1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/circ_buf.h>
32 #include <linux/cpuidle.h>
33 #include <linux/slab.h>
34 #include <linux/sysrq.h>
36 #include <drm/drm_drv.h>
37 #include <drm/drm_irq.h>
38 #include <drm/i915_drm.h>
42 #include "i915_trace.h"
43 #include "intel_drv.h"
44 #include "intel_fifo_underrun.h"
45 #include "intel_hotplug.h"
46 #include "intel_lpe_audio.h"
47 #include "intel_psr.h"
50 * DOC: interrupt handling
52 * These functions provide the basic support for enabling and disabling the
53 * interrupt handling support. There's a lot more functionality in i915_irq.c
54 * and related files, but that will be described in separate chapters.
57 static const u32 hpd_ilk[HPD_NUM_PINS] = {
58 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
61 static const u32 hpd_ivb[HPD_NUM_PINS] = {
62 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
65 static const u32 hpd_bdw[HPD_NUM_PINS] = {
66 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
69 static const u32 hpd_ibx[HPD_NUM_PINS] = {
70 [HPD_CRT] = SDE_CRT_HOTPLUG,
71 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
72 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
73 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
74 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
77 static const u32 hpd_cpt[HPD_NUM_PINS] = {
78 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
79 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
80 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
81 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
82 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
85 static const u32 hpd_spt[HPD_NUM_PINS] = {
86 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
87 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
88 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
89 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
90 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
93 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
102 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
111 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
112 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
113 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
114 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
115 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
116 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
117 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
121 static const u32 hpd_bxt[HPD_NUM_PINS] = {
122 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
123 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
124 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
127 static const u32 hpd_gen11[HPD_NUM_PINS] = {
128 [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
129 [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
130 [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
131 [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
134 static const u32 hpd_icp[HPD_NUM_PINS] = {
135 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
136 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
137 [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
138 [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
139 [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
140 [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
143 static void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
144 i915_reg_t iir, i915_reg_t ier)
146 intel_uncore_write(uncore, imr, 0xffffffff);
147 intel_uncore_posting_read(uncore, imr);
149 intel_uncore_write(uncore, ier, 0);
151 /* IIR can theoretically queue up two events. Be paranoid. */
152 intel_uncore_write(uncore, iir, 0xffffffff);
153 intel_uncore_posting_read(uncore, iir);
154 intel_uncore_write(uncore, iir, 0xffffffff);
155 intel_uncore_posting_read(uncore, iir);
158 static void gen2_irq_reset(struct intel_uncore *uncore)
160 intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
161 intel_uncore_posting_read16(uncore, GEN2_IMR);
163 intel_uncore_write16(uncore, GEN2_IER, 0);
165 /* IIR can theoretically queue up two events. Be paranoid. */
166 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
167 intel_uncore_posting_read16(uncore, GEN2_IIR);
168 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
169 intel_uncore_posting_read16(uncore, GEN2_IIR);
172 #define GEN8_IRQ_RESET_NDX(uncore, type, which) \
174 unsigned int which_ = which; \
175 gen3_irq_reset((uncore), GEN8_##type##_IMR(which_), \
176 GEN8_##type##_IIR(which_), GEN8_##type##_IER(which_)); \
179 #define GEN3_IRQ_RESET(uncore, type) \
180 gen3_irq_reset((uncore), type##IMR, type##IIR, type##IER)
182 #define GEN2_IRQ_RESET(uncore) \
183 gen2_irq_reset(uncore)
186 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
188 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
190 u32 val = intel_uncore_read(uncore, reg);
195 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
196 i915_mmio_reg_offset(reg), val);
197 intel_uncore_write(uncore, reg, 0xffffffff);
198 intel_uncore_posting_read(uncore, reg);
199 intel_uncore_write(uncore, reg, 0xffffffff);
200 intel_uncore_posting_read(uncore, reg);
203 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
205 u16 val = intel_uncore_read16(uncore, GEN2_IIR);
210 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
211 i915_mmio_reg_offset(GEN2_IIR), val);
212 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
213 intel_uncore_posting_read16(uncore, GEN2_IIR);
214 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
215 intel_uncore_posting_read16(uncore, GEN2_IIR);
218 static void gen3_irq_init(struct intel_uncore *uncore,
219 i915_reg_t imr, u32 imr_val,
220 i915_reg_t ier, u32 ier_val,
223 gen3_assert_iir_is_zero(uncore, iir);
225 intel_uncore_write(uncore, ier, ier_val);
226 intel_uncore_write(uncore, imr, imr_val);
227 intel_uncore_posting_read(uncore, imr);
230 static void gen2_irq_init(struct intel_uncore *uncore,
231 u32 imr_val, u32 ier_val)
233 gen2_assert_iir_is_zero(uncore);
235 intel_uncore_write16(uncore, GEN2_IER, ier_val);
236 intel_uncore_write16(uncore, GEN2_IMR, imr_val);
237 intel_uncore_posting_read16(uncore, GEN2_IMR);
240 #define GEN8_IRQ_INIT_NDX(uncore, type, which, imr_val, ier_val) \
242 unsigned int which_ = which; \
243 gen3_irq_init((uncore), \
244 GEN8_##type##_IMR(which_), imr_val, \
245 GEN8_##type##_IER(which_), ier_val, \
246 GEN8_##type##_IIR(which_)); \
249 #define GEN3_IRQ_INIT(uncore, type, imr_val, ier_val) \
250 gen3_irq_init((uncore), \
251 type##IMR, imr_val, \
252 type##IER, ier_val, \
255 #define GEN2_IRQ_INIT(uncore, imr_val, ier_val) \
256 gen2_irq_init((uncore), imr_val, ier_val)
258 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
259 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
261 /* For display hotplug interrupt */
263 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
269 lockdep_assert_held(&dev_priv->irq_lock);
270 WARN_ON(bits & ~mask);
272 val = I915_READ(PORT_HOTPLUG_EN);
275 I915_WRITE(PORT_HOTPLUG_EN, val);
279 * i915_hotplug_interrupt_update - update hotplug interrupt enable
280 * @dev_priv: driver private
281 * @mask: bits to update
282 * @bits: bits to enable
283 * NOTE: the HPD enable bits are modified both inside and outside
284 * of an interrupt context. To avoid that read-modify-write cycles
285 * interfer, these bits are protected by a spinlock. Since this
286 * function is usually not called from a context where the lock is
287 * held already, this function acquires the lock itself. A non-locking
288 * version is also available.
290 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
294 spin_lock_irq(&dev_priv->irq_lock);
295 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
296 spin_unlock_irq(&dev_priv->irq_lock);
300 gen11_gt_engine_identity(struct drm_i915_private * const i915,
301 const unsigned int bank, const unsigned int bit);
303 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
304 const unsigned int bank,
305 const unsigned int bit)
307 void __iomem * const regs = i915->uncore.regs;
310 lockdep_assert_held(&i915->irq_lock);
312 dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
315 * According to the BSpec, DW_IIR bits cannot be cleared without
316 * first servicing the Selector & Shared IIR registers.
318 gen11_gt_engine_identity(i915, bank, bit);
321 * We locked GT INT DW by reading it. If we want to (try
322 * to) recover from this succesfully, we need to clear
323 * our bit, otherwise we are locking the register for
326 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
335 * ilk_update_display_irq - update DEIMR
336 * @dev_priv: driver private
337 * @interrupt_mask: mask of interrupt bits to update
338 * @enabled_irq_mask: mask of interrupt bits to enable
340 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
342 u32 enabled_irq_mask)
346 lockdep_assert_held(&dev_priv->irq_lock);
348 WARN_ON(enabled_irq_mask & ~interrupt_mask);
350 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
353 new_val = dev_priv->irq_mask;
354 new_val &= ~interrupt_mask;
355 new_val |= (~enabled_irq_mask & interrupt_mask);
357 if (new_val != dev_priv->irq_mask) {
358 dev_priv->irq_mask = new_val;
359 I915_WRITE(DEIMR, dev_priv->irq_mask);
365 * ilk_update_gt_irq - update GTIMR
366 * @dev_priv: driver private
367 * @interrupt_mask: mask of interrupt bits to update
368 * @enabled_irq_mask: mask of interrupt bits to enable
370 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
372 u32 enabled_irq_mask)
374 lockdep_assert_held(&dev_priv->irq_lock);
376 WARN_ON(enabled_irq_mask & ~interrupt_mask);
378 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
381 dev_priv->gt_irq_mask &= ~interrupt_mask;
382 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
383 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
386 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
388 ilk_update_gt_irq(dev_priv, mask, mask);
389 POSTING_READ_FW(GTIMR);
392 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
394 ilk_update_gt_irq(dev_priv, mask, 0);
397 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
399 WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
401 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
404 static void write_pm_imr(struct drm_i915_private *dev_priv)
407 u32 mask = dev_priv->pm_imr;
409 if (INTEL_GEN(dev_priv) >= 11) {
410 reg = GEN11_GPM_WGBOXPERF_INTR_MASK;
411 /* pm is in upper half */
413 } else if (INTEL_GEN(dev_priv) >= 8) {
414 reg = GEN8_GT_IMR(2);
419 I915_WRITE(reg, mask);
423 static void write_pm_ier(struct drm_i915_private *dev_priv)
426 u32 mask = dev_priv->pm_ier;
428 if (INTEL_GEN(dev_priv) >= 11) {
429 reg = GEN11_GPM_WGBOXPERF_INTR_ENABLE;
430 /* pm is in upper half */
432 } else if (INTEL_GEN(dev_priv) >= 8) {
433 reg = GEN8_GT_IER(2);
438 I915_WRITE(reg, mask);
442 * snb_update_pm_irq - update GEN6_PMIMR
443 * @dev_priv: driver private
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
447 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
449 u32 enabled_irq_mask)
453 WARN_ON(enabled_irq_mask & ~interrupt_mask);
455 lockdep_assert_held(&dev_priv->irq_lock);
457 new_val = dev_priv->pm_imr;
458 new_val &= ~interrupt_mask;
459 new_val |= (~enabled_irq_mask & interrupt_mask);
461 if (new_val != dev_priv->pm_imr) {
462 dev_priv->pm_imr = new_val;
463 write_pm_imr(dev_priv);
467 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
469 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
472 snb_update_pm_irq(dev_priv, mask, mask);
475 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
477 snb_update_pm_irq(dev_priv, mask, 0);
480 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
482 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
485 __gen6_mask_pm_irq(dev_priv, mask);
488 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
490 i915_reg_t reg = gen6_pm_iir(dev_priv);
492 lockdep_assert_held(&dev_priv->irq_lock);
494 I915_WRITE(reg, reset_mask);
495 I915_WRITE(reg, reset_mask);
499 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
501 lockdep_assert_held(&dev_priv->irq_lock);
503 dev_priv->pm_ier |= enable_mask;
504 write_pm_ier(dev_priv);
505 gen6_unmask_pm_irq(dev_priv, enable_mask);
506 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
509 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
511 lockdep_assert_held(&dev_priv->irq_lock);
513 dev_priv->pm_ier &= ~disable_mask;
514 __gen6_mask_pm_irq(dev_priv, disable_mask);
515 write_pm_ier(dev_priv);
516 /* though a barrier is missing here, but don't really need a one */
519 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
521 spin_lock_irq(&dev_priv->irq_lock);
523 while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
526 dev_priv->gt_pm.rps.pm_iir = 0;
528 spin_unlock_irq(&dev_priv->irq_lock);
531 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
533 spin_lock_irq(&dev_priv->irq_lock);
534 gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS);
535 dev_priv->gt_pm.rps.pm_iir = 0;
536 spin_unlock_irq(&dev_priv->irq_lock);
539 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
541 struct intel_rps *rps = &dev_priv->gt_pm.rps;
543 if (READ_ONCE(rps->interrupts_enabled))
546 spin_lock_irq(&dev_priv->irq_lock);
547 WARN_ON_ONCE(rps->pm_iir);
549 if (INTEL_GEN(dev_priv) >= 11)
550 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
552 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
554 rps->interrupts_enabled = true;
555 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
557 spin_unlock_irq(&dev_priv->irq_lock);
560 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
562 struct intel_rps *rps = &dev_priv->gt_pm.rps;
564 if (!READ_ONCE(rps->interrupts_enabled))
567 spin_lock_irq(&dev_priv->irq_lock);
568 rps->interrupts_enabled = false;
570 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
572 gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
574 spin_unlock_irq(&dev_priv->irq_lock);
575 synchronize_irq(dev_priv->drm.irq);
577 /* Now that we will not be generating any more work, flush any
578 * outstanding tasks. As we are called on the RPS idle path,
579 * we will reset the GPU to minimum frequencies, so the current
580 * state of the worker can be discarded.
582 cancel_work_sync(&rps->work);
583 if (INTEL_GEN(dev_priv) >= 11)
584 gen11_reset_rps_interrupts(dev_priv);
586 gen6_reset_rps_interrupts(dev_priv);
589 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
591 assert_rpm_wakelock_held(dev_priv);
593 spin_lock_irq(&dev_priv->irq_lock);
594 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
595 spin_unlock_irq(&dev_priv->irq_lock);
598 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
600 assert_rpm_wakelock_held(dev_priv);
602 spin_lock_irq(&dev_priv->irq_lock);
603 if (!dev_priv->guc.interrupts_enabled) {
604 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
605 dev_priv->pm_guc_events);
606 dev_priv->guc.interrupts_enabled = true;
607 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
609 spin_unlock_irq(&dev_priv->irq_lock);
612 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
614 assert_rpm_wakelock_held(dev_priv);
616 spin_lock_irq(&dev_priv->irq_lock);
617 dev_priv->guc.interrupts_enabled = false;
619 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
621 spin_unlock_irq(&dev_priv->irq_lock);
622 synchronize_irq(dev_priv->drm.irq);
624 gen9_reset_guc_interrupts(dev_priv);
628 * bdw_update_port_irq - update DE port interrupt
629 * @dev_priv: driver private
630 * @interrupt_mask: mask of interrupt bits to update
631 * @enabled_irq_mask: mask of interrupt bits to enable
633 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
635 u32 enabled_irq_mask)
640 lockdep_assert_held(&dev_priv->irq_lock);
642 WARN_ON(enabled_irq_mask & ~interrupt_mask);
644 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
647 old_val = I915_READ(GEN8_DE_PORT_IMR);
650 new_val &= ~interrupt_mask;
651 new_val |= (~enabled_irq_mask & interrupt_mask);
653 if (new_val != old_val) {
654 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
655 POSTING_READ(GEN8_DE_PORT_IMR);
660 * bdw_update_pipe_irq - update DE pipe interrupt
661 * @dev_priv: driver private
662 * @pipe: pipe whose interrupt to update
663 * @interrupt_mask: mask of interrupt bits to update
664 * @enabled_irq_mask: mask of interrupt bits to enable
666 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
669 u32 enabled_irq_mask)
673 lockdep_assert_held(&dev_priv->irq_lock);
675 WARN_ON(enabled_irq_mask & ~interrupt_mask);
677 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
680 new_val = dev_priv->de_irq_mask[pipe];
681 new_val &= ~interrupt_mask;
682 new_val |= (~enabled_irq_mask & interrupt_mask);
684 if (new_val != dev_priv->de_irq_mask[pipe]) {
685 dev_priv->de_irq_mask[pipe] = new_val;
686 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
687 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
692 * ibx_display_interrupt_update - update SDEIMR
693 * @dev_priv: driver private
694 * @interrupt_mask: mask of interrupt bits to update
695 * @enabled_irq_mask: mask of interrupt bits to enable
697 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
699 u32 enabled_irq_mask)
701 u32 sdeimr = I915_READ(SDEIMR);
702 sdeimr &= ~interrupt_mask;
703 sdeimr |= (~enabled_irq_mask & interrupt_mask);
705 WARN_ON(enabled_irq_mask & ~interrupt_mask);
707 lockdep_assert_held(&dev_priv->irq_lock);
709 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
712 I915_WRITE(SDEIMR, sdeimr);
713 POSTING_READ(SDEIMR);
716 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
719 u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
720 u32 enable_mask = status_mask << 16;
722 lockdep_assert_held(&dev_priv->irq_lock);
724 if (INTEL_GEN(dev_priv) < 5)
728 * On pipe A we don't support the PSR interrupt yet,
729 * on pipe B and C the same bit MBZ.
731 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
734 * On pipe B and C we don't support the PSR interrupt yet, on pipe
735 * A the same bit is for perf counters which we don't use either.
737 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
740 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
741 SPRITE0_FLIP_DONE_INT_EN_VLV |
742 SPRITE1_FLIP_DONE_INT_EN_VLV);
743 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
744 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
745 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
746 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
749 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
750 status_mask & ~PIPESTAT_INT_STATUS_MASK,
751 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
752 pipe_name(pipe), enable_mask, status_mask);
757 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
758 enum pipe pipe, u32 status_mask)
760 i915_reg_t reg = PIPESTAT(pipe);
763 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
764 "pipe %c: status_mask=0x%x\n",
765 pipe_name(pipe), status_mask);
767 lockdep_assert_held(&dev_priv->irq_lock);
768 WARN_ON(!intel_irqs_enabled(dev_priv));
770 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
773 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
774 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
776 I915_WRITE(reg, enable_mask | status_mask);
780 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
781 enum pipe pipe, u32 status_mask)
783 i915_reg_t reg = PIPESTAT(pipe);
786 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
787 "pipe %c: status_mask=0x%x\n",
788 pipe_name(pipe), status_mask);
790 lockdep_assert_held(&dev_priv->irq_lock);
791 WARN_ON(!intel_irqs_enabled(dev_priv));
793 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
796 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
797 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
799 I915_WRITE(reg, enable_mask | status_mask);
803 static bool i915_has_asle(struct drm_i915_private *dev_priv)
805 if (!dev_priv->opregion.asle)
808 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
812 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
813 * @dev_priv: i915 device private
815 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
817 if (!i915_has_asle(dev_priv))
820 spin_lock_irq(&dev_priv->irq_lock);
822 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
823 if (INTEL_GEN(dev_priv) >= 4)
824 i915_enable_pipestat(dev_priv, PIPE_A,
825 PIPE_LEGACY_BLC_EVENT_STATUS);
827 spin_unlock_irq(&dev_priv->irq_lock);
831 * This timing diagram depicts the video signal in and
832 * around the vertical blanking period.
834 * Assumptions about the fictitious mode used in this example:
836 * vsync_start = vblank_start + 1
837 * vsync_end = vblank_start + 2
838 * vtotal = vblank_start + 3
841 * latch double buffered registers
842 * increment frame counter (ctg+)
843 * generate start of vblank interrupt (gen4+)
846 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
847 * | may be shifted forward 1-3 extra lines via PIPECONF
849 * | | start of vsync:
850 * | | generate vsync interrupt
852 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
853 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
854 * ----va---> <-----------------vb--------------------> <--------va-------------
855 * | | <----vs-----> |
856 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
857 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
858 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
860 * last visible pixel first visible pixel
861 * | increment frame counter (gen3/4)
862 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
864 * x = horizontal active
865 * _ = horizontal blanking
866 * hs = horizontal sync
867 * va = vertical active
868 * vb = vertical blanking
870 * vbs = vblank_start (number)
873 * - most events happen at the start of horizontal sync
874 * - frame start happens at the start of horizontal blank, 1-4 lines
875 * (depending on PIPECONF settings) after the start of vblank
876 * - gen3/4 pixel and frame counter are synchronized with the start
877 * of horizontal active on the first line of vertical active
880 /* Called from drm generic code, passed a 'crtc', which
881 * we use as a pipe index
883 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
885 struct drm_i915_private *dev_priv = to_i915(dev);
886 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
887 const struct drm_display_mode *mode = &vblank->hwmode;
888 i915_reg_t high_frame, low_frame;
889 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
890 unsigned long irqflags;
893 * On i965gm TV output the frame counter only works up to
894 * the point when we enable the TV encoder. After that the
895 * frame counter ceases to work and reads zero. We need a
896 * vblank wait before enabling the TV encoder and so we
897 * have to enable vblank interrupts while the frame counter
898 * is still in a working state. However the core vblank code
899 * does not like us returning non-zero frame counter values
900 * when we've told it that we don't have a working frame
901 * counter. Thus we must stop non-zero values leaking out.
903 if (!vblank->max_vblank_count)
906 htotal = mode->crtc_htotal;
907 hsync_start = mode->crtc_hsync_start;
908 vbl_start = mode->crtc_vblank_start;
909 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
910 vbl_start = DIV_ROUND_UP(vbl_start, 2);
912 /* Convert to pixel count */
915 /* Start of vblank event occurs at start of hsync */
916 vbl_start -= htotal - hsync_start;
918 high_frame = PIPEFRAME(pipe);
919 low_frame = PIPEFRAMEPIXEL(pipe);
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
924 * High & low register fields aren't synchronized, so make sure
925 * we get a low value that's stable across two reads of the high
929 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
930 low = I915_READ_FW(low_frame);
931 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
932 } while (high1 != high2);
934 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
936 high1 >>= PIPE_FRAME_HIGH_SHIFT;
937 pixel = low & PIPE_PIXEL_MASK;
938 low >>= PIPE_FRAME_LOW_SHIFT;
941 * The frame counter increments at beginning of active.
942 * Cook up a vblank counter by also checking the pixel
943 * counter against vblank start.
945 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
948 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
950 struct drm_i915_private *dev_priv = to_i915(dev);
952 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
956 * On certain encoders on certain platforms, pipe
957 * scanline register will not work to get the scanline,
958 * since the timings are driven from the PORT or issues
959 * with scanline register updates.
960 * This function will use Framestamp and current
961 * timestamp registers to calculate the scanline.
963 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
965 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
966 struct drm_vblank_crtc *vblank =
967 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
968 const struct drm_display_mode *mode = &vblank->hwmode;
969 u32 vblank_start = mode->crtc_vblank_start;
970 u32 vtotal = mode->crtc_vtotal;
971 u32 htotal = mode->crtc_htotal;
972 u32 clock = mode->crtc_clock;
973 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
976 * To avoid the race condition where we might cross into the
977 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
978 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
979 * during the same frame.
983 * This field provides read back of the display
984 * pipe frame time stamp. The time stamp value
985 * is sampled at every start of vertical blank.
987 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
990 * The TIMESTAMP_CTR register has the current
993 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
995 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
996 } while (scan_post_time != scan_prev_time);
998 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
999 clock), 1000 * htotal);
1000 scanline = min(scanline, vtotal - 1);
1001 scanline = (scanline + vblank_start) % vtotal;
1006 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
1007 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
1009 struct drm_device *dev = crtc->base.dev;
1010 struct drm_i915_private *dev_priv = to_i915(dev);
1011 const struct drm_display_mode *mode;
1012 struct drm_vblank_crtc *vblank;
1013 enum pipe pipe = crtc->pipe;
1014 int position, vtotal;
1019 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
1020 mode = &vblank->hwmode;
1022 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
1023 return __intel_get_crtc_scanline_from_timestamp(crtc);
1025 vtotal = mode->crtc_vtotal;
1026 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1029 if (IS_GEN(dev_priv, 2))
1030 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
1032 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
1035 * On HSW, the DSL reg (0x70000) appears to return 0 if we
1036 * read it just before the start of vblank. So try it again
1037 * so we don't accidentally end up spanning a vblank frame
1038 * increment, causing the pipe_update_end() code to squak at us.
1040 * The nature of this problem means we can't simply check the ISR
1041 * bit and return the vblank start value; nor can we use the scanline
1042 * debug register in the transcoder as it appears to have the same
1043 * problem. We may need to extend this to include other platforms,
1044 * but so far testing only shows the problem on HSW.
1046 if (HAS_DDI(dev_priv) && !position) {
1049 for (i = 0; i < 100; i++) {
1051 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
1052 if (temp != position) {
1060 * See update_scanline_offset() for the details on the
1061 * scanline_offset adjustment.
1063 return (position + crtc->scanline_offset) % vtotal;
1066 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
1067 bool in_vblank_irq, int *vpos, int *hpos,
1068 ktime_t *stime, ktime_t *etime,
1069 const struct drm_display_mode *mode)
1071 struct drm_i915_private *dev_priv = to_i915(dev);
1072 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1075 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1076 unsigned long irqflags;
1077 bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
1078 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
1079 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
1081 if (WARN_ON(!mode->crtc_clock)) {
1082 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1083 "pipe %c\n", pipe_name(pipe));
1087 htotal = mode->crtc_htotal;
1088 hsync_start = mode->crtc_hsync_start;
1089 vtotal = mode->crtc_vtotal;
1090 vbl_start = mode->crtc_vblank_start;
1091 vbl_end = mode->crtc_vblank_end;
1093 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1094 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1100 * Lock uncore.lock, as we will do multiple timing critical raw
1101 * register reads, potentially with preemption disabled, so the
1102 * following code must not block on uncore.lock.
1104 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1106 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1108 /* Get optional system timestamp before query. */
1110 *stime = ktime_get();
1112 if (use_scanline_counter) {
1113 /* No obvious pixelcount register. Only query vertical
1114 * scanout position from Display scan line register.
1116 position = __intel_get_crtc_scanline(intel_crtc);
1118 /* Have access to pixelcount since start of frame.
1119 * We can split this into vertical and horizontal
1122 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1124 /* convert to pixel counts */
1125 vbl_start *= htotal;
1130 * In interlaced modes, the pixel counter counts all pixels,
1131 * so one field will have htotal more pixels. In order to avoid
1132 * the reported position from jumping backwards when the pixel
1133 * counter is beyond the length of the shorter field, just
1134 * clamp the position the length of the shorter field. This
1135 * matches how the scanline counter based position works since
1136 * the scanline counter doesn't count the two half lines.
1138 if (position >= vtotal)
1139 position = vtotal - 1;
1142 * Start of vblank interrupt is triggered at start of hsync,
1143 * just prior to the first active line of vblank. However we
1144 * consider lines to start at the leading edge of horizontal
1145 * active. So, should we get here before we've crossed into
1146 * the horizontal active of the first line in vblank, we would
1147 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1148 * always add htotal-hsync_start to the current pixel position.
1150 position = (position + htotal - hsync_start) % vtotal;
1153 /* Get optional system timestamp after query. */
1155 *etime = ktime_get();
1157 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1159 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1162 * While in vblank, position will be negative
1163 * counting up towards 0 at vbl_end. And outside
1164 * vblank, position will be positive counting
1167 if (position >= vbl_start)
1168 position -= vbl_end;
1170 position += vtotal - vbl_end;
1172 if (use_scanline_counter) {
1176 *vpos = position / htotal;
1177 *hpos = position - (*vpos * htotal);
1183 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1185 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1186 unsigned long irqflags;
1189 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1190 position = __intel_get_crtc_scanline(crtc);
1191 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1196 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1198 u32 busy_up, busy_down, max_avg, min_avg;
1201 spin_lock(&mchdev_lock);
1203 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1205 new_delay = dev_priv->ips.cur_delay;
1207 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1208 busy_up = I915_READ(RCPREVBSYTUPAVG);
1209 busy_down = I915_READ(RCPREVBSYTDNAVG);
1210 max_avg = I915_READ(RCBMAXAVG);
1211 min_avg = I915_READ(RCBMINAVG);
1213 /* Handle RCS change request from hw */
1214 if (busy_up > max_avg) {
1215 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1216 new_delay = dev_priv->ips.cur_delay - 1;
1217 if (new_delay < dev_priv->ips.max_delay)
1218 new_delay = dev_priv->ips.max_delay;
1219 } else if (busy_down < min_avg) {
1220 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1221 new_delay = dev_priv->ips.cur_delay + 1;
1222 if (new_delay > dev_priv->ips.min_delay)
1223 new_delay = dev_priv->ips.min_delay;
1226 if (ironlake_set_drps(dev_priv, new_delay))
1227 dev_priv->ips.cur_delay = new_delay;
1229 spin_unlock(&mchdev_lock);
1234 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1235 struct intel_rps_ei *ei)
1237 ei->ktime = ktime_get_raw();
1238 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1239 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1242 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1244 memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1247 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1249 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1250 const struct intel_rps_ei *prev = &rps->ei;
1251 struct intel_rps_ei now;
1254 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1257 vlv_c0_read(dev_priv, &now);
1263 time = ktime_us_delta(now.ktime, prev->ktime);
1265 time *= dev_priv->czclk_freq;
1267 /* Workload can be split between render + media,
1268 * e.g. SwapBuffers being blitted in X after being rendered in
1269 * mesa. To account for this we need to combine both engines
1270 * into our activity counter.
1272 render = now.render_c0 - prev->render_c0;
1273 media = now.media_c0 - prev->media_c0;
1274 c0 = max(render, media);
1275 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1277 if (c0 > time * rps->power.up_threshold)
1278 events = GEN6_PM_RP_UP_THRESHOLD;
1279 else if (c0 < time * rps->power.down_threshold)
1280 events = GEN6_PM_RP_DOWN_THRESHOLD;
1287 static void gen6_pm_rps_work(struct work_struct *work)
1289 struct drm_i915_private *dev_priv =
1290 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1291 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1292 bool client_boost = false;
1293 int new_delay, adj, min, max;
1296 spin_lock_irq(&dev_priv->irq_lock);
1297 if (rps->interrupts_enabled) {
1298 pm_iir = fetch_and_zero(&rps->pm_iir);
1299 client_boost = atomic_read(&rps->num_waiters);
1301 spin_unlock_irq(&dev_priv->irq_lock);
1303 /* Make sure we didn't queue anything we're not going to process. */
1304 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1305 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1308 mutex_lock(&rps->lock);
1310 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1312 adj = rps->last_adj;
1313 new_delay = rps->cur_freq;
1314 min = rps->min_freq_softlimit;
1315 max = rps->max_freq_softlimit;
1317 max = rps->max_freq;
1318 if (client_boost && new_delay < rps->boost_freq) {
1319 new_delay = rps->boost_freq;
1321 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1324 else /* CHV needs even encode values */
1325 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1327 if (new_delay >= rps->max_freq_softlimit)
1329 } else if (client_boost) {
1331 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1332 if (rps->cur_freq > rps->efficient_freq)
1333 new_delay = rps->efficient_freq;
1334 else if (rps->cur_freq > rps->min_freq_softlimit)
1335 new_delay = rps->min_freq_softlimit;
1337 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1340 else /* CHV needs even encode values */
1341 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1343 if (new_delay <= rps->min_freq_softlimit)
1345 } else { /* unknown event */
1349 rps->last_adj = adj;
1352 * Limit deboosting and boosting to keep ourselves at the extremes
1353 * when in the respective power modes (i.e. slowly decrease frequencies
1354 * while in the HIGH_POWER zone and slowly increase frequencies while
1355 * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1356 * to the next level quickly, and conversely if busy we expect to
1357 * hit a waitboost and rapidly switch into max power.
1359 if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1360 (adj > 0 && rps->power.mode == LOW_POWER))
1363 /* sysfs frequency interfaces may have snuck in while servicing the
1367 new_delay = clamp_t(int, new_delay, min, max);
1369 if (intel_set_rps(dev_priv, new_delay)) {
1370 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1374 mutex_unlock(&rps->lock);
1377 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1378 spin_lock_irq(&dev_priv->irq_lock);
1379 if (rps->interrupts_enabled)
1380 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1381 spin_unlock_irq(&dev_priv->irq_lock);
1386 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1388 * @work: workqueue struct
1390 * Doesn't actually do anything except notify userspace. As a consequence of
1391 * this event, userspace should try to remap the bad rows since statistically
1392 * it is likely the same row is more likely to go bad again.
1394 static void ivybridge_parity_work(struct work_struct *work)
1396 struct drm_i915_private *dev_priv =
1397 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1398 u32 error_status, row, bank, subbank;
1399 char *parity_event[6];
1403 /* We must turn off DOP level clock gating to access the L3 registers.
1404 * In order to prevent a get/put style interface, acquire struct mutex
1405 * any time we access those registers.
1407 mutex_lock(&dev_priv->drm.struct_mutex);
1409 /* If we've screwed up tracking, just let the interrupt fire again */
1410 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1413 misccpctl = I915_READ(GEN7_MISCCPCTL);
1414 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1415 POSTING_READ(GEN7_MISCCPCTL);
1417 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1421 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1424 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1426 reg = GEN7_L3CDERRST1(slice);
1428 error_status = I915_READ(reg);
1429 row = GEN7_PARITY_ERROR_ROW(error_status);
1430 bank = GEN7_PARITY_ERROR_BANK(error_status);
1431 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1433 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1436 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1437 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1438 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1439 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1440 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1441 parity_event[5] = NULL;
1443 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1444 KOBJ_CHANGE, parity_event);
1446 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1447 slice, row, bank, subbank);
1449 kfree(parity_event[4]);
1450 kfree(parity_event[3]);
1451 kfree(parity_event[2]);
1452 kfree(parity_event[1]);
1455 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1458 WARN_ON(dev_priv->l3_parity.which_slice);
1459 spin_lock_irq(&dev_priv->irq_lock);
1460 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1461 spin_unlock_irq(&dev_priv->irq_lock);
1463 mutex_unlock(&dev_priv->drm.struct_mutex);
1466 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1469 if (!HAS_L3_DPF(dev_priv))
1472 spin_lock(&dev_priv->irq_lock);
1473 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1474 spin_unlock(&dev_priv->irq_lock);
1476 iir &= GT_PARITY_ERROR(dev_priv);
1477 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1478 dev_priv->l3_parity.which_slice |= 1 << 1;
1480 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1481 dev_priv->l3_parity.which_slice |= 1 << 0;
1483 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1486 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1489 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1490 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
1491 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1492 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
1495 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1498 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1499 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
1500 if (gt_iir & GT_BSD_USER_INTERRUPT)
1501 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
1502 if (gt_iir & GT_BLT_USER_INTERRUPT)
1503 intel_engine_breadcrumbs_irq(dev_priv->engine[BCS0]);
1505 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1506 GT_BSD_CS_ERROR_INTERRUPT |
1507 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1508 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1510 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1511 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1515 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1517 bool tasklet = false;
1519 if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1522 if (iir & GT_RENDER_USER_INTERRUPT) {
1523 intel_engine_breadcrumbs_irq(engine);
1524 tasklet |= intel_engine_needs_breadcrumb_tasklet(engine);
1528 tasklet_hi_schedule(&engine->execlists.tasklet);
1531 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1532 u32 master_ctl, u32 gt_iir[4])
1534 void __iomem * const regs = i915->uncore.regs;
1536 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1538 GEN8_GT_VCS0_IRQ | \
1539 GEN8_GT_VCS1_IRQ | \
1540 GEN8_GT_VECS_IRQ | \
1544 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1545 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1546 if (likely(gt_iir[0]))
1547 raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1550 if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
1551 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1552 if (likely(gt_iir[1]))
1553 raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1556 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1557 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1558 if (likely(gt_iir[2]))
1559 raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
1562 if (master_ctl & GEN8_GT_VECS_IRQ) {
1563 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1564 if (likely(gt_iir[3]))
1565 raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1569 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1570 u32 master_ctl, u32 gt_iir[4])
1572 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1573 gen8_cs_irq_handler(i915->engine[RCS0],
1574 gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1575 gen8_cs_irq_handler(i915->engine[BCS0],
1576 gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1579 if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
1580 gen8_cs_irq_handler(i915->engine[VCS0],
1581 gt_iir[1] >> GEN8_VCS0_IRQ_SHIFT);
1582 gen8_cs_irq_handler(i915->engine[VCS1],
1583 gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1586 if (master_ctl & GEN8_GT_VECS_IRQ) {
1587 gen8_cs_irq_handler(i915->engine[VECS0],
1588 gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1591 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1592 gen6_rps_irq_handler(i915, gt_iir[2]);
1593 gen9_guc_irq_handler(i915, gt_iir[2]);
1597 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1601 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1603 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1605 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1607 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1613 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1617 return val & PORTA_HOTPLUG_LONG_DETECT;
1619 return val & PORTB_HOTPLUG_LONG_DETECT;
1621 return val & PORTC_HOTPLUG_LONG_DETECT;
1627 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1631 return val & ICP_DDIA_HPD_LONG_DETECT;
1633 return val & ICP_DDIB_HPD_LONG_DETECT;
1639 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1643 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1645 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1647 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1649 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1655 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1659 return val & PORTE_HOTPLUG_LONG_DETECT;
1665 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1669 return val & PORTA_HOTPLUG_LONG_DETECT;
1671 return val & PORTB_HOTPLUG_LONG_DETECT;
1673 return val & PORTC_HOTPLUG_LONG_DETECT;
1675 return val & PORTD_HOTPLUG_LONG_DETECT;
1681 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1685 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1691 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1695 return val & PORTB_HOTPLUG_LONG_DETECT;
1697 return val & PORTC_HOTPLUG_LONG_DETECT;
1699 return val & PORTD_HOTPLUG_LONG_DETECT;
1705 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1709 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1711 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1713 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1720 * Get a bit mask of pins that have triggered, and which ones may be long.
1721 * This can be called multiple times with the same masks to accumulate
1722 * hotplug detection results from several registers.
1724 * Note that the caller is expected to zero out the masks initially.
1726 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1727 u32 *pin_mask, u32 *long_mask,
1728 u32 hotplug_trigger, u32 dig_hotplug_reg,
1729 const u32 hpd[HPD_NUM_PINS],
1730 bool long_pulse_detect(enum hpd_pin pin, u32 val))
1734 for_each_hpd_pin(pin) {
1735 if ((hpd[pin] & hotplug_trigger) == 0)
1738 *pin_mask |= BIT(pin);
1740 if (long_pulse_detect(pin, dig_hotplug_reg))
1741 *long_mask |= BIT(pin);
1744 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1745 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1749 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1751 wake_up_all(&dev_priv->gmbus_wait_queue);
1754 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1756 wake_up_all(&dev_priv->gmbus_wait_queue);
1759 #if defined(CONFIG_DEBUG_FS)
1760 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1766 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1767 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1768 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1770 trace_intel_pipe_crc(crtc, crcs);
1772 spin_lock(&pipe_crc->lock);
1774 * For some not yet identified reason, the first CRC is
1775 * bonkers. So let's just wait for the next vblank and read
1776 * out the buggy result.
1778 * On GEN8+ sometimes the second CRC is bonkers as well, so
1779 * don't trust that one either.
1781 if (pipe_crc->skipped <= 0 ||
1782 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1783 pipe_crc->skipped++;
1784 spin_unlock(&pipe_crc->lock);
1787 spin_unlock(&pipe_crc->lock);
1789 drm_crtc_add_crc_entry(&crtc->base, true,
1790 drm_crtc_accurate_vblank_count(&crtc->base),
1795 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1803 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1806 display_pipe_crc_irq_handler(dev_priv, pipe,
1807 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1811 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1814 display_pipe_crc_irq_handler(dev_priv, pipe,
1815 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1816 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1817 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1818 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1819 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1822 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1827 if (INTEL_GEN(dev_priv) >= 3)
1828 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1832 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1833 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1837 display_pipe_crc_irq_handler(dev_priv, pipe,
1838 I915_READ(PIPE_CRC_RES_RED(pipe)),
1839 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1840 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1844 /* The RPS events need forcewake, so we add them to a work queue and mask their
1845 * IMR bits until the work is done. Other interrupts can be processed without
1846 * the work queue. */
1847 static void gen11_rps_irq_handler(struct drm_i915_private *i915, u32 pm_iir)
1849 struct intel_rps *rps = &i915->gt_pm.rps;
1850 const u32 events = i915->pm_rps_events & pm_iir;
1852 lockdep_assert_held(&i915->irq_lock);
1854 if (unlikely(!events))
1857 gen6_mask_pm_irq(i915, events);
1859 if (!rps->interrupts_enabled)
1862 rps->pm_iir |= events;
1863 schedule_work(&rps->work);
1866 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1868 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1870 if (pm_iir & dev_priv->pm_rps_events) {
1871 spin_lock(&dev_priv->irq_lock);
1872 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1873 if (rps->interrupts_enabled) {
1874 rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1875 schedule_work(&rps->work);
1877 spin_unlock(&dev_priv->irq_lock);
1880 if (INTEL_GEN(dev_priv) >= 8)
1883 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1884 intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1886 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1887 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1890 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1892 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1893 intel_guc_to_host_event_handler(&dev_priv->guc);
1896 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1900 for_each_pipe(dev_priv, pipe) {
1901 I915_WRITE(PIPESTAT(pipe),
1902 PIPESTAT_INT_STATUS_MASK |
1903 PIPE_FIFO_UNDERRUN_STATUS);
1905 dev_priv->pipestat_irq_mask[pipe] = 0;
1909 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1910 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1914 spin_lock(&dev_priv->irq_lock);
1916 if (!dev_priv->display_irqs_enabled) {
1917 spin_unlock(&dev_priv->irq_lock);
1921 for_each_pipe(dev_priv, pipe) {
1923 u32 status_mask, enable_mask, iir_bit = 0;
1926 * PIPESTAT bits get signalled even when the interrupt is
1927 * disabled with the mask bits, and some of the status bits do
1928 * not generate interrupts at all (like the underrun bit). Hence
1929 * we need to be careful that we only handle what we want to
1933 /* fifo underruns are filterered in the underrun handler. */
1934 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1938 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1941 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1944 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1948 status_mask |= dev_priv->pipestat_irq_mask[pipe];
1953 reg = PIPESTAT(pipe);
1954 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1955 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1958 * Clear the PIPE*STAT regs before the IIR
1960 * Toggle the enable bits to make sure we get an
1961 * edge in the ISR pipe event bit if we don't clear
1962 * all the enabled status bits. Otherwise the edge
1963 * triggered IIR on i965/g4x wouldn't notice that
1964 * an interrupt is still pending.
1966 if (pipe_stats[pipe]) {
1967 I915_WRITE(reg, pipe_stats[pipe]);
1968 I915_WRITE(reg, enable_mask);
1971 spin_unlock(&dev_priv->irq_lock);
1974 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1975 u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1979 for_each_pipe(dev_priv, pipe) {
1980 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1981 drm_handle_vblank(&dev_priv->drm, pipe);
1983 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1984 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1986 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1987 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1991 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1992 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1994 bool blc_event = false;
1997 for_each_pipe(dev_priv, pipe) {
1998 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1999 drm_handle_vblank(&dev_priv->drm, pipe);
2001 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2004 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2005 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2007 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2008 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2011 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2012 intel_opregion_asle_intr(dev_priv);
2015 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2016 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
2018 bool blc_event = false;
2021 for_each_pipe(dev_priv, pipe) {
2022 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2023 drm_handle_vblank(&dev_priv->drm, pipe);
2025 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2028 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2029 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2031 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2032 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2035 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2036 intel_opregion_asle_intr(dev_priv);
2038 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2039 gmbus_irq_handler(dev_priv);
2042 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2043 u32 pipe_stats[I915_MAX_PIPES])
2047 for_each_pipe(dev_priv, pipe) {
2048 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2049 drm_handle_vblank(&dev_priv->drm, pipe);
2051 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2052 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2054 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2055 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2058 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2059 gmbus_irq_handler(dev_priv);
2062 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2064 u32 hotplug_status = 0, hotplug_status_mask;
2067 if (IS_G4X(dev_priv) ||
2068 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2069 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2070 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2072 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2075 * We absolutely have to clear all the pending interrupt
2076 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2077 * interrupt bit won't have an edge, and the i965/g4x
2078 * edge triggered IIR will not notice that an interrupt
2079 * is still pending. We can't use PORT_HOTPLUG_EN to
2080 * guarantee the edge as the act of toggling the enable
2081 * bits can itself generate a new hotplug interrupt :(
2083 for (i = 0; i < 10; i++) {
2084 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2087 return hotplug_status;
2089 hotplug_status |= tmp;
2090 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2094 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2095 I915_READ(PORT_HOTPLUG_STAT));
2097 return hotplug_status;
2100 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2103 u32 pin_mask = 0, long_mask = 0;
2105 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2106 IS_CHERRYVIEW(dev_priv)) {
2107 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2109 if (hotplug_trigger) {
2110 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2111 hotplug_trigger, hotplug_trigger,
2113 i9xx_port_hotplug_long_detect);
2115 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2118 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2119 dp_aux_irq_handler(dev_priv);
2121 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2123 if (hotplug_trigger) {
2124 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2125 hotplug_trigger, hotplug_trigger,
2127 i9xx_port_hotplug_long_detect);
2128 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2133 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2135 struct drm_device *dev = arg;
2136 struct drm_i915_private *dev_priv = to_i915(dev);
2137 irqreturn_t ret = IRQ_NONE;
2139 if (!intel_irqs_enabled(dev_priv))
2142 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2143 disable_rpm_wakeref_asserts(dev_priv);
2146 u32 iir, gt_iir, pm_iir;
2147 u32 pipe_stats[I915_MAX_PIPES] = {};
2148 u32 hotplug_status = 0;
2151 gt_iir = I915_READ(GTIIR);
2152 pm_iir = I915_READ(GEN6_PMIIR);
2153 iir = I915_READ(VLV_IIR);
2155 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2161 * Theory on interrupt generation, based on empirical evidence:
2163 * x = ((VLV_IIR & VLV_IER) ||
2164 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2165 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2167 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2168 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2169 * guarantee the CPU interrupt will be raised again even if we
2170 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2171 * bits this time around.
2173 I915_WRITE(VLV_MASTER_IER, 0);
2174 ier = I915_READ(VLV_IER);
2175 I915_WRITE(VLV_IER, 0);
2178 I915_WRITE(GTIIR, gt_iir);
2180 I915_WRITE(GEN6_PMIIR, pm_iir);
2182 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2183 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2185 /* Call regardless, as some status bits might not be
2186 * signalled in iir */
2187 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2189 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2190 I915_LPE_PIPE_B_INTERRUPT))
2191 intel_lpe_audio_irq_handler(dev_priv);
2194 * VLV_IIR is single buffered, and reflects the level
2195 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2198 I915_WRITE(VLV_IIR, iir);
2200 I915_WRITE(VLV_IER, ier);
2201 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2204 snb_gt_irq_handler(dev_priv, gt_iir);
2206 gen6_rps_irq_handler(dev_priv, pm_iir);
2209 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2211 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2214 enable_rpm_wakeref_asserts(dev_priv);
2219 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2221 struct drm_device *dev = arg;
2222 struct drm_i915_private *dev_priv = to_i915(dev);
2223 irqreturn_t ret = IRQ_NONE;
2225 if (!intel_irqs_enabled(dev_priv))
2228 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2229 disable_rpm_wakeref_asserts(dev_priv);
2232 u32 master_ctl, iir;
2233 u32 pipe_stats[I915_MAX_PIPES] = {};
2234 u32 hotplug_status = 0;
2238 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2239 iir = I915_READ(VLV_IIR);
2241 if (master_ctl == 0 && iir == 0)
2247 * Theory on interrupt generation, based on empirical evidence:
2249 * x = ((VLV_IIR & VLV_IER) ||
2250 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2251 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2253 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2254 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2255 * guarantee the CPU interrupt will be raised again even if we
2256 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2257 * bits this time around.
2259 I915_WRITE(GEN8_MASTER_IRQ, 0);
2260 ier = I915_READ(VLV_IER);
2261 I915_WRITE(VLV_IER, 0);
2263 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2265 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2266 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2268 /* Call regardless, as some status bits might not be
2269 * signalled in iir */
2270 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2272 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2273 I915_LPE_PIPE_B_INTERRUPT |
2274 I915_LPE_PIPE_C_INTERRUPT))
2275 intel_lpe_audio_irq_handler(dev_priv);
2278 * VLV_IIR is single buffered, and reflects the level
2279 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2282 I915_WRITE(VLV_IIR, iir);
2284 I915_WRITE(VLV_IER, ier);
2285 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2287 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2290 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2292 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2295 enable_rpm_wakeref_asserts(dev_priv);
2300 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2301 u32 hotplug_trigger,
2302 const u32 hpd[HPD_NUM_PINS])
2304 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2307 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2308 * unless we touch the hotplug register, even if hotplug_trigger is
2309 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2312 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2313 if (!hotplug_trigger) {
2314 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2315 PORTD_HOTPLUG_STATUS_MASK |
2316 PORTC_HOTPLUG_STATUS_MASK |
2317 PORTB_HOTPLUG_STATUS_MASK;
2318 dig_hotplug_reg &= ~mask;
2321 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2322 if (!hotplug_trigger)
2325 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2326 dig_hotplug_reg, hpd,
2327 pch_port_hotplug_long_detect);
2329 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2332 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2335 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2337 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2339 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2340 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2341 SDE_AUDIO_POWER_SHIFT);
2342 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2346 if (pch_iir & SDE_AUX_MASK)
2347 dp_aux_irq_handler(dev_priv);
2349 if (pch_iir & SDE_GMBUS)
2350 gmbus_irq_handler(dev_priv);
2352 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2353 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2355 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2356 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2358 if (pch_iir & SDE_POISON)
2359 DRM_ERROR("PCH poison interrupt\n");
2361 if (pch_iir & SDE_FDI_MASK)
2362 for_each_pipe(dev_priv, pipe)
2363 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2365 I915_READ(FDI_RX_IIR(pipe)));
2367 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2368 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2370 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2371 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2373 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2374 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2376 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2377 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2380 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2382 u32 err_int = I915_READ(GEN7_ERR_INT);
2385 if (err_int & ERR_INT_POISON)
2386 DRM_ERROR("Poison interrupt\n");
2388 for_each_pipe(dev_priv, pipe) {
2389 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2390 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2392 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2393 if (IS_IVYBRIDGE(dev_priv))
2394 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2396 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2400 I915_WRITE(GEN7_ERR_INT, err_int);
2403 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2405 u32 serr_int = I915_READ(SERR_INT);
2408 if (serr_int & SERR_INT_POISON)
2409 DRM_ERROR("PCH poison interrupt\n");
2411 for_each_pipe(dev_priv, pipe)
2412 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2413 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2415 I915_WRITE(SERR_INT, serr_int);
2418 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2421 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2423 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2425 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2426 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2427 SDE_AUDIO_POWER_SHIFT_CPT);
2428 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2432 if (pch_iir & SDE_AUX_MASK_CPT)
2433 dp_aux_irq_handler(dev_priv);
2435 if (pch_iir & SDE_GMBUS_CPT)
2436 gmbus_irq_handler(dev_priv);
2438 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2439 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2441 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2442 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2444 if (pch_iir & SDE_FDI_MASK_CPT)
2445 for_each_pipe(dev_priv, pipe)
2446 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2448 I915_READ(FDI_RX_IIR(pipe)));
2450 if (pch_iir & SDE_ERROR_CPT)
2451 cpt_serr_int_handler(dev_priv);
2454 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2456 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2457 u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2458 u32 pin_mask = 0, long_mask = 0;
2460 if (ddi_hotplug_trigger) {
2461 u32 dig_hotplug_reg;
2463 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2464 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2466 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2467 ddi_hotplug_trigger,
2468 dig_hotplug_reg, hpd_icp,
2469 icp_ddi_port_hotplug_long_detect);
2472 if (tc_hotplug_trigger) {
2473 u32 dig_hotplug_reg;
2475 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2476 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2478 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2480 dig_hotplug_reg, hpd_icp,
2481 icp_tc_port_hotplug_long_detect);
2485 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2487 if (pch_iir & SDE_GMBUS_ICP)
2488 gmbus_irq_handler(dev_priv);
2491 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2493 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2494 ~SDE_PORTE_HOTPLUG_SPT;
2495 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2496 u32 pin_mask = 0, long_mask = 0;
2498 if (hotplug_trigger) {
2499 u32 dig_hotplug_reg;
2501 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2502 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2504 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2505 hotplug_trigger, dig_hotplug_reg, hpd_spt,
2506 spt_port_hotplug_long_detect);
2509 if (hotplug2_trigger) {
2510 u32 dig_hotplug_reg;
2512 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2513 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2515 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2516 hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2517 spt_port_hotplug2_long_detect);
2521 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2523 if (pch_iir & SDE_GMBUS_CPT)
2524 gmbus_irq_handler(dev_priv);
2527 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2528 u32 hotplug_trigger,
2529 const u32 hpd[HPD_NUM_PINS])
2531 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2533 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2534 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2536 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2537 dig_hotplug_reg, hpd,
2538 ilk_port_hotplug_long_detect);
2540 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2543 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2547 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2549 if (hotplug_trigger)
2550 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2552 if (de_iir & DE_AUX_CHANNEL_A)
2553 dp_aux_irq_handler(dev_priv);
2555 if (de_iir & DE_GSE)
2556 intel_opregion_asle_intr(dev_priv);
2558 if (de_iir & DE_POISON)
2559 DRM_ERROR("Poison interrupt\n");
2561 for_each_pipe(dev_priv, pipe) {
2562 if (de_iir & DE_PIPE_VBLANK(pipe))
2563 drm_handle_vblank(&dev_priv->drm, pipe);
2565 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2566 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2568 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2569 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2572 /* check event from PCH */
2573 if (de_iir & DE_PCH_EVENT) {
2574 u32 pch_iir = I915_READ(SDEIIR);
2576 if (HAS_PCH_CPT(dev_priv))
2577 cpt_irq_handler(dev_priv, pch_iir);
2579 ibx_irq_handler(dev_priv, pch_iir);
2581 /* should clear PCH hotplug event before clear CPU irq */
2582 I915_WRITE(SDEIIR, pch_iir);
2585 if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2586 ironlake_rps_change_irq_handler(dev_priv);
2589 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2593 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2595 if (hotplug_trigger)
2596 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2598 if (de_iir & DE_ERR_INT_IVB)
2599 ivb_err_int_handler(dev_priv);
2601 if (de_iir & DE_EDP_PSR_INT_HSW) {
2602 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2604 intel_psr_irq_handler(dev_priv, psr_iir);
2605 I915_WRITE(EDP_PSR_IIR, psr_iir);
2608 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2609 dp_aux_irq_handler(dev_priv);
2611 if (de_iir & DE_GSE_IVB)
2612 intel_opregion_asle_intr(dev_priv);
2614 for_each_pipe(dev_priv, pipe) {
2615 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2616 drm_handle_vblank(&dev_priv->drm, pipe);
2619 /* check event from PCH */
2620 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2621 u32 pch_iir = I915_READ(SDEIIR);
2623 cpt_irq_handler(dev_priv, pch_iir);
2625 /* clear PCH hotplug event before clear CPU irq */
2626 I915_WRITE(SDEIIR, pch_iir);
2631 * To handle irqs with the minimum potential races with fresh interrupts, we:
2632 * 1 - Disable Master Interrupt Control.
2633 * 2 - Find the source(s) of the interrupt.
2634 * 3 - Clear the Interrupt Identity bits (IIR).
2635 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2636 * 5 - Re-enable Master Interrupt Control.
2638 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2640 struct drm_device *dev = arg;
2641 struct drm_i915_private *dev_priv = to_i915(dev);
2642 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2643 irqreturn_t ret = IRQ_NONE;
2645 if (!intel_irqs_enabled(dev_priv))
2648 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2649 disable_rpm_wakeref_asserts(dev_priv);
2651 /* disable master interrupt before clearing iir */
2652 de_ier = I915_READ(DEIER);
2653 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2655 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2656 * interrupts will will be stored on its back queue, and then we'll be
2657 * able to process them after we restore SDEIER (as soon as we restore
2658 * it, we'll get an interrupt if SDEIIR still has something to process
2659 * due to its back queue). */
2660 if (!HAS_PCH_NOP(dev_priv)) {
2661 sde_ier = I915_READ(SDEIER);
2662 I915_WRITE(SDEIER, 0);
2665 /* Find, clear, then process each source of interrupt */
2667 gt_iir = I915_READ(GTIIR);
2669 I915_WRITE(GTIIR, gt_iir);
2671 if (INTEL_GEN(dev_priv) >= 6)
2672 snb_gt_irq_handler(dev_priv, gt_iir);
2674 ilk_gt_irq_handler(dev_priv, gt_iir);
2677 de_iir = I915_READ(DEIIR);
2679 I915_WRITE(DEIIR, de_iir);
2681 if (INTEL_GEN(dev_priv) >= 7)
2682 ivb_display_irq_handler(dev_priv, de_iir);
2684 ilk_display_irq_handler(dev_priv, de_iir);
2687 if (INTEL_GEN(dev_priv) >= 6) {
2688 u32 pm_iir = I915_READ(GEN6_PMIIR);
2690 I915_WRITE(GEN6_PMIIR, pm_iir);
2692 gen6_rps_irq_handler(dev_priv, pm_iir);
2696 I915_WRITE(DEIER, de_ier);
2697 if (!HAS_PCH_NOP(dev_priv))
2698 I915_WRITE(SDEIER, sde_ier);
2700 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2701 enable_rpm_wakeref_asserts(dev_priv);
2706 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2707 u32 hotplug_trigger,
2708 const u32 hpd[HPD_NUM_PINS])
2710 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2712 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2713 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2715 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2716 dig_hotplug_reg, hpd,
2717 bxt_port_hotplug_long_detect);
2719 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2722 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2724 u32 pin_mask = 0, long_mask = 0;
2725 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2726 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2729 u32 dig_hotplug_reg;
2731 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2732 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2734 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2735 dig_hotplug_reg, hpd_gen11,
2736 gen11_port_hotplug_long_detect);
2740 u32 dig_hotplug_reg;
2742 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2743 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2745 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2746 dig_hotplug_reg, hpd_gen11,
2747 gen11_port_hotplug_long_detect);
2751 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2753 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2756 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2758 u32 mask = GEN8_AUX_CHANNEL_A;
2760 if (INTEL_GEN(dev_priv) >= 9)
2761 mask |= GEN9_AUX_CHANNEL_B |
2762 GEN9_AUX_CHANNEL_C |
2765 if (IS_CNL_WITH_PORT_F(dev_priv))
2766 mask |= CNL_AUX_CHANNEL_F;
2768 if (INTEL_GEN(dev_priv) >= 11)
2769 mask |= ICL_AUX_CHANNEL_E |
2776 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2778 irqreturn_t ret = IRQ_NONE;
2782 if (master_ctl & GEN8_DE_MISC_IRQ) {
2783 iir = I915_READ(GEN8_DE_MISC_IIR);
2787 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2790 if (iir & GEN8_DE_MISC_GSE) {
2791 intel_opregion_asle_intr(dev_priv);
2795 if (iir & GEN8_DE_EDP_PSR) {
2796 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2798 intel_psr_irq_handler(dev_priv, psr_iir);
2799 I915_WRITE(EDP_PSR_IIR, psr_iir);
2804 DRM_ERROR("Unexpected DE Misc interrupt\n");
2807 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2810 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2811 iir = I915_READ(GEN11_DE_HPD_IIR);
2813 I915_WRITE(GEN11_DE_HPD_IIR, iir);
2815 gen11_hpd_irq_handler(dev_priv, iir);
2817 DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2821 if (master_ctl & GEN8_DE_PORT_IRQ) {
2822 iir = I915_READ(GEN8_DE_PORT_IIR);
2827 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2830 if (iir & gen8_de_port_aux_mask(dev_priv)) {
2831 dp_aux_irq_handler(dev_priv);
2835 if (IS_GEN9_LP(dev_priv)) {
2836 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2838 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2842 } else if (IS_BROADWELL(dev_priv)) {
2843 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2845 ilk_hpd_irq_handler(dev_priv,
2851 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2852 gmbus_irq_handler(dev_priv);
2857 DRM_ERROR("Unexpected DE Port interrupt\n");
2860 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2863 for_each_pipe(dev_priv, pipe) {
2866 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2869 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2871 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2876 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2878 if (iir & GEN8_PIPE_VBLANK)
2879 drm_handle_vblank(&dev_priv->drm, pipe);
2881 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2882 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2884 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2885 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2888 if (INTEL_GEN(dev_priv) >= 9)
2889 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2891 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2894 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2899 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2900 master_ctl & GEN8_DE_PCH_IRQ) {
2902 * FIXME(BDW): Assume for now that the new interrupt handling
2903 * scheme also closed the SDE interrupt handling race we've seen
2904 * on older pch-split platforms. But this needs testing.
2906 iir = I915_READ(SDEIIR);
2908 I915_WRITE(SDEIIR, iir);
2911 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2912 icp_irq_handler(dev_priv, iir);
2913 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2914 spt_irq_handler(dev_priv, iir);
2916 cpt_irq_handler(dev_priv, iir);
2919 * Like on previous PCH there seems to be something
2920 * fishy going on with forwarding PCH interrupts.
2922 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2929 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2931 raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2934 * Now with master disabled, get a sample of level indications
2935 * for this interrupt. Indications will be cleared on related acks.
2936 * New indications can and will light up during processing,
2937 * and will generate new interrupt after enabling master.
2939 return raw_reg_read(regs, GEN8_MASTER_IRQ);
2942 static inline void gen8_master_intr_enable(void __iomem * const regs)
2944 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2947 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2949 struct drm_i915_private *dev_priv = to_i915(arg);
2950 void __iomem * const regs = dev_priv->uncore.regs;
2954 if (!intel_irqs_enabled(dev_priv))
2957 master_ctl = gen8_master_intr_disable(regs);
2959 gen8_master_intr_enable(regs);
2963 /* Find, clear, then process each source of interrupt */
2964 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2966 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2967 if (master_ctl & ~GEN8_GT_IRQS) {
2968 disable_rpm_wakeref_asserts(dev_priv);
2969 gen8_de_irq_handler(dev_priv, master_ctl);
2970 enable_rpm_wakeref_asserts(dev_priv);
2973 gen8_master_intr_enable(regs);
2975 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2981 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2982 const unsigned int bank, const unsigned int bit)
2984 void __iomem * const regs = i915->uncore.regs;
2988 lockdep_assert_held(&i915->irq_lock);
2990 raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2993 * NB: Specs do not specify how long to spin wait,
2994 * so we do ~100us as an educated guess.
2996 timeout_ts = (local_clock() >> 10) + 100;
2998 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2999 } while (!(ident & GEN11_INTR_DATA_VALID) &&
3000 !time_after32(local_clock() >> 10, timeout_ts));
3002 if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
3003 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
3008 raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
3009 GEN11_INTR_DATA_VALID);
3015 gen11_other_irq_handler(struct drm_i915_private * const i915,
3016 const u8 instance, const u16 iir)
3018 if (instance == OTHER_GTPM_INSTANCE)
3019 return gen11_rps_irq_handler(i915, iir);
3021 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3026 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3027 const u8 class, const u8 instance, const u16 iir)
3029 struct intel_engine_cs *engine;
3031 if (instance <= MAX_ENGINE_INSTANCE)
3032 engine = i915->engine_class[class][instance];
3037 return gen8_cs_irq_handler(engine, iir);
3039 WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3044 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3047 const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3048 const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3049 const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3051 if (unlikely(!intr))
3054 if (class <= COPY_ENGINE_CLASS)
3055 return gen11_engine_irq_handler(i915, class, instance, intr);
3057 if (class == OTHER_CLASS)
3058 return gen11_other_irq_handler(i915, instance, intr);
3060 WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3061 class, instance, intr);
3065 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3066 const unsigned int bank)
3068 void __iomem * const regs = i915->uncore.regs;
3069 unsigned long intr_dw;
3072 lockdep_assert_held(&i915->irq_lock);
3074 intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3076 for_each_set_bit(bit, &intr_dw, 32) {
3077 const u32 ident = gen11_gt_engine_identity(i915, bank, bit);
3079 gen11_gt_identity_handler(i915, ident);
3082 /* Clear must be after shared has been served for engine */
3083 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3087 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3088 const u32 master_ctl)
3092 spin_lock(&i915->irq_lock);
3094 for (bank = 0; bank < 2; bank++) {
3095 if (master_ctl & GEN11_GT_DW_IRQ(bank))
3096 gen11_gt_bank_handler(i915, bank);
3099 spin_unlock(&i915->irq_lock);
3103 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3105 void __iomem * const regs = dev_priv->uncore.regs;
3108 if (!(master_ctl & GEN11_GU_MISC_IRQ))
3111 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3113 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3119 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3121 if (iir & GEN11_GU_MISC_GSE)
3122 intel_opregion_asle_intr(dev_priv);
3125 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
3127 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3130 * Now with master disabled, get a sample of level indications
3131 * for this interrupt. Indications will be cleared on related acks.
3132 * New indications can and will light up during processing,
3133 * and will generate new interrupt after enabling master.
3135 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3138 static inline void gen11_master_intr_enable(void __iomem * const regs)
3140 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
3143 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3145 struct drm_i915_private * const i915 = to_i915(arg);
3146 void __iomem * const regs = i915->uncore.regs;
3150 if (!intel_irqs_enabled(i915))
3153 master_ctl = gen11_master_intr_disable(regs);
3155 gen11_master_intr_enable(regs);
3159 /* Find, clear, then process each source of interrupt. */
3160 gen11_gt_irq_handler(i915, master_ctl);
3162 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3163 if (master_ctl & GEN11_DISPLAY_IRQ) {
3164 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3166 disable_rpm_wakeref_asserts(i915);
3168 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3169 * for the display related bits.
3171 gen8_de_irq_handler(i915, disp_ctl);
3172 enable_rpm_wakeref_asserts(i915);
3175 gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3177 gen11_master_intr_enable(regs);
3179 gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3184 /* Called from drm generic code, passed 'crtc' which
3185 * we use as a pipe index
3187 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3189 struct drm_i915_private *dev_priv = to_i915(dev);
3190 unsigned long irqflags;
3192 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3193 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3194 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3199 static int i945gm_enable_vblank(struct drm_device *dev, unsigned int pipe)
3201 struct drm_i915_private *dev_priv = to_i915(dev);
3203 if (dev_priv->i945gm_vblank.enabled++ == 0)
3204 schedule_work(&dev_priv->i945gm_vblank.work);
3206 return i8xx_enable_vblank(dev, pipe);
3209 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3211 struct drm_i915_private *dev_priv = to_i915(dev);
3212 unsigned long irqflags;
3214 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3215 i915_enable_pipestat(dev_priv, pipe,
3216 PIPE_START_VBLANK_INTERRUPT_STATUS);
3217 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3222 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3224 struct drm_i915_private *dev_priv = to_i915(dev);
3225 unsigned long irqflags;
3226 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3227 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3229 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3230 ilk_enable_display_irq(dev_priv, bit);
3231 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3233 /* Even though there is no DMC, frame counter can get stuck when
3234 * PSR is active as no frames are generated.
3236 if (HAS_PSR(dev_priv))
3237 drm_vblank_restore(dev, pipe);
3242 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3244 struct drm_i915_private *dev_priv = to_i915(dev);
3245 unsigned long irqflags;
3247 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3248 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3249 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3251 /* Even if there is no DMC, frame counter can get stuck when
3252 * PSR is active as no frames are generated, so check only for PSR.
3254 if (HAS_PSR(dev_priv))
3255 drm_vblank_restore(dev, pipe);
3260 /* Called from drm generic code, passed 'crtc' which
3261 * we use as a pipe index
3263 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3265 struct drm_i915_private *dev_priv = to_i915(dev);
3266 unsigned long irqflags;
3268 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3269 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3270 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3273 static void i945gm_disable_vblank(struct drm_device *dev, unsigned int pipe)
3275 struct drm_i915_private *dev_priv = to_i915(dev);
3277 i8xx_disable_vblank(dev, pipe);
3279 if (--dev_priv->i945gm_vblank.enabled == 0)
3280 schedule_work(&dev_priv->i945gm_vblank.work);
3283 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3285 struct drm_i915_private *dev_priv = to_i915(dev);
3286 unsigned long irqflags;
3288 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3289 i915_disable_pipestat(dev_priv, pipe,
3290 PIPE_START_VBLANK_INTERRUPT_STATUS);
3291 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3294 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3296 struct drm_i915_private *dev_priv = to_i915(dev);
3297 unsigned long irqflags;
3298 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3299 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3301 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3302 ilk_disable_display_irq(dev_priv, bit);
3303 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3306 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3308 struct drm_i915_private *dev_priv = to_i915(dev);
3309 unsigned long irqflags;
3311 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3312 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3313 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3316 static void i945gm_vblank_work_func(struct work_struct *work)
3318 struct drm_i915_private *dev_priv =
3319 container_of(work, struct drm_i915_private, i945gm_vblank.work);
3322 * Vblank interrupts fail to wake up the device from C3,
3323 * hence we want to prevent C3 usage while vblank interrupts
3326 pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3327 READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3328 dev_priv->i945gm_vblank.c3_disable_latency :
3329 PM_QOS_DEFAULT_VALUE);
3332 static int cstate_disable_latency(const char *name)
3334 const struct cpuidle_driver *drv;
3337 drv = cpuidle_get_driver();
3341 for (i = 0; i < drv->state_count; i++) {
3342 const struct cpuidle_state *state = &drv->states[i];
3344 if (!strcmp(state->name, name))
3345 return state->exit_latency ?
3346 state->exit_latency - 1 : 0;
3352 static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3354 INIT_WORK(&dev_priv->i945gm_vblank.work,
3355 i945gm_vblank_work_func);
3357 dev_priv->i945gm_vblank.c3_disable_latency =
3358 cstate_disable_latency("C3");
3359 pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3360 PM_QOS_CPU_DMA_LATENCY,
3361 PM_QOS_DEFAULT_VALUE);
3364 static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3366 cancel_work_sync(&dev_priv->i945gm_vblank.work);
3367 pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3370 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3372 struct intel_uncore *uncore = &dev_priv->uncore;
3374 if (HAS_PCH_NOP(dev_priv))
3377 GEN3_IRQ_RESET(uncore, SDE);
3379 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3380 I915_WRITE(SERR_INT, 0xffffffff);
3384 * SDEIER is also touched by the interrupt handler to work around missed PCH
3385 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3386 * instead we unconditionally enable all PCH interrupt sources here, but then
3387 * only unmask them as needed with SDEIMR.
3389 * This function needs to be called before interrupts are enabled.
3391 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3393 struct drm_i915_private *dev_priv = to_i915(dev);
3395 if (HAS_PCH_NOP(dev_priv))
3398 WARN_ON(I915_READ(SDEIER) != 0);
3399 I915_WRITE(SDEIER, 0xffffffff);
3400 POSTING_READ(SDEIER);
3403 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3405 struct intel_uncore *uncore = &dev_priv->uncore;
3407 GEN3_IRQ_RESET(uncore, GT);
3408 if (INTEL_GEN(dev_priv) >= 6)
3409 GEN3_IRQ_RESET(uncore, GEN6_PM);
3412 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3414 struct intel_uncore *uncore = &dev_priv->uncore;
3416 if (IS_CHERRYVIEW(dev_priv))
3417 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3419 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3421 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3422 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3424 i9xx_pipestat_irq_reset(dev_priv);
3426 GEN3_IRQ_RESET(uncore, VLV_);
3427 dev_priv->irq_mask = ~0u;
3430 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3432 struct intel_uncore *uncore = &dev_priv->uncore;
3438 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3440 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3441 for_each_pipe(dev_priv, pipe)
3442 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3444 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3445 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3446 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3447 I915_LPE_PIPE_A_INTERRUPT |
3448 I915_LPE_PIPE_B_INTERRUPT;
3450 if (IS_CHERRYVIEW(dev_priv))
3451 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3452 I915_LPE_PIPE_C_INTERRUPT;
3454 WARN_ON(dev_priv->irq_mask != ~0u);
3456 dev_priv->irq_mask = ~enable_mask;
3458 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3463 static void ironlake_irq_reset(struct drm_device *dev)
3465 struct drm_i915_private *dev_priv = to_i915(dev);
3466 struct intel_uncore *uncore = &dev_priv->uncore;
3468 GEN3_IRQ_RESET(uncore, DE);
3469 if (IS_GEN(dev_priv, 7))
3470 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3472 if (IS_HASWELL(dev_priv)) {
3473 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3474 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3477 gen5_gt_irq_reset(dev_priv);
3479 ibx_irq_reset(dev_priv);
3482 static void valleyview_irq_reset(struct drm_device *dev)
3484 struct drm_i915_private *dev_priv = to_i915(dev);
3486 I915_WRITE(VLV_MASTER_IER, 0);
3487 POSTING_READ(VLV_MASTER_IER);
3489 gen5_gt_irq_reset(dev_priv);
3491 spin_lock_irq(&dev_priv->irq_lock);
3492 if (dev_priv->display_irqs_enabled)
3493 vlv_display_irq_reset(dev_priv);
3494 spin_unlock_irq(&dev_priv->irq_lock);
3497 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3499 struct intel_uncore *uncore = &dev_priv->uncore;
3501 GEN8_IRQ_RESET_NDX(uncore, GT, 0);
3502 GEN8_IRQ_RESET_NDX(uncore, GT, 1);
3503 GEN8_IRQ_RESET_NDX(uncore, GT, 2);
3504 GEN8_IRQ_RESET_NDX(uncore, GT, 3);
3507 static void gen8_irq_reset(struct drm_device *dev)
3509 struct drm_i915_private *dev_priv = to_i915(dev);
3510 struct intel_uncore *uncore = &dev_priv->uncore;
3513 gen8_master_intr_disable(dev_priv->uncore.regs);
3515 gen8_gt_irq_reset(dev_priv);
3517 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3518 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3520 for_each_pipe(dev_priv, pipe)
3521 if (intel_display_power_is_enabled(dev_priv,
3522 POWER_DOMAIN_PIPE(pipe)))
3523 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3525 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3526 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3527 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3529 if (HAS_PCH_SPLIT(dev_priv))
3530 ibx_irq_reset(dev_priv);
3533 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3535 /* Disable RCS, BCS, VCS and VECS class engines. */
3536 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3537 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, 0);
3539 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3540 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~0);
3541 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~0);
3542 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~0);
3543 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~0);
3544 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3546 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3547 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
3550 static void gen11_irq_reset(struct drm_device *dev)
3552 struct drm_i915_private *dev_priv = dev->dev_private;
3553 struct intel_uncore *uncore = &dev_priv->uncore;
3556 gen11_master_intr_disable(dev_priv->uncore.regs);
3558 gen11_gt_irq_reset(dev_priv);
3560 I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3562 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3563 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3565 for_each_pipe(dev_priv, pipe)
3566 if (intel_display_power_is_enabled(dev_priv,
3567 POWER_DOMAIN_PIPE(pipe)))
3568 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3570 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3571 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3572 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3573 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3574 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3576 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3577 GEN3_IRQ_RESET(uncore, SDE);
3580 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3583 struct intel_uncore *uncore = &dev_priv->uncore;
3585 u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3588 spin_lock_irq(&dev_priv->irq_lock);
3590 if (!intel_irqs_enabled(dev_priv)) {
3591 spin_unlock_irq(&dev_priv->irq_lock);
3595 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3596 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3597 dev_priv->de_irq_mask[pipe],
3598 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3600 spin_unlock_irq(&dev_priv->irq_lock);
3603 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3606 struct intel_uncore *uncore = &dev_priv->uncore;
3609 spin_lock_irq(&dev_priv->irq_lock);
3611 if (!intel_irqs_enabled(dev_priv)) {
3612 spin_unlock_irq(&dev_priv->irq_lock);
3616 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3617 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3619 spin_unlock_irq(&dev_priv->irq_lock);
3621 /* make sure we're done processing display irqs */
3622 synchronize_irq(dev_priv->drm.irq);
3625 static void cherryview_irq_reset(struct drm_device *dev)
3627 struct drm_i915_private *dev_priv = to_i915(dev);
3628 struct intel_uncore *uncore = &dev_priv->uncore;
3630 I915_WRITE(GEN8_MASTER_IRQ, 0);
3631 POSTING_READ(GEN8_MASTER_IRQ);
3633 gen8_gt_irq_reset(dev_priv);
3635 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3637 spin_lock_irq(&dev_priv->irq_lock);
3638 if (dev_priv->display_irqs_enabled)
3639 vlv_display_irq_reset(dev_priv);
3640 spin_unlock_irq(&dev_priv->irq_lock);
3643 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3644 const u32 hpd[HPD_NUM_PINS])
3646 struct intel_encoder *encoder;
3647 u32 enabled_irqs = 0;
3649 for_each_intel_encoder(&dev_priv->drm, encoder)
3650 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3651 enabled_irqs |= hpd[encoder->hpd_pin];
3653 return enabled_irqs;
3656 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3661 * Enable digital hotplug on the PCH, and configure the DP short pulse
3662 * duration to 2ms (which is the minimum in the Display Port spec).
3663 * The pulse duration bits are reserved on LPT+.
3665 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3666 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3667 PORTC_PULSE_DURATION_MASK |
3668 PORTD_PULSE_DURATION_MASK);
3669 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3670 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3671 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3673 * When CPU and PCH are on the same package, port A
3674 * HPD must be enabled in both north and south.
3676 if (HAS_PCH_LPT_LP(dev_priv))
3677 hotplug |= PORTA_HOTPLUG_ENABLE;
3678 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3681 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3683 u32 hotplug_irqs, enabled_irqs;
3685 if (HAS_PCH_IBX(dev_priv)) {
3686 hotplug_irqs = SDE_HOTPLUG_MASK;
3687 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3689 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3690 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3693 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3695 ibx_hpd_detection_setup(dev_priv);
3698 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3702 hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3703 hotplug |= ICP_DDIA_HPD_ENABLE |
3704 ICP_DDIB_HPD_ENABLE;
3705 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3707 hotplug = I915_READ(SHOTPLUG_CTL_TC);
3708 hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3709 ICP_TC_HPD_ENABLE(PORT_TC2) |
3710 ICP_TC_HPD_ENABLE(PORT_TC3) |
3711 ICP_TC_HPD_ENABLE(PORT_TC4);
3712 I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3715 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3717 u32 hotplug_irqs, enabled_irqs;
3719 hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3720 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3722 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3724 icp_hpd_detection_setup(dev_priv);
3727 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3731 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3732 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3733 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3734 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3735 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3736 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3738 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3739 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3740 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3741 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3742 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3743 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3746 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3748 u32 hotplug_irqs, enabled_irqs;
3751 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3752 hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3754 val = I915_READ(GEN11_DE_HPD_IMR);
3755 val &= ~hotplug_irqs;
3756 I915_WRITE(GEN11_DE_HPD_IMR, val);
3757 POSTING_READ(GEN11_DE_HPD_IMR);
3759 gen11_hpd_detection_setup(dev_priv);
3761 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3762 icp_hpd_irq_setup(dev_priv);
3765 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3769 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3770 if (HAS_PCH_CNP(dev_priv)) {
3771 val = I915_READ(SOUTH_CHICKEN1);
3772 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3773 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3774 I915_WRITE(SOUTH_CHICKEN1, val);
3777 /* Enable digital hotplug on the PCH */
3778 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3779 hotplug |= PORTA_HOTPLUG_ENABLE |
3780 PORTB_HOTPLUG_ENABLE |
3781 PORTC_HOTPLUG_ENABLE |
3782 PORTD_HOTPLUG_ENABLE;
3783 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3785 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3786 hotplug |= PORTE_HOTPLUG_ENABLE;
3787 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3790 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3792 u32 hotplug_irqs, enabled_irqs;
3794 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3795 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3797 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3799 spt_hpd_detection_setup(dev_priv);
3802 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3807 * Enable digital hotplug on the CPU, and configure the DP short pulse
3808 * duration to 2ms (which is the minimum in the Display Port spec)
3809 * The pulse duration bits are reserved on HSW+.
3811 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3812 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3813 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3814 DIGITAL_PORTA_PULSE_DURATION_2ms;
3815 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3818 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3820 u32 hotplug_irqs, enabled_irqs;
3822 if (INTEL_GEN(dev_priv) >= 8) {
3823 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3824 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3826 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3827 } else if (INTEL_GEN(dev_priv) >= 7) {
3828 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3829 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3831 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3833 hotplug_irqs = DE_DP_A_HOTPLUG;
3834 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3836 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3839 ilk_hpd_detection_setup(dev_priv);
3841 ibx_hpd_irq_setup(dev_priv);
3844 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3849 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3850 hotplug |= PORTA_HOTPLUG_ENABLE |
3851 PORTB_HOTPLUG_ENABLE |
3852 PORTC_HOTPLUG_ENABLE;
3854 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3855 hotplug, enabled_irqs);
3856 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3859 * For BXT invert bit has to be set based on AOB design
3860 * for HPD detection logic, update it based on VBT fields.
3862 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3863 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3864 hotplug |= BXT_DDIA_HPD_INVERT;
3865 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3866 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3867 hotplug |= BXT_DDIB_HPD_INVERT;
3868 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3869 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3870 hotplug |= BXT_DDIC_HPD_INVERT;
3872 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3875 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3877 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3880 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3882 u32 hotplug_irqs, enabled_irqs;
3884 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3885 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3887 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3889 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3892 static void ibx_irq_postinstall(struct drm_device *dev)
3894 struct drm_i915_private *dev_priv = to_i915(dev);
3897 if (HAS_PCH_NOP(dev_priv))
3900 if (HAS_PCH_IBX(dev_priv))
3901 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3902 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3903 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3905 mask = SDE_GMBUS_CPT;
3907 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3908 I915_WRITE(SDEIMR, ~mask);
3910 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3911 HAS_PCH_LPT(dev_priv))
3912 ibx_hpd_detection_setup(dev_priv);
3914 spt_hpd_detection_setup(dev_priv);
3917 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3919 struct drm_i915_private *dev_priv = to_i915(dev);
3920 struct intel_uncore *uncore = &dev_priv->uncore;
3921 u32 pm_irqs, gt_irqs;
3923 pm_irqs = gt_irqs = 0;
3925 dev_priv->gt_irq_mask = ~0;
3926 if (HAS_L3_DPF(dev_priv)) {
3927 /* L3 parity interrupt is always unmasked. */
3928 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3929 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3932 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3933 if (IS_GEN(dev_priv, 5)) {
3934 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3936 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3939 GEN3_IRQ_INIT(uncore, GT, dev_priv->gt_irq_mask, gt_irqs);
3941 if (INTEL_GEN(dev_priv) >= 6) {
3943 * RPS interrupts will get enabled/disabled on demand when RPS
3944 * itself is enabled/disabled.
3946 if (HAS_ENGINE(dev_priv, VECS0)) {
3947 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3948 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3951 dev_priv->pm_imr = 0xffffffff;
3952 GEN3_IRQ_INIT(uncore, GEN6_PM, dev_priv->pm_imr, pm_irqs);
3956 static int ironlake_irq_postinstall(struct drm_device *dev)
3958 struct drm_i915_private *dev_priv = to_i915(dev);
3959 struct intel_uncore *uncore = &dev_priv->uncore;
3960 u32 display_mask, extra_mask;
3962 if (INTEL_GEN(dev_priv) >= 7) {
3963 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3964 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3965 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3966 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3967 DE_DP_A_HOTPLUG_IVB);
3969 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3970 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3971 DE_PIPEA_CRC_DONE | DE_POISON);
3972 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3973 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3977 if (IS_HASWELL(dev_priv)) {
3978 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3979 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3980 display_mask |= DE_EDP_PSR_INT_HSW;
3983 dev_priv->irq_mask = ~display_mask;
3985 ibx_irq_pre_postinstall(dev);
3987 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3988 display_mask | extra_mask);
3990 gen5_gt_irq_postinstall(dev);
3992 ilk_hpd_detection_setup(dev_priv);
3994 ibx_irq_postinstall(dev);
3996 if (IS_IRONLAKE_M(dev_priv)) {
3997 /* Enable PCU event interrupts
3999 * spinlocking not required here for correctness since interrupt
4000 * setup is guaranteed to run in single-threaded context. But we
4001 * need it to make the assert_spin_locked happy. */
4002 spin_lock_irq(&dev_priv->irq_lock);
4003 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4004 spin_unlock_irq(&dev_priv->irq_lock);
4010 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4012 lockdep_assert_held(&dev_priv->irq_lock);
4014 if (dev_priv->display_irqs_enabled)
4017 dev_priv->display_irqs_enabled = true;
4019 if (intel_irqs_enabled(dev_priv)) {
4020 vlv_display_irq_reset(dev_priv);
4021 vlv_display_irq_postinstall(dev_priv);
4025 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4027 lockdep_assert_held(&dev_priv->irq_lock);
4029 if (!dev_priv->display_irqs_enabled)
4032 dev_priv->display_irqs_enabled = false;
4034 if (intel_irqs_enabled(dev_priv))
4035 vlv_display_irq_reset(dev_priv);
4039 static int valleyview_irq_postinstall(struct drm_device *dev)
4041 struct drm_i915_private *dev_priv = to_i915(dev);
4043 gen5_gt_irq_postinstall(dev);
4045 spin_lock_irq(&dev_priv->irq_lock);
4046 if (dev_priv->display_irqs_enabled)
4047 vlv_display_irq_postinstall(dev_priv);
4048 spin_unlock_irq(&dev_priv->irq_lock);
4050 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4051 POSTING_READ(VLV_MASTER_IER);
4056 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4058 struct intel_uncore *uncore = &dev_priv->uncore;
4060 /* These are interrupts we'll toggle with the ring mask register */
4061 u32 gt_interrupts[] = {
4062 (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4063 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4064 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4065 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT),
4067 (GT_RENDER_USER_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
4068 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
4069 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4070 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT),
4074 (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4075 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT)
4078 dev_priv->pm_ier = 0x0;
4079 dev_priv->pm_imr = ~dev_priv->pm_ier;
4080 GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4081 GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4083 * RPS interrupts will get enabled/disabled on demand when RPS itself
4084 * is enabled/disabled. Same wil be the case for GuC interrupts.
4086 GEN8_IRQ_INIT_NDX(uncore, GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4087 GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4090 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4092 struct intel_uncore *uncore = &dev_priv->uncore;
4094 u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4095 u32 de_pipe_enables;
4096 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4097 u32 de_port_enables;
4098 u32 de_misc_masked = GEN8_DE_EDP_PSR;
4101 if (INTEL_GEN(dev_priv) <= 10)
4102 de_misc_masked |= GEN8_DE_MISC_GSE;
4104 if (INTEL_GEN(dev_priv) >= 9) {
4105 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4106 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4108 if (IS_GEN9_LP(dev_priv))
4109 de_port_masked |= BXT_DE_PORT_GMBUS;
4111 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4114 if (INTEL_GEN(dev_priv) >= 11)
4115 de_port_masked |= ICL_AUX_CHANNEL_E;
4117 if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4118 de_port_masked |= CNL_AUX_CHANNEL_F;
4120 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4121 GEN8_PIPE_FIFO_UNDERRUN;
4123 de_port_enables = de_port_masked;
4124 if (IS_GEN9_LP(dev_priv))
4125 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4126 else if (IS_BROADWELL(dev_priv))
4127 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4129 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
4130 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4132 for_each_pipe(dev_priv, pipe) {
4133 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4135 if (intel_display_power_is_enabled(dev_priv,
4136 POWER_DOMAIN_PIPE(pipe)))
4137 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
4138 dev_priv->de_irq_mask[pipe],
4142 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4143 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4145 if (INTEL_GEN(dev_priv) >= 11) {
4146 u32 de_hpd_masked = 0;
4147 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4148 GEN11_DE_TBT_HOTPLUG_MASK;
4150 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
4152 gen11_hpd_detection_setup(dev_priv);
4153 } else if (IS_GEN9_LP(dev_priv)) {
4154 bxt_hpd_detection_setup(dev_priv);
4155 } else if (IS_BROADWELL(dev_priv)) {
4156 ilk_hpd_detection_setup(dev_priv);
4160 static int gen8_irq_postinstall(struct drm_device *dev)
4162 struct drm_i915_private *dev_priv = to_i915(dev);
4164 if (HAS_PCH_SPLIT(dev_priv))
4165 ibx_irq_pre_postinstall(dev);
4167 gen8_gt_irq_postinstall(dev_priv);
4168 gen8_de_irq_postinstall(dev_priv);
4170 if (HAS_PCH_SPLIT(dev_priv))
4171 ibx_irq_postinstall(dev);
4173 gen8_master_intr_enable(dev_priv->uncore.regs);
4178 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4180 const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4182 BUILD_BUG_ON(irqs & 0xffff0000);
4184 /* Enable RCS, BCS, VCS and VECS class interrupts. */
4185 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4186 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, irqs << 16 | irqs);
4188 /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4189 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~(irqs << 16));
4190 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~(irqs << 16));
4191 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~(irqs | irqs << 16));
4192 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~(irqs | irqs << 16));
4193 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4196 * RPS interrupts will get enabled/disabled on demand when RPS itself
4197 * is enabled/disabled.
4199 dev_priv->pm_ier = 0x0;
4200 dev_priv->pm_imr = ~dev_priv->pm_ier;
4201 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4202 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
4205 static void icp_irq_postinstall(struct drm_device *dev)
4207 struct drm_i915_private *dev_priv = to_i915(dev);
4208 u32 mask = SDE_GMBUS_ICP;
4210 WARN_ON(I915_READ(SDEIER) != 0);
4211 I915_WRITE(SDEIER, 0xffffffff);
4212 POSTING_READ(SDEIER);
4214 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
4215 I915_WRITE(SDEIMR, ~mask);
4217 icp_hpd_detection_setup(dev_priv);
4220 static int gen11_irq_postinstall(struct drm_device *dev)
4222 struct drm_i915_private *dev_priv = dev->dev_private;
4223 struct intel_uncore *uncore = &dev_priv->uncore;
4224 u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4226 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
4227 icp_irq_postinstall(dev);
4229 gen11_gt_irq_postinstall(dev_priv);
4230 gen8_de_irq_postinstall(dev_priv);
4232 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4234 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4236 gen11_master_intr_enable(dev_priv->uncore.regs);
4237 POSTING_READ(GEN11_GFX_MSTR_IRQ);
4242 static int cherryview_irq_postinstall(struct drm_device *dev)
4244 struct drm_i915_private *dev_priv = to_i915(dev);
4246 gen8_gt_irq_postinstall(dev_priv);
4248 spin_lock_irq(&dev_priv->irq_lock);
4249 if (dev_priv->display_irqs_enabled)
4250 vlv_display_irq_postinstall(dev_priv);
4251 spin_unlock_irq(&dev_priv->irq_lock);
4253 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4254 POSTING_READ(GEN8_MASTER_IRQ);
4259 static void i8xx_irq_reset(struct drm_device *dev)
4261 struct drm_i915_private *dev_priv = to_i915(dev);
4262 struct intel_uncore *uncore = &dev_priv->uncore;
4264 i9xx_pipestat_irq_reset(dev_priv);
4266 GEN2_IRQ_RESET(uncore);
4269 static int i8xx_irq_postinstall(struct drm_device *dev)
4271 struct drm_i915_private *dev_priv = to_i915(dev);
4272 struct intel_uncore *uncore = &dev_priv->uncore;
4275 I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4276 I915_ERROR_MEMORY_REFRESH));
4278 /* Unmask the interrupts that we always want on. */
4279 dev_priv->irq_mask =
4280 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4281 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4282 I915_MASTER_ERROR_INTERRUPT);
4285 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4286 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4287 I915_MASTER_ERROR_INTERRUPT |
4288 I915_USER_INTERRUPT;
4290 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
4292 /* Interrupt setup is already guaranteed to be single-threaded, this is
4293 * just to make the assert_spin_locked check happy. */
4294 spin_lock_irq(&dev_priv->irq_lock);
4295 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4296 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4297 spin_unlock_irq(&dev_priv->irq_lock);
4302 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4303 u16 *eir, u16 *eir_stuck)
4307 *eir = I915_READ16(EIR);
4310 I915_WRITE16(EIR, *eir);
4312 *eir_stuck = I915_READ16(EIR);
4313 if (*eir_stuck == 0)
4317 * Toggle all EMR bits to make sure we get an edge
4318 * in the ISR master error bit if we don't clear
4319 * all the EIR bits. Otherwise the edge triggered
4320 * IIR on i965/g4x wouldn't notice that an interrupt
4321 * is still pending. Also some EIR bits can't be
4322 * cleared except by handling the underlying error
4323 * (or by a GPU reset) so we mask any bit that
4326 emr = I915_READ16(EMR);
4327 I915_WRITE16(EMR, 0xffff);
4328 I915_WRITE16(EMR, emr | *eir_stuck);
4331 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4332 u16 eir, u16 eir_stuck)
4334 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4337 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4340 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4341 u32 *eir, u32 *eir_stuck)
4345 *eir = I915_READ(EIR);
4347 I915_WRITE(EIR, *eir);
4349 *eir_stuck = I915_READ(EIR);
4350 if (*eir_stuck == 0)
4354 * Toggle all EMR bits to make sure we get an edge
4355 * in the ISR master error bit if we don't clear
4356 * all the EIR bits. Otherwise the edge triggered
4357 * IIR on i965/g4x wouldn't notice that an interrupt
4358 * is still pending. Also some EIR bits can't be
4359 * cleared except by handling the underlying error
4360 * (or by a GPU reset) so we mask any bit that
4363 emr = I915_READ(EMR);
4364 I915_WRITE(EMR, 0xffffffff);
4365 I915_WRITE(EMR, emr | *eir_stuck);
4368 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4369 u32 eir, u32 eir_stuck)
4371 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4374 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4377 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4379 struct drm_device *dev = arg;
4380 struct drm_i915_private *dev_priv = to_i915(dev);
4381 irqreturn_t ret = IRQ_NONE;
4383 if (!intel_irqs_enabled(dev_priv))
4386 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4387 disable_rpm_wakeref_asserts(dev_priv);
4390 u32 pipe_stats[I915_MAX_PIPES] = {};
4391 u16 eir = 0, eir_stuck = 0;
4394 iir = I915_READ16(GEN2_IIR);
4400 /* Call regardless, as some status bits might not be
4401 * signalled in iir */
4402 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4404 if (iir & I915_MASTER_ERROR_INTERRUPT)
4405 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4407 I915_WRITE16(GEN2_IIR, iir);
4409 if (iir & I915_USER_INTERRUPT)
4410 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4412 if (iir & I915_MASTER_ERROR_INTERRUPT)
4413 i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4415 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4418 enable_rpm_wakeref_asserts(dev_priv);
4423 static void i915_irq_reset(struct drm_device *dev)
4425 struct drm_i915_private *dev_priv = to_i915(dev);
4426 struct intel_uncore *uncore = &dev_priv->uncore;
4428 if (I915_HAS_HOTPLUG(dev_priv)) {
4429 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4430 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4433 i9xx_pipestat_irq_reset(dev_priv);
4435 GEN3_IRQ_RESET(uncore, GEN2_);
4438 static int i915_irq_postinstall(struct drm_device *dev)
4440 struct drm_i915_private *dev_priv = to_i915(dev);
4441 struct intel_uncore *uncore = &dev_priv->uncore;
4444 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4445 I915_ERROR_MEMORY_REFRESH));
4447 /* Unmask the interrupts that we always want on. */
4448 dev_priv->irq_mask =
4449 ~(I915_ASLE_INTERRUPT |
4450 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4451 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4452 I915_MASTER_ERROR_INTERRUPT);
4455 I915_ASLE_INTERRUPT |
4456 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4457 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4458 I915_MASTER_ERROR_INTERRUPT |
4459 I915_USER_INTERRUPT;
4461 if (I915_HAS_HOTPLUG(dev_priv)) {
4462 /* Enable in IER... */
4463 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4464 /* and unmask in IMR */
4465 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4468 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4470 /* Interrupt setup is already guaranteed to be single-threaded, this is
4471 * just to make the assert_spin_locked check happy. */
4472 spin_lock_irq(&dev_priv->irq_lock);
4473 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4474 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4475 spin_unlock_irq(&dev_priv->irq_lock);
4477 i915_enable_asle_pipestat(dev_priv);
4482 static irqreturn_t i915_irq_handler(int irq, void *arg)
4484 struct drm_device *dev = arg;
4485 struct drm_i915_private *dev_priv = to_i915(dev);
4486 irqreturn_t ret = IRQ_NONE;
4488 if (!intel_irqs_enabled(dev_priv))
4491 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4492 disable_rpm_wakeref_asserts(dev_priv);
4495 u32 pipe_stats[I915_MAX_PIPES] = {};
4496 u32 eir = 0, eir_stuck = 0;
4497 u32 hotplug_status = 0;
4500 iir = I915_READ(GEN2_IIR);
4506 if (I915_HAS_HOTPLUG(dev_priv) &&
4507 iir & I915_DISPLAY_PORT_INTERRUPT)
4508 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4510 /* Call regardless, as some status bits might not be
4511 * signalled in iir */
4512 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4514 if (iir & I915_MASTER_ERROR_INTERRUPT)
4515 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4517 I915_WRITE(GEN2_IIR, iir);
4519 if (iir & I915_USER_INTERRUPT)
4520 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4522 if (iir & I915_MASTER_ERROR_INTERRUPT)
4523 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4526 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4528 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4531 enable_rpm_wakeref_asserts(dev_priv);
4536 static void i965_irq_reset(struct drm_device *dev)
4538 struct drm_i915_private *dev_priv = to_i915(dev);
4539 struct intel_uncore *uncore = &dev_priv->uncore;
4541 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4542 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4544 i9xx_pipestat_irq_reset(dev_priv);
4546 GEN3_IRQ_RESET(uncore, GEN2_);
4549 static int i965_irq_postinstall(struct drm_device *dev)
4551 struct drm_i915_private *dev_priv = to_i915(dev);
4552 struct intel_uncore *uncore = &dev_priv->uncore;
4557 * Enable some error detection, note the instruction error mask
4558 * bit is reserved, so we leave it masked.
4560 if (IS_G4X(dev_priv)) {
4561 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4562 GM45_ERROR_MEM_PRIV |
4563 GM45_ERROR_CP_PRIV |
4564 I915_ERROR_MEMORY_REFRESH);
4566 error_mask = ~(I915_ERROR_PAGE_TABLE |
4567 I915_ERROR_MEMORY_REFRESH);
4569 I915_WRITE(EMR, error_mask);
4571 /* Unmask the interrupts that we always want on. */
4572 dev_priv->irq_mask =
4573 ~(I915_ASLE_INTERRUPT |
4574 I915_DISPLAY_PORT_INTERRUPT |
4575 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4576 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4577 I915_MASTER_ERROR_INTERRUPT);
4580 I915_ASLE_INTERRUPT |
4581 I915_DISPLAY_PORT_INTERRUPT |
4582 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4583 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4584 I915_MASTER_ERROR_INTERRUPT |
4585 I915_USER_INTERRUPT;
4587 if (IS_G4X(dev_priv))
4588 enable_mask |= I915_BSD_USER_INTERRUPT;
4590 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4592 /* Interrupt setup is already guaranteed to be single-threaded, this is
4593 * just to make the assert_spin_locked check happy. */
4594 spin_lock_irq(&dev_priv->irq_lock);
4595 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4596 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4597 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4598 spin_unlock_irq(&dev_priv->irq_lock);
4600 i915_enable_asle_pipestat(dev_priv);
4605 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4609 lockdep_assert_held(&dev_priv->irq_lock);
4611 /* Note HDMI and DP share hotplug bits */
4612 /* enable bits are the same for all generations */
4613 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4614 /* Programming the CRT detection parameters tends
4615 to generate a spurious hotplug event about three
4616 seconds later. So just do it once.
4618 if (IS_G4X(dev_priv))
4619 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4620 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4622 /* Ignore TV since it's buggy */
4623 i915_hotplug_interrupt_update_locked(dev_priv,
4624 HOTPLUG_INT_EN_MASK |
4625 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4626 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4630 static irqreturn_t i965_irq_handler(int irq, void *arg)
4632 struct drm_device *dev = arg;
4633 struct drm_i915_private *dev_priv = to_i915(dev);
4634 irqreturn_t ret = IRQ_NONE;
4636 if (!intel_irqs_enabled(dev_priv))
4639 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4640 disable_rpm_wakeref_asserts(dev_priv);
4643 u32 pipe_stats[I915_MAX_PIPES] = {};
4644 u32 eir = 0, eir_stuck = 0;
4645 u32 hotplug_status = 0;
4648 iir = I915_READ(GEN2_IIR);
4654 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4655 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4657 /* Call regardless, as some status bits might not be
4658 * signalled in iir */
4659 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4661 if (iir & I915_MASTER_ERROR_INTERRUPT)
4662 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4664 I915_WRITE(GEN2_IIR, iir);
4666 if (iir & I915_USER_INTERRUPT)
4667 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4669 if (iir & I915_BSD_USER_INTERRUPT)
4670 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4672 if (iir & I915_MASTER_ERROR_INTERRUPT)
4673 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4676 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4678 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4681 enable_rpm_wakeref_asserts(dev_priv);
4687 * intel_irq_init - initializes irq support
4688 * @dev_priv: i915 device instance
4690 * This function initializes all the irq support including work items, timers
4691 * and all the vtables. It does not setup the interrupt itself though.
4693 void intel_irq_init(struct drm_i915_private *dev_priv)
4695 struct drm_device *dev = &dev_priv->drm;
4696 struct intel_rps *rps = &dev_priv->gt_pm.rps;
4699 if (IS_I945GM(dev_priv))
4700 i945gm_vblank_work_init(dev_priv);
4702 intel_hpd_init_work(dev_priv);
4704 INIT_WORK(&rps->work, gen6_pm_rps_work);
4706 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4707 for (i = 0; i < MAX_L3_SLICES; ++i)
4708 dev_priv->l3_parity.remap_info[i] = NULL;
4710 if (HAS_GUC_SCHED(dev_priv))
4711 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4713 /* Let's track the enabled rps events */
4714 if (IS_VALLEYVIEW(dev_priv))
4715 /* WaGsvRC0ResidencyMethod:vlv */
4716 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4718 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4719 GEN6_PM_RP_DOWN_THRESHOLD |
4720 GEN6_PM_RP_DOWN_TIMEOUT);
4722 /* We share the register with other engine */
4723 if (INTEL_GEN(dev_priv) > 9)
4724 GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4726 rps->pm_intrmsk_mbz = 0;
4729 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4730 * if GEN6_PM_UP_EI_EXPIRED is masked.
4732 * TODO: verify if this can be reproduced on VLV,CHV.
4734 if (INTEL_GEN(dev_priv) <= 7)
4735 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4737 if (INTEL_GEN(dev_priv) >= 8)
4738 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4740 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4741 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4742 else if (INTEL_GEN(dev_priv) >= 3)
4743 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4745 dev->vblank_disable_immediate = true;
4747 /* Most platforms treat the display irq block as an always-on
4748 * power domain. vlv/chv can disable it at runtime and need
4749 * special care to avoid writing any of the display block registers
4750 * outside of the power domain. We defer setting up the display irqs
4751 * in this case to the runtime pm.
4753 dev_priv->display_irqs_enabled = true;
4754 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4755 dev_priv->display_irqs_enabled = false;
4757 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4758 /* If we have MST support, we want to avoid doing short HPD IRQ storm
4759 * detection, as short HPD storms will occur as a natural part of
4760 * sideband messaging with MST.
4761 * On older platforms however, IRQ storms can occur with both long and
4762 * short pulses, as seen on some G4x systems.
4764 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4766 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4767 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4769 if (IS_CHERRYVIEW(dev_priv)) {
4770 dev->driver->irq_handler = cherryview_irq_handler;
4771 dev->driver->irq_preinstall = cherryview_irq_reset;
4772 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4773 dev->driver->irq_uninstall = cherryview_irq_reset;
4774 dev->driver->enable_vblank = i965_enable_vblank;
4775 dev->driver->disable_vblank = i965_disable_vblank;
4776 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4777 } else if (IS_VALLEYVIEW(dev_priv)) {
4778 dev->driver->irq_handler = valleyview_irq_handler;
4779 dev->driver->irq_preinstall = valleyview_irq_reset;
4780 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4781 dev->driver->irq_uninstall = valleyview_irq_reset;
4782 dev->driver->enable_vblank = i965_enable_vblank;
4783 dev->driver->disable_vblank = i965_disable_vblank;
4784 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4785 } else if (INTEL_GEN(dev_priv) >= 11) {
4786 dev->driver->irq_handler = gen11_irq_handler;
4787 dev->driver->irq_preinstall = gen11_irq_reset;
4788 dev->driver->irq_postinstall = gen11_irq_postinstall;
4789 dev->driver->irq_uninstall = gen11_irq_reset;
4790 dev->driver->enable_vblank = gen8_enable_vblank;
4791 dev->driver->disable_vblank = gen8_disable_vblank;
4792 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4793 } else if (INTEL_GEN(dev_priv) >= 8) {
4794 dev->driver->irq_handler = gen8_irq_handler;
4795 dev->driver->irq_preinstall = gen8_irq_reset;
4796 dev->driver->irq_postinstall = gen8_irq_postinstall;
4797 dev->driver->irq_uninstall = gen8_irq_reset;
4798 dev->driver->enable_vblank = gen8_enable_vblank;
4799 dev->driver->disable_vblank = gen8_disable_vblank;
4800 if (IS_GEN9_LP(dev_priv))
4801 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4802 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4803 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4805 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4806 } else if (HAS_PCH_SPLIT(dev_priv)) {
4807 dev->driver->irq_handler = ironlake_irq_handler;
4808 dev->driver->irq_preinstall = ironlake_irq_reset;
4809 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4810 dev->driver->irq_uninstall = ironlake_irq_reset;
4811 dev->driver->enable_vblank = ironlake_enable_vblank;
4812 dev->driver->disable_vblank = ironlake_disable_vblank;
4813 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4815 if (IS_GEN(dev_priv, 2)) {
4816 dev->driver->irq_preinstall = i8xx_irq_reset;
4817 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4818 dev->driver->irq_handler = i8xx_irq_handler;
4819 dev->driver->irq_uninstall = i8xx_irq_reset;
4820 dev->driver->enable_vblank = i8xx_enable_vblank;
4821 dev->driver->disable_vblank = i8xx_disable_vblank;
4822 } else if (IS_I945GM(dev_priv)) {
4823 dev->driver->irq_preinstall = i915_irq_reset;
4824 dev->driver->irq_postinstall = i915_irq_postinstall;
4825 dev->driver->irq_uninstall = i915_irq_reset;
4826 dev->driver->irq_handler = i915_irq_handler;
4827 dev->driver->enable_vblank = i945gm_enable_vblank;
4828 dev->driver->disable_vblank = i945gm_disable_vblank;
4829 } else if (IS_GEN(dev_priv, 3)) {
4830 dev->driver->irq_preinstall = i915_irq_reset;
4831 dev->driver->irq_postinstall = i915_irq_postinstall;
4832 dev->driver->irq_uninstall = i915_irq_reset;
4833 dev->driver->irq_handler = i915_irq_handler;
4834 dev->driver->enable_vblank = i8xx_enable_vblank;
4835 dev->driver->disable_vblank = i8xx_disable_vblank;
4837 dev->driver->irq_preinstall = i965_irq_reset;
4838 dev->driver->irq_postinstall = i965_irq_postinstall;
4839 dev->driver->irq_uninstall = i965_irq_reset;
4840 dev->driver->irq_handler = i965_irq_handler;
4841 dev->driver->enable_vblank = i965_enable_vblank;
4842 dev->driver->disable_vblank = i965_disable_vblank;
4844 if (I915_HAS_HOTPLUG(dev_priv))
4845 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4850 * intel_irq_fini - deinitializes IRQ support
4851 * @i915: i915 device instance
4853 * This function deinitializes all the IRQ support.
4855 void intel_irq_fini(struct drm_i915_private *i915)
4859 if (IS_I945GM(i915))
4860 i945gm_vblank_work_fini(i915);
4862 for (i = 0; i < MAX_L3_SLICES; ++i)
4863 kfree(i915->l3_parity.remap_info[i]);
4867 * intel_irq_install - enables the hardware interrupt
4868 * @dev_priv: i915 device instance
4870 * This function enables the hardware interrupt handling, but leaves the hotplug
4871 * handling still disabled. It is called after intel_irq_init().
4873 * In the driver load and resume code we need working interrupts in a few places
4874 * but don't want to deal with the hassle of concurrent probe and hotplug
4875 * workers. Hence the split into this two-stage approach.
4877 int intel_irq_install(struct drm_i915_private *dev_priv)
4880 * We enable some interrupt sources in our postinstall hooks, so mark
4881 * interrupts as enabled _before_ actually enabling them to avoid
4882 * special cases in our ordering checks.
4884 dev_priv->runtime_pm.irqs_enabled = true;
4886 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4890 * intel_irq_uninstall - finilizes all irq handling
4891 * @dev_priv: i915 device instance
4893 * This stops interrupt and hotplug handling and unregisters and frees all
4894 * resources acquired in the init functions.
4896 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4898 drm_irq_uninstall(&dev_priv->drm);
4899 intel_hpd_cancel_work(dev_priv);
4900 dev_priv->runtime_pm.irqs_enabled = false;
4904 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4905 * @dev_priv: i915 device instance
4907 * This function is used to disable interrupts at runtime, both in the runtime
4908 * pm and the system suspend/resume code.
4910 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4912 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4913 dev_priv->runtime_pm.irqs_enabled = false;
4914 synchronize_irq(dev_priv->drm.irq);
4918 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4919 * @dev_priv: i915 device instance
4921 * This function is used to enable interrupts at runtime, both in the runtime
4922 * pm and the system suspend/resume code.
4924 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4926 dev_priv->runtime_pm.irqs_enabled = true;
4927 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4928 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);