1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/fs/binfmt_elf.c
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
13 #include <linux/module.h>
14 #include <linux/kernel.h>
16 #include <linux/log2.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <linux/rseq.h>
50 #include <asm/param.h>
58 #define user_long_t long
60 #ifndef user_siginfo_t
61 #define user_siginfo_t siginfo_t
64 /* That's for binfmt_elf_fdpic to deal with */
65 #ifndef elf_check_fdpic
66 #define elf_check_fdpic(ex) false
69 static int load_elf_binary(struct linux_binprm *bprm);
72 static int load_elf_library(struct file *);
74 #define load_elf_library NULL
78 * If we don't support core dumping, then supply a NULL so we
81 #ifdef CONFIG_ELF_CORE
82 static int elf_core_dump(struct coredump_params *cprm);
84 #define elf_core_dump NULL
87 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
88 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
90 #define ELF_MIN_ALIGN PAGE_SIZE
93 #ifndef ELF_CORE_EFLAGS
94 #define ELF_CORE_EFLAGS 0
97 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
98 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
99 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
101 static struct linux_binfmt elf_format = {
102 .module = THIS_MODULE,
103 .load_binary = load_elf_binary,
104 .load_shlib = load_elf_library,
105 #ifdef CONFIG_COREDUMP
106 .core_dump = elf_core_dump,
107 .min_coredump = ELF_EXEC_PAGESIZE,
111 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
114 * We need to explicitly zero any trailing portion of the page that follows
115 * p_filesz when it ends before the page ends (e.g. bss), otherwise this
116 * memory will contain the junk from the file that should not be present.
118 static int padzero(unsigned long address)
122 nbyte = ELF_PAGEOFFSET(address);
124 nbyte = ELF_MIN_ALIGN - nbyte;
125 if (clear_user((void __user *)address, nbyte))
131 /* Let's use some macros to make this stack manipulation a little clearer */
132 #ifdef CONFIG_STACK_GROWSUP
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
134 #define STACK_ROUND(sp, items) \
135 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ \
137 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
140 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
141 #define STACK_ROUND(sp, items) \
142 (((unsigned long) (sp - items)) &~ 15UL)
143 #define STACK_ALLOC(sp, len) (sp -= len)
146 #ifndef ELF_BASE_PLATFORM
148 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
149 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
150 * will be copied to the user stack in the same manner as AT_PLATFORM.
152 #define ELF_BASE_PLATFORM NULL
156 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
157 unsigned long interp_load_addr,
158 unsigned long e_entry, unsigned long phdr_addr)
160 struct mm_struct *mm = current->mm;
161 unsigned long p = bprm->p;
162 int argc = bprm->argc;
163 int envc = bprm->envc;
164 elf_addr_t __user *sp;
165 elf_addr_t __user *u_platform;
166 elf_addr_t __user *u_base_platform;
167 elf_addr_t __user *u_rand_bytes;
168 const char *k_platform = ELF_PLATFORM;
169 const char *k_base_platform = ELF_BASE_PLATFORM;
170 unsigned char k_rand_bytes[16];
172 elf_addr_t *elf_info;
173 elf_addr_t flags = 0;
175 const struct cred *cred = current_cred();
176 struct vm_area_struct *vma;
179 * In some cases (e.g. Hyper-Threading), we want to avoid L1
180 * evictions by the processes running on the same package. One
181 * thing we can do is to shuffle the initial stack for them.
184 p = arch_align_stack(p);
187 * If this architecture has a platform capability string, copy it
188 * to userspace. In some cases (Sparc), this info is impossible
189 * for userspace to get any other way, in others (i386) it is
194 size_t len = strlen(k_platform) + 1;
196 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197 if (copy_to_user(u_platform, k_platform, len))
202 * If this architecture has a "base" platform capability
203 * string, copy it to userspace.
205 u_base_platform = NULL;
206 if (k_base_platform) {
207 size_t len = strlen(k_base_platform) + 1;
209 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
210 if (copy_to_user(u_base_platform, k_base_platform, len))
215 * Generate 16 random bytes for userspace PRNG seeding.
217 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
218 u_rand_bytes = (elf_addr_t __user *)
219 STACK_ALLOC(p, sizeof(k_rand_bytes));
220 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
223 /* Create the ELF interpreter info */
224 elf_info = (elf_addr_t *)mm->saved_auxv;
225 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
226 #define NEW_AUX_ENT(id, val) \
234 * ARCH_DLINFO must come first so PPC can do its special alignment of
236 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
237 * ARCH_DLINFO changes
241 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
242 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
243 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
244 NEW_AUX_ENT(AT_PHDR, phdr_addr);
245 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
246 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
247 NEW_AUX_ENT(AT_BASE, interp_load_addr);
248 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
249 flags |= AT_FLAGS_PRESERVE_ARGV0;
250 NEW_AUX_ENT(AT_FLAGS, flags);
251 NEW_AUX_ENT(AT_ENTRY, e_entry);
252 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
253 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
254 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
255 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
256 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
257 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
259 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
261 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
263 NEW_AUX_ENT(AT_PLATFORM,
264 (elf_addr_t)(unsigned long)u_platform);
266 if (k_base_platform) {
267 NEW_AUX_ENT(AT_BASE_PLATFORM,
268 (elf_addr_t)(unsigned long)u_base_platform);
270 if (bprm->have_execfd) {
271 NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
274 NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end));
275 NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq));
278 /* AT_NULL is zero; clear the rest too */
279 memset(elf_info, 0, (char *)mm->saved_auxv +
280 sizeof(mm->saved_auxv) - (char *)elf_info);
282 /* And advance past the AT_NULL entry. */
285 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
286 sp = STACK_ADD(p, ei_index);
288 items = (argc + 1) + (envc + 1) + 1;
289 bprm->p = STACK_ROUND(sp, items);
291 /* Point sp at the lowest address on the stack */
292 #ifdef CONFIG_STACK_GROWSUP
293 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
294 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
296 sp = (elf_addr_t __user *)bprm->p;
301 * Grow the stack manually; some architectures have a limit on how
302 * far ahead a user-space access may be in order to grow the stack.
304 if (mmap_write_lock_killable(mm))
306 vma = find_extend_vma_locked(mm, bprm->p);
307 mmap_write_unlock(mm);
311 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
312 if (put_user(argc, sp++))
315 /* Populate list of argv pointers back to argv strings. */
316 p = mm->arg_end = mm->arg_start;
319 if (put_user((elf_addr_t)p, sp++))
321 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
322 if (!len || len > MAX_ARG_STRLEN)
326 if (put_user(0, sp++))
330 /* Populate list of envp pointers back to envp strings. */
331 mm->env_end = mm->env_start = p;
334 if (put_user((elf_addr_t)p, sp++))
336 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
337 if (!len || len > MAX_ARG_STRLEN)
341 if (put_user(0, sp++))
345 /* Put the elf_info on the stack in the right place. */
346 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
352 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
353 * into memory at "addr". (Note that p_filesz is rounded up to the
354 * next page, so any extra bytes from the file must be wiped.)
356 static unsigned long elf_map(struct file *filep, unsigned long addr,
357 const struct elf_phdr *eppnt, int prot, int type,
358 unsigned long total_size)
360 unsigned long map_addr;
361 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
362 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
363 addr = ELF_PAGESTART(addr);
364 size = ELF_PAGEALIGN(size);
366 /* mmap() will return -EINVAL if given a zero size, but a
367 * segment with zero filesize is perfectly valid */
372 * total_size is the size of the ELF (interpreter) image.
373 * The _first_ mmap needs to know the full size, otherwise
374 * randomization might put this image into an overlapping
375 * position with the ELF binary image. (since size < total_size)
376 * So we first map the 'big' image - and unmap the remainder at
377 * the end. (which unmap is needed for ELF images with holes.)
380 total_size = ELF_PAGEALIGN(total_size);
381 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
382 if (!BAD_ADDR(map_addr))
383 vm_munmap(map_addr+size, total_size-size);
385 map_addr = vm_mmap(filep, addr, size, prot, type, off);
387 if ((type & MAP_FIXED_NOREPLACE) &&
388 PTR_ERR((void *)map_addr) == -EEXIST)
389 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
390 task_pid_nr(current), current->comm, (void *)addr);
396 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
397 * into memory at "addr". Memory from "p_filesz" through "p_memsz"
398 * rounded up to the next page is zeroed.
400 static unsigned long elf_load(struct file *filep, unsigned long addr,
401 const struct elf_phdr *eppnt, int prot, int type,
402 unsigned long total_size)
404 unsigned long zero_start, zero_end;
405 unsigned long map_addr;
407 if (eppnt->p_filesz) {
408 map_addr = elf_map(filep, addr, eppnt, prot, type, total_size);
409 if (BAD_ADDR(map_addr))
411 if (eppnt->p_memsz > eppnt->p_filesz) {
412 zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
414 zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
418 * Zero the end of the last mapped page but ignore
419 * any errors if the segment isn't writable.
421 if (padzero(zero_start) && (prot & PROT_WRITE))
425 map_addr = zero_start = ELF_PAGESTART(addr);
426 zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) +
429 if (eppnt->p_memsz > eppnt->p_filesz) {
431 * Map the last of the segment.
432 * If the header is requesting these pages to be
433 * executable, honour that (ppc32 needs this).
437 zero_start = ELF_PAGEALIGN(zero_start);
438 zero_end = ELF_PAGEALIGN(zero_end);
440 error = vm_brk_flags(zero_start, zero_end - zero_start,
441 prot & PROT_EXEC ? VM_EXEC : 0);
449 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
451 elf_addr_t min_addr = -1;
452 elf_addr_t max_addr = 0;
453 bool pt_load = false;
456 for (i = 0; i < nr; i++) {
457 if (phdr[i].p_type == PT_LOAD) {
458 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
459 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
463 return pt_load ? (max_addr - min_addr) : 0;
466 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
470 rv = kernel_read(file, buf, len, &pos);
471 if (unlikely(rv != len)) {
472 return (rv < 0) ? rv : -EIO;
477 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
479 unsigned long alignment = 0;
482 for (i = 0; i < nr; i++) {
483 if (cmds[i].p_type == PT_LOAD) {
484 unsigned long p_align = cmds[i].p_align;
486 /* skip non-power of two alignments as invalid */
487 if (!is_power_of_2(p_align))
489 alignment = max(alignment, p_align);
493 /* ensure we align to at least one page */
494 return ELF_PAGEALIGN(alignment);
498 * load_elf_phdrs() - load ELF program headers
499 * @elf_ex: ELF header of the binary whose program headers should be loaded
500 * @elf_file: the opened ELF binary file
502 * Loads ELF program headers from the binary file elf_file, which has the ELF
503 * header pointed to by elf_ex, into a newly allocated array. The caller is
504 * responsible for freeing the allocated data. Returns NULL upon failure.
506 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
507 struct file *elf_file)
509 struct elf_phdr *elf_phdata = NULL;
514 * If the size of this structure has changed, then punt, since
515 * we will be doing the wrong thing.
517 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
520 /* Sanity check the number of program headers... */
521 /* ...and their total size. */
522 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
523 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
526 elf_phdata = kmalloc(size, GFP_KERNEL);
530 /* Read in the program headers */
531 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
541 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
544 * struct arch_elf_state - arch-specific ELF loading state
546 * This structure is used to preserve architecture specific data during
547 * the loading of an ELF file, throughout the checking of architecture
548 * specific ELF headers & through to the point where the ELF load is
549 * known to be proceeding (ie. SET_PERSONALITY).
551 * This implementation is a dummy for architectures which require no
554 struct arch_elf_state {
557 #define INIT_ARCH_ELF_STATE {}
560 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
561 * @ehdr: The main ELF header
562 * @phdr: The program header to check
563 * @elf: The open ELF file
564 * @is_interp: True if the phdr is from the interpreter of the ELF being
565 * loaded, else false.
566 * @state: Architecture-specific state preserved throughout the process
567 * of loading the ELF.
569 * Inspects the program header phdr to validate its correctness and/or
570 * suitability for the system. Called once per ELF program header in the
571 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
574 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
575 * with that return code.
577 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
578 struct elf_phdr *phdr,
579 struct file *elf, bool is_interp,
580 struct arch_elf_state *state)
582 /* Dummy implementation, always proceed */
587 * arch_check_elf() - check an ELF executable
588 * @ehdr: The main ELF header
589 * @has_interp: True if the ELF has an interpreter, else false.
590 * @interp_ehdr: The interpreter's ELF header
591 * @state: Architecture-specific state preserved throughout the process
592 * of loading the ELF.
594 * Provides a final opportunity for architecture code to reject the loading
595 * of the ELF & cause an exec syscall to return an error. This is called after
596 * all program headers to be checked by arch_elf_pt_proc have been.
598 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
599 * with that return code.
601 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
602 struct elfhdr *interp_ehdr,
603 struct arch_elf_state *state)
605 /* Dummy implementation, always proceed */
609 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
611 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
612 bool has_interp, bool is_interp)
623 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
626 /* This is much more generalized than the library routine read function,
627 so we keep this separate. Technically the library read function
628 is only provided so that we can read a.out libraries that have
631 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
632 struct file *interpreter,
633 unsigned long no_base, struct elf_phdr *interp_elf_phdata,
634 struct arch_elf_state *arch_state)
636 struct elf_phdr *eppnt;
637 unsigned long load_addr = 0;
638 int load_addr_set = 0;
639 unsigned long error = ~0UL;
640 unsigned long total_size;
643 /* First of all, some simple consistency checks */
644 if (interp_elf_ex->e_type != ET_EXEC &&
645 interp_elf_ex->e_type != ET_DYN)
647 if (!elf_check_arch(interp_elf_ex) ||
648 elf_check_fdpic(interp_elf_ex))
650 if (!interpreter->f_op->mmap)
653 total_size = total_mapping_size(interp_elf_phdata,
654 interp_elf_ex->e_phnum);
660 eppnt = interp_elf_phdata;
661 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
662 if (eppnt->p_type == PT_LOAD) {
663 int elf_type = MAP_PRIVATE;
664 int elf_prot = make_prot(eppnt->p_flags, arch_state,
666 unsigned long vaddr = 0;
667 unsigned long k, map_addr;
669 vaddr = eppnt->p_vaddr;
670 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
671 elf_type |= MAP_FIXED;
672 else if (no_base && interp_elf_ex->e_type == ET_DYN)
675 map_addr = elf_load(interpreter, load_addr + vaddr,
676 eppnt, elf_prot, elf_type, total_size);
679 if (BAD_ADDR(map_addr))
682 if (!load_addr_set &&
683 interp_elf_ex->e_type == ET_DYN) {
684 load_addr = map_addr - ELF_PAGESTART(vaddr);
689 * Check to see if the section's size will overflow the
690 * allowed task size. Note that p_filesz must always be
691 * <= p_memsize so it's only necessary to check p_memsz.
693 k = load_addr + eppnt->p_vaddr;
695 eppnt->p_filesz > eppnt->p_memsz ||
696 eppnt->p_memsz > TASK_SIZE ||
697 TASK_SIZE - eppnt->p_memsz < k) {
710 * These are the functions used to load ELF style executables and shared
711 * libraries. There is no binary dependent code anywhere else.
714 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
715 struct arch_elf_state *arch,
716 bool have_prev_type, u32 *prev_type)
719 const struct gnu_property *pr;
725 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
730 if (datasz < sizeof(*pr))
732 pr = (const struct gnu_property *)(data + o);
734 datasz -= sizeof(*pr);
736 if (pr->pr_datasz > datasz)
739 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
740 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
744 /* Properties are supposed to be unique and sorted on pr_type: */
745 if (have_prev_type && pr->pr_type <= *prev_type)
747 *prev_type = pr->pr_type;
749 ret = arch_parse_elf_property(pr->pr_type, data + o,
750 pr->pr_datasz, ELF_COMPAT, arch);
758 #define NOTE_DATA_SZ SZ_1K
759 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
760 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
762 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
763 struct arch_elf_state *arch)
766 struct elf_note nhdr;
767 char data[NOTE_DATA_SZ];
776 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
779 /* load_elf_binary() shouldn't call us unless this is true... */
780 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
783 /* If the properties are crazy large, that's too bad (for now): */
784 if (phdr->p_filesz > sizeof(note))
787 pos = phdr->p_offset;
788 n = kernel_read(f, ¬e, phdr->p_filesz, &pos);
790 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
791 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
794 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
795 note.nhdr.n_namesz != NOTE_NAME_SZ ||
796 strncmp(note.data + sizeof(note.nhdr),
797 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
800 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
801 ELF_GNU_PROPERTY_ALIGN);
805 if (note.nhdr.n_descsz > n - off)
807 datasz = off + note.nhdr.n_descsz;
809 have_prev_type = false;
811 ret = parse_elf_property(note.data, &off, datasz, arch,
812 have_prev_type, &prev_type);
813 have_prev_type = true;
816 return ret == -ENOENT ? 0 : ret;
819 static int load_elf_binary(struct linux_binprm *bprm)
821 struct file *interpreter = NULL; /* to shut gcc up */
822 unsigned long load_bias = 0, phdr_addr = 0;
823 int first_pt_load = 1;
825 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
826 struct elf_phdr *elf_property_phdata = NULL;
827 unsigned long elf_brk;
829 unsigned long elf_entry;
830 unsigned long e_entry;
831 unsigned long interp_load_addr = 0;
832 unsigned long start_code, end_code, start_data, end_data;
833 unsigned long reloc_func_desc __maybe_unused = 0;
834 int executable_stack = EXSTACK_DEFAULT;
835 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
836 struct elfhdr *interp_elf_ex = NULL;
837 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
838 struct mm_struct *mm;
839 struct pt_regs *regs;
842 /* First of all, some simple consistency checks */
843 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
846 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
848 if (!elf_check_arch(elf_ex))
850 if (elf_check_fdpic(elf_ex))
852 if (!bprm->file->f_op->mmap)
855 elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
859 elf_ppnt = elf_phdata;
860 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
861 char *elf_interpreter;
863 if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
864 elf_property_phdata = elf_ppnt;
868 if (elf_ppnt->p_type != PT_INTERP)
872 * This is the program interpreter used for shared libraries -
873 * for now assume that this is an a.out format binary.
876 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
880 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
881 if (!elf_interpreter)
884 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
887 goto out_free_interp;
888 /* make sure path is NULL terminated */
890 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
891 goto out_free_interp;
893 interpreter = open_exec(elf_interpreter);
894 kfree(elf_interpreter);
895 retval = PTR_ERR(interpreter);
896 if (IS_ERR(interpreter))
900 * If the binary is not readable then enforce mm->dumpable = 0
901 * regardless of the interpreter's permissions.
903 would_dump(bprm, interpreter);
905 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
906 if (!interp_elf_ex) {
911 /* Get the exec headers */
912 retval = elf_read(interpreter, interp_elf_ex,
913 sizeof(*interp_elf_ex), 0);
915 goto out_free_dentry;
920 kfree(elf_interpreter);
924 elf_ppnt = elf_phdata;
925 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
926 switch (elf_ppnt->p_type) {
928 if (elf_ppnt->p_flags & PF_X)
929 executable_stack = EXSTACK_ENABLE_X;
931 executable_stack = EXSTACK_DISABLE_X;
934 case PT_LOPROC ... PT_HIPROC:
935 retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
939 goto out_free_dentry;
943 /* Some simple consistency checks for the interpreter */
946 /* Not an ELF interpreter */
947 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
948 goto out_free_dentry;
949 /* Verify the interpreter has a valid arch */
950 if (!elf_check_arch(interp_elf_ex) ||
951 elf_check_fdpic(interp_elf_ex))
952 goto out_free_dentry;
954 /* Load the interpreter program headers */
955 interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
957 if (!interp_elf_phdata)
958 goto out_free_dentry;
960 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
961 elf_property_phdata = NULL;
962 elf_ppnt = interp_elf_phdata;
963 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
964 switch (elf_ppnt->p_type) {
965 case PT_GNU_PROPERTY:
966 elf_property_phdata = elf_ppnt;
969 case PT_LOPROC ... PT_HIPROC:
970 retval = arch_elf_pt_proc(interp_elf_ex,
971 elf_ppnt, interpreter,
974 goto out_free_dentry;
979 retval = parse_elf_properties(interpreter ?: bprm->file,
980 elf_property_phdata, &arch_state);
982 goto out_free_dentry;
985 * Allow arch code to reject the ELF at this point, whilst it's
986 * still possible to return an error to the code that invoked
989 retval = arch_check_elf(elf_ex,
990 !!interpreter, interp_elf_ex,
993 goto out_free_dentry;
995 /* Flush all traces of the currently running executable */
996 retval = begin_new_exec(bprm);
998 goto out_free_dentry;
1000 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
1001 may depend on the personality. */
1002 SET_PERSONALITY2(*elf_ex, &arch_state);
1003 if (elf_read_implies_exec(*elf_ex, executable_stack))
1004 current->personality |= READ_IMPLIES_EXEC;
1006 const int snapshot_randomize_va_space = READ_ONCE(randomize_va_space);
1007 if (!(current->personality & ADDR_NO_RANDOMIZE) && snapshot_randomize_va_space)
1008 current->flags |= PF_RANDOMIZE;
1010 setup_new_exec(bprm);
1012 /* Do this so that we can load the interpreter, if need be. We will
1013 change some of these later */
1014 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1017 goto out_free_dentry;
1026 /* Now we do a little grungy work by mmapping the ELF image into
1027 the correct location in memory. */
1028 for(i = 0, elf_ppnt = elf_phdata;
1029 i < elf_ex->e_phnum; i++, elf_ppnt++) {
1030 int elf_prot, elf_flags;
1031 unsigned long k, vaddr;
1032 unsigned long total_size = 0;
1033 unsigned long alignment;
1035 if (elf_ppnt->p_type != PT_LOAD)
1038 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1039 !!interpreter, false);
1041 elf_flags = MAP_PRIVATE;
1043 vaddr = elf_ppnt->p_vaddr;
1045 * The first time through the loop, first_pt_load is true:
1046 * layout will be calculated. Once set, use MAP_FIXED since
1047 * we know we've already safely mapped the entire region with
1048 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1050 if (!first_pt_load) {
1051 elf_flags |= MAP_FIXED;
1052 } else if (elf_ex->e_type == ET_EXEC) {
1054 * This logic is run once for the first LOAD Program
1055 * Header for ET_EXEC binaries. No special handling
1058 elf_flags |= MAP_FIXED_NOREPLACE;
1059 } else if (elf_ex->e_type == ET_DYN) {
1061 * This logic is run once for the first LOAD Program
1062 * Header for ET_DYN binaries to calculate the
1063 * randomization (load_bias) for all the LOAD
1068 * Calculate the entire size of the ELF mapping
1069 * (total_size), used for the initial mapping,
1070 * due to load_addr_set which is set to true later
1071 * once the initial mapping is performed.
1073 * Note that this is only sensible when the LOAD
1074 * segments are contiguous (or overlapping). If
1075 * used for LOADs that are far apart, this would
1076 * cause the holes between LOADs to be mapped,
1077 * running the risk of having the mapping fail,
1078 * as it would be larger than the ELF file itself.
1080 * As a result, only ET_DYN does this, since
1081 * some ET_EXEC (e.g. ia64) may have large virtual
1082 * memory holes between LOADs.
1085 total_size = total_mapping_size(elf_phdata,
1089 goto out_free_dentry;
1092 /* Calculate any requested alignment. */
1093 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1096 * There are effectively two types of ET_DYN
1097 * binaries: programs (i.e. PIE: ET_DYN with PT_INTERP)
1098 * and loaders (ET_DYN without PT_INTERP, since they
1099 * _are_ the ELF interpreter). The loaders must
1100 * be loaded away from programs since the program
1101 * may otherwise collide with the loader (especially
1102 * for ET_EXEC which does not have a randomized
1103 * position). For example to handle invocations of
1104 * "./ld.so someprog" to test out a new version of
1105 * the loader, the subsequent program that the
1106 * loader loads must avoid the loader itself, so
1107 * they cannot share the same load range. Sufficient
1108 * room for the brk must be allocated with the
1109 * loader as well, since brk must be available with
1112 * Therefore, programs are loaded offset from
1113 * ELF_ET_DYN_BASE and loaders are loaded into the
1114 * independently randomized mmap region (0 load_bias
1115 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1118 /* On ET_DYN with PT_INTERP, we do the ASLR. */
1119 load_bias = ELF_ET_DYN_BASE;
1120 if (current->flags & PF_RANDOMIZE)
1121 load_bias += arch_mmap_rnd();
1122 /* Adjust alignment as requested. */
1124 load_bias &= ~(alignment - 1);
1125 elf_flags |= MAP_FIXED_NOREPLACE;
1128 * For ET_DYN without PT_INTERP, we rely on
1129 * the architectures's (potentially ASLR) mmap
1130 * base address (via a load_bias of 0).
1132 * When a large alignment is requested, we
1133 * must do the allocation at address "0" right
1134 * now to discover where things will load so
1135 * that we can adjust the resulting alignment.
1136 * In this case (load_bias != 0), we can use
1137 * MAP_FIXED_NOREPLACE to make sure the mapping
1138 * doesn't collide with anything.
1140 if (alignment > ELF_MIN_ALIGN) {
1141 load_bias = elf_load(bprm->file, 0, elf_ppnt,
1142 elf_prot, elf_flags, total_size);
1143 if (BAD_ADDR(load_bias)) {
1144 retval = IS_ERR_VALUE(load_bias) ?
1145 PTR_ERR((void*)load_bias) : -EINVAL;
1146 goto out_free_dentry;
1148 vm_munmap(load_bias, total_size);
1149 /* Adjust alignment as requested. */
1151 load_bias &= ~(alignment - 1);
1152 elf_flags |= MAP_FIXED_NOREPLACE;
1158 * Since load_bias is used for all subsequent loading
1159 * calculations, we must lower it by the first vaddr
1160 * so that the remaining calculations based on the
1161 * ELF vaddrs will be correctly offset. The result
1162 * is then page aligned.
1164 load_bias = ELF_PAGESTART(load_bias - vaddr);
1167 error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt,
1168 elf_prot, elf_flags, total_size);
1169 if (BAD_ADDR(error)) {
1170 retval = IS_ERR_VALUE(error) ?
1171 PTR_ERR((void*)error) : -EINVAL;
1172 goto out_free_dentry;
1175 if (first_pt_load) {
1177 if (elf_ex->e_type == ET_DYN) {
1178 load_bias += error -
1179 ELF_PAGESTART(load_bias + vaddr);
1180 reloc_func_desc = load_bias;
1185 * Figure out which segment in the file contains the Program
1186 * Header table, and map to the associated memory address.
1188 if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1189 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1190 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1194 k = elf_ppnt->p_vaddr;
1195 if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1201 * Check to see if the section's size will overflow the
1202 * allowed task size. Note that p_filesz must always be
1203 * <= p_memsz so it is only necessary to check p_memsz.
1205 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1206 elf_ppnt->p_memsz > TASK_SIZE ||
1207 TASK_SIZE - elf_ppnt->p_memsz < k) {
1208 /* set_brk can never work. Avoid overflows. */
1210 goto out_free_dentry;
1213 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1215 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1219 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1224 e_entry = elf_ex->e_entry + load_bias;
1225 phdr_addr += load_bias;
1226 elf_brk += load_bias;
1227 start_code += load_bias;
1228 end_code += load_bias;
1229 start_data += load_bias;
1230 end_data += load_bias;
1232 current->mm->start_brk = current->mm->brk = ELF_PAGEALIGN(elf_brk);
1235 elf_entry = load_elf_interp(interp_elf_ex,
1237 load_bias, interp_elf_phdata,
1239 if (!IS_ERR_VALUE(elf_entry)) {
1241 * load_elf_interp() returns relocation
1244 interp_load_addr = elf_entry;
1245 elf_entry += interp_elf_ex->e_entry;
1247 if (BAD_ADDR(elf_entry)) {
1248 retval = IS_ERR_VALUE(elf_entry) ?
1249 (int)elf_entry : -EINVAL;
1250 goto out_free_dentry;
1252 reloc_func_desc = interp_load_addr;
1256 kfree(interp_elf_ex);
1257 kfree(interp_elf_phdata);
1259 elf_entry = e_entry;
1260 if (BAD_ADDR(elf_entry)) {
1262 goto out_free_dentry;
1268 set_binfmt(&elf_format);
1270 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1271 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1274 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1276 retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1277 e_entry, phdr_addr);
1282 mm->end_code = end_code;
1283 mm->start_code = start_code;
1284 mm->start_data = start_data;
1285 mm->end_data = end_data;
1286 mm->start_stack = bprm->p;
1288 if ((current->flags & PF_RANDOMIZE) && (snapshot_randomize_va_space > 1)) {
1290 * For architectures with ELF randomization, when executing
1291 * a loader directly (i.e. no interpreter listed in ELF
1292 * headers), move the brk area out of the mmap region
1293 * (since it grows up, and may collide early with the stack
1294 * growing down), and into the unused ELF_ET_DYN_BASE region.
1296 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1297 elf_ex->e_type == ET_DYN && !interpreter) {
1298 mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1300 /* Otherwise leave a gap between .bss and brk. */
1301 mm->brk = mm->start_brk = mm->brk + PAGE_SIZE;
1304 mm->brk = mm->start_brk = arch_randomize_brk(mm);
1305 #ifdef compat_brk_randomized
1306 current->brk_randomized = 1;
1310 if (current->personality & MMAP_PAGE_ZERO) {
1311 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1312 and some applications "depend" upon this behavior.
1313 Since we do not have the power to recompile these, we
1314 emulate the SVr4 behavior. Sigh. */
1315 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1316 MAP_FIXED | MAP_PRIVATE, 0);
1319 regs = current_pt_regs();
1320 #ifdef ELF_PLAT_INIT
1322 * The ABI may specify that certain registers be set up in special
1323 * ways (on i386 %edx is the address of a DT_FINI function, for
1324 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1325 * that the e_entry field is the address of the function descriptor
1326 * for the startup routine, rather than the address of the startup
1327 * routine itself. This macro performs whatever initialization to
1328 * the regs structure is required as well as any relocations to the
1329 * function descriptor entries when executing dynamically links apps.
1331 ELF_PLAT_INIT(regs, reloc_func_desc);
1334 finalize_exec(bprm);
1335 START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1342 kfree(interp_elf_ex);
1343 kfree(interp_elf_phdata);
1352 #ifdef CONFIG_USELIB
1353 /* This is really simpleminded and specialized - we are loading an
1354 a.out library that is given an ELF header. */
1355 static int load_elf_library(struct file *file)
1357 struct elf_phdr *elf_phdata;
1358 struct elf_phdr *eppnt;
1359 int retval, error, i, j;
1360 struct elfhdr elf_ex;
1363 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1367 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1370 /* First of all, some simple consistency checks */
1371 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1372 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1374 if (elf_check_fdpic(&elf_ex))
1377 /* Now read in all of the header information */
1379 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1380 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1383 elf_phdata = kmalloc(j, GFP_KERNEL);
1389 retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1393 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1394 if ((eppnt + i)->p_type == PT_LOAD)
1399 while (eppnt->p_type != PT_LOAD)
1402 /* Now use mmap to map the library into memory. */
1403 error = elf_load(file, ELF_PAGESTART(eppnt->p_vaddr),
1405 PROT_READ | PROT_WRITE | PROT_EXEC,
1406 MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1409 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1419 #endif /* #ifdef CONFIG_USELIB */
1421 #ifdef CONFIG_ELF_CORE
1425 * Modelled on fs/exec.c:aout_core_dump()
1429 /* An ELF note in memory */
1434 unsigned int datasz;
1438 static int notesize(struct memelfnote *en)
1442 sz = sizeof(struct elf_note);
1443 sz += roundup(strlen(en->name) + 1, 4);
1444 sz += roundup(en->datasz, 4);
1449 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1452 en.n_namesz = strlen(men->name) + 1;
1453 en.n_descsz = men->datasz;
1454 en.n_type = men->type;
1456 return dump_emit(cprm, &en, sizeof(en)) &&
1457 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1458 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1461 static void fill_elf_header(struct elfhdr *elf, int segs,
1462 u16 machine, u32 flags)
1464 memset(elf, 0, sizeof(*elf));
1466 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1467 elf->e_ident[EI_CLASS] = ELF_CLASS;
1468 elf->e_ident[EI_DATA] = ELF_DATA;
1469 elf->e_ident[EI_VERSION] = EV_CURRENT;
1470 elf->e_ident[EI_OSABI] = ELF_OSABI;
1472 elf->e_type = ET_CORE;
1473 elf->e_machine = machine;
1474 elf->e_version = EV_CURRENT;
1475 elf->e_phoff = sizeof(struct elfhdr);
1476 elf->e_flags = flags;
1477 elf->e_ehsize = sizeof(struct elfhdr);
1478 elf->e_phentsize = sizeof(struct elf_phdr);
1479 elf->e_phnum = segs;
1482 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1484 phdr->p_type = PT_NOTE;
1485 phdr->p_offset = offset;
1488 phdr->p_filesz = sz;
1494 static void fill_note(struct memelfnote *note, const char *name, int type,
1495 unsigned int sz, void *data)
1504 * fill up all the fields in prstatus from the given task struct, except
1505 * registers which need to be filled up separately.
1507 static void fill_prstatus(struct elf_prstatus_common *prstatus,
1508 struct task_struct *p, long signr)
1510 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1511 prstatus->pr_sigpend = p->pending.signal.sig[0];
1512 prstatus->pr_sighold = p->blocked.sig[0];
1514 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1516 prstatus->pr_pid = task_pid_vnr(p);
1517 prstatus->pr_pgrp = task_pgrp_vnr(p);
1518 prstatus->pr_sid = task_session_vnr(p);
1519 if (thread_group_leader(p)) {
1520 struct task_cputime cputime;
1523 * This is the record for the group leader. It shows the
1524 * group-wide total, not its individual thread total.
1526 thread_group_cputime(p, &cputime);
1527 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1528 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1532 task_cputime(p, &utime, &stime);
1533 prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1534 prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1537 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1538 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1541 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1542 struct mm_struct *mm)
1544 const struct cred *cred;
1545 unsigned int i, len;
1548 /* first copy the parameters from user space */
1549 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1551 len = mm->arg_end - mm->arg_start;
1552 if (len >= ELF_PRARGSZ)
1553 len = ELF_PRARGSZ-1;
1554 if (copy_from_user(&psinfo->pr_psargs,
1555 (const char __user *)mm->arg_start, len))
1557 for(i = 0; i < len; i++)
1558 if (psinfo->pr_psargs[i] == 0)
1559 psinfo->pr_psargs[i] = ' ';
1560 psinfo->pr_psargs[len] = 0;
1563 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1565 psinfo->pr_pid = task_pid_vnr(p);
1566 psinfo->pr_pgrp = task_pgrp_vnr(p);
1567 psinfo->pr_sid = task_session_vnr(p);
1569 state = READ_ONCE(p->__state);
1570 i = state ? ffz(~state) + 1 : 0;
1571 psinfo->pr_state = i;
1572 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1573 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1574 psinfo->pr_nice = task_nice(p);
1575 psinfo->pr_flag = p->flags;
1577 cred = __task_cred(p);
1578 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1579 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1581 get_task_comm(psinfo->pr_fname, p);
1586 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1588 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1592 while (auxv[i - 2] != AT_NULL);
1593 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1596 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1597 const kernel_siginfo_t *siginfo)
1599 copy_siginfo_to_external(csigdata, siginfo);
1600 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1604 * Format of NT_FILE note:
1606 * long count -- how many files are mapped
1607 * long page_size -- units for file_ofs
1608 * array of [COUNT] elements of
1612 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1614 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1616 unsigned count, size, names_ofs, remaining, n;
1618 user_long_t *start_end_ofs;
1619 char *name_base, *name_curpos;
1622 /* *Estimated* file count and total data size needed */
1623 count = cprm->vma_count;
1624 if (count > UINT_MAX / 64)
1628 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1630 /* paranoia check */
1631 if (size >= core_file_note_size_limit) {
1632 pr_warn_once("coredump Note size too large: %u (does kernel.core_file_note_size_limit sysctl need adjustment?\n",
1636 size = round_up(size, PAGE_SIZE);
1638 * "size" can be 0 here legitimately.
1639 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1641 data = kvmalloc(size, GFP_KERNEL);
1642 if (ZERO_OR_NULL_PTR(data))
1645 start_end_ofs = data + 2;
1646 name_base = name_curpos = ((char *)data) + names_ofs;
1647 remaining = size - names_ofs;
1649 for (i = 0; i < cprm->vma_count; i++) {
1650 struct core_vma_metadata *m = &cprm->vma_meta[i];
1652 const char *filename;
1657 filename = file_path(file, name_curpos, remaining);
1658 if (IS_ERR(filename)) {
1659 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1661 size = size * 5 / 4;
1667 /* file_path() fills at the end, move name down */
1668 /* n = strlen(filename) + 1: */
1669 n = (name_curpos + remaining) - filename;
1670 remaining = filename - name_curpos;
1671 memmove(name_curpos, filename, n);
1674 *start_end_ofs++ = m->start;
1675 *start_end_ofs++ = m->end;
1676 *start_end_ofs++ = m->pgoff;
1680 /* Now we know exact count of files, can store it */
1682 data[1] = PAGE_SIZE;
1684 * Count usually is less than mm->map_count,
1685 * we need to move filenames down.
1687 n = cprm->vma_count - count;
1689 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1690 memmove(name_base - shift_bytes, name_base,
1691 name_curpos - name_base);
1692 name_curpos -= shift_bytes;
1695 size = name_curpos - (char *)data;
1696 fill_note(note, "CORE", NT_FILE, size, data);
1700 #include <linux/regset.h>
1702 struct elf_thread_core_info {
1703 struct elf_thread_core_info *next;
1704 struct task_struct *task;
1705 struct elf_prstatus prstatus;
1706 struct memelfnote notes[];
1709 struct elf_note_info {
1710 struct elf_thread_core_info *thread;
1711 struct memelfnote psinfo;
1712 struct memelfnote signote;
1713 struct memelfnote auxv;
1714 struct memelfnote files;
1715 user_siginfo_t csigdata;
1720 #ifdef CORE_DUMP_USE_REGSET
1722 * When a regset has a writeback hook, we call it on each thread before
1723 * dumping user memory. On register window machines, this makes sure the
1724 * user memory backing the register data is up to date before we read it.
1726 static void do_thread_regset_writeback(struct task_struct *task,
1727 const struct user_regset *regset)
1729 if (regset->writeback)
1730 regset->writeback(task, regset, 1);
1733 #ifndef PRSTATUS_SIZE
1734 #define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1737 #ifndef SET_PR_FPVALID
1738 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1741 static int fill_thread_core_info(struct elf_thread_core_info *t,
1742 const struct user_regset_view *view,
1743 long signr, struct elf_note_info *info)
1745 unsigned int note_iter, view_iter;
1748 * NT_PRSTATUS is the one special case, because the regset data
1749 * goes into the pr_reg field inside the note contents, rather
1750 * than being the whole note contents. We fill the regset in here.
1751 * We assume that regset 0 is NT_PRSTATUS.
1753 fill_prstatus(&t->prstatus.common, t->task, signr);
1754 regset_get(t->task, &view->regsets[0],
1755 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1757 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1758 PRSTATUS_SIZE, &t->prstatus);
1759 info->size += notesize(&t->notes[0]);
1761 do_thread_regset_writeback(t->task, &view->regsets[0]);
1764 * Each other regset might generate a note too. For each regset
1765 * that has no core_note_type or is inactive, skip it.
1768 for (view_iter = 1; view_iter < view->n; ++view_iter) {
1769 const struct user_regset *regset = &view->regsets[view_iter];
1770 int note_type = regset->core_note_type;
1771 bool is_fpreg = note_type == NT_PRFPREG;
1775 do_thread_regset_writeback(t->task, regset);
1776 if (!note_type) // not for coredumps
1778 if (regset->active && regset->active(t->task, regset) <= 0)
1781 ret = regset_get_alloc(t->task, regset, ~0U, &data);
1785 if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1789 SET_PR_FPVALID(&t->prstatus);
1791 fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX",
1792 note_type, ret, data);
1794 info->size += notesize(&t->notes[note_iter]);
1801 static int fill_thread_core_info(struct elf_thread_core_info *t,
1802 const struct user_regset_view *view,
1803 long signr, struct elf_note_info *info)
1805 struct task_struct *p = t->task;
1806 elf_fpregset_t *fpu;
1808 fill_prstatus(&t->prstatus.common, p, signr);
1809 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1811 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1813 info->size += notesize(&t->notes[0]);
1815 fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1816 if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1821 t->prstatus.pr_fpvalid = 1;
1822 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
1823 info->size += notesize(&t->notes[1]);
1829 static int fill_note_info(struct elfhdr *elf, int phdrs,
1830 struct elf_note_info *info,
1831 struct coredump_params *cprm)
1833 struct task_struct *dump_task = current;
1834 const struct user_regset_view *view;
1835 struct elf_thread_core_info *t;
1836 struct elf_prpsinfo *psinfo;
1837 struct core_thread *ct;
1839 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1842 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1844 #ifdef CORE_DUMP_USE_REGSET
1845 view = task_user_regset_view(dump_task);
1848 * Figure out how many notes we're going to need for each thread.
1850 info->thread_notes = 0;
1851 for (int i = 0; i < view->n; ++i)
1852 if (view->regsets[i].core_note_type != 0)
1853 ++info->thread_notes;
1856 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1857 * since it is our one special case.
1859 if (unlikely(info->thread_notes == 0) ||
1860 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1866 * Initialize the ELF file header.
1868 fill_elf_header(elf, phdrs,
1869 view->e_machine, view->e_flags);
1872 info->thread_notes = 2;
1873 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1877 * Allocate a structure for each thread.
1879 info->thread = kzalloc(offsetof(struct elf_thread_core_info,
1880 notes[info->thread_notes]),
1882 if (unlikely(!info->thread))
1885 info->thread->task = dump_task;
1886 for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1887 t = kzalloc(offsetof(struct elf_thread_core_info,
1888 notes[info->thread_notes]),
1894 t->next = info->thread->next;
1895 info->thread->next = t;
1899 * Now fill in each thread's information.
1901 for (t = info->thread; t != NULL; t = t->next)
1902 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
1906 * Fill in the two process-wide notes.
1908 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1909 info->size += notesize(&info->psinfo);
1911 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1912 info->size += notesize(&info->signote);
1914 fill_auxv_note(&info->auxv, current->mm);
1915 info->size += notesize(&info->auxv);
1917 if (fill_files_note(&info->files, cprm) == 0)
1918 info->size += notesize(&info->files);
1924 * Write all the notes for each thread. When writing the first thread, the
1925 * process-wide notes are interleaved after the first thread-specific note.
1927 static int write_note_info(struct elf_note_info *info,
1928 struct coredump_params *cprm)
1931 struct elf_thread_core_info *t = info->thread;
1936 if (!writenote(&t->notes[0], cprm))
1939 if (first && !writenote(&info->psinfo, cprm))
1941 if (first && !writenote(&info->signote, cprm))
1943 if (first && !writenote(&info->auxv, cprm))
1945 if (first && info->files.data &&
1946 !writenote(&info->files, cprm))
1949 for (i = 1; i < info->thread_notes; ++i)
1950 if (t->notes[i].data &&
1951 !writenote(&t->notes[i], cprm))
1961 static void free_note_info(struct elf_note_info *info)
1963 struct elf_thread_core_info *threads = info->thread;
1966 struct elf_thread_core_info *t = threads;
1968 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1969 for (i = 1; i < info->thread_notes; ++i)
1970 kvfree(t->notes[i].data);
1973 kfree(info->psinfo.data);
1974 kvfree(info->files.data);
1977 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1978 elf_addr_t e_shoff, int segs)
1980 elf->e_shoff = e_shoff;
1981 elf->e_shentsize = sizeof(*shdr4extnum);
1983 elf->e_shstrndx = SHN_UNDEF;
1985 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1987 shdr4extnum->sh_type = SHT_NULL;
1988 shdr4extnum->sh_size = elf->e_shnum;
1989 shdr4extnum->sh_link = elf->e_shstrndx;
1990 shdr4extnum->sh_info = segs;
1996 * This is a two-pass process; first we find the offsets of the bits,
1997 * and then they are actually written out. If we run out of core limit
2000 static int elf_core_dump(struct coredump_params *cprm)
2005 loff_t offset = 0, dataoff;
2006 struct elf_note_info info = { };
2007 struct elf_phdr *phdr4note = NULL;
2008 struct elf_shdr *shdr4extnum = NULL;
2013 * The number of segs are recored into ELF header as 16bit value.
2014 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2016 segs = cprm->vma_count + elf_core_extra_phdrs(cprm);
2018 /* for notes section */
2021 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2022 * this, kernel supports extended numbering. Have a look at
2023 * include/linux/elf.h for further information. */
2024 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2027 * Collect all the non-memory information about the process for the
2028 * notes. This also sets up the file header.
2030 if (!fill_note_info(&elf, e_phnum, &info, cprm))
2035 offset += sizeof(elf); /* ELF header */
2036 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2038 /* Write notes phdr entry */
2040 size_t sz = info.size;
2042 /* For cell spufs */
2043 sz += elf_coredump_extra_notes_size();
2045 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2049 fill_elf_note_phdr(phdr4note, sz, offset);
2053 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2055 offset += cprm->vma_data_size;
2056 offset += elf_core_extra_data_size(cprm);
2059 if (e_phnum == PN_XNUM) {
2060 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2063 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2068 if (!dump_emit(cprm, &elf, sizeof(elf)))
2071 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2074 /* Write program headers for segments dump */
2075 for (i = 0; i < cprm->vma_count; i++) {
2076 struct core_vma_metadata *meta = cprm->vma_meta + i;
2077 struct elf_phdr phdr;
2079 phdr.p_type = PT_LOAD;
2080 phdr.p_offset = offset;
2081 phdr.p_vaddr = meta->start;
2083 phdr.p_filesz = meta->dump_size;
2084 phdr.p_memsz = meta->end - meta->start;
2085 offset += phdr.p_filesz;
2087 if (meta->flags & VM_READ)
2088 phdr.p_flags |= PF_R;
2089 if (meta->flags & VM_WRITE)
2090 phdr.p_flags |= PF_W;
2091 if (meta->flags & VM_EXEC)
2092 phdr.p_flags |= PF_X;
2093 phdr.p_align = ELF_EXEC_PAGESIZE;
2095 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2099 if (!elf_core_write_extra_phdrs(cprm, offset))
2102 /* write out the notes section */
2103 if (!write_note_info(&info, cprm))
2106 /* For cell spufs */
2107 if (elf_coredump_extra_notes_write(cprm))
2111 dump_skip_to(cprm, dataoff);
2113 for (i = 0; i < cprm->vma_count; i++) {
2114 struct core_vma_metadata *meta = cprm->vma_meta + i;
2116 if (!dump_user_range(cprm, meta->start, meta->dump_size))
2120 if (!elf_core_write_extra_data(cprm))
2123 if (e_phnum == PN_XNUM) {
2124 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2129 free_note_info(&info);
2135 #endif /* CONFIG_ELF_CORE */
2137 static int __init init_elf_binfmt(void)
2139 register_binfmt(&elf_format);
2143 static void __exit exit_elf_binfmt(void)
2145 /* Remove the COFF and ELF loaders. */
2146 unregister_binfmt(&elf_format);
2149 core_initcall(init_elf_binfmt);
2150 module_exit(exit_elf_binfmt);
2152 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2153 #include "binfmt_elf_test.c"