(&dentry->d_lock);
297 int simple_unlink(struct inode *dir, struct dentry *dentry)
299 struct inode *inode = dentry->d_inode;
301 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
307 int simple_rmdir(struct inode *dir, struct dentry *dentry)
309 if (!simple_empty(dentry))
312 drop_nlink(dentry->d_inode);
313 simple_unlink(dir, dentry);
318 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
319 struct inode *new_dir, struct dentry *new_dentry)
321 struct inode *inode = old_dentry->d_inode;
322 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
324 if (!simple_empty(new_dentry))
327 if (new_dentry->d_inode) {
328 simple_unlink(new_dir, new_dentry);
331 } else if (they_are_dirs) {
336 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
337 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
343 * simple_setattr - setattr for simple filesystem
345 * @iattr: iattr structure
347 * Returns 0 on success, -error on failure.
349 * simple_setattr is a simple ->setattr implementation without a proper
350 * implementation of size changes.
352 * It can either be used for in-memory filesystems or special files
353 * on simple regular filesystems. Anything that needs to change on-disk
354 * or wire state on size changes needs its own setattr method.
356 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
358 struct inode *inode = dentry->d_inode;
361 WARN_ON_ONCE(inode->i_op->truncate);
363 error = inode_change_ok(inode, iattr);
367 if (iattr->ia_valid & ATTR_SIZE)
368 truncate_setsize(inode, iattr->ia_size);
369 setattr_copy(inode, iattr);
370 mark_inode_dirty(inode);
373 EXPORT_SYMBOL(simple_setattr);
375 int simple_readpage(struct file *file, struct page *page)
377 clear_highpage(page);
378 flush_dcache_page(page);
379 SetPageUptodate(page);
384 int simple_write_begin(struct file *file, struct address_space *mapping,
385 loff_t pos, unsigned len, unsigned flags,
386 struct page **pagep, void **fsdata)
391 index = pos >> PAGE_CACHE_SHIFT;
393 page = grab_cache_page_write_begin(mapping, index, flags);
399 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
400 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
402 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
408 * simple_write_end - .write_end helper for non-block-device FSes
409 * @available: See .write_end of address_space_operations
418 * simple_write_end does the minimum needed for updating a page after writing is
419 * done. It has the same API signature as the .write_end of
420 * address_space_operations vector. So it can just be set onto .write_end for
421 * FSes that don't need any other processing. i_mutex is assumed to be held.
422 * Block based filesystems should use generic_write_end().
423 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
424 * is not called, so a filesystem that actually does store data in .write_inode
425 * should extend on what's done here with a call to mark_inode_dirty() in the
426 * case that i_size has changed.
428 int simple_write_end(struct file *file, struct address_space *mapping,
429 loff_t pos, unsigned len, unsigned copied,
430 struct page *page, void *fsdata)
432 struct inode *inode = page->mapping->host;
433 loff_t last_pos = pos + copied;
435 /* zero the stale part of the page if we did a short copy */
437 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
439 zero_user(page, from + copied, len - copied);
442 if (!PageUptodate(page))
443 SetPageUptodate(page);
445 * No need to use i_size_read() here, the i_size
446 * cannot change under us because we hold the i_mutex.
448 if (last_pos > inode->i_size)
449 i_size_write(inode, last_pos);
451 set_page_dirty(page);
453 page_cache_release(page);
459 * the inodes created here are not hashed. If you use iunique to generate
460 * unique inode values later for this filesystem, then you must take care
461 * to pass it an appropriate max_reserved value to avoid collisions.
463 int simple_fill_super(struct super_block *s, unsigned long magic,
464 struct tree_descr *files)
468 struct dentry *dentry;
471 s->s_blocksize = PAGE_CACHE_SIZE;
472 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
474 s->s_op = &simple_super_operations;
477 inode = new_inode(s);
481 * because the root inode is 1, the files array must not contain an
485 inode->i_mode = S_IFDIR | 0755;
486 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
487 inode->i_op = &simple_dir_inode_operations;
488 inode->i_fop = &simple_dir_operations;
490 root = d_alloc_root(inode);
495 for (i = 0; !files->name || files->name[0]; i++, files++) {
499 /* warn if it tries to conflict with the root inode */
500 if (unlikely(i == 1))
501 printk(KERN_WARNING "%s: %s passed in a files array"
502 "with an index of 1!\n", __func__,
505 dentry = d_alloc_name(root, files->name);
508 inode = new_inode(s);
511 inode->i_mode = S_IFREG | files->mode;
512 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
513 inode->i_fop = files->ops;
515 d_add(dentry, inode);
525 static DEFINE_SPINLOCK(pin_fs_lock);
527 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
529 struct vfsmount *mnt = NULL;
530 spin_lock(&pin_fs_lock);
531 if (unlikely(!*mount)) {
532 spin_unlock(&pin_fs_lock);
533 mnt = vfs_kern_mount(type, 0, type->name, NULL);
536 spin_lock(&pin_fs_lock);
542 spin_unlock(&pin_fs_lock);
547 void simple_release_fs(struct vfsmount **mount, int *count)
549 struct vfsmount *mnt;
550 spin_lock(&pin_fs_lock);
554 spin_unlock(&pin_fs_lock);
559 * simple_read_from_buffer - copy data from the buffer to user space
560 * @to: the user space buffer to read to
561 * @count: the maximum number of bytes to read
562 * @ppos: the current position in the buffer
563 * @from: the buffer to read from
564 * @available: the size of the buffer
566 * The simple_read_from_buffer() function reads up to @count bytes from the
567 * buffer @from at offset @ppos into the user space address starting at @to.
569 * On success, the number of bytes read is returned and the offset @ppos is
570 * advanced by this number, or negative value is returned on error.
572 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
573 const void *from, size_t available)
580 if (pos >= available || !count)
582 if (count > available - pos)
583 count = available - pos;
584 ret = copy_to_user(to, from + pos, count);
593 * simple_write_to_buffer - copy data from user space to the buffer
594 * @to: the buffer to write to
595 * @available: the size of the buffer
596 * @ppos: the current position in the buffer
597 * @from: the user space buffer to read from
598 * @count: the maximum number of bytes to read
600 * The simple_write_to_buffer() function reads up to @count bytes from the user
601 * space address starting at @from into the buffer @to at offset @ppos.
603 * On success, the number of bytes written is returned and the offset @ppos is
604 * advanced by this number, or negative value is returned on error.
606 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
607 const void __user *from, size_t count)
614 if (pos >= available || !count)
616 if (count > available - pos)
617 count = available - pos;
618 res = copy_from_user(to + pos, from, count);
627 * memory_read_from_buffer - copy data from the buffer
628 * @to: the kernel space buffer to read to
629 * @count: the maximum number of bytes to read
630 * @ppos: the current position in the buffer
631 * @from: the buffer to read from
632 * @available: the size of the buffer
634 * The memory_read_from_buffer() function reads up to @count bytes from the
635 * buffer @from at offset @ppos into the kernel space address starting at @to.
637 * On success, the number of bytes read is returned and the offset @ppos is
638 * advanced by this number, or negative value is returned on error.
640 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
641 const void *from, size_t available)
647 if (pos >= available)
649 if (count > available - pos)
650 count = available - pos;
651 memcpy(to, from + pos, count);
658 * Transaction based IO.
659 * The file expects a single write which triggers the transaction, and then
660 * possibly a read which collects the result - which is stored in a
664 void simple_transaction_set(struct file *file, size_t n)
666 struct simple_transaction_argresp *ar = file->private_data;
668 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
671 * The barrier ensures that ar->size will really remain zero until
672 * ar->data is ready for reading.
678 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
680 struct simple_transaction_argresp *ar;
681 static DEFINE_SPINLOCK(simple_transaction_lock);
683 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
684 return ERR_PTR(-EFBIG);
686 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
688 return ERR_PTR(-ENOMEM);
690 spin_lock(&simple_transaction_lock);
692 /* only one write allowed per open */
693 if (file->private_data) {
694 spin_unlock(&simple_transaction_lock);
695 free_page((unsigned long)ar);
696 return ERR_PTR(-EBUSY);
699 file->private_data = ar;
701 spin_unlock(&simple_transaction_lock);
703 if (copy_from_user(ar->data, buf, size))
704 return ERR_PTR(-EFAULT);
709 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
711 struct simple_transaction_argresp *ar = file->private_data;
715 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
718 int simple_transaction_release(struct inode *inode, struct file *file)
720 free_page((unsigned long)file->private_data);
724 /* Simple attribute files */
727 int (*get)(void *, u64 *);
728 int (*set)(void *, u64);
729 char get_buf[24]; /* enough to store a u64 and "\n\0" */
732 const char *fmt; /* format for read operation */
733 struct mutex mutex; /* protects access to these buffers */
736 /* simple_attr_open is called by an actual attribute open file operation
737 * to set the attribute specific access operations. */
738 int simple_attr_open(struct inode *inode, struct file *file,
739 int (*get)(void *, u64 *), int (*set)(void *, u64),
742 struct simple_attr *attr;
744 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
750 attr->data = inode->i_private;
752 mutex_init(&attr->mutex);
754 file->private_data = attr;
756 return nonseekable_open(inode, file);
759 int simple_attr_release(struct inode *inode, struct file *file)
761 kfree(file->private_data);
765 /* read from the buffer that is filled with the get function */
766 ssize_t simple_attr_read(struct file *file, char __user *buf,
767 size_t len, loff_t *ppos)
769 struct simple_attr *attr;
773 attr = file->private_data;
778 ret = mutex_lock_interruptible(&attr->mutex);
782 if (*ppos) { /* continued read */
783 size = strlen(attr->get_buf);
784 } else { /* first read */
786 ret = attr->get(attr->data, &val);
790 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
791 attr->fmt, (unsigned long long)val);
794 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
796 mutex_unlock(&attr->mutex);
800 /* interpret the buffer as a number to call the set function with */
801 ssize_t simple_attr_write(struct file *file, const char __user *buf,
802 size_t len, loff_t *ppos)
804 struct simple_attr *attr;
809 attr = file->private_data;
813 ret = mutex_lock_interruptible(&attr->mutex);
818 size = min(sizeof(attr->set_buf) - 1, len);
819 if (copy_from_user(attr->set_buf, buf, size))
822 attr->set_buf[size] = '\0';
823 val = simple_strtol(attr->set_buf, NULL, 0);
824 ret = attr->set(attr->data, val);
826 ret = len; /* on success, claim we got the whole input */
828 mutex_unlock(&attr->mutex);
833 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
834 * @sb: filesystem to do the file handle conversion on
835 * @fid: file handle to convert
836 * @fh_len: length of the file handle in bytes
837 * @fh_type: type of file handle
838 * @get_inode: filesystem callback to retrieve inode
840 * This function decodes @fid as long as it has one of the well-known
841 * Linux filehandle types and calls @get_inode on it to retrieve the
842 * inode for the object specified in the file handle.
844 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
845 int fh_len, int fh_type, struct inode *(*get_inode)
846 (struct super_block *sb, u64 ino, u32 gen))
848 struct inode *inode = NULL;
854 case FILEID_INO32_GEN:
855 case FILEID_INO32_GEN_PARENT:
856 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
860 return d_obtain_alias(inode);
862 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
865 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
866 * @sb: filesystem to do the file handle conversion on
867 * @fid: file handle to convert
868 * @fh_len: length of the file handle in bytes
869 * @fh_type: type of file handle
870 * @get_inode: filesystem callback to retrieve inode
872 * This function decodes @fid as long as it has one of the well-known
873 * Linux filehandle types and calls @get_inode on it to retrieve the
874 * inode for the _parent_ object specified in the file handle if it
875 * is specified in the file handle, or NULL otherwise.
877 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
878 int fh_len, int fh_type, struct inode *(*get_inode)
879 (struct super_block *sb, u64 ino, u32 gen))
881 struct inode *inode = NULL;
887 case FILEID_INO32_GEN_PARENT:
888 inode = get_inode(sb, fid->i32.parent_ino,
889 (fh_len > 3 ? fid->i32.parent_gen : 0));
893 return d_obtain_alias(inode);
895 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
898 * generic_file_fsync - generic fsync implementation for simple filesystems
899 * @file: file to synchronize
900 * @datasync: only synchronize essential metadata if true
902 * This is a generic implementation of the fsync method for simple
903 * filesystems which track all non-inode metadata in the buffers list
904 * hanging off the address_space structure.
906 int generic_file_fsync(struct file *file, int datasync)
908 struct inode *inode = file->f_mapping->host;
912 ret = sync_mapping_buffers(inode->i_mapping);
913 if (!(inode->i_state & I_DIRTY))
915 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
918 err = sync_inode_metadata(inode, 1);
923 EXPORT_SYMBOL(generic_file_fsync);
926 * generic_check_addressable - Check addressability of file system
927 * @blocksize_bits: log of file system block size
928 * @num_blocks: number of blocks in file system
930 * Determine whether a file system with @num_blocks blocks (and a
931 * block size of 2**@blocksize_bits) is addressable by the sector_t
932 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
934 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
936 u64 last_fs_block = num_blocks - 1;
938 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
940 if (unlikely(num_blocks == 0))
943 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
946 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
947 (last_fs_page > (pgoff_t)(~0ULL))) {
952 EXPORT_SYMBOL(generic_check_addressable);
955 * No-op implementation of ->fsync for in-memory filesystems.
957 int noop_fsync(struct file *file, int datasync)
962 EXPORT_SYMBOL(dcache_dir_close);
963 EXPORT_SYMBOL(dcache_dir_lseek);
964 EXPORT_SYMBOL(dcache_dir_open);
965 EXPORT_SYMBOL(dcache_readdir);
966 EXPORT_SYMBOL(generic_read_dir);
967 EXPORT_SYMBOL(mount_pseudo);
968 EXPORT_SYMBOL(simple_write_begin);
969 EXPORT_SYMBOL(simple_write_end);
970 EXPORT_SYMBOL(simple_dir_inode_operations);
971 EXPORT_SYMBOL(simple_dir_operations);
972 EXPORT_SYMBOL(simple_empty);
973 EXPORT_SYMBOL(simple_fill_super);
974 EXPORT_SYMBOL(simple_getattr);
975 EXPORT_SYMBOL(simple_link);
976 EXPORT_SYMBOL(simple_lookup);
977 EXPORT_SYMBOL(simple_pin_fs);
978 EXPORT_SYMBOL(simple_readpage);
979 EXPORT_SYMBOL(simple_release_fs);
980 EXPORT_SYMBOL(simple_rename);
981 EXPORT_SYMBOL(simple_rmdir);
982 EXPORT_SYMBOL(simple_statfs);
983 EXPORT_SYMBOL(noop_fsync);
984 EXPORT_SYMBOL(simple_unlink);
985 EXPORT_SYMBOL(simple_read_from_buffer);
986 EXPORT_SYMBOL(simple_write_to_buffer);
987 EXPORT_SYMBOL(memory_read_from_buffer);
988 EXPORT_SYMBOL(simple_transaction_set);
989 EXPORT_SYMBOL(simple_transaction_get);
990 EXPORT_SYMBOL(simple_transaction_read);
991 EXPORT_SYMBOL(simple_transaction_release);
992 EXPORT_SYMBOL_GPL(simple_attr_open);
993 EXPORT_SYMBOL_GPL(simple_attr_release);
994 EXPORT_SYMBOL_GPL(simple_attr_read);
995 EXPORT_SYMBOL_GPL(simple_attr_write);