2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/circ_buf.h>
27 #include "gt/intel_engine_pm.h"
28 #include "gt/intel_lrc_reg.h"
30 #include "intel_guc_submission.h"
33 #define GUC_PREEMPT_FINISHED 0x1
34 #define GUC_PREEMPT_BREADCRUMB_DWORDS 0x8
35 #define GUC_PREEMPT_BREADCRUMB_BYTES \
36 (sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)
39 * DOC: GuC-based command submission
42 * A intel_guc_client refers to a submission path through GuC. Currently, there
43 * are two clients. One of them (the execbuf_client) is charged with all
44 * submissions to the GuC, the other one (preempt_client) is responsible for
45 * preempting the execbuf_client. This struct is the owner of a doorbell, a
46 * process descriptor and a workqueue (all of them inside a single gem object
47 * that contains all required pages for these elements).
49 * GuC stage descriptor:
50 * During initialization, the driver allocates a static pool of 1024 such
51 * descriptors, and shares them with the GuC.
52 * Currently, there exists a 1:1 mapping between a intel_guc_client and a
53 * guc_stage_desc (via the client's stage_id), so effectively only one
54 * gets used. This stage descriptor lets the GuC know about the doorbell,
55 * workqueue and process descriptor. Theoretically, it also lets the GuC
56 * know about our HW contexts (context ID, etc...), but we actually
57 * employ a kind of submission where the GuC uses the LRCA sent via the work
58 * item instead (the single guc_stage_desc associated to execbuf client
59 * contains information about the default kernel context only, but this is
60 * essentially unused). This is called a "proxy" submission.
62 * The Scratch registers:
63 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
64 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
65 * triggers an interrupt on the GuC via another register write (0xC4C8).
66 * Firmware writes a success/fail code back to the action register after
67 * processes the request. The kernel driver polls waiting for this update and
69 * See intel_guc_send()
72 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
73 * mapped into process space.
76 * There are several types of work items that the host may place into a
77 * workqueue, each with its own requirements and limitations. Currently only
78 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
79 * represents in-order queue. The kernel driver packs ring tail pointer and an
80 * ELSP context descriptor dword into Work Item.
81 * See guc_add_request()
85 static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
87 return (i915_ggtt_offset(engine->status_page.vma) +
88 I915_GEM_HWS_PREEMPT_ADDR);
91 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
93 return rb_entry(rb, struct i915_priolist, node);
96 static inline bool is_high_priority(struct intel_guc_client *client)
98 return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
99 client->priority == GUC_CLIENT_PRIORITY_HIGH);
102 static int reserve_doorbell(struct intel_guc_client *client)
104 unsigned long offset;
108 GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
111 * The bitmap tracks which doorbell registers are currently in use.
112 * It is split into two halves; the first half is used for normal
113 * priority contexts, the second half for high-priority ones.
116 end = GUC_NUM_DOORBELLS / 2;
117 if (is_high_priority(client)) {
122 id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
126 __set_bit(id, client->guc->doorbell_bitmap);
127 client->doorbell_id = id;
128 DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
129 client->stage_id, yesno(is_high_priority(client)),
134 static bool has_doorbell(struct intel_guc_client *client)
136 if (client->doorbell_id == GUC_DOORBELL_INVALID)
139 return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
142 static void unreserve_doorbell(struct intel_guc_client *client)
144 GEM_BUG_ON(!has_doorbell(client));
146 __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
147 client->doorbell_id = GUC_DOORBELL_INVALID;
151 * Tell the GuC to allocate or deallocate a specific doorbell
154 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
157 INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
161 return intel_guc_send(guc, action, ARRAY_SIZE(action));
164 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
167 INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
171 return intel_guc_send(guc, action, ARRAY_SIZE(action));
174 static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
176 struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
178 return &base[client->stage_id];
182 * Initialise, update, or clear doorbell data shared with the GuC
184 * These functions modify shared data and so need access to the mapped
185 * client object which contains the page being used for the doorbell
188 static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
190 struct guc_stage_desc *desc;
192 /* Update the GuC's idea of the doorbell ID */
193 desc = __get_stage_desc(client);
194 desc->db_id = new_id;
197 static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
199 return client->vaddr + client->doorbell_offset;
202 static bool __doorbell_valid(struct intel_guc *guc, u16 db_id)
204 struct drm_i915_private *dev_priv = guc_to_i915(guc);
206 GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
207 return I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID;
210 static void __init_doorbell(struct intel_guc_client *client)
212 struct guc_doorbell_info *doorbell;
214 doorbell = __get_doorbell(client);
215 doorbell->db_status = GUC_DOORBELL_ENABLED;
216 doorbell->cookie = 0;
219 static void __fini_doorbell(struct intel_guc_client *client)
221 struct guc_doorbell_info *doorbell;
222 u16 db_id = client->doorbell_id;
224 doorbell = __get_doorbell(client);
225 doorbell->db_status = GUC_DOORBELL_DISABLED;
227 /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
228 * to go to zero after updating db_status before we call the GuC to
229 * release the doorbell
231 if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10))
232 WARN_ONCE(true, "Doorbell never became invalid after disable\n");
235 static int create_doorbell(struct intel_guc_client *client)
239 if (WARN_ON(!has_doorbell(client)))
240 return -ENODEV; /* internal setup error, should never happen */
242 __update_doorbell_desc(client, client->doorbell_id);
243 __init_doorbell(client);
245 ret = __guc_allocate_doorbell(client->guc, client->stage_id);
247 __fini_doorbell(client);
248 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
249 DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
250 client->stage_id, ret);
257 static int destroy_doorbell(struct intel_guc_client *client)
261 GEM_BUG_ON(!has_doorbell(client));
263 __fini_doorbell(client);
264 ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
266 DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
267 client->stage_id, ret);
269 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
274 static unsigned long __select_cacheline(struct intel_guc *guc)
276 unsigned long offset;
278 /* Doorbell uses a single cache line within a page */
279 offset = offset_in_page(guc->db_cacheline);
281 /* Moving to next cache line to reduce contention */
282 guc->db_cacheline += cache_line_size();
284 DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
285 offset, guc->db_cacheline, cache_line_size());
289 static inline struct guc_process_desc *
290 __get_process_desc(struct intel_guc_client *client)
292 return client->vaddr + client->proc_desc_offset;
296 * Initialise the process descriptor shared with the GuC firmware.
298 static void guc_proc_desc_init(struct intel_guc_client *client)
300 struct guc_process_desc *desc;
302 desc = memset(__get_process_desc(client), 0, sizeof(*desc));
305 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
306 * space for ring3 clients (set them as in mmap_ioctl) or kernel
307 * space for kernel clients (map on demand instead? May make debug
308 * easier to have it mapped).
310 desc->wq_base_addr = 0;
311 desc->db_base_addr = 0;
313 desc->stage_id = client->stage_id;
314 desc->wq_size_bytes = GUC_WQ_SIZE;
315 desc->wq_status = WQ_STATUS_ACTIVE;
316 desc->priority = client->priority;
319 static void guc_proc_desc_fini(struct intel_guc_client *client)
321 struct guc_process_desc *desc;
323 desc = __get_process_desc(client);
324 memset(desc, 0, sizeof(*desc));
327 static int guc_stage_desc_pool_create(struct intel_guc *guc)
329 struct i915_vma *vma;
332 vma = intel_guc_allocate_vma(guc,
333 PAGE_ALIGN(sizeof(struct guc_stage_desc) *
334 GUC_MAX_STAGE_DESCRIPTORS));
338 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
340 i915_vma_unpin_and_release(&vma, 0);
341 return PTR_ERR(vaddr);
344 guc->stage_desc_pool = vma;
345 guc->stage_desc_pool_vaddr = vaddr;
346 ida_init(&guc->stage_ids);
351 static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
353 ida_destroy(&guc->stage_ids);
354 i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
358 * Initialise/clear the stage descriptor shared with the GuC firmware.
360 * This descriptor tells the GuC where (in GGTT space) to find the important
361 * data structures relating to this client (doorbell, process descriptor,
364 static void guc_stage_desc_init(struct intel_guc_client *client)
366 struct intel_guc *guc = client->guc;
367 struct i915_gem_context *ctx = client->owner;
368 struct i915_gem_engines_iter it;
369 struct guc_stage_desc *desc;
370 struct intel_context *ce;
373 desc = __get_stage_desc(client);
374 memset(desc, 0, sizeof(*desc));
376 desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
377 GUC_STAGE_DESC_ATTR_KERNEL;
378 if (is_high_priority(client))
379 desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
380 desc->stage_id = client->stage_id;
381 desc->priority = client->priority;
382 desc->db_id = client->doorbell_id;
384 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
385 struct guc_execlist_context *lrc;
387 if (!(ce->engine->mask & client->engines))
390 /* TODO: We have a design issue to be solved here. Only when we
391 * receive the first batch, we know which engine is used by the
392 * user. But here GuC expects the lrc and ring to be pinned. It
393 * is not an issue for default context, which is the only one
394 * for now who owns a GuC client. But for future owner of GuC
395 * client, need to make sure lrc is pinned prior to enter here.
398 break; /* XXX: continue? */
401 * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
402 * submission or, in other words, not using a direct submission
403 * model) the KMD's LRCA is not used for any work submission.
404 * Instead, the GuC uses the LRCA of the user mode context (see
405 * guc_add_request below).
407 lrc = &desc->lrc[ce->engine->guc_id];
408 lrc->context_desc = lower_32_bits(ce->lrc_desc);
410 /* The state page is after PPHWSP */
411 lrc->ring_lrca = intel_guc_ggtt_offset(guc, ce->state) +
412 LRC_STATE_PN * PAGE_SIZE;
414 /* XXX: In direct submission, the GuC wants the HW context id
415 * here. In proxy submission, it wants the stage id
417 lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
418 (ce->engine->guc_id << GUC_ELC_ENGINE_OFFSET);
420 lrc->ring_begin = intel_guc_ggtt_offset(guc, ce->ring->vma);
421 lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
422 lrc->ring_next_free_location = lrc->ring_begin;
423 lrc->ring_current_tail_pointer_value = 0;
425 desc->engines_used |= BIT(ce->engine->guc_id);
427 i915_gem_context_unlock_engines(ctx);
429 DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
430 client->engines, desc->engines_used);
431 WARN_ON(desc->engines_used == 0);
434 * The doorbell, process descriptor, and workqueue are all parts
435 * of the client object, which the GuC will reference via the GGTT
437 gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
438 desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
439 client->doorbell_offset;
440 desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
441 desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
442 desc->process_desc = gfx_addr + client->proc_desc_offset;
443 desc->wq_addr = gfx_addr + GUC_DB_SIZE;
444 desc->wq_size = GUC_WQ_SIZE;
446 desc->desc_private = ptr_to_u64(client);
449 static void guc_stage_desc_fini(struct intel_guc_client *client)
451 struct guc_stage_desc *desc;
453 desc = __get_stage_desc(client);
454 memset(desc, 0, sizeof(*desc));
457 /* Construct a Work Item and append it to the GuC's Work Queue */
458 static void guc_wq_item_append(struct intel_guc_client *client,
459 u32 target_engine, u32 context_desc,
460 u32 ring_tail, u32 fence_id)
462 /* wqi_len is in DWords, and does not include the one-word header */
463 const size_t wqi_size = sizeof(struct guc_wq_item);
464 const u32 wqi_len = wqi_size / sizeof(u32) - 1;
465 struct guc_process_desc *desc = __get_process_desc(client);
466 struct guc_wq_item *wqi;
469 lockdep_assert_held(&client->wq_lock);
471 /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
472 * should not have the case where structure wqi is across page, neither
473 * wrapped to the beginning. This simplifies the implementation below.
475 * XXX: if not the case, we need save data to a temp wqi and copy it to
476 * workqueue buffer dw by dw.
478 BUILD_BUG_ON(wqi_size != 16);
480 /* We expect the WQ to be active if we're appending items to it */
481 GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
483 /* Free space is guaranteed. */
484 wq_off = READ_ONCE(desc->tail);
485 GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
486 GUC_WQ_SIZE) < wqi_size);
487 GEM_BUG_ON(wq_off & (wqi_size - 1));
489 /* WQ starts from the page after doorbell / process_desc */
490 wqi = client->vaddr + wq_off + GUC_DB_SIZE;
492 if (I915_SELFTEST_ONLY(client->use_nop_wqi)) {
493 wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT);
495 /* Now fill in the 4-word work queue item */
496 wqi->header = WQ_TYPE_INORDER |
497 (wqi_len << WQ_LEN_SHIFT) |
498 (target_engine << WQ_TARGET_SHIFT) |
500 wqi->context_desc = context_desc;
501 wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
502 GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
503 wqi->fence_id = fence_id;
506 /* Make the update visible to GuC */
507 WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
510 static void guc_ring_doorbell(struct intel_guc_client *client)
512 struct guc_doorbell_info *db;
515 lockdep_assert_held(&client->wq_lock);
517 /* pointer of current doorbell cacheline */
518 db = __get_doorbell(client);
521 * We're not expecting the doorbell cookie to change behind our back,
522 * we also need to treat 0 as a reserved value.
524 cookie = READ_ONCE(db->cookie);
525 WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
527 /* XXX: doorbell was lost and need to acquire it again */
528 GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
531 static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
533 struct intel_guc_client *client = guc->execbuf_client;
534 struct intel_engine_cs *engine = rq->engine;
535 u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
536 u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
538 spin_lock(&client->wq_lock);
540 guc_wq_item_append(client, engine->guc_id, ctx_desc,
541 ring_tail, rq->fence.seqno);
542 guc_ring_doorbell(client);
544 client->submissions[engine->id] += 1;
546 spin_unlock(&client->wq_lock);
550 * When we're doing submissions using regular execlists backend, writing to
551 * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
552 * pinned in mappable aperture portion of GGTT are visible to command streamer.
553 * Writes done by GuC on our behalf are not guaranteeing such ordering,
554 * therefore, to ensure the flush, we're issuing a POSTING READ.
556 static void flush_ggtt_writes(struct i915_vma *vma)
558 struct drm_i915_private *dev_priv = vma->vm->i915;
560 if (i915_vma_is_map_and_fenceable(vma))
561 POSTING_READ_FW(GUC_STATUS);
564 static void inject_preempt_context(struct work_struct *work)
566 struct guc_preempt_work *preempt_work =
567 container_of(work, typeof(*preempt_work), work);
568 struct intel_engine_cs *engine = preempt_work->engine;
569 struct intel_guc *guc = container_of(preempt_work, typeof(*guc),
570 preempt_work[engine->id]);
571 struct intel_guc_client *client = guc->preempt_client;
572 struct guc_stage_desc *stage_desc = __get_stage_desc(client);
573 struct intel_context *ce = engine->preempt_context;
576 if (!ce->ring->emit) { /* recreate upon load/resume */
577 u32 addr = intel_hws_preempt_done_address(engine);
580 cs = ce->ring->vaddr;
581 if (engine->class == RENDER_CLASS) {
582 cs = gen8_emit_ggtt_write_rcs(cs,
583 GUC_PREEMPT_FINISHED,
585 PIPE_CONTROL_CS_STALL);
587 cs = gen8_emit_ggtt_write(cs,
588 GUC_PREEMPT_FINISHED,
594 *cs++ = MI_USER_INTERRUPT;
597 ce->ring->emit = GUC_PREEMPT_BREADCRUMB_BYTES;
598 GEM_BUG_ON((void *)cs - ce->ring->vaddr != ce->ring->emit);
600 flush_ggtt_writes(ce->ring->vma);
603 spin_lock_irq(&client->wq_lock);
604 guc_wq_item_append(client, engine->guc_id, lower_32_bits(ce->lrc_desc),
605 GUC_PREEMPT_BREADCRUMB_BYTES / sizeof(u64), 0);
606 spin_unlock_irq(&client->wq_lock);
609 * If GuC firmware performs an engine reset while that engine had
610 * a preemption pending, it will set the terminated attribute bit
611 * on our preemption stage descriptor. GuC firmware retains all
612 * pending work items for a high-priority GuC client, unlike the
613 * normal-priority GuC client where work items are dropped. It
614 * wants to make sure the preempt-to-idle work doesn't run when
615 * scheduling resumes, and uses this bit to inform its scheduler
616 * and presumably us as well. Our job is to clear it for the next
617 * preemption after reset, otherwise that and future preemptions
618 * will never complete. We'll just clear it every time.
620 stage_desc->attribute &= ~GUC_STAGE_DESC_ATTR_TERMINATED;
622 data[0] = INTEL_GUC_ACTION_REQUEST_PREEMPTION;
623 data[1] = client->stage_id;
624 data[2] = INTEL_GUC_PREEMPT_OPTION_DROP_WORK_Q |
625 INTEL_GUC_PREEMPT_OPTION_DROP_SUBMIT_Q;
626 data[3] = engine->guc_id;
627 data[4] = guc->execbuf_client->priority;
628 data[5] = guc->execbuf_client->stage_id;
629 data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
631 if (WARN_ON(intel_guc_send(guc, data, ARRAY_SIZE(data)))) {
632 execlists_clear_active(&engine->execlists,
633 EXECLISTS_ACTIVE_PREEMPT);
634 tasklet_schedule(&engine->execlists.tasklet);
637 (void)I915_SELFTEST_ONLY(engine->execlists.preempt_hang.count++);
641 * We're using user interrupt and HWSP value to mark that preemption has
642 * finished and GPU is idle. Normally, we could unwind and continue similar to
643 * execlists submission path. Unfortunately, with GuC we also need to wait for
644 * it to finish its own postprocessing, before attempting to submit. Otherwise
645 * GuC may silently ignore our submissions, and thus we risk losing request at
646 * best, executing out-of-order and causing kernel panic at worst.
648 #define GUC_PREEMPT_POSTPROCESS_DELAY_MS 10
649 static void wait_for_guc_preempt_report(struct intel_engine_cs *engine)
651 struct intel_guc *guc = &engine->i915->guc;
652 struct guc_shared_ctx_data *data = guc->shared_data_vaddr;
653 struct guc_ctx_report *report =
654 &data->preempt_ctx_report[engine->guc_id];
656 if (wait_for_atomic(report->report_return_status ==
657 INTEL_GUC_REPORT_STATUS_COMPLETE,
658 GUC_PREEMPT_POSTPROCESS_DELAY_MS))
659 DRM_ERROR("Timed out waiting for GuC preemption report\n");
661 * GuC is expecting that we're also going to clear the affected context
662 * counter, let's also reset the return status to not depend on GuC
663 * resetting it after recieving another preempt action
665 report->affected_count = 0;
666 report->report_return_status = INTEL_GUC_REPORT_STATUS_UNKNOWN;
669 static void complete_preempt_context(struct intel_engine_cs *engine)
671 struct intel_engine_execlists *execlists = &engine->execlists;
673 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
675 if (inject_preempt_hang(execlists))
678 execlists_cancel_port_requests(execlists);
679 execlists_unwind_incomplete_requests(execlists);
681 wait_for_guc_preempt_report(engine);
682 intel_write_status_page(engine, I915_GEM_HWS_PREEMPT, 0);
686 * guc_submit() - Submit commands through GuC
687 * @engine: engine associated with the commands
689 * The only error here arises if the doorbell hardware isn't functioning
690 * as expected, which really shouln't happen.
692 static void guc_submit(struct intel_engine_cs *engine)
694 struct intel_guc *guc = &engine->i915->guc;
695 struct intel_engine_execlists * const execlists = &engine->execlists;
696 struct execlist_port *port = execlists->port;
699 for (n = 0; n < execlists_num_ports(execlists); n++) {
700 struct i915_request *rq;
703 rq = port_unpack(&port[n], &count);
704 if (rq && count == 0) {
705 port_set(&port[n], port_pack(rq, ++count));
707 flush_ggtt_writes(rq->ring->vma);
709 guc_add_request(guc, rq);
714 static void port_assign(struct execlist_port *port, struct i915_request *rq)
716 GEM_BUG_ON(port_isset(port));
718 port_set(port, i915_request_get(rq));
721 static inline int rq_prio(const struct i915_request *rq)
723 return rq->sched.attr.priority;
726 static inline int port_prio(const struct execlist_port *port)
728 return rq_prio(port_request(port)) | __NO_PREEMPTION;
731 static bool __guc_dequeue(struct intel_engine_cs *engine)
733 struct intel_engine_execlists * const execlists = &engine->execlists;
734 struct execlist_port *port = execlists->port;
735 struct i915_request *last = NULL;
736 const struct execlist_port * const last_port =
737 &execlists->port[execlists->port_mask];
741 lockdep_assert_held(&engine->timeline.lock);
743 if (port_isset(port)) {
744 if (intel_engine_has_preemption(engine)) {
745 struct guc_preempt_work *preempt_work =
746 &engine->i915->guc.preempt_work[engine->id];
747 int prio = execlists->queue_priority_hint;
749 if (i915_scheduler_need_preempt(prio,
751 execlists_set_active(execlists,
752 EXECLISTS_ACTIVE_PREEMPT);
753 queue_work(engine->i915->guc.preempt_wq,
754 &preempt_work->work);
760 if (port_isset(port))
763 GEM_BUG_ON(port_isset(port));
765 while ((rb = rb_first_cached(&execlists->queue))) {
766 struct i915_priolist *p = to_priolist(rb);
767 struct i915_request *rq, *rn;
770 priolist_for_each_request_consume(rq, rn, p, i) {
771 if (last && rq->hw_context != last->hw_context) {
772 if (port == last_port)
776 port_assign(port, last);
780 list_del_init(&rq->sched.link);
782 __i915_request_submit(rq);
783 trace_i915_request_in(rq, port_index(port, execlists));
789 rb_erase_cached(&p->node, &execlists->queue);
790 i915_priolist_free(p);
793 execlists->queue_priority_hint =
794 rb ? to_priolist(rb)->priority : INT_MIN;
796 port_assign(port, last);
798 execlists_user_begin(execlists, execlists->port);
800 /* We must always keep the beast fed if we have work piled up */
801 GEM_BUG_ON(port_isset(execlists->port) &&
802 !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
803 GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
804 !port_isset(execlists->port));
809 static void guc_dequeue(struct intel_engine_cs *engine)
811 if (__guc_dequeue(engine))
815 static void guc_submission_tasklet(unsigned long data)
817 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
818 struct intel_engine_execlists * const execlists = &engine->execlists;
819 struct execlist_port *port = execlists->port;
820 struct i915_request *rq;
823 spin_lock_irqsave(&engine->timeline.lock, flags);
825 rq = port_request(port);
826 while (rq && i915_request_completed(rq)) {
827 trace_i915_request_out(rq);
828 i915_request_put(rq);
830 port = execlists_port_complete(execlists, port);
831 if (port_isset(port)) {
832 execlists_user_begin(execlists, port);
833 rq = port_request(port);
835 execlists_user_end(execlists);
840 if (execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT) &&
841 intel_read_status_page(engine, I915_GEM_HWS_PREEMPT) ==
842 GUC_PREEMPT_FINISHED)
843 complete_preempt_context(engine);
845 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
848 spin_unlock_irqrestore(&engine->timeline.lock, flags);
851 static void guc_reset_prepare(struct intel_engine_cs *engine)
853 struct intel_engine_execlists * const execlists = &engine->execlists;
855 GEM_TRACE("%s\n", engine->name);
858 * Prevent request submission to the hardware until we have
859 * completed the reset in i915_gem_reset_finish(). If a request
860 * is completed by one engine, it may then queue a request
861 * to a second via its execlists->tasklet *just* as we are
862 * calling engine->init_hw() and also writing the ELSP.
863 * Turning off the execlists->tasklet until the reset is over
866 __tasklet_disable_sync_once(&execlists->tasklet);
869 * We're using worker to queue preemption requests from the tasklet in
870 * GuC submission mode.
871 * Even though tasklet was disabled, we may still have a worker queued.
872 * Let's make sure that all workers scheduled before disabling the
873 * tasklet are completed before continuing with the reset.
875 if (engine->i915->guc.preempt_wq)
876 flush_workqueue(engine->i915->guc.preempt_wq);
879 static void guc_reset(struct intel_engine_cs *engine, bool stalled)
881 struct intel_engine_execlists * const execlists = &engine->execlists;
882 struct i915_request *rq;
885 spin_lock_irqsave(&engine->timeline.lock, flags);
887 execlists_cancel_port_requests(execlists);
889 /* Push back any incomplete requests for replay after the reset. */
890 rq = execlists_unwind_incomplete_requests(execlists);
894 if (!i915_request_started(rq))
897 i915_reset_request(rq, stalled);
898 intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled);
901 spin_unlock_irqrestore(&engine->timeline.lock, flags);
904 static void guc_cancel_requests(struct intel_engine_cs *engine)
906 struct intel_engine_execlists * const execlists = &engine->execlists;
907 struct i915_request *rq, *rn;
911 GEM_TRACE("%s\n", engine->name);
914 * Before we call engine->cancel_requests(), we should have exclusive
915 * access to the submission state. This is arranged for us by the
916 * caller disabling the interrupt generation, the tasklet and other
917 * threads that may then access the same state, giving us a free hand
918 * to reset state. However, we still need to let lockdep be aware that
919 * we know this state may be accessed in hardirq context, so we
920 * disable the irq around this manipulation and we want to keep
921 * the spinlock focused on its duties and not accidentally conflate
922 * coverage to the submission's irq state. (Similarly, although we
923 * shouldn't need to disable irq around the manipulation of the
924 * submission's irq state, we also wish to remind ourselves that
927 spin_lock_irqsave(&engine->timeline.lock, flags);
929 /* Cancel the requests on the HW and clear the ELSP tracker. */
930 execlists_cancel_port_requests(execlists);
932 /* Mark all executing requests as skipped. */
933 list_for_each_entry(rq, &engine->timeline.requests, link) {
934 if (!i915_request_signaled(rq))
935 dma_fence_set_error(&rq->fence, -EIO);
937 i915_request_mark_complete(rq);
940 /* Flush the queued requests to the timeline list (for retiring). */
941 while ((rb = rb_first_cached(&execlists->queue))) {
942 struct i915_priolist *p = to_priolist(rb);
945 priolist_for_each_request_consume(rq, rn, p, i) {
946 list_del_init(&rq->sched.link);
947 __i915_request_submit(rq);
948 dma_fence_set_error(&rq->fence, -EIO);
949 i915_request_mark_complete(rq);
952 rb_erase_cached(&p->node, &execlists->queue);
953 i915_priolist_free(p);
956 /* Remaining _unready_ requests will be nop'ed when submitted */
958 execlists->queue_priority_hint = INT_MIN;
959 execlists->queue = RB_ROOT_CACHED;
960 GEM_BUG_ON(port_isset(execlists->port));
962 spin_unlock_irqrestore(&engine->timeline.lock, flags);
965 static void guc_reset_finish(struct intel_engine_cs *engine)
967 struct intel_engine_execlists * const execlists = &engine->execlists;
969 if (__tasklet_enable(&execlists->tasklet))
970 /* And kick in case we missed a new request submission. */
971 tasklet_hi_schedule(&execlists->tasklet);
973 GEM_TRACE("%s: depth->%d\n", engine->name,
974 atomic_read(&execlists->tasklet.count));
978 * Everything below here is concerned with setup & teardown, and is
979 * therefore not part of the somewhat time-critical batch-submission
980 * path of guc_submit() above.
983 /* Check that a doorbell register is in the expected state */
984 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
988 GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
990 valid = __doorbell_valid(guc, db_id);
992 if (test_bit(db_id, guc->doorbell_bitmap) == valid)
995 DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n",
996 db_id, yesno(valid));
1001 static bool guc_verify_doorbells(struct intel_guc *guc)
1003 bool doorbells_ok = true;
1006 for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
1007 if (!doorbell_ok(guc, db_id))
1008 doorbells_ok = false;
1010 return doorbells_ok;
1014 * guc_client_alloc() - Allocate an intel_guc_client
1015 * @dev_priv: driver private data structure
1016 * @engines: The set of engines to enable for this client
1017 * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
1018 * The kernel client to replace ExecList submission is created with
1019 * NORMAL priority. Priority of a client for scheduler can be HIGH,
1020 * while a preemption context can use CRITICAL.
1021 * @ctx: the context that owns the client (we use the default render
1024 * Return: An intel_guc_client object if success, else NULL.
1026 static struct intel_guc_client *
1027 guc_client_alloc(struct drm_i915_private *dev_priv,
1030 struct i915_gem_context *ctx)
1032 struct intel_guc_client *client;
1033 struct intel_guc *guc = &dev_priv->guc;
1034 struct i915_vma *vma;
1038 client = kzalloc(sizeof(*client), GFP_KERNEL);
1040 return ERR_PTR(-ENOMEM);
1043 client->owner = ctx;
1044 client->engines = engines;
1045 client->priority = priority;
1046 client->doorbell_id = GUC_DOORBELL_INVALID;
1047 spin_lock_init(&client->wq_lock);
1049 ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
1054 client->stage_id = ret;
1056 /* The first page is doorbell/proc_desc. Two followed pages are wq. */
1057 vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
1063 /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
1066 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1067 if (IS_ERR(vaddr)) {
1068 ret = PTR_ERR(vaddr);
1071 client->vaddr = vaddr;
1073 ret = reserve_doorbell(client);
1077 client->doorbell_offset = __select_cacheline(guc);
1080 * Since the doorbell only requires a single cacheline, we can save
1081 * space by putting the application process descriptor in the same
1082 * page. Use the half of the page that doesn't include the doorbell.
1084 if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
1085 client->proc_desc_offset = 0;
1087 client->proc_desc_offset = (GUC_DB_SIZE / 2);
1089 DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
1090 priority, client, client->engines, client->stage_id);
1091 DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
1092 client->doorbell_id, client->doorbell_offset);
1097 i915_gem_object_unpin_map(client->vma->obj);
1099 i915_vma_unpin_and_release(&client->vma, 0);
1101 ida_simple_remove(&guc->stage_ids, client->stage_id);
1104 return ERR_PTR(ret);
1107 static void guc_client_free(struct intel_guc_client *client)
1109 unreserve_doorbell(client);
1110 i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP);
1111 ida_simple_remove(&client->guc->stage_ids, client->stage_id);
1115 static inline bool ctx_save_restore_disabled(struct intel_context *ce)
1117 u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];
1119 #define SR_DISABLED \
1120 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
1121 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)
1123 return (sr & SR_DISABLED) == SR_DISABLED;
1128 static int guc_clients_create(struct intel_guc *guc)
1130 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1131 struct intel_guc_client *client;
1133 GEM_BUG_ON(guc->execbuf_client);
1134 GEM_BUG_ON(guc->preempt_client);
1136 client = guc_client_alloc(dev_priv,
1137 INTEL_INFO(dev_priv)->engine_mask,
1138 GUC_CLIENT_PRIORITY_KMD_NORMAL,
1139 dev_priv->kernel_context);
1140 if (IS_ERR(client)) {
1141 DRM_ERROR("Failed to create GuC client for submission!\n");
1142 return PTR_ERR(client);
1144 guc->execbuf_client = client;
1146 if (dev_priv->preempt_context) {
1147 client = guc_client_alloc(dev_priv,
1148 INTEL_INFO(dev_priv)->engine_mask,
1149 GUC_CLIENT_PRIORITY_KMD_HIGH,
1150 dev_priv->preempt_context);
1151 if (IS_ERR(client)) {
1152 DRM_ERROR("Failed to create GuC client for preemption!\n");
1153 guc_client_free(guc->execbuf_client);
1154 guc->execbuf_client = NULL;
1155 return PTR_ERR(client);
1157 guc->preempt_client = client;
1163 static void guc_clients_destroy(struct intel_guc *guc)
1165 struct intel_guc_client *client;
1167 client = fetch_and_zero(&guc->preempt_client);
1169 guc_client_free(client);
1171 client = fetch_and_zero(&guc->execbuf_client);
1173 guc_client_free(client);
1176 static int __guc_client_enable(struct intel_guc_client *client)
1180 guc_proc_desc_init(client);
1181 guc_stage_desc_init(client);
1183 ret = create_doorbell(client);
1190 guc_stage_desc_fini(client);
1191 guc_proc_desc_fini(client);
1195 static void __guc_client_disable(struct intel_guc_client *client)
1198 * By the time we're here, GuC may have already been reset. if that is
1199 * the case, instead of trying (in vain) to communicate with it, let's
1200 * just cleanup the doorbell HW and our internal state.
1202 if (intel_guc_is_loaded(client->guc))
1203 destroy_doorbell(client);
1205 __fini_doorbell(client);
1207 guc_stage_desc_fini(client);
1208 guc_proc_desc_fini(client);
1211 static int guc_clients_enable(struct intel_guc *guc)
1215 ret = __guc_client_enable(guc->execbuf_client);
1219 if (guc->preempt_client) {
1220 ret = __guc_client_enable(guc->preempt_client);
1222 __guc_client_disable(guc->execbuf_client);
1230 static void guc_clients_disable(struct intel_guc *guc)
1232 if (guc->preempt_client)
1233 __guc_client_disable(guc->preempt_client);
1235 if (guc->execbuf_client)
1236 __guc_client_disable(guc->execbuf_client);
1240 * Set up the memory resources to be shared with the GuC (via the GGTT)
1241 * at firmware loading time.
1243 int intel_guc_submission_init(struct intel_guc *guc)
1245 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1246 struct intel_engine_cs *engine;
1247 enum intel_engine_id id;
1250 if (guc->stage_desc_pool)
1253 ret = guc_stage_desc_pool_create(guc);
1257 * Keep static analysers happy, let them know that we allocated the
1258 * vma after testing that it didn't exist earlier.
1260 GEM_BUG_ON(!guc->stage_desc_pool);
1262 WARN_ON(!guc_verify_doorbells(guc));
1263 ret = guc_clients_create(guc);
1267 for_each_engine(engine, dev_priv, id) {
1268 guc->preempt_work[id].engine = engine;
1269 INIT_WORK(&guc->preempt_work[id].work, inject_preempt_context);
1275 guc_stage_desc_pool_destroy(guc);
1279 void intel_guc_submission_fini(struct intel_guc *guc)
1281 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1282 struct intel_engine_cs *engine;
1283 enum intel_engine_id id;
1285 for_each_engine(engine, dev_priv, id)
1286 cancel_work_sync(&guc->preempt_work[id].work);
1288 guc_clients_destroy(guc);
1289 WARN_ON(!guc_verify_doorbells(guc));
1291 if (guc->stage_desc_pool)
1292 guc_stage_desc_pool_destroy(guc);
1295 static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
1297 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1298 struct intel_engine_cs *engine;
1299 enum intel_engine_id id;
1302 /* tell all command streamers to forward interrupts (but not vblank)
1305 irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1306 for_each_engine(engine, dev_priv, id)
1307 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1309 /* route USER_INTERRUPT to Host, all others are sent to GuC. */
1310 irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1311 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1312 /* These three registers have the same bit definitions */
1313 I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
1314 I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
1315 I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1318 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1319 * (unmasked) PM interrupts to the GuC. All other bits of this
1320 * register *disable* generation of a specific interrupt.
1322 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1323 * writing to the PM interrupt mask register, i.e. interrupts
1324 * that must not be disabled.
1326 * If the GuC is handling these interrupts, then we must not let
1327 * the PM code disable ANY interrupt that the GuC is expecting.
1328 * So for each ENABLED (0) bit in this register, we must SET the
1329 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1330 * GuC needs ARAT expired interrupt unmasked hence it is set in
1333 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1334 * result in the register bit being left SET!
1336 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1337 rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1340 static void guc_interrupts_release(struct drm_i915_private *dev_priv)
1342 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1343 struct intel_engine_cs *engine;
1344 enum intel_engine_id id;
1348 * tell all command streamers NOT to forward interrupts or vblank
1351 irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1352 irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1353 for_each_engine(engine, dev_priv, id)
1354 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1356 /* route all GT interrupts to the host */
1357 I915_WRITE(GUC_BCS_RCS_IER, 0);
1358 I915_WRITE(GUC_VCS2_VCS1_IER, 0);
1359 I915_WRITE(GUC_WD_VECS_IER, 0);
1361 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1362 rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1365 static void guc_submission_park(struct intel_engine_cs *engine)
1367 intel_engine_park(engine);
1368 intel_engine_unpin_breadcrumbs_irq(engine);
1369 engine->flags &= ~I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1372 static void guc_submission_unpark(struct intel_engine_cs *engine)
1374 engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1375 intel_engine_pin_breadcrumbs_irq(engine);
1378 static void guc_set_default_submission(struct intel_engine_cs *engine)
1381 * We inherit a bunch of functions from execlists that we'd like
1384 * engine->submit_request = execlists_submit_request;
1385 * engine->cancel_requests = execlists_cancel_requests;
1386 * engine->schedule = execlists_schedule;
1388 * But we need to override the actual submission backend in order
1389 * to talk to the GuC.
1391 intel_execlists_set_default_submission(engine);
1393 engine->execlists.tasklet.func = guc_submission_tasklet;
1395 engine->park = guc_submission_park;
1396 engine->unpark = guc_submission_unpark;
1398 engine->reset.prepare = guc_reset_prepare;
1399 engine->reset.reset = guc_reset;
1400 engine->reset.finish = guc_reset_finish;
1402 engine->cancel_requests = guc_cancel_requests;
1404 engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
1407 int intel_guc_submission_enable(struct intel_guc *guc)
1409 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1410 struct intel_engine_cs *engine;
1411 enum intel_engine_id id;
1415 * We're using GuC work items for submitting work through GuC. Since
1416 * we're coalescing multiple requests from a single context into a
1417 * single work item prior to assigning it to execlist_port, we can
1418 * never have more work items than the total number of ports (for all
1419 * engines). The GuC firmware is controlling the HEAD of work queue,
1420 * and it is guaranteed that it will remove the work item from the
1421 * queue before our request is completed.
1423 BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.port) *
1424 sizeof(struct guc_wq_item) *
1425 I915_NUM_ENGINES > GUC_WQ_SIZE);
1427 GEM_BUG_ON(!guc->execbuf_client);
1429 err = intel_guc_sample_forcewake(guc);
1433 err = guc_clients_enable(guc);
1437 /* Take over from manual control of ELSP (execlists) */
1438 guc_interrupts_capture(dev_priv);
1440 for_each_engine(engine, dev_priv, id) {
1441 engine->set_default_submission = guc_set_default_submission;
1442 engine->set_default_submission(engine);
1448 void intel_guc_submission_disable(struct intel_guc *guc)
1450 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1452 GEM_BUG_ON(dev_priv->gt.awake); /* GT should be parked first */
1454 guc_interrupts_release(dev_priv);
1455 guc_clients_disable(guc);
1458 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1459 #include "selftests/intel_guc.c"