1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/file.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * ext4 fs regular file handling primitives
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
22 #include <linux/time.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
34 #include "ext4_jbd2.h"
39 static bool ext4_dio_supported(struct inode *inode)
41 if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
43 if (fsverity_active(inode))
45 if (ext4_should_journal_data(inode))
47 if (ext4_has_inline_data(inode))
52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
55 struct inode *inode = file_inode(iocb->ki_filp);
57 if (iocb->ki_flags & IOCB_NOWAIT) {
58 if (!inode_trylock_shared(inode))
61 inode_lock_shared(inode);
64 if (!ext4_dio_supported(inode)) {
65 inode_unlock_shared(inode);
67 * Fallback to buffered I/O if the operation being performed on
68 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 * flag needs to be cleared here in order to ensure that the
70 * direct I/O path within generic_file_read_iter() is not
73 iocb->ki_flags &= ~IOCB_DIRECT;
74 return generic_file_read_iter(iocb, to);
77 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
79 inode_unlock_shared(inode);
81 file_accessed(iocb->ki_filp);
86 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
88 struct inode *inode = file_inode(iocb->ki_filp);
91 if (iocb->ki_flags & IOCB_NOWAIT) {
92 if (!inode_trylock_shared(inode))
95 inode_lock_shared(inode);
98 * Recheck under inode lock - at this point we are sure it cannot
101 if (!IS_DAX(inode)) {
102 inode_unlock_shared(inode);
103 /* Fallback to buffered IO in case we cannot support DAX */
104 return generic_file_read_iter(iocb, to);
106 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
107 inode_unlock_shared(inode);
109 file_accessed(iocb->ki_filp);
114 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
116 struct inode *inode = file_inode(iocb->ki_filp);
118 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
121 if (!iov_iter_count(to))
122 return 0; /* skip atime */
126 return ext4_dax_read_iter(iocb, to);
128 if (iocb->ki_flags & IOCB_DIRECT)
129 return ext4_dio_read_iter(iocb, to);
131 return generic_file_read_iter(iocb, to);
135 * Called when an inode is released. Note that this is different
136 * from ext4_file_open: open gets called at every open, but release
137 * gets called only when /all/ the files are closed.
139 static int ext4_release_file(struct inode *inode, struct file *filp)
141 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
142 ext4_alloc_da_blocks(inode);
143 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
145 /* if we are the last writer on the inode, drop the block reservation */
146 if ((filp->f_mode & FMODE_WRITE) &&
147 (atomic_read(&inode->i_writecount) == 1) &&
148 !EXT4_I(inode)->i_reserved_data_blocks)
150 down_write(&EXT4_I(inode)->i_data_sem);
151 ext4_discard_preallocations(inode);
152 up_write(&EXT4_I(inode)->i_data_sem);
154 if (is_dx(inode) && filp->private_data)
155 ext4_htree_free_dir_info(filp->private_data);
161 * This tests whether the IO in question is block-aligned or not.
162 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
163 * are converted to written only after the IO is complete. Until they are
164 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
165 * it needs to zero out portions of the start and/or end block. If 2 AIO
166 * threads are at work on the same unwritten block, they must be synchronized
167 * or one thread will zero the other's data, causing corruption.
170 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
172 struct super_block *sb = inode->i_sb;
173 unsigned long blockmask = sb->s_blocksize - 1;
175 if ((pos | iov_iter_alignment(from)) & blockmask)
182 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
184 if (offset + len > i_size_read(inode) ||
185 offset + len > EXT4_I(inode)->i_disksize)
190 /* Is IO overwriting allocated and initialized blocks? */
191 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
193 struct ext4_map_blocks map;
194 unsigned int blkbits = inode->i_blkbits;
197 if (pos + len > i_size_read(inode))
200 map.m_lblk = pos >> blkbits;
201 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
204 err = ext4_map_blocks(NULL, inode, &map, 0);
206 * 'err==len' means that all of the blocks have been preallocated,
207 * regardless of whether they have been initialized or not. To exclude
208 * unwritten extents, we need to check m_flags.
210 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
213 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
214 struct iov_iter *from)
216 struct inode *inode = file_inode(iocb->ki_filp);
219 if (unlikely(IS_IMMUTABLE(inode)))
222 ret = generic_write_checks(iocb, from);
227 * If we have encountered a bitmap-format file, the size limit
228 * is smaller than s_maxbytes, which is for extent-mapped files.
230 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
231 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
233 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
235 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
238 return iov_iter_count(from);
241 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
245 count = ext4_generic_write_checks(iocb, from);
249 ret = file_modified(iocb->ki_filp);
255 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
256 struct iov_iter *from)
259 struct inode *inode = file_inode(iocb->ki_filp);
261 if (iocb->ki_flags & IOCB_NOWAIT)
265 ret = ext4_write_checks(iocb, from);
269 current->backing_dev_info = inode_to_bdi(inode);
270 ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
271 current->backing_dev_info = NULL;
275 if (likely(ret > 0)) {
277 ret = generic_write_sync(iocb, ret);
283 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
284 ssize_t written, size_t count)
287 bool truncate = false;
288 u8 blkbits = inode->i_blkbits;
289 ext4_lblk_t written_blk, end_blk;
292 * Note that EXT4_I(inode)->i_disksize can get extended up to
293 * inode->i_size while the I/O was running due to writeback of delalloc
294 * blocks. But, the code in ext4_iomap_alloc() is careful to use
295 * zeroed/unwritten extents if this is possible; thus we won't leave
296 * uninitialized blocks in a file even if we didn't succeed in writing
297 * as much as we intended.
299 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
300 if (offset + count <= EXT4_I(inode)->i_disksize) {
302 * We need to ensure that the inode is removed from the orphan
303 * list if it has been added prematurely, due to writeback of
306 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
307 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
309 if (IS_ERR(handle)) {
310 ext4_orphan_del(NULL, inode);
311 return PTR_ERR(handle);
314 ext4_orphan_del(handle, inode);
315 ext4_journal_stop(handle);
324 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
325 if (IS_ERR(handle)) {
326 written = PTR_ERR(handle);
330 if (ext4_update_inode_size(inode, offset + written))
331 ext4_mark_inode_dirty(handle, inode);
334 * We may need to truncate allocated but not written blocks beyond EOF.
336 written_blk = ALIGN(offset + written, 1 << blkbits);
337 end_blk = ALIGN(offset + count, 1 << blkbits);
338 if (written_blk < end_blk && ext4_can_truncate(inode))
342 * Remove the inode from the orphan list if it has been extended and
343 * everything went OK.
345 if (!truncate && inode->i_nlink)
346 ext4_orphan_del(handle, inode);
347 ext4_journal_stop(handle);
351 ext4_truncate_failed_write(inode);
353 * If the truncate operation failed early, then the inode may
354 * still be on the orphan list. In that case, we need to try
355 * remove the inode from the in-memory linked list.
358 ext4_orphan_del(NULL, inode);
364 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
365 int error, unsigned int flags)
367 loff_t offset = iocb->ki_pos;
368 struct inode *inode = file_inode(iocb->ki_filp);
373 if (size && flags & IOMAP_DIO_UNWRITTEN)
374 return ext4_convert_unwritten_extents(NULL, inode,
380 static const struct iomap_dio_ops ext4_dio_write_ops = {
381 .end_io = ext4_dio_write_end_io,
385 * The intention here is to start with shared lock acquired then see if any
386 * condition requires an exclusive inode lock. If yes, then we restart the
387 * whole operation by releasing the shared lock and acquiring exclusive lock.
389 * - For unaligned_io we never take shared lock as it may cause data corruption
390 * when two unaligned IO tries to modify the same block e.g. while zeroing.
392 * - For extending writes case we don't take the shared lock, since it requires
393 * updating inode i_disksize and/or orphan handling with exclusive lock.
395 * - shared locking will only be true mostly with overwrites. Otherwise we will
396 * switch to exclusive i_rwsem lock.
398 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
399 bool *ilock_shared, bool *extend)
401 struct file *file = iocb->ki_filp;
402 struct inode *inode = file_inode(file);
408 ret = ext4_generic_write_checks(iocb, from);
412 offset = iocb->ki_pos;
414 if (ext4_extending_io(inode, offset, count))
417 * Determine whether the IO operation will overwrite allocated
418 * and initialized blocks.
419 * We need exclusive i_rwsem for changing security info
420 * in file_modified().
422 if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
423 !ext4_overwrite_io(inode, offset, count))) {
424 inode_unlock_shared(inode);
425 *ilock_shared = false;
430 ret = file_modified(file);
437 inode_unlock_shared(inode);
443 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
447 struct inode *inode = file_inode(iocb->ki_filp);
448 loff_t offset = iocb->ki_pos;
449 size_t count = iov_iter_count(from);
450 const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
451 bool extend = false, unaligned_io = false;
452 bool ilock_shared = true;
455 * We initially start with shared inode lock unless it is
456 * unaligned IO which needs exclusive lock anyways.
458 if (ext4_unaligned_io(inode, from, offset)) {
460 ilock_shared = false;
463 * Quick check here without any i_rwsem lock to see if it is extending
464 * IO. A more reliable check is done in ext4_dio_write_checks() with
465 * proper locking in place.
467 if (offset + count > i_size_read(inode))
468 ilock_shared = false;
470 if (iocb->ki_flags & IOCB_NOWAIT) {
472 if (!inode_trylock_shared(inode))
475 if (!inode_trylock(inode))
480 inode_lock_shared(inode);
485 /* Fallback to buffered I/O if the inode does not support direct I/O. */
486 if (!ext4_dio_supported(inode)) {
488 inode_unlock_shared(inode);
491 return ext4_buffered_write_iter(iocb, from);
494 ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
498 offset = iocb->ki_pos;
502 * Unaligned direct IO must be serialized among each other as zeroing
503 * of partial blocks of two competing unaligned IOs can result in data
506 * So we make sure we don't allow any unaligned IO in flight.
507 * For IOs where we need not wait (like unaligned non-AIO DIO),
508 * below inode_dio_wait() may anyway become a no-op, since we start
509 * with exclusive lock.
512 inode_dio_wait(inode);
515 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
516 if (IS_ERR(handle)) {
517 ret = PTR_ERR(handle);
521 ret = ext4_orphan_add(handle, inode);
523 ext4_journal_stop(handle);
527 ext4_journal_stop(handle);
531 iomap_ops = &ext4_iomap_overwrite_ops;
532 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
533 is_sync_kiocb(iocb) || unaligned_io || extend);
536 ret = ext4_handle_inode_extension(inode, offset, ret, count);
540 inode_unlock_shared(inode);
544 if (ret >= 0 && iov_iter_count(from)) {
548 offset = iocb->ki_pos;
549 err = ext4_buffered_write_iter(iocb, from);
554 * We need to ensure that the pages within the page cache for
555 * the range covered by this I/O are written to disk and
556 * invalidated. This is in attempt to preserve the expected
557 * direct I/O semantics in the case we fallback to buffered I/O
558 * to complete off the I/O request.
561 endbyte = offset + err - 1;
562 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
565 invalidate_mapping_pages(iocb->ki_filp->f_mapping,
566 offset >> PAGE_SHIFT,
567 endbyte >> PAGE_SHIFT);
575 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
582 struct inode *inode = file_inode(iocb->ki_filp);
584 if (iocb->ki_flags & IOCB_NOWAIT) {
585 if (!inode_trylock(inode))
591 ret = ext4_write_checks(iocb, from);
595 offset = iocb->ki_pos;
596 count = iov_iter_count(from);
598 if (offset + count > EXT4_I(inode)->i_disksize) {
599 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
600 if (IS_ERR(handle)) {
601 ret = PTR_ERR(handle);
605 ret = ext4_orphan_add(handle, inode);
607 ext4_journal_stop(handle);
612 ext4_journal_stop(handle);
615 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
618 ret = ext4_handle_inode_extension(inode, offset, ret, count);
622 ret = generic_write_sync(iocb, ret);
628 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
630 struct inode *inode = file_inode(iocb->ki_filp);
632 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
637 return ext4_dax_write_iter(iocb, from);
639 if (iocb->ki_flags & IOCB_DIRECT)
640 return ext4_dio_write_iter(iocb, from);
642 return ext4_buffered_write_iter(iocb, from);
646 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
647 enum page_entry_size pe_size)
652 handle_t *handle = NULL;
653 struct inode *inode = file_inode(vmf->vma->vm_file);
654 struct super_block *sb = inode->i_sb;
657 * We have to distinguish real writes from writes which will result in a
658 * COW page; COW writes should *not* poke the journal (the file will not
659 * be changed). Doing so would cause unintended failures when mounted
662 * We check for VM_SHARED rather than vmf->cow_page since the latter is
663 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
664 * other sizes, dax_iomap_fault will handle splitting / fallback so that
665 * we eventually come back with a COW page.
667 bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
668 (vmf->vma->vm_flags & VM_SHARED);
672 sb_start_pagefault(sb);
673 file_update_time(vmf->vma->vm_file);
674 down_read(&EXT4_I(inode)->i_mmap_sem);
676 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
677 EXT4_DATA_TRANS_BLOCKS(sb));
678 if (IS_ERR(handle)) {
679 up_read(&EXT4_I(inode)->i_mmap_sem);
680 sb_end_pagefault(sb);
681 return VM_FAULT_SIGBUS;
684 down_read(&EXT4_I(inode)->i_mmap_sem);
686 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
688 ext4_journal_stop(handle);
690 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
691 ext4_should_retry_alloc(sb, &retries))
693 /* Handling synchronous page fault? */
694 if (result & VM_FAULT_NEEDDSYNC)
695 result = dax_finish_sync_fault(vmf, pe_size, pfn);
696 up_read(&EXT4_I(inode)->i_mmap_sem);
697 sb_end_pagefault(sb);
699 up_read(&EXT4_I(inode)->i_mmap_sem);
705 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
707 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
710 static const struct vm_operations_struct ext4_dax_vm_ops = {
711 .fault = ext4_dax_fault,
712 .huge_fault = ext4_dax_huge_fault,
713 .page_mkwrite = ext4_dax_fault,
714 .pfn_mkwrite = ext4_dax_fault,
717 #define ext4_dax_vm_ops ext4_file_vm_ops
720 static const struct vm_operations_struct ext4_file_vm_ops = {
721 .fault = ext4_filemap_fault,
722 .map_pages = filemap_map_pages,
723 .page_mkwrite = ext4_page_mkwrite,
726 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
728 struct inode *inode = file->f_mapping->host;
729 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
730 struct dax_device *dax_dev = sbi->s_daxdev;
732 if (unlikely(ext4_forced_shutdown(sbi)))
736 * We don't support synchronous mappings for non-DAX files and
737 * for DAX files if underneath dax_device is not synchronous.
739 if (!daxdev_mapping_supported(vma, dax_dev))
743 if (IS_DAX(file_inode(file))) {
744 vma->vm_ops = &ext4_dax_vm_ops;
745 vma->vm_flags |= VM_HUGEPAGE;
747 vma->vm_ops = &ext4_file_vm_ops;
752 static int ext4_sample_last_mounted(struct super_block *sb,
753 struct vfsmount *mnt)
755 struct ext4_sb_info *sbi = EXT4_SB(sb);
761 if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED))
764 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
767 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
769 * Sample where the filesystem has been mounted and
770 * store it in the superblock for sysadmin convenience
771 * when trying to sort through large numbers of block
772 * devices or filesystem images.
774 memset(buf, 0, sizeof(buf));
776 path.dentry = mnt->mnt_root;
777 cp = d_path(&path, buf, sizeof(buf));
782 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
783 err = PTR_ERR(handle);
786 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
787 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
790 strlcpy(sbi->s_es->s_last_mounted, cp,
791 sizeof(sbi->s_es->s_last_mounted));
792 ext4_handle_dirty_super(handle, sb);
794 ext4_journal_stop(handle);
800 static int ext4_file_open(struct inode * inode, struct file * filp)
804 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
807 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
811 ret = fscrypt_file_open(inode, filp);
815 ret = fsverity_file_open(inode, filp);
820 * Set up the jbd2_inode if we are opening the inode for
821 * writing and the journal is present
823 if (filp->f_mode & FMODE_WRITE) {
824 ret = ext4_inode_attach_jinode(inode);
829 filp->f_mode |= FMODE_NOWAIT;
830 return dquot_file_open(inode, filp);
834 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
835 * by calling generic_file_llseek_size() with the appropriate maxbytes
838 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
840 struct inode *inode = file->f_mapping->host;
843 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
844 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
846 maxbytes = inode->i_sb->s_maxbytes;
850 return generic_file_llseek_size(file, offset, whence,
851 maxbytes, i_size_read(inode));
853 inode_lock_shared(inode);
854 offset = iomap_seek_hole(inode, offset,
855 &ext4_iomap_report_ops);
856 inode_unlock_shared(inode);
859 inode_lock_shared(inode);
860 offset = iomap_seek_data(inode, offset,
861 &ext4_iomap_report_ops);
862 inode_unlock_shared(inode);
868 return vfs_setpos(file, offset, maxbytes);
871 const struct file_operations ext4_file_operations = {
872 .llseek = ext4_llseek,
873 .read_iter = ext4_file_read_iter,
874 .write_iter = ext4_file_write_iter,
875 .iopoll = iomap_dio_iopoll,
876 .unlocked_ioctl = ext4_ioctl,
878 .compat_ioctl = ext4_compat_ioctl,
880 .mmap = ext4_file_mmap,
881 .mmap_supported_flags = MAP_SYNC,
882 .open = ext4_file_open,
883 .release = ext4_release_file,
884 .fsync = ext4_sync_file,
885 .get_unmapped_area = thp_get_unmapped_area,
886 .splice_read = generic_file_splice_read,
887 .splice_write = iter_file_splice_write,
888 .fallocate = ext4_fallocate,
891 const struct inode_operations ext4_file_inode_operations = {
892 .setattr = ext4_setattr,
893 .getattr = ext4_file_getattr,
894 .listxattr = ext4_listxattr,
895 .get_acl = ext4_get_acl,
896 .set_acl = ext4_set_acl,
897 .fiemap = ext4_fiemap,