]> Git Repo - linux.git/blob - mm/ksm.c
perf/x86/intel: Support Perfmon MSRs aliasing
[linux.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/rwsem.h>
26 #include <linux/pagemap.h>
27 #include <linux/rmap.h>
28 #include <linux/spinlock.h>
29 #include <linux/xxhash.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/wait.h>
33 #include <linux/slab.h>
34 #include <linux/rbtree.h>
35 #include <linux/memory.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/swap.h>
38 #include <linux/ksm.h>
39 #include <linux/hashtable.h>
40 #include <linux/freezer.h>
41 #include <linux/oom.h>
42 #include <linux/numa.h>
43 #include <linux/pagewalk.h>
44
45 #include <asm/tlbflush.h>
46 #include "internal.h"
47 #include "mm_slot.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/ksm.h>
51
52 #ifdef CONFIG_NUMA
53 #define NUMA(x)         (x)
54 #define DO_NUMA(x)      do { (x); } while (0)
55 #else
56 #define NUMA(x)         (0)
57 #define DO_NUMA(x)      do { } while (0)
58 #endif
59
60 typedef u8 rmap_age_t;
61
62 /**
63  * DOC: Overview
64  *
65  * A few notes about the KSM scanning process,
66  * to make it easier to understand the data structures below:
67  *
68  * In order to reduce excessive scanning, KSM sorts the memory pages by their
69  * contents into a data structure that holds pointers to the pages' locations.
70  *
71  * Since the contents of the pages may change at any moment, KSM cannot just
72  * insert the pages into a normal sorted tree and expect it to find anything.
73  * Therefore KSM uses two data structures - the stable and the unstable tree.
74  *
75  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76  * by their contents.  Because each such page is write-protected, searching on
77  * this tree is fully assured to be working (except when pages are unmapped),
78  * and therefore this tree is called the stable tree.
79  *
80  * The stable tree node includes information required for reverse
81  * mapping from a KSM page to virtual addresses that map this page.
82  *
83  * In order to avoid large latencies of the rmap walks on KSM pages,
84  * KSM maintains two types of nodes in the stable tree:
85  *
86  * * the regular nodes that keep the reverse mapping structures in a
87  *   linked list
88  * * the "chains" that link nodes ("dups") that represent the same
89  *   write protected memory content, but each "dup" corresponds to a
90  *   different KSM page copy of that content
91  *
92  * Internally, the regular nodes, "dups" and "chains" are represented
93  * using the same struct ksm_stable_node structure.
94  *
95  * In addition to the stable tree, KSM uses a second data structure called the
96  * unstable tree: this tree holds pointers to pages which have been found to
97  * be "unchanged for a period of time".  The unstable tree sorts these pages
98  * by their contents, but since they are not write-protected, KSM cannot rely
99  * upon the unstable tree to work correctly - the unstable tree is liable to
100  * be corrupted as its contents are modified, and so it is called unstable.
101  *
102  * KSM solves this problem by several techniques:
103  *
104  * 1) The unstable tree is flushed every time KSM completes scanning all
105  *    memory areas, and then the tree is rebuilt again from the beginning.
106  * 2) KSM will only insert into the unstable tree, pages whose hash value
107  *    has not changed since the previous scan of all memory areas.
108  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109  *    colors of the nodes and not on their contents, assuring that even when
110  *    the tree gets "corrupted" it won't get out of balance, so scanning time
111  *    remains the same (also, searching and inserting nodes in an rbtree uses
112  *    the same algorithm, so we have no overhead when we flush and rebuild).
113  * 4) KSM never flushes the stable tree, which means that even if it were to
114  *    take 10 attempts to find a page in the unstable tree, once it is found,
115  *    it is secured in the stable tree.  (When we scan a new page, we first
116  *    compare it against the stable tree, and then against the unstable tree.)
117  *
118  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119  * stable trees and multiple unstable trees: one of each for each NUMA node.
120  */
121
122 /**
123  * struct ksm_mm_slot - ksm information per mm that is being scanned
124  * @slot: hash lookup from mm to mm_slot
125  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126  */
127 struct ksm_mm_slot {
128         struct mm_slot slot;
129         struct ksm_rmap_item *rmap_list;
130 };
131
132 /**
133  * struct ksm_scan - cursor for scanning
134  * @mm_slot: the current mm_slot we are scanning
135  * @address: the next address inside that to be scanned
136  * @rmap_list: link to the next rmap to be scanned in the rmap_list
137  * @seqnr: count of completed full scans (needed when removing unstable node)
138  *
139  * There is only the one ksm_scan instance of this cursor structure.
140  */
141 struct ksm_scan {
142         struct ksm_mm_slot *mm_slot;
143         unsigned long address;
144         struct ksm_rmap_item **rmap_list;
145         unsigned long seqnr;
146 };
147
148 /**
149  * struct ksm_stable_node - node of the stable rbtree
150  * @node: rb node of this ksm page in the stable tree
151  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
152  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
153  * @list: linked into migrate_nodes, pending placement in the proper node tree
154  * @hlist: hlist head of rmap_items using this ksm page
155  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
156  * @chain_prune_time: time of the last full garbage collection
157  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
158  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
159  */
160 struct ksm_stable_node {
161         union {
162                 struct rb_node node;    /* when node of stable tree */
163                 struct {                /* when listed for migration */
164                         struct list_head *head;
165                         struct {
166                                 struct hlist_node hlist_dup;
167                                 struct list_head list;
168                         };
169                 };
170         };
171         struct hlist_head hlist;
172         union {
173                 unsigned long kpfn;
174                 unsigned long chain_prune_time;
175         };
176         /*
177          * STABLE_NODE_CHAIN can be any negative number in
178          * rmap_hlist_len negative range, but better not -1 to be able
179          * to reliably detect underflows.
180          */
181 #define STABLE_NODE_CHAIN -1024
182         int rmap_hlist_len;
183 #ifdef CONFIG_NUMA
184         int nid;
185 #endif
186 };
187
188 /**
189  * struct ksm_rmap_item - reverse mapping item for virtual addresses
190  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
191  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
192  * @nid: NUMA node id of unstable tree in which linked (may not match page)
193  * @mm: the memory structure this rmap_item is pointing into
194  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195  * @oldchecksum: previous checksum of the page at that virtual address
196  * @node: rb node of this rmap_item in the unstable tree
197  * @head: pointer to stable_node heading this list in the stable tree
198  * @hlist: link into hlist of rmap_items hanging off that stable_node
199  * @age: number of scan iterations since creation
200  * @remaining_skips: how many scans to skip
201  */
202 struct ksm_rmap_item {
203         struct ksm_rmap_item *rmap_list;
204         union {
205                 struct anon_vma *anon_vma;      /* when stable */
206 #ifdef CONFIG_NUMA
207                 int nid;                /* when node of unstable tree */
208 #endif
209         };
210         struct mm_struct *mm;
211         unsigned long address;          /* + low bits used for flags below */
212         unsigned int oldchecksum;       /* when unstable */
213         rmap_age_t age;
214         rmap_age_t remaining_skips;
215         union {
216                 struct rb_node node;    /* when node of unstable tree */
217                 struct {                /* when listed from stable tree */
218                         struct ksm_stable_node *head;
219                         struct hlist_node hlist;
220                 };
221         };
222 };
223
224 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
225 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
226 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
227
228 /* The stable and unstable tree heads */
229 static struct rb_root one_stable_tree[1] = { RB_ROOT };
230 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231 static struct rb_root *root_stable_tree = one_stable_tree;
232 static struct rb_root *root_unstable_tree = one_unstable_tree;
233
234 /* Recently migrated nodes of stable tree, pending proper placement */
235 static LIST_HEAD(migrate_nodes);
236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
237
238 #define MM_SLOTS_HASH_BITS 10
239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
240
241 static struct ksm_mm_slot ksm_mm_head = {
242         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
243 };
244 static struct ksm_scan ksm_scan = {
245         .mm_slot = &ksm_mm_head,
246 };
247
248 static struct kmem_cache *rmap_item_cache;
249 static struct kmem_cache *stable_node_cache;
250 static struct kmem_cache *mm_slot_cache;
251
252 /* Default number of pages to scan per batch */
253 #define DEFAULT_PAGES_TO_SCAN 100
254
255 /* The number of pages scanned */
256 static unsigned long ksm_pages_scanned;
257
258 /* The number of nodes in the stable tree */
259 static unsigned long ksm_pages_shared;
260
261 /* The number of page slots additionally sharing those nodes */
262 static unsigned long ksm_pages_sharing;
263
264 /* The number of nodes in the unstable tree */
265 static unsigned long ksm_pages_unshared;
266
267 /* The number of rmap_items in use: to calculate pages_volatile */
268 static unsigned long ksm_rmap_items;
269
270 /* The number of stable_node chains */
271 static unsigned long ksm_stable_node_chains;
272
273 /* The number of stable_node dups linked to the stable_node chains */
274 static unsigned long ksm_stable_node_dups;
275
276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
278
279 /* Maximum number of page slots sharing a stable node */
280 static int ksm_max_page_sharing = 256;
281
282 /* Number of pages ksmd should scan in one batch */
283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
284
285 /* Milliseconds ksmd should sleep between batches */
286 static unsigned int ksm_thread_sleep_millisecs = 20;
287
288 /* Checksum of an empty (zeroed) page */
289 static unsigned int zero_checksum __read_mostly;
290
291 /* Whether to merge empty (zeroed) pages with actual zero pages */
292 static bool ksm_use_zero_pages __read_mostly;
293
294 /* Skip pages that couldn't be de-duplicated previously */
295 /* Default to true at least temporarily, for testing */
296 static bool ksm_smart_scan = true;
297
298 /* The number of zero pages which is placed by KSM */
299 unsigned long ksm_zero_pages;
300
301 /* The number of pages that have been skipped due to "smart scanning" */
302 static unsigned long ksm_pages_skipped;
303
304 /* Don't scan more than max pages per batch. */
305 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306
307 /* Min CPU for scanning pages per scan */
308 #define KSM_ADVISOR_MIN_CPU 10
309
310 /* Max CPU for scanning pages per scan */
311 static unsigned int ksm_advisor_max_cpu =  70;
312
313 /* Target scan time in seconds to analyze all KSM candidate pages. */
314 static unsigned long ksm_advisor_target_scan_time = 200;
315
316 /* Exponentially weighted moving average. */
317 #define EWMA_WEIGHT 30
318
319 /**
320  * struct advisor_ctx - metadata for KSM advisor
321  * @start_scan: start time of the current scan
322  * @scan_time: scan time of previous scan
323  * @change: change in percent to pages_to_scan parameter
324  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325  */
326 struct advisor_ctx {
327         ktime_t start_scan;
328         unsigned long scan_time;
329         unsigned long change;
330         unsigned long long cpu_time;
331 };
332 static struct advisor_ctx advisor_ctx;
333
334 /* Define different advisor's */
335 enum ksm_advisor_type {
336         KSM_ADVISOR_NONE,
337         KSM_ADVISOR_SCAN_TIME,
338 };
339 static enum ksm_advisor_type ksm_advisor;
340
341 #ifdef CONFIG_SYSFS
342 /*
343  * Only called through the sysfs control interface:
344  */
345
346 /* At least scan this many pages per batch. */
347 static unsigned long ksm_advisor_min_pages_to_scan = 500;
348
349 static void set_advisor_defaults(void)
350 {
351         if (ksm_advisor == KSM_ADVISOR_NONE) {
352                 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353         } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354                 advisor_ctx = (const struct advisor_ctx){ 0 };
355                 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356         }
357 }
358 #endif /* CONFIG_SYSFS */
359
360 static inline void advisor_start_scan(void)
361 {
362         if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363                 advisor_ctx.start_scan = ktime_get();
364 }
365
366 /*
367  * Use previous scan time if available, otherwise use current scan time as an
368  * approximation for the previous scan time.
369  */
370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371                                            unsigned long scan_time)
372 {
373         return ctx->scan_time ? ctx->scan_time : scan_time;
374 }
375
376 /* Calculate exponential weighted moving average */
377 static unsigned long ewma(unsigned long prev, unsigned long curr)
378 {
379         return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380 }
381
382 /*
383  * The scan time advisor is based on the current scan rate and the target
384  * scan rate.
385  *
386  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387  *
388  * To avoid perturbations it calculates a change factor of previous changes.
389  * A new change factor is calculated for each iteration and it uses an
390  * exponentially weighted moving average. The new pages_to_scan value is
391  * multiplied with that change factor:
392  *
393  *      new_pages_to_scan *= change facor
394  *
395  * The new_pages_to_scan value is limited by the cpu min and max values. It
396  * calculates the cpu percent for the last scan and calculates the new
397  * estimated cpu percent cost for the next scan. That value is capped by the
398  * cpu min and max setting.
399  *
400  * In addition the new pages_to_scan value is capped by the max and min
401  * limits.
402  */
403 static void scan_time_advisor(void)
404 {
405         unsigned int cpu_percent;
406         unsigned long cpu_time;
407         unsigned long cpu_time_diff;
408         unsigned long cpu_time_diff_ms;
409         unsigned long pages;
410         unsigned long per_page_cost;
411         unsigned long factor;
412         unsigned long change;
413         unsigned long last_scan_time;
414         unsigned long scan_time;
415
416         /* Convert scan time to seconds */
417         scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418                             MSEC_PER_SEC);
419         scan_time = scan_time ? scan_time : 1;
420
421         /* Calculate CPU consumption of ksmd background thread */
422         cpu_time = task_sched_runtime(current);
423         cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424         cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425
426         cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427         cpu_percent = cpu_percent ? cpu_percent : 1;
428         last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429
430         /* Calculate scan time as percentage of target scan time */
431         factor = ksm_advisor_target_scan_time * 100 / scan_time;
432         factor = factor ? factor : 1;
433
434         /*
435          * Calculate scan time as percentage of last scan time and use
436          * exponentially weighted average to smooth it
437          */
438         change = scan_time * 100 / last_scan_time;
439         change = change ? change : 1;
440         change = ewma(advisor_ctx.change, change);
441
442         /* Calculate new scan rate based on target scan rate. */
443         pages = ksm_thread_pages_to_scan * 100 / factor;
444         /* Update pages_to_scan by weighted change percentage. */
445         pages = pages * change / 100;
446
447         /* Cap new pages_to_scan value */
448         per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449         per_page_cost = per_page_cost ? per_page_cost : 1;
450
451         pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452         pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453         pages = min(pages, ksm_advisor_max_pages_to_scan);
454
455         /* Update advisor context */
456         advisor_ctx.change = change;
457         advisor_ctx.scan_time = scan_time;
458         advisor_ctx.cpu_time = cpu_time;
459
460         ksm_thread_pages_to_scan = pages;
461         trace_ksm_advisor(scan_time, pages, cpu_percent);
462 }
463
464 static void advisor_stop_scan(void)
465 {
466         if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467                 scan_time_advisor();
468 }
469
470 #ifdef CONFIG_NUMA
471 /* Zeroed when merging across nodes is not allowed */
472 static unsigned int ksm_merge_across_nodes = 1;
473 static int ksm_nr_node_ids = 1;
474 #else
475 #define ksm_merge_across_nodes  1U
476 #define ksm_nr_node_ids         1
477 #endif
478
479 #define KSM_RUN_STOP    0
480 #define KSM_RUN_MERGE   1
481 #define KSM_RUN_UNMERGE 2
482 #define KSM_RUN_OFFLINE 4
483 static unsigned long ksm_run = KSM_RUN_STOP;
484 static void wait_while_offlining(void);
485
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
488 static DEFINE_MUTEX(ksm_thread_mutex);
489 static DEFINE_SPINLOCK(ksm_mmlist_lock);
490
491 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
492                 sizeof(struct __struct), __alignof__(struct __struct),\
493                 (__flags), NULL)
494
495 static int __init ksm_slab_init(void)
496 {
497         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
498         if (!rmap_item_cache)
499                 goto out;
500
501         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
502         if (!stable_node_cache)
503                 goto out_free1;
504
505         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
506         if (!mm_slot_cache)
507                 goto out_free2;
508
509         return 0;
510
511 out_free2:
512         kmem_cache_destroy(stable_node_cache);
513 out_free1:
514         kmem_cache_destroy(rmap_item_cache);
515 out:
516         return -ENOMEM;
517 }
518
519 static void __init ksm_slab_free(void)
520 {
521         kmem_cache_destroy(mm_slot_cache);
522         kmem_cache_destroy(stable_node_cache);
523         kmem_cache_destroy(rmap_item_cache);
524         mm_slot_cache = NULL;
525 }
526
527 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
528 {
529         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
530 }
531
532 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
533 {
534         return dup->head == STABLE_NODE_DUP_HEAD;
535 }
536
537 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
538                                              struct ksm_stable_node *chain)
539 {
540         VM_BUG_ON(is_stable_node_dup(dup));
541         dup->head = STABLE_NODE_DUP_HEAD;
542         VM_BUG_ON(!is_stable_node_chain(chain));
543         hlist_add_head(&dup->hlist_dup, &chain->hlist);
544         ksm_stable_node_dups++;
545 }
546
547 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
548 {
549         VM_BUG_ON(!is_stable_node_dup(dup));
550         hlist_del(&dup->hlist_dup);
551         ksm_stable_node_dups--;
552 }
553
554 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
555 {
556         VM_BUG_ON(is_stable_node_chain(dup));
557         if (is_stable_node_dup(dup))
558                 __stable_node_dup_del(dup);
559         else
560                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
561 #ifdef CONFIG_DEBUG_VM
562         dup->head = NULL;
563 #endif
564 }
565
566 static inline struct ksm_rmap_item *alloc_rmap_item(void)
567 {
568         struct ksm_rmap_item *rmap_item;
569
570         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
571                                                 __GFP_NORETRY | __GFP_NOWARN);
572         if (rmap_item)
573                 ksm_rmap_items++;
574         return rmap_item;
575 }
576
577 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
578 {
579         ksm_rmap_items--;
580         rmap_item->mm->ksm_rmap_items--;
581         rmap_item->mm = NULL;   /* debug safety */
582         kmem_cache_free(rmap_item_cache, rmap_item);
583 }
584
585 static inline struct ksm_stable_node *alloc_stable_node(void)
586 {
587         /*
588          * The allocation can take too long with GFP_KERNEL when memory is under
589          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
590          * grants access to memory reserves, helping to avoid this problem.
591          */
592         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
593 }
594
595 static inline void free_stable_node(struct ksm_stable_node *stable_node)
596 {
597         VM_BUG_ON(stable_node->rmap_hlist_len &&
598                   !is_stable_node_chain(stable_node));
599         kmem_cache_free(stable_node_cache, stable_node);
600 }
601
602 /*
603  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
604  * page tables after it has passed through ksm_exit() - which, if necessary,
605  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
606  * a special flag: they can just back out as soon as mm_users goes to zero.
607  * ksm_test_exit() is used throughout to make this test for exit: in some
608  * places for correctness, in some places just to avoid unnecessary work.
609  */
610 static inline bool ksm_test_exit(struct mm_struct *mm)
611 {
612         return atomic_read(&mm->mm_users) == 0;
613 }
614
615 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
616                         struct mm_walk *walk)
617 {
618         struct page *page = NULL;
619         spinlock_t *ptl;
620         pte_t *pte;
621         pte_t ptent;
622         int ret;
623
624         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
625         if (!pte)
626                 return 0;
627         ptent = ptep_get(pte);
628         if (pte_present(ptent)) {
629                 page = vm_normal_page(walk->vma, addr, ptent);
630         } else if (!pte_none(ptent)) {
631                 swp_entry_t entry = pte_to_swp_entry(ptent);
632
633                 /*
634                  * As KSM pages remain KSM pages until freed, no need to wait
635                  * here for migration to end.
636                  */
637                 if (is_migration_entry(entry))
638                         page = pfn_swap_entry_to_page(entry);
639         }
640         /* return 1 if the page is an normal ksm page or KSM-placed zero page */
641         ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
642         pte_unmap_unlock(pte, ptl);
643         return ret;
644 }
645
646 static const struct mm_walk_ops break_ksm_ops = {
647         .pmd_entry = break_ksm_pmd_entry,
648         .walk_lock = PGWALK_RDLOCK,
649 };
650
651 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
652         .pmd_entry = break_ksm_pmd_entry,
653         .walk_lock = PGWALK_WRLOCK,
654 };
655
656 /*
657  * We use break_ksm to break COW on a ksm page by triggering unsharing,
658  * such that the ksm page will get replaced by an exclusive anonymous page.
659  *
660  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
661  * in case the application has unmapped and remapped mm,addr meanwhile.
662  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
663  * mmap of /dev/mem, where we would not want to touch it.
664  *
665  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
666  * of the process that owns 'vma'.  We also do not want to enforce
667  * protection keys here anyway.
668  */
669 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
670 {
671         vm_fault_t ret = 0;
672         const struct mm_walk_ops *ops = lock_vma ?
673                                 &break_ksm_lock_vma_ops : &break_ksm_ops;
674
675         do {
676                 int ksm_page;
677
678                 cond_resched();
679                 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
680                 if (WARN_ON_ONCE(ksm_page < 0))
681                         return ksm_page;
682                 if (!ksm_page)
683                         return 0;
684                 ret = handle_mm_fault(vma, addr,
685                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
686                                       NULL);
687         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
688         /*
689          * We must loop until we no longer find a KSM page because
690          * handle_mm_fault() may back out if there's any difficulty e.g. if
691          * pte accessed bit gets updated concurrently.
692          *
693          * VM_FAULT_SIGBUS could occur if we race with truncation of the
694          * backing file, which also invalidates anonymous pages: that's
695          * okay, that truncation will have unmapped the PageKsm for us.
696          *
697          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
698          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
699          * current task has TIF_MEMDIE set, and will be OOM killed on return
700          * to user; and ksmd, having no mm, would never be chosen for that.
701          *
702          * But if the mm is in a limited mem_cgroup, then the fault may fail
703          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
704          * even ksmd can fail in this way - though it's usually breaking ksm
705          * just to undo a merge it made a moment before, so unlikely to oom.
706          *
707          * That's a pity: we might therefore have more kernel pages allocated
708          * than we're counting as nodes in the stable tree; but ksm_do_scan
709          * will retry to break_cow on each pass, so should recover the page
710          * in due course.  The important thing is to not let VM_MERGEABLE
711          * be cleared while any such pages might remain in the area.
712          */
713         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
714 }
715
716 static bool vma_ksm_compatible(struct vm_area_struct *vma)
717 {
718         if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
719                              VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
720                              VM_MIXEDMAP))
721                 return false;           /* just ignore the advice */
722
723         if (vma_is_dax(vma))
724                 return false;
725
726 #ifdef VM_SAO
727         if (vma->vm_flags & VM_SAO)
728                 return false;
729 #endif
730 #ifdef VM_SPARC_ADI
731         if (vma->vm_flags & VM_SPARC_ADI)
732                 return false;
733 #endif
734
735         return true;
736 }
737
738 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
739                 unsigned long addr)
740 {
741         struct vm_area_struct *vma;
742         if (ksm_test_exit(mm))
743                 return NULL;
744         vma = vma_lookup(mm, addr);
745         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
746                 return NULL;
747         return vma;
748 }
749
750 static void break_cow(struct ksm_rmap_item *rmap_item)
751 {
752         struct mm_struct *mm = rmap_item->mm;
753         unsigned long addr = rmap_item->address;
754         struct vm_area_struct *vma;
755
756         /*
757          * It is not an accident that whenever we want to break COW
758          * to undo, we also need to drop a reference to the anon_vma.
759          */
760         put_anon_vma(rmap_item->anon_vma);
761
762         mmap_read_lock(mm);
763         vma = find_mergeable_vma(mm, addr);
764         if (vma)
765                 break_ksm(vma, addr, false);
766         mmap_read_unlock(mm);
767 }
768
769 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
770 {
771         struct mm_struct *mm = rmap_item->mm;
772         unsigned long addr = rmap_item->address;
773         struct vm_area_struct *vma;
774         struct page *page;
775
776         mmap_read_lock(mm);
777         vma = find_mergeable_vma(mm, addr);
778         if (!vma)
779                 goto out;
780
781         page = follow_page(vma, addr, FOLL_GET);
782         if (IS_ERR_OR_NULL(page))
783                 goto out;
784         if (is_zone_device_page(page))
785                 goto out_putpage;
786         if (PageAnon(page)) {
787                 flush_anon_page(vma, page, addr);
788                 flush_dcache_page(page);
789         } else {
790 out_putpage:
791                 put_page(page);
792 out:
793                 page = NULL;
794         }
795         mmap_read_unlock(mm);
796         return page;
797 }
798
799 /*
800  * This helper is used for getting right index into array of tree roots.
801  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
802  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
803  * every node has its own stable and unstable tree.
804  */
805 static inline int get_kpfn_nid(unsigned long kpfn)
806 {
807         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
808 }
809
810 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
811                                                    struct rb_root *root)
812 {
813         struct ksm_stable_node *chain = alloc_stable_node();
814         VM_BUG_ON(is_stable_node_chain(dup));
815         if (likely(chain)) {
816                 INIT_HLIST_HEAD(&chain->hlist);
817                 chain->chain_prune_time = jiffies;
818                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
819 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
820                 chain->nid = NUMA_NO_NODE; /* debug */
821 #endif
822                 ksm_stable_node_chains++;
823
824                 /*
825                  * Put the stable node chain in the first dimension of
826                  * the stable tree and at the same time remove the old
827                  * stable node.
828                  */
829                 rb_replace_node(&dup->node, &chain->node, root);
830
831                 /*
832                  * Move the old stable node to the second dimension
833                  * queued in the hlist_dup. The invariant is that all
834                  * dup stable_nodes in the chain->hlist point to pages
835                  * that are write protected and have the exact same
836                  * content.
837                  */
838                 stable_node_chain_add_dup(dup, chain);
839         }
840         return chain;
841 }
842
843 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
844                                           struct rb_root *root)
845 {
846         rb_erase(&chain->node, root);
847         free_stable_node(chain);
848         ksm_stable_node_chains--;
849 }
850
851 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
852 {
853         struct ksm_rmap_item *rmap_item;
854
855         /* check it's not STABLE_NODE_CHAIN or negative */
856         BUG_ON(stable_node->rmap_hlist_len < 0);
857
858         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
859                 if (rmap_item->hlist.next) {
860                         ksm_pages_sharing--;
861                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
862                 } else {
863                         ksm_pages_shared--;
864                 }
865
866                 rmap_item->mm->ksm_merging_pages--;
867
868                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
869                 stable_node->rmap_hlist_len--;
870                 put_anon_vma(rmap_item->anon_vma);
871                 rmap_item->address &= PAGE_MASK;
872                 cond_resched();
873         }
874
875         /*
876          * We need the second aligned pointer of the migrate_nodes
877          * list_head to stay clear from the rb_parent_color union
878          * (aligned and different than any node) and also different
879          * from &migrate_nodes. This will verify that future list.h changes
880          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
881          */
882         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
883         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
884
885         trace_ksm_remove_ksm_page(stable_node->kpfn);
886         if (stable_node->head == &migrate_nodes)
887                 list_del(&stable_node->list);
888         else
889                 stable_node_dup_del(stable_node);
890         free_stable_node(stable_node);
891 }
892
893 enum ksm_get_folio_flags {
894         KSM_GET_FOLIO_NOLOCK,
895         KSM_GET_FOLIO_LOCK,
896         KSM_GET_FOLIO_TRYLOCK
897 };
898
899 /*
900  * ksm_get_folio: checks if the page indicated by the stable node
901  * is still its ksm page, despite having held no reference to it.
902  * In which case we can trust the content of the page, and it
903  * returns the gotten page; but if the page has now been zapped,
904  * remove the stale node from the stable tree and return NULL.
905  * But beware, the stable node's page might be being migrated.
906  *
907  * You would expect the stable_node to hold a reference to the ksm page.
908  * But if it increments the page's count, swapping out has to wait for
909  * ksmd to come around again before it can free the page, which may take
910  * seconds or even minutes: much too unresponsive.  So instead we use a
911  * "keyhole reference": access to the ksm page from the stable node peeps
912  * out through its keyhole to see if that page still holds the right key,
913  * pointing back to this stable node.  This relies on freeing a PageAnon
914  * page to reset its page->mapping to NULL, and relies on no other use of
915  * a page to put something that might look like our key in page->mapping.
916  * is on its way to being freed; but it is an anomaly to bear in mind.
917  */
918 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
919                                  enum ksm_get_folio_flags flags)
920 {
921         struct folio *folio;
922         void *expected_mapping;
923         unsigned long kpfn;
924
925         expected_mapping = (void *)((unsigned long)stable_node |
926                                         PAGE_MAPPING_KSM);
927 again:
928         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
929         folio = pfn_folio(kpfn);
930         if (READ_ONCE(folio->mapping) != expected_mapping)
931                 goto stale;
932
933         /*
934          * We cannot do anything with the page while its refcount is 0.
935          * Usually 0 means free, or tail of a higher-order page: in which
936          * case this node is no longer referenced, and should be freed;
937          * however, it might mean that the page is under page_ref_freeze().
938          * The __remove_mapping() case is easy, again the node is now stale;
939          * the same is in reuse_ksm_page() case; but if page is swapcache
940          * in folio_migrate_mapping(), it might still be our page,
941          * in which case it's essential to keep the node.
942          */
943         while (!folio_try_get(folio)) {
944                 /*
945                  * Another check for page->mapping != expected_mapping would
946                  * work here too.  We have chosen the !PageSwapCache test to
947                  * optimize the common case, when the page is or is about to
948                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
949                  * in the ref_freeze section of __remove_mapping(); but Anon
950                  * folio->mapping reset to NULL later, in free_pages_prepare().
951                  */
952                 if (!folio_test_swapcache(folio))
953                         goto stale;
954                 cpu_relax();
955         }
956
957         if (READ_ONCE(folio->mapping) != expected_mapping) {
958                 folio_put(folio);
959                 goto stale;
960         }
961
962         if (flags == KSM_GET_FOLIO_TRYLOCK) {
963                 if (!folio_trylock(folio)) {
964                         folio_put(folio);
965                         return ERR_PTR(-EBUSY);
966                 }
967         } else if (flags == KSM_GET_FOLIO_LOCK)
968                 folio_lock(folio);
969
970         if (flags != KSM_GET_FOLIO_NOLOCK) {
971                 if (READ_ONCE(folio->mapping) != expected_mapping) {
972                         folio_unlock(folio);
973                         folio_put(folio);
974                         goto stale;
975                 }
976         }
977         return folio;
978
979 stale:
980         /*
981          * We come here from above when page->mapping or !PageSwapCache
982          * suggests that the node is stale; but it might be under migration.
983          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
984          * before checking whether node->kpfn has been changed.
985          */
986         smp_rmb();
987         if (READ_ONCE(stable_node->kpfn) != kpfn)
988                 goto again;
989         remove_node_from_stable_tree(stable_node);
990         return NULL;
991 }
992
993 /*
994  * Removing rmap_item from stable or unstable tree.
995  * This function will clean the information from the stable/unstable tree.
996  */
997 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
998 {
999         if (rmap_item->address & STABLE_FLAG) {
1000                 struct ksm_stable_node *stable_node;
1001                 struct folio *folio;
1002
1003                 stable_node = rmap_item->head;
1004                 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1005                 if (!folio)
1006                         goto out;
1007
1008                 hlist_del(&rmap_item->hlist);
1009                 folio_unlock(folio);
1010                 folio_put(folio);
1011
1012                 if (!hlist_empty(&stable_node->hlist))
1013                         ksm_pages_sharing--;
1014                 else
1015                         ksm_pages_shared--;
1016
1017                 rmap_item->mm->ksm_merging_pages--;
1018
1019                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1020                 stable_node->rmap_hlist_len--;
1021
1022                 put_anon_vma(rmap_item->anon_vma);
1023                 rmap_item->head = NULL;
1024                 rmap_item->address &= PAGE_MASK;
1025
1026         } else if (rmap_item->address & UNSTABLE_FLAG) {
1027                 unsigned char age;
1028                 /*
1029                  * Usually ksmd can and must skip the rb_erase, because
1030                  * root_unstable_tree was already reset to RB_ROOT.
1031                  * But be careful when an mm is exiting: do the rb_erase
1032                  * if this rmap_item was inserted by this scan, rather
1033                  * than left over from before.
1034                  */
1035                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1036                 BUG_ON(age > 1);
1037                 if (!age)
1038                         rb_erase(&rmap_item->node,
1039                                  root_unstable_tree + NUMA(rmap_item->nid));
1040                 ksm_pages_unshared--;
1041                 rmap_item->address &= PAGE_MASK;
1042         }
1043 out:
1044         cond_resched();         /* we're called from many long loops */
1045 }
1046
1047 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1048 {
1049         while (*rmap_list) {
1050                 struct ksm_rmap_item *rmap_item = *rmap_list;
1051                 *rmap_list = rmap_item->rmap_list;
1052                 remove_rmap_item_from_tree(rmap_item);
1053                 free_rmap_item(rmap_item);
1054         }
1055 }
1056
1057 /*
1058  * Though it's very tempting to unmerge rmap_items from stable tree rather
1059  * than check every pte of a given vma, the locking doesn't quite work for
1060  * that - an rmap_item is assigned to the stable tree after inserting ksm
1061  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1062  * rmap_items from parent to child at fork time (so as not to waste time
1063  * if exit comes before the next scan reaches it).
1064  *
1065  * Similarly, although we'd like to remove rmap_items (so updating counts
1066  * and freeing memory) when unmerging an area, it's easier to leave that
1067  * to the next pass of ksmd - consider, for example, how ksmd might be
1068  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1069  */
1070 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1071                              unsigned long start, unsigned long end, bool lock_vma)
1072 {
1073         unsigned long addr;
1074         int err = 0;
1075
1076         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1077                 if (ksm_test_exit(vma->vm_mm))
1078                         break;
1079                 if (signal_pending(current))
1080                         err = -ERESTARTSYS;
1081                 else
1082                         err = break_ksm(vma, addr, lock_vma);
1083         }
1084         return err;
1085 }
1086
1087 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
1088 {
1089         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1090 }
1091
1092 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1093 {
1094         return folio_stable_node(page_folio(page));
1095 }
1096
1097 static inline void folio_set_stable_node(struct folio *folio,
1098                                          struct ksm_stable_node *stable_node)
1099 {
1100         VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1101         folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1102 }
1103
1104 #ifdef CONFIG_SYSFS
1105 /*
1106  * Only called through the sysfs control interface:
1107  */
1108 static int remove_stable_node(struct ksm_stable_node *stable_node)
1109 {
1110         struct folio *folio;
1111         int err;
1112
1113         folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1114         if (!folio) {
1115                 /*
1116                  * ksm_get_folio did remove_node_from_stable_tree itself.
1117                  */
1118                 return 0;
1119         }
1120
1121         /*
1122          * Page could be still mapped if this races with __mmput() running in
1123          * between ksm_exit() and exit_mmap(). Just refuse to let
1124          * merge_across_nodes/max_page_sharing be switched.
1125          */
1126         err = -EBUSY;
1127         if (!folio_mapped(folio)) {
1128                 /*
1129                  * The stable node did not yet appear stale to ksm_get_folio(),
1130                  * since that allows for an unmapped ksm folio to be recognized
1131                  * right up until it is freed; but the node is safe to remove.
1132                  * This folio might be in an LRU cache waiting to be freed,
1133                  * or it might be in the swapcache (perhaps under writeback),
1134                  * or it might have been removed from swapcache a moment ago.
1135                  */
1136                 folio_set_stable_node(folio, NULL);
1137                 remove_node_from_stable_tree(stable_node);
1138                 err = 0;
1139         }
1140
1141         folio_unlock(folio);
1142         folio_put(folio);
1143         return err;
1144 }
1145
1146 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1147                                     struct rb_root *root)
1148 {
1149         struct ksm_stable_node *dup;
1150         struct hlist_node *hlist_safe;
1151
1152         if (!is_stable_node_chain(stable_node)) {
1153                 VM_BUG_ON(is_stable_node_dup(stable_node));
1154                 if (remove_stable_node(stable_node))
1155                         return true;
1156                 else
1157                         return false;
1158         }
1159
1160         hlist_for_each_entry_safe(dup, hlist_safe,
1161                                   &stable_node->hlist, hlist_dup) {
1162                 VM_BUG_ON(!is_stable_node_dup(dup));
1163                 if (remove_stable_node(dup))
1164                         return true;
1165         }
1166         BUG_ON(!hlist_empty(&stable_node->hlist));
1167         free_stable_node_chain(stable_node, root);
1168         return false;
1169 }
1170
1171 static int remove_all_stable_nodes(void)
1172 {
1173         struct ksm_stable_node *stable_node, *next;
1174         int nid;
1175         int err = 0;
1176
1177         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1178                 while (root_stable_tree[nid].rb_node) {
1179                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
1180                                                 struct ksm_stable_node, node);
1181                         if (remove_stable_node_chain(stable_node,
1182                                                      root_stable_tree + nid)) {
1183                                 err = -EBUSY;
1184                                 break;  /* proceed to next nid */
1185                         }
1186                         cond_resched();
1187                 }
1188         }
1189         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1190                 if (remove_stable_node(stable_node))
1191                         err = -EBUSY;
1192                 cond_resched();
1193         }
1194         return err;
1195 }
1196
1197 static int unmerge_and_remove_all_rmap_items(void)
1198 {
1199         struct ksm_mm_slot *mm_slot;
1200         struct mm_slot *slot;
1201         struct mm_struct *mm;
1202         struct vm_area_struct *vma;
1203         int err = 0;
1204
1205         spin_lock(&ksm_mmlist_lock);
1206         slot = list_entry(ksm_mm_head.slot.mm_node.next,
1207                           struct mm_slot, mm_node);
1208         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1209         spin_unlock(&ksm_mmlist_lock);
1210
1211         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1212              mm_slot = ksm_scan.mm_slot) {
1213                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1214
1215                 mm = mm_slot->slot.mm;
1216                 mmap_read_lock(mm);
1217
1218                 /*
1219                  * Exit right away if mm is exiting to avoid lockdep issue in
1220                  * the maple tree
1221                  */
1222                 if (ksm_test_exit(mm))
1223                         goto mm_exiting;
1224
1225                 for_each_vma(vmi, vma) {
1226                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1227                                 continue;
1228                         err = unmerge_ksm_pages(vma,
1229                                                 vma->vm_start, vma->vm_end, false);
1230                         if (err)
1231                                 goto error;
1232                 }
1233
1234 mm_exiting:
1235                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1236                 mmap_read_unlock(mm);
1237
1238                 spin_lock(&ksm_mmlist_lock);
1239                 slot = list_entry(mm_slot->slot.mm_node.next,
1240                                   struct mm_slot, mm_node);
1241                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1242                 if (ksm_test_exit(mm)) {
1243                         hash_del(&mm_slot->slot.hash);
1244                         list_del(&mm_slot->slot.mm_node);
1245                         spin_unlock(&ksm_mmlist_lock);
1246
1247                         mm_slot_free(mm_slot_cache, mm_slot);
1248                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1249                         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1250                         mmdrop(mm);
1251                 } else
1252                         spin_unlock(&ksm_mmlist_lock);
1253         }
1254
1255         /* Clean up stable nodes, but don't worry if some are still busy */
1256         remove_all_stable_nodes();
1257         ksm_scan.seqnr = 0;
1258         return 0;
1259
1260 error:
1261         mmap_read_unlock(mm);
1262         spin_lock(&ksm_mmlist_lock);
1263         ksm_scan.mm_slot = &ksm_mm_head;
1264         spin_unlock(&ksm_mmlist_lock);
1265         return err;
1266 }
1267 #endif /* CONFIG_SYSFS */
1268
1269 static u32 calc_checksum(struct page *page)
1270 {
1271         u32 checksum;
1272         void *addr = kmap_local_page(page);
1273         checksum = xxhash(addr, PAGE_SIZE, 0);
1274         kunmap_local(addr);
1275         return checksum;
1276 }
1277
1278 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1279                               pte_t *orig_pte)
1280 {
1281         struct mm_struct *mm = vma->vm_mm;
1282         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1283         int swapped;
1284         int err = -EFAULT;
1285         struct mmu_notifier_range range;
1286         bool anon_exclusive;
1287         pte_t entry;
1288
1289         if (WARN_ON_ONCE(folio_test_large(folio)))
1290                 return err;
1291
1292         pvmw.address = page_address_in_vma(&folio->page, vma);
1293         if (pvmw.address == -EFAULT)
1294                 goto out;
1295
1296         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1297                                 pvmw.address + PAGE_SIZE);
1298         mmu_notifier_invalidate_range_start(&range);
1299
1300         if (!page_vma_mapped_walk(&pvmw))
1301                 goto out_mn;
1302         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1303                 goto out_unlock;
1304
1305         anon_exclusive = PageAnonExclusive(&folio->page);
1306         entry = ptep_get(pvmw.pte);
1307         if (pte_write(entry) || pte_dirty(entry) ||
1308             anon_exclusive || mm_tlb_flush_pending(mm)) {
1309                 swapped = folio_test_swapcache(folio);
1310                 flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1311                 /*
1312                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1313                  * take any lock, therefore the check that we are going to make
1314                  * with the pagecount against the mapcount is racy and
1315                  * O_DIRECT can happen right after the check.
1316                  * So we clear the pte and flush the tlb before the check
1317                  * this assure us that no O_DIRECT can happen after the check
1318                  * or in the middle of the check.
1319                  *
1320                  * No need to notify as we are downgrading page table to read
1321                  * only not changing it to point to a new page.
1322                  *
1323                  * See Documentation/mm/mmu_notifier.rst
1324                  */
1325                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1326                 /*
1327                  * Check that no O_DIRECT or similar I/O is in progress on the
1328                  * page
1329                  */
1330                 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1331                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1332                         goto out_unlock;
1333                 }
1334
1335                 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1336                 if (anon_exclusive &&
1337                     folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1338                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1339                         goto out_unlock;
1340                 }
1341
1342                 if (pte_dirty(entry))
1343                         folio_mark_dirty(folio);
1344                 entry = pte_mkclean(entry);
1345
1346                 if (pte_write(entry))
1347                         entry = pte_wrprotect(entry);
1348
1349                 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1350         }
1351         *orig_pte = entry;
1352         err = 0;
1353
1354 out_unlock:
1355         page_vma_mapped_walk_done(&pvmw);
1356 out_mn:
1357         mmu_notifier_invalidate_range_end(&range);
1358 out:
1359         return err;
1360 }
1361
1362 /**
1363  * replace_page - replace page in vma by new ksm page
1364  * @vma:      vma that holds the pte pointing to page
1365  * @page:     the page we are replacing by kpage
1366  * @kpage:    the ksm page we replace page by
1367  * @orig_pte: the original value of the pte
1368  *
1369  * Returns 0 on success, -EFAULT on failure.
1370  */
1371 static int replace_page(struct vm_area_struct *vma, struct page *page,
1372                         struct page *kpage, pte_t orig_pte)
1373 {
1374         struct folio *kfolio = page_folio(kpage);
1375         struct mm_struct *mm = vma->vm_mm;
1376         struct folio *folio;
1377         pmd_t *pmd;
1378         pmd_t pmde;
1379         pte_t *ptep;
1380         pte_t newpte;
1381         spinlock_t *ptl;
1382         unsigned long addr;
1383         int err = -EFAULT;
1384         struct mmu_notifier_range range;
1385
1386         addr = page_address_in_vma(page, vma);
1387         if (addr == -EFAULT)
1388                 goto out;
1389
1390         pmd = mm_find_pmd(mm, addr);
1391         if (!pmd)
1392                 goto out;
1393         /*
1394          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1395          * without holding anon_vma lock for write.  So when looking for a
1396          * genuine pmde (in which to find pte), test present and !THP together.
1397          */
1398         pmde = pmdp_get_lockless(pmd);
1399         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1400                 goto out;
1401
1402         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1403                                 addr + PAGE_SIZE);
1404         mmu_notifier_invalidate_range_start(&range);
1405
1406         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1407         if (!ptep)
1408                 goto out_mn;
1409         if (!pte_same(ptep_get(ptep), orig_pte)) {
1410                 pte_unmap_unlock(ptep, ptl);
1411                 goto out_mn;
1412         }
1413         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1414         VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1415                         kfolio);
1416
1417         /*
1418          * No need to check ksm_use_zero_pages here: we can only have a
1419          * zero_page here if ksm_use_zero_pages was enabled already.
1420          */
1421         if (!is_zero_pfn(page_to_pfn(kpage))) {
1422                 folio_get(kfolio);
1423                 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1424                 newpte = mk_pte(kpage, vma->vm_page_prot);
1425         } else {
1426                 /*
1427                  * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1428                  * we can easily track all KSM-placed zero pages by checking if
1429                  * the dirty bit in zero page's PTE is set.
1430                  */
1431                 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1432                 ksm_zero_pages++;
1433                 mm->ksm_zero_pages++;
1434                 /*
1435                  * We're replacing an anonymous page with a zero page, which is
1436                  * not anonymous. We need to do proper accounting otherwise we
1437                  * will get wrong values in /proc, and a BUG message in dmesg
1438                  * when tearing down the mm.
1439                  */
1440                 dec_mm_counter(mm, MM_ANONPAGES);
1441         }
1442
1443         flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1444         /*
1445          * No need to notify as we are replacing a read only page with another
1446          * read only page with the same content.
1447          *
1448          * See Documentation/mm/mmu_notifier.rst
1449          */
1450         ptep_clear_flush(vma, addr, ptep);
1451         set_pte_at(mm, addr, ptep, newpte);
1452
1453         folio = page_folio(page);
1454         folio_remove_rmap_pte(folio, page, vma);
1455         if (!folio_mapped(folio))
1456                 folio_free_swap(folio);
1457         folio_put(folio);
1458
1459         pte_unmap_unlock(ptep, ptl);
1460         err = 0;
1461 out_mn:
1462         mmu_notifier_invalidate_range_end(&range);
1463 out:
1464         return err;
1465 }
1466
1467 /*
1468  * try_to_merge_one_page - take two pages and merge them into one
1469  * @vma: the vma that holds the pte pointing to page
1470  * @page: the PageAnon page that we want to replace with kpage
1471  * @kpage: the PageKsm page that we want to map instead of page,
1472  *         or NULL the first time when we want to use page as kpage.
1473  *
1474  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1475  */
1476 static int try_to_merge_one_page(struct vm_area_struct *vma,
1477                                  struct page *page, struct page *kpage)
1478 {
1479         pte_t orig_pte = __pte(0);
1480         int err = -EFAULT;
1481
1482         if (page == kpage)                      /* ksm page forked */
1483                 return 0;
1484
1485         if (!PageAnon(page))
1486                 goto out;
1487
1488         /*
1489          * We need the page lock to read a stable PageSwapCache in
1490          * write_protect_page().  We use trylock_page() instead of
1491          * lock_page() because we don't want to wait here - we
1492          * prefer to continue scanning and merging different pages,
1493          * then come back to this page when it is unlocked.
1494          */
1495         if (!trylock_page(page))
1496                 goto out;
1497
1498         if (PageTransCompound(page)) {
1499                 if (split_huge_page(page))
1500                         goto out_unlock;
1501         }
1502
1503         /*
1504          * If this anonymous page is mapped only here, its pte may need
1505          * to be write-protected.  If it's mapped elsewhere, all of its
1506          * ptes are necessarily already write-protected.  But in either
1507          * case, we need to lock and check page_count is not raised.
1508          */
1509         if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) {
1510                 if (!kpage) {
1511                         /*
1512                          * While we hold page lock, upgrade page from
1513                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1514                          * stable_tree_insert() will update stable_node.
1515                          */
1516                         folio_set_stable_node(page_folio(page), NULL);
1517                         mark_page_accessed(page);
1518                         /*
1519                          * Page reclaim just frees a clean page with no dirty
1520                          * ptes: make sure that the ksm page would be swapped.
1521                          */
1522                         if (!PageDirty(page))
1523                                 SetPageDirty(page);
1524                         err = 0;
1525                 } else if (pages_identical(page, kpage))
1526                         err = replace_page(vma, page, kpage, orig_pte);
1527         }
1528
1529 out_unlock:
1530         unlock_page(page);
1531 out:
1532         return err;
1533 }
1534
1535 /*
1536  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1537  * but no new kernel page is allocated: kpage must already be a ksm page.
1538  *
1539  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1540  */
1541 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1542                                       struct page *page, struct page *kpage)
1543 {
1544         struct mm_struct *mm = rmap_item->mm;
1545         struct vm_area_struct *vma;
1546         int err = -EFAULT;
1547
1548         mmap_read_lock(mm);
1549         vma = find_mergeable_vma(mm, rmap_item->address);
1550         if (!vma)
1551                 goto out;
1552
1553         err = try_to_merge_one_page(vma, page, kpage);
1554         if (err)
1555                 goto out;
1556
1557         /* Unstable nid is in union with stable anon_vma: remove first */
1558         remove_rmap_item_from_tree(rmap_item);
1559
1560         /* Must get reference to anon_vma while still holding mmap_lock */
1561         rmap_item->anon_vma = vma->anon_vma;
1562         get_anon_vma(vma->anon_vma);
1563 out:
1564         mmap_read_unlock(mm);
1565         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1566                                 rmap_item, mm, err);
1567         return err;
1568 }
1569
1570 /*
1571  * try_to_merge_two_pages - take two identical pages and prepare them
1572  * to be merged into one page.
1573  *
1574  * This function returns the kpage if we successfully merged two identical
1575  * pages into one ksm page, NULL otherwise.
1576  *
1577  * Note that this function upgrades page to ksm page: if one of the pages
1578  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1579  */
1580 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1581                                            struct page *page,
1582                                            struct ksm_rmap_item *tree_rmap_item,
1583                                            struct page *tree_page)
1584 {
1585         int err;
1586
1587         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1588         if (!err) {
1589                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1590                                                         tree_page, page);
1591                 /*
1592                  * If that fails, we have a ksm page with only one pte
1593                  * pointing to it: so break it.
1594                  */
1595                 if (err)
1596                         break_cow(rmap_item);
1597         }
1598         return err ? NULL : page;
1599 }
1600
1601 static __always_inline
1602 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1603 {
1604         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1605         /*
1606          * Check that at least one mapping still exists, otherwise
1607          * there's no much point to merge and share with this
1608          * stable_node, as the underlying tree_page of the other
1609          * sharer is going to be freed soon.
1610          */
1611         return stable_node->rmap_hlist_len &&
1612                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1613 }
1614
1615 static __always_inline
1616 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1617 {
1618         return __is_page_sharing_candidate(stable_node, 0);
1619 }
1620
1621 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1622                                      struct ksm_stable_node **_stable_node,
1623                                      struct rb_root *root,
1624                                      bool prune_stale_stable_nodes)
1625 {
1626         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1627         struct hlist_node *hlist_safe;
1628         struct folio *folio, *tree_folio = NULL;
1629         int nr = 0;
1630         int found_rmap_hlist_len;
1631
1632         if (!prune_stale_stable_nodes ||
1633             time_before(jiffies, stable_node->chain_prune_time +
1634                         msecs_to_jiffies(
1635                                 ksm_stable_node_chains_prune_millisecs)))
1636                 prune_stale_stable_nodes = false;
1637         else
1638                 stable_node->chain_prune_time = jiffies;
1639
1640         hlist_for_each_entry_safe(dup, hlist_safe,
1641                                   &stable_node->hlist, hlist_dup) {
1642                 cond_resched();
1643                 /*
1644                  * We must walk all stable_node_dup to prune the stale
1645                  * stable nodes during lookup.
1646                  *
1647                  * ksm_get_folio can drop the nodes from the
1648                  * stable_node->hlist if they point to freed pages
1649                  * (that's why we do a _safe walk). The "dup"
1650                  * stable_node parameter itself will be freed from
1651                  * under us if it returns NULL.
1652                  */
1653                 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1654                 if (!folio)
1655                         continue;
1656                 nr += 1;
1657                 if (is_page_sharing_candidate(dup)) {
1658                         if (!found ||
1659                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1660                                 if (found)
1661                                         folio_put(tree_folio);
1662                                 found = dup;
1663                                 found_rmap_hlist_len = found->rmap_hlist_len;
1664                                 tree_folio = folio;
1665
1666                                 /* skip put_page for found dup */
1667                                 if (!prune_stale_stable_nodes)
1668                                         break;
1669                                 continue;
1670                         }
1671                 }
1672                 folio_put(folio);
1673         }
1674
1675         if (found) {
1676                 /*
1677                  * nr is counting all dups in the chain only if
1678                  * prune_stale_stable_nodes is true, otherwise we may
1679                  * break the loop at nr == 1 even if there are
1680                  * multiple entries.
1681                  */
1682                 if (prune_stale_stable_nodes && nr == 1) {
1683                         /*
1684                          * If there's not just one entry it would
1685                          * corrupt memory, better BUG_ON. In KSM
1686                          * context with no lock held it's not even
1687                          * fatal.
1688                          */
1689                         BUG_ON(stable_node->hlist.first->next);
1690
1691                         /*
1692                          * There's just one entry and it is below the
1693                          * deduplication limit so drop the chain.
1694                          */
1695                         rb_replace_node(&stable_node->node, &found->node,
1696                                         root);
1697                         free_stable_node(stable_node);
1698                         ksm_stable_node_chains--;
1699                         ksm_stable_node_dups--;
1700                         /*
1701                          * NOTE: the caller depends on the stable_node
1702                          * to be equal to stable_node_dup if the chain
1703                          * was collapsed.
1704                          */
1705                         *_stable_node = found;
1706                         /*
1707                          * Just for robustness, as stable_node is
1708                          * otherwise left as a stable pointer, the
1709                          * compiler shall optimize it away at build
1710                          * time.
1711                          */
1712                         stable_node = NULL;
1713                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1714                            __is_page_sharing_candidate(found, 1)) {
1715                         /*
1716                          * If the found stable_node dup can accept one
1717                          * more future merge (in addition to the one
1718                          * that is underway) and is not at the head of
1719                          * the chain, put it there so next search will
1720                          * be quicker in the !prune_stale_stable_nodes
1721                          * case.
1722                          *
1723                          * NOTE: it would be inaccurate to use nr > 1
1724                          * instead of checking the hlist.first pointer
1725                          * directly, because in the
1726                          * prune_stale_stable_nodes case "nr" isn't
1727                          * the position of the found dup in the chain,
1728                          * but the total number of dups in the chain.
1729                          */
1730                         hlist_del(&found->hlist_dup);
1731                         hlist_add_head(&found->hlist_dup,
1732                                        &stable_node->hlist);
1733                 }
1734         }
1735
1736         *_stable_node_dup = found;
1737         return tree_folio;
1738 }
1739
1740 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1741                                                struct rb_root *root)
1742 {
1743         if (!is_stable_node_chain(stable_node))
1744                 return stable_node;
1745         if (hlist_empty(&stable_node->hlist)) {
1746                 free_stable_node_chain(stable_node, root);
1747                 return NULL;
1748         }
1749         return hlist_entry(stable_node->hlist.first,
1750                            typeof(*stable_node), hlist_dup);
1751 }
1752
1753 /*
1754  * Like for ksm_get_folio, this function can free the *_stable_node and
1755  * *_stable_node_dup if the returned tree_page is NULL.
1756  *
1757  * It can also free and overwrite *_stable_node with the found
1758  * stable_node_dup if the chain is collapsed (in which case
1759  * *_stable_node will be equal to *_stable_node_dup like if the chain
1760  * never existed). It's up to the caller to verify tree_page is not
1761  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1762  *
1763  * *_stable_node_dup is really a second output parameter of this
1764  * function and will be overwritten in all cases, the caller doesn't
1765  * need to initialize it.
1766  */
1767 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1768                                          struct ksm_stable_node **_stable_node,
1769                                          struct rb_root *root,
1770                                          bool prune_stale_stable_nodes)
1771 {
1772         struct ksm_stable_node *stable_node = *_stable_node;
1773         if (!is_stable_node_chain(stable_node)) {
1774                 if (is_page_sharing_candidate(stable_node)) {
1775                         *_stable_node_dup = stable_node;
1776                         return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1777                 }
1778                 /*
1779                  * _stable_node_dup set to NULL means the stable_node
1780                  * reached the ksm_max_page_sharing limit.
1781                  */
1782                 *_stable_node_dup = NULL;
1783                 return NULL;
1784         }
1785         return stable_node_dup(_stable_node_dup, _stable_node, root,
1786                                prune_stale_stable_nodes);
1787 }
1788
1789 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1790                                                  struct ksm_stable_node **s_n,
1791                                                  struct rb_root *root)
1792 {
1793         return __stable_node_chain(s_n_d, s_n, root, true);
1794 }
1795
1796 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1797                                            struct ksm_stable_node *s_n,
1798                                            struct rb_root *root)
1799 {
1800         struct ksm_stable_node *old_stable_node = s_n;
1801         struct folio *tree_folio;
1802
1803         tree_folio = __stable_node_chain(s_n_d, &s_n, root, false);
1804         /* not pruning dups so s_n cannot have changed */
1805         VM_BUG_ON(s_n != old_stable_node);
1806         return tree_folio;
1807 }
1808
1809 /*
1810  * stable_tree_search - search for page inside the stable tree
1811  *
1812  * This function checks if there is a page inside the stable tree
1813  * with identical content to the page that we are scanning right now.
1814  *
1815  * This function returns the stable tree node of identical content if found,
1816  * NULL otherwise.
1817  */
1818 static struct page *stable_tree_search(struct page *page)
1819 {
1820         int nid;
1821         struct rb_root *root;
1822         struct rb_node **new;
1823         struct rb_node *parent;
1824         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1825         struct ksm_stable_node *page_node;
1826         struct folio *folio;
1827
1828         folio = page_folio(page);
1829         page_node = folio_stable_node(folio);
1830         if (page_node && page_node->head != &migrate_nodes) {
1831                 /* ksm page forked */
1832                 folio_get(folio);
1833                 return &folio->page;
1834         }
1835
1836         nid = get_kpfn_nid(folio_pfn(folio));
1837         root = root_stable_tree + nid;
1838 again:
1839         new = &root->rb_node;
1840         parent = NULL;
1841
1842         while (*new) {
1843                 struct folio *tree_folio;
1844                 int ret;
1845
1846                 cond_resched();
1847                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1848                 stable_node_any = NULL;
1849                 tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1850                 /*
1851                  * NOTE: stable_node may have been freed by
1852                  * chain_prune() if the returned stable_node_dup is
1853                  * not NULL. stable_node_dup may have been inserted in
1854                  * the rbtree instead as a regular stable_node (in
1855                  * order to collapse the stable_node chain if a single
1856                  * stable_node dup was found in it). In such case the
1857                  * stable_node is overwritten by the callee to point
1858                  * to the stable_node_dup that was collapsed in the
1859                  * stable rbtree and stable_node will be equal to
1860                  * stable_node_dup like if the chain never existed.
1861                  */
1862                 if (!stable_node_dup) {
1863                         /*
1864                          * Either all stable_node dups were full in
1865                          * this stable_node chain, or this chain was
1866                          * empty and should be rb_erased.
1867                          */
1868                         stable_node_any = stable_node_dup_any(stable_node,
1869                                                               root);
1870                         if (!stable_node_any) {
1871                                 /* rb_erase just run */
1872                                 goto again;
1873                         }
1874                         /*
1875                          * Take any of the stable_node dups page of
1876                          * this stable_node chain to let the tree walk
1877                          * continue. All KSM pages belonging to the
1878                          * stable_node dups in a stable_node chain
1879                          * have the same content and they're
1880                          * write protected at all times. Any will work
1881                          * fine to continue the walk.
1882                          */
1883                         tree_folio = ksm_get_folio(stable_node_any,
1884                                                    KSM_GET_FOLIO_NOLOCK);
1885                 }
1886                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1887                 if (!tree_folio) {
1888                         /*
1889                          * If we walked over a stale stable_node,
1890                          * ksm_get_folio() will call rb_erase() and it
1891                          * may rebalance the tree from under us. So
1892                          * restart the search from scratch. Returning
1893                          * NULL would be safe too, but we'd generate
1894                          * false negative insertions just because some
1895                          * stable_node was stale.
1896                          */
1897                         goto again;
1898                 }
1899
1900                 ret = memcmp_pages(page, &tree_folio->page);
1901                 folio_put(tree_folio);
1902
1903                 parent = *new;
1904                 if (ret < 0)
1905                         new = &parent->rb_left;
1906                 else if (ret > 0)
1907                         new = &parent->rb_right;
1908                 else {
1909                         if (page_node) {
1910                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1911                                 /*
1912                                  * If the mapcount of our migrated KSM folio is
1913                                  * at most 1, we can merge it with another
1914                                  * KSM folio where we know that we have space
1915                                  * for one more mapping without exceeding the
1916                                  * ksm_max_page_sharing limit: see
1917                                  * chain_prune(). This way, we can avoid adding
1918                                  * this stable node to the chain.
1919                                  */
1920                                 if (folio_mapcount(folio) > 1)
1921                                         goto chain_append;
1922                         }
1923
1924                         if (!stable_node_dup) {
1925                                 /*
1926                                  * If the stable_node is a chain and
1927                                  * we got a payload match in memcmp
1928                                  * but we cannot merge the scanned
1929                                  * page in any of the existing
1930                                  * stable_node dups because they're
1931                                  * all full, we need to wait the
1932                                  * scanned page to find itself a match
1933                                  * in the unstable tree to create a
1934                                  * brand new KSM page to add later to
1935                                  * the dups of this stable_node.
1936                                  */
1937                                 return NULL;
1938                         }
1939
1940                         /*
1941                          * Lock and unlock the stable_node's page (which
1942                          * might already have been migrated) so that page
1943                          * migration is sure to notice its raised count.
1944                          * It would be more elegant to return stable_node
1945                          * than kpage, but that involves more changes.
1946                          */
1947                         tree_folio = ksm_get_folio(stable_node_dup,
1948                                                    KSM_GET_FOLIO_TRYLOCK);
1949
1950                         if (PTR_ERR(tree_folio) == -EBUSY)
1951                                 return ERR_PTR(-EBUSY);
1952
1953                         if (unlikely(!tree_folio))
1954                                 /*
1955                                  * The tree may have been rebalanced,
1956                                  * so re-evaluate parent and new.
1957                                  */
1958                                 goto again;
1959                         folio_unlock(tree_folio);
1960
1961                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1962                             NUMA(stable_node_dup->nid)) {
1963                                 folio_put(tree_folio);
1964                                 goto replace;
1965                         }
1966                         return &tree_folio->page;
1967                 }
1968         }
1969
1970         if (!page_node)
1971                 return NULL;
1972
1973         list_del(&page_node->list);
1974         DO_NUMA(page_node->nid = nid);
1975         rb_link_node(&page_node->node, parent, new);
1976         rb_insert_color(&page_node->node, root);
1977 out:
1978         if (is_page_sharing_candidate(page_node)) {
1979                 folio_get(folio);
1980                 return &folio->page;
1981         } else
1982                 return NULL;
1983
1984 replace:
1985         /*
1986          * If stable_node was a chain and chain_prune collapsed it,
1987          * stable_node has been updated to be the new regular
1988          * stable_node. A collapse of the chain is indistinguishable
1989          * from the case there was no chain in the stable
1990          * rbtree. Otherwise stable_node is the chain and
1991          * stable_node_dup is the dup to replace.
1992          */
1993         if (stable_node_dup == stable_node) {
1994                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1995                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1996                 /* there is no chain */
1997                 if (page_node) {
1998                         VM_BUG_ON(page_node->head != &migrate_nodes);
1999                         list_del(&page_node->list);
2000                         DO_NUMA(page_node->nid = nid);
2001                         rb_replace_node(&stable_node_dup->node,
2002                                         &page_node->node,
2003                                         root);
2004                         if (is_page_sharing_candidate(page_node))
2005                                 folio_get(folio);
2006                         else
2007                                 folio = NULL;
2008                 } else {
2009                         rb_erase(&stable_node_dup->node, root);
2010                         folio = NULL;
2011                 }
2012         } else {
2013                 VM_BUG_ON(!is_stable_node_chain(stable_node));
2014                 __stable_node_dup_del(stable_node_dup);
2015                 if (page_node) {
2016                         VM_BUG_ON(page_node->head != &migrate_nodes);
2017                         list_del(&page_node->list);
2018                         DO_NUMA(page_node->nid = nid);
2019                         stable_node_chain_add_dup(page_node, stable_node);
2020                         if (is_page_sharing_candidate(page_node))
2021                                 folio_get(folio);
2022                         else
2023                                 folio = NULL;
2024                 } else {
2025                         folio = NULL;
2026                 }
2027         }
2028         stable_node_dup->head = &migrate_nodes;
2029         list_add(&stable_node_dup->list, stable_node_dup->head);
2030         return &folio->page;
2031
2032 chain_append:
2033         /* stable_node_dup could be null if it reached the limit */
2034         if (!stable_node_dup)
2035                 stable_node_dup = stable_node_any;
2036         /*
2037          * If stable_node was a chain and chain_prune collapsed it,
2038          * stable_node has been updated to be the new regular
2039          * stable_node. A collapse of the chain is indistinguishable
2040          * from the case there was no chain in the stable
2041          * rbtree. Otherwise stable_node is the chain and
2042          * stable_node_dup is the dup to replace.
2043          */
2044         if (stable_node_dup == stable_node) {
2045                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2046                 /* chain is missing so create it */
2047                 stable_node = alloc_stable_node_chain(stable_node_dup,
2048                                                       root);
2049                 if (!stable_node)
2050                         return NULL;
2051         }
2052         /*
2053          * Add this stable_node dup that was
2054          * migrated to the stable_node chain
2055          * of the current nid for this page
2056          * content.
2057          */
2058         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2059         VM_BUG_ON(page_node->head != &migrate_nodes);
2060         list_del(&page_node->list);
2061         DO_NUMA(page_node->nid = nid);
2062         stable_node_chain_add_dup(page_node, stable_node);
2063         goto out;
2064 }
2065
2066 /*
2067  * stable_tree_insert - insert stable tree node pointing to new ksm page
2068  * into the stable tree.
2069  *
2070  * This function returns the stable tree node just allocated on success,
2071  * NULL otherwise.
2072  */
2073 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2074 {
2075         int nid;
2076         unsigned long kpfn;
2077         struct rb_root *root;
2078         struct rb_node **new;
2079         struct rb_node *parent;
2080         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2081         bool need_chain = false;
2082
2083         kpfn = folio_pfn(kfolio);
2084         nid = get_kpfn_nid(kpfn);
2085         root = root_stable_tree + nid;
2086 again:
2087         parent = NULL;
2088         new = &root->rb_node;
2089
2090         while (*new) {
2091                 struct folio *tree_folio;
2092                 int ret;
2093
2094                 cond_resched();
2095                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2096                 stable_node_any = NULL;
2097                 tree_folio = chain(&stable_node_dup, stable_node, root);
2098                 if (!stable_node_dup) {
2099                         /*
2100                          * Either all stable_node dups were full in
2101                          * this stable_node chain, or this chain was
2102                          * empty and should be rb_erased.
2103                          */
2104                         stable_node_any = stable_node_dup_any(stable_node,
2105                                                               root);
2106                         if (!stable_node_any) {
2107                                 /* rb_erase just run */
2108                                 goto again;
2109                         }
2110                         /*
2111                          * Take any of the stable_node dups page of
2112                          * this stable_node chain to let the tree walk
2113                          * continue. All KSM pages belonging to the
2114                          * stable_node dups in a stable_node chain
2115                          * have the same content and they're
2116                          * write protected at all times. Any will work
2117                          * fine to continue the walk.
2118                          */
2119                         tree_folio = ksm_get_folio(stable_node_any,
2120                                                    KSM_GET_FOLIO_NOLOCK);
2121                 }
2122                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
2123                 if (!tree_folio) {
2124                         /*
2125                          * If we walked over a stale stable_node,
2126                          * ksm_get_folio() will call rb_erase() and it
2127                          * may rebalance the tree from under us. So
2128                          * restart the search from scratch. Returning
2129                          * NULL would be safe too, but we'd generate
2130                          * false negative insertions just because some
2131                          * stable_node was stale.
2132                          */
2133                         goto again;
2134                 }
2135
2136                 ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2137                 folio_put(tree_folio);
2138
2139                 parent = *new;
2140                 if (ret < 0)
2141                         new = &parent->rb_left;
2142                 else if (ret > 0)
2143                         new = &parent->rb_right;
2144                 else {
2145                         need_chain = true;
2146                         break;
2147                 }
2148         }
2149
2150         stable_node_dup = alloc_stable_node();
2151         if (!stable_node_dup)
2152                 return NULL;
2153
2154         INIT_HLIST_HEAD(&stable_node_dup->hlist);
2155         stable_node_dup->kpfn = kpfn;
2156         stable_node_dup->rmap_hlist_len = 0;
2157         DO_NUMA(stable_node_dup->nid = nid);
2158         if (!need_chain) {
2159                 rb_link_node(&stable_node_dup->node, parent, new);
2160                 rb_insert_color(&stable_node_dup->node, root);
2161         } else {
2162                 if (!is_stable_node_chain(stable_node)) {
2163                         struct ksm_stable_node *orig = stable_node;
2164                         /* chain is missing so create it */
2165                         stable_node = alloc_stable_node_chain(orig, root);
2166                         if (!stable_node) {
2167                                 free_stable_node(stable_node_dup);
2168                                 return NULL;
2169                         }
2170                 }
2171                 stable_node_chain_add_dup(stable_node_dup, stable_node);
2172         }
2173
2174         folio_set_stable_node(kfolio, stable_node_dup);
2175
2176         return stable_node_dup;
2177 }
2178
2179 /*
2180  * unstable_tree_search_insert - search for identical page,
2181  * else insert rmap_item into the unstable tree.
2182  *
2183  * This function searches for a page in the unstable tree identical to the
2184  * page currently being scanned; and if no identical page is found in the
2185  * tree, we insert rmap_item as a new object into the unstable tree.
2186  *
2187  * This function returns pointer to rmap_item found to be identical
2188  * to the currently scanned page, NULL otherwise.
2189  *
2190  * This function does both searching and inserting, because they share
2191  * the same walking algorithm in an rbtree.
2192  */
2193 static
2194 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2195                                               struct page *page,
2196                                               struct page **tree_pagep)
2197 {
2198         struct rb_node **new;
2199         struct rb_root *root;
2200         struct rb_node *parent = NULL;
2201         int nid;
2202
2203         nid = get_kpfn_nid(page_to_pfn(page));
2204         root = root_unstable_tree + nid;
2205         new = &root->rb_node;
2206
2207         while (*new) {
2208                 struct ksm_rmap_item *tree_rmap_item;
2209                 struct page *tree_page;
2210                 int ret;
2211
2212                 cond_resched();
2213                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2214                 tree_page = get_mergeable_page(tree_rmap_item);
2215                 if (!tree_page)
2216                         return NULL;
2217
2218                 /*
2219                  * Don't substitute a ksm page for a forked page.
2220                  */
2221                 if (page == tree_page) {
2222                         put_page(tree_page);
2223                         return NULL;
2224                 }
2225
2226                 ret = memcmp_pages(page, tree_page);
2227
2228                 parent = *new;
2229                 if (ret < 0) {
2230                         put_page(tree_page);
2231                         new = &parent->rb_left;
2232                 } else if (ret > 0) {
2233                         put_page(tree_page);
2234                         new = &parent->rb_right;
2235                 } else if (!ksm_merge_across_nodes &&
2236                            page_to_nid(tree_page) != nid) {
2237                         /*
2238                          * If tree_page has been migrated to another NUMA node,
2239                          * it will be flushed out and put in the right unstable
2240                          * tree next time: only merge with it when across_nodes.
2241                          */
2242                         put_page(tree_page);
2243                         return NULL;
2244                 } else {
2245                         *tree_pagep = tree_page;
2246                         return tree_rmap_item;
2247                 }
2248         }
2249
2250         rmap_item->address |= UNSTABLE_FLAG;
2251         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2252         DO_NUMA(rmap_item->nid = nid);
2253         rb_link_node(&rmap_item->node, parent, new);
2254         rb_insert_color(&rmap_item->node, root);
2255
2256         ksm_pages_unshared++;
2257         return NULL;
2258 }
2259
2260 /*
2261  * stable_tree_append - add another rmap_item to the linked list of
2262  * rmap_items hanging off a given node of the stable tree, all sharing
2263  * the same ksm page.
2264  */
2265 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2266                                struct ksm_stable_node *stable_node,
2267                                bool max_page_sharing_bypass)
2268 {
2269         /*
2270          * rmap won't find this mapping if we don't insert the
2271          * rmap_item in the right stable_node
2272          * duplicate. page_migration could break later if rmap breaks,
2273          * so we can as well crash here. We really need to check for
2274          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2275          * for other negative values as an underflow if detected here
2276          * for the first time (and not when decreasing rmap_hlist_len)
2277          * would be sign of memory corruption in the stable_node.
2278          */
2279         BUG_ON(stable_node->rmap_hlist_len < 0);
2280
2281         stable_node->rmap_hlist_len++;
2282         if (!max_page_sharing_bypass)
2283                 /* possibly non fatal but unexpected overflow, only warn */
2284                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2285                              ksm_max_page_sharing);
2286
2287         rmap_item->head = stable_node;
2288         rmap_item->address |= STABLE_FLAG;
2289         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2290
2291         if (rmap_item->hlist.next)
2292                 ksm_pages_sharing++;
2293         else
2294                 ksm_pages_shared++;
2295
2296         rmap_item->mm->ksm_merging_pages++;
2297 }
2298
2299 /*
2300  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2301  * if not, compare checksum to previous and if it's the same, see if page can
2302  * be inserted into the unstable tree, or merged with a page already there and
2303  * both transferred to the stable tree.
2304  *
2305  * @page: the page that we are searching identical page to.
2306  * @rmap_item: the reverse mapping into the virtual address of this page
2307  */
2308 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2309 {
2310         struct mm_struct *mm = rmap_item->mm;
2311         struct ksm_rmap_item *tree_rmap_item;
2312         struct page *tree_page = NULL;
2313         struct ksm_stable_node *stable_node;
2314         struct page *kpage;
2315         unsigned int checksum;
2316         int err;
2317         bool max_page_sharing_bypass = false;
2318
2319         stable_node = page_stable_node(page);
2320         if (stable_node) {
2321                 if (stable_node->head != &migrate_nodes &&
2322                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2323                     NUMA(stable_node->nid)) {
2324                         stable_node_dup_del(stable_node);
2325                         stable_node->head = &migrate_nodes;
2326                         list_add(&stable_node->list, stable_node->head);
2327                 }
2328                 if (stable_node->head != &migrate_nodes &&
2329                     rmap_item->head == stable_node)
2330                         return;
2331                 /*
2332                  * If it's a KSM fork, allow it to go over the sharing limit
2333                  * without warnings.
2334                  */
2335                 if (!is_page_sharing_candidate(stable_node))
2336                         max_page_sharing_bypass = true;
2337         }
2338
2339         /* We first start with searching the page inside the stable tree */
2340         kpage = stable_tree_search(page);
2341         if (kpage == page && rmap_item->head == stable_node) {
2342                 put_page(kpage);
2343                 return;
2344         }
2345
2346         remove_rmap_item_from_tree(rmap_item);
2347
2348         if (kpage) {
2349                 if (PTR_ERR(kpage) == -EBUSY)
2350                         return;
2351
2352                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2353                 if (!err) {
2354                         /*
2355                          * The page was successfully merged:
2356                          * add its rmap_item to the stable tree.
2357                          */
2358                         lock_page(kpage);
2359                         stable_tree_append(rmap_item, page_stable_node(kpage),
2360                                            max_page_sharing_bypass);
2361                         unlock_page(kpage);
2362                 }
2363                 put_page(kpage);
2364                 return;
2365         }
2366
2367         /*
2368          * If the hash value of the page has changed from the last time
2369          * we calculated it, this page is changing frequently: therefore we
2370          * don't want to insert it in the unstable tree, and we don't want
2371          * to waste our time searching for something identical to it there.
2372          */
2373         checksum = calc_checksum(page);
2374         if (rmap_item->oldchecksum != checksum) {
2375                 rmap_item->oldchecksum = checksum;
2376                 return;
2377         }
2378
2379         /*
2380          * Same checksum as an empty page. We attempt to merge it with the
2381          * appropriate zero page if the user enabled this via sysfs.
2382          */
2383         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2384                 struct vm_area_struct *vma;
2385
2386                 mmap_read_lock(mm);
2387                 vma = find_mergeable_vma(mm, rmap_item->address);
2388                 if (vma) {
2389                         err = try_to_merge_one_page(vma, page,
2390                                         ZERO_PAGE(rmap_item->address));
2391                         trace_ksm_merge_one_page(
2392                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2393                                 rmap_item, mm, err);
2394                 } else {
2395                         /*
2396                          * If the vma is out of date, we do not need to
2397                          * continue.
2398                          */
2399                         err = 0;
2400                 }
2401                 mmap_read_unlock(mm);
2402                 /*
2403                  * In case of failure, the page was not really empty, so we
2404                  * need to continue. Otherwise we're done.
2405                  */
2406                 if (!err)
2407                         return;
2408         }
2409         tree_rmap_item =
2410                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2411         if (tree_rmap_item) {
2412                 bool split;
2413
2414                 kpage = try_to_merge_two_pages(rmap_item, page,
2415                                                 tree_rmap_item, tree_page);
2416                 /*
2417                  * If both pages we tried to merge belong to the same compound
2418                  * page, then we actually ended up increasing the reference
2419                  * count of the same compound page twice, and split_huge_page
2420                  * failed.
2421                  * Here we set a flag if that happened, and we use it later to
2422                  * try split_huge_page again. Since we call put_page right
2423                  * afterwards, the reference count will be correct and
2424                  * split_huge_page should succeed.
2425                  */
2426                 split = PageTransCompound(page)
2427                         && compound_head(page) == compound_head(tree_page);
2428                 put_page(tree_page);
2429                 if (kpage) {
2430                         /*
2431                          * The pages were successfully merged: insert new
2432                          * node in the stable tree and add both rmap_items.
2433                          */
2434                         lock_page(kpage);
2435                         stable_node = stable_tree_insert(page_folio(kpage));
2436                         if (stable_node) {
2437                                 stable_tree_append(tree_rmap_item, stable_node,
2438                                                    false);
2439                                 stable_tree_append(rmap_item, stable_node,
2440                                                    false);
2441                         }
2442                         unlock_page(kpage);
2443
2444                         /*
2445                          * If we fail to insert the page into the stable tree,
2446                          * we will have 2 virtual addresses that are pointing
2447                          * to a ksm page left outside the stable tree,
2448                          * in which case we need to break_cow on both.
2449                          */
2450                         if (!stable_node) {
2451                                 break_cow(tree_rmap_item);
2452                                 break_cow(rmap_item);
2453                         }
2454                 } else if (split) {
2455                         /*
2456                          * We are here if we tried to merge two pages and
2457                          * failed because they both belonged to the same
2458                          * compound page. We will split the page now, but no
2459                          * merging will take place.
2460                          * We do not want to add the cost of a full lock; if
2461                          * the page is locked, it is better to skip it and
2462                          * perhaps try again later.
2463                          */
2464                         if (!trylock_page(page))
2465                                 return;
2466                         split_huge_page(page);
2467                         unlock_page(page);
2468                 }
2469         }
2470 }
2471
2472 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2473                                             struct ksm_rmap_item **rmap_list,
2474                                             unsigned long addr)
2475 {
2476         struct ksm_rmap_item *rmap_item;
2477
2478         while (*rmap_list) {
2479                 rmap_item = *rmap_list;
2480                 if ((rmap_item->address & PAGE_MASK) == addr)
2481                         return rmap_item;
2482                 if (rmap_item->address > addr)
2483                         break;
2484                 *rmap_list = rmap_item->rmap_list;
2485                 remove_rmap_item_from_tree(rmap_item);
2486                 free_rmap_item(rmap_item);
2487         }
2488
2489         rmap_item = alloc_rmap_item();
2490         if (rmap_item) {
2491                 /* It has already been zeroed */
2492                 rmap_item->mm = mm_slot->slot.mm;
2493                 rmap_item->mm->ksm_rmap_items++;
2494                 rmap_item->address = addr;
2495                 rmap_item->rmap_list = *rmap_list;
2496                 *rmap_list = rmap_item;
2497         }
2498         return rmap_item;
2499 }
2500
2501 /*
2502  * Calculate skip age for the ksm page age. The age determines how often
2503  * de-duplicating has already been tried unsuccessfully. If the age is
2504  * smaller, the scanning of this page is skipped for less scans.
2505  *
2506  * @age: rmap_item age of page
2507  */
2508 static unsigned int skip_age(rmap_age_t age)
2509 {
2510         if (age <= 3)
2511                 return 1;
2512         if (age <= 5)
2513                 return 2;
2514         if (age <= 8)
2515                 return 4;
2516
2517         return 8;
2518 }
2519
2520 /*
2521  * Determines if a page should be skipped for the current scan.
2522  *
2523  * @page: page to check
2524  * @rmap_item: associated rmap_item of page
2525  */
2526 static bool should_skip_rmap_item(struct page *page,
2527                                   struct ksm_rmap_item *rmap_item)
2528 {
2529         rmap_age_t age;
2530
2531         if (!ksm_smart_scan)
2532                 return false;
2533
2534         /*
2535          * Never skip pages that are already KSM; pages cmp_and_merge_page()
2536          * will essentially ignore them, but we still have to process them
2537          * properly.
2538          */
2539         if (PageKsm(page))
2540                 return false;
2541
2542         age = rmap_item->age;
2543         if (age != U8_MAX)
2544                 rmap_item->age++;
2545
2546         /*
2547          * Smaller ages are not skipped, they need to get a chance to go
2548          * through the different phases of the KSM merging.
2549          */
2550         if (age < 3)
2551                 return false;
2552
2553         /*
2554          * Are we still allowed to skip? If not, then don't skip it
2555          * and determine how much more often we are allowed to skip next.
2556          */
2557         if (!rmap_item->remaining_skips) {
2558                 rmap_item->remaining_skips = skip_age(age);
2559                 return false;
2560         }
2561
2562         /* Skip this page */
2563         ksm_pages_skipped++;
2564         rmap_item->remaining_skips--;
2565         remove_rmap_item_from_tree(rmap_item);
2566         return true;
2567 }
2568
2569 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2570 {
2571         struct mm_struct *mm;
2572         struct ksm_mm_slot *mm_slot;
2573         struct mm_slot *slot;
2574         struct vm_area_struct *vma;
2575         struct ksm_rmap_item *rmap_item;
2576         struct vma_iterator vmi;
2577         int nid;
2578
2579         if (list_empty(&ksm_mm_head.slot.mm_node))
2580                 return NULL;
2581
2582         mm_slot = ksm_scan.mm_slot;
2583         if (mm_slot == &ksm_mm_head) {
2584                 advisor_start_scan();
2585                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2586
2587                 /*
2588                  * A number of pages can hang around indefinitely in per-cpu
2589                  * LRU cache, raised page count preventing write_protect_page
2590                  * from merging them.  Though it doesn't really matter much,
2591                  * it is puzzling to see some stuck in pages_volatile until
2592                  * other activity jostles them out, and they also prevented
2593                  * LTP's KSM test from succeeding deterministically; so drain
2594                  * them here (here rather than on entry to ksm_do_scan(),
2595                  * so we don't IPI too often when pages_to_scan is set low).
2596                  */
2597                 lru_add_drain_all();
2598
2599                 /*
2600                  * Whereas stale stable_nodes on the stable_tree itself
2601                  * get pruned in the regular course of stable_tree_search(),
2602                  * those moved out to the migrate_nodes list can accumulate:
2603                  * so prune them once before each full scan.
2604                  */
2605                 if (!ksm_merge_across_nodes) {
2606                         struct ksm_stable_node *stable_node, *next;
2607                         struct folio *folio;
2608
2609                         list_for_each_entry_safe(stable_node, next,
2610                                                  &migrate_nodes, list) {
2611                                 folio = ksm_get_folio(stable_node,
2612                                                       KSM_GET_FOLIO_NOLOCK);
2613                                 if (folio)
2614                                         folio_put(folio);
2615                                 cond_resched();
2616                         }
2617                 }
2618
2619                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2620                         root_unstable_tree[nid] = RB_ROOT;
2621
2622                 spin_lock(&ksm_mmlist_lock);
2623                 slot = list_entry(mm_slot->slot.mm_node.next,
2624                                   struct mm_slot, mm_node);
2625                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2626                 ksm_scan.mm_slot = mm_slot;
2627                 spin_unlock(&ksm_mmlist_lock);
2628                 /*
2629                  * Although we tested list_empty() above, a racing __ksm_exit
2630                  * of the last mm on the list may have removed it since then.
2631                  */
2632                 if (mm_slot == &ksm_mm_head)
2633                         return NULL;
2634 next_mm:
2635                 ksm_scan.address = 0;
2636                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2637         }
2638
2639         slot = &mm_slot->slot;
2640         mm = slot->mm;
2641         vma_iter_init(&vmi, mm, ksm_scan.address);
2642
2643         mmap_read_lock(mm);
2644         if (ksm_test_exit(mm))
2645                 goto no_vmas;
2646
2647         for_each_vma(vmi, vma) {
2648                 if (!(vma->vm_flags & VM_MERGEABLE))
2649                         continue;
2650                 if (ksm_scan.address < vma->vm_start)
2651                         ksm_scan.address = vma->vm_start;
2652                 if (!vma->anon_vma)
2653                         ksm_scan.address = vma->vm_end;
2654
2655                 while (ksm_scan.address < vma->vm_end) {
2656                         if (ksm_test_exit(mm))
2657                                 break;
2658                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2659                         if (IS_ERR_OR_NULL(*page)) {
2660                                 ksm_scan.address += PAGE_SIZE;
2661                                 cond_resched();
2662                                 continue;
2663                         }
2664                         if (is_zone_device_page(*page))
2665                                 goto next_page;
2666                         if (PageAnon(*page)) {
2667                                 flush_anon_page(vma, *page, ksm_scan.address);
2668                                 flush_dcache_page(*page);
2669                                 rmap_item = get_next_rmap_item(mm_slot,
2670                                         ksm_scan.rmap_list, ksm_scan.address);
2671                                 if (rmap_item) {
2672                                         ksm_scan.rmap_list =
2673                                                         &rmap_item->rmap_list;
2674
2675                                         if (should_skip_rmap_item(*page, rmap_item))
2676                                                 goto next_page;
2677
2678                                         ksm_scan.address += PAGE_SIZE;
2679                                 } else
2680                                         put_page(*page);
2681                                 mmap_read_unlock(mm);
2682                                 return rmap_item;
2683                         }
2684 next_page:
2685                         put_page(*page);
2686                         ksm_scan.address += PAGE_SIZE;
2687                         cond_resched();
2688                 }
2689         }
2690
2691         if (ksm_test_exit(mm)) {
2692 no_vmas:
2693                 ksm_scan.address = 0;
2694                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2695         }
2696         /*
2697          * Nuke all the rmap_items that are above this current rmap:
2698          * because there were no VM_MERGEABLE vmas with such addresses.
2699          */
2700         remove_trailing_rmap_items(ksm_scan.rmap_list);
2701
2702         spin_lock(&ksm_mmlist_lock);
2703         slot = list_entry(mm_slot->slot.mm_node.next,
2704                           struct mm_slot, mm_node);
2705         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2706         if (ksm_scan.address == 0) {
2707                 /*
2708                  * We've completed a full scan of all vmas, holding mmap_lock
2709                  * throughout, and found no VM_MERGEABLE: so do the same as
2710                  * __ksm_exit does to remove this mm from all our lists now.
2711                  * This applies either when cleaning up after __ksm_exit
2712                  * (but beware: we can reach here even before __ksm_exit),
2713                  * or when all VM_MERGEABLE areas have been unmapped (and
2714                  * mmap_lock then protects against race with MADV_MERGEABLE).
2715                  */
2716                 hash_del(&mm_slot->slot.hash);
2717                 list_del(&mm_slot->slot.mm_node);
2718                 spin_unlock(&ksm_mmlist_lock);
2719
2720                 mm_slot_free(mm_slot_cache, mm_slot);
2721                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2722                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2723                 mmap_read_unlock(mm);
2724                 mmdrop(mm);
2725         } else {
2726                 mmap_read_unlock(mm);
2727                 /*
2728                  * mmap_read_unlock(mm) first because after
2729                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2730                  * already have been freed under us by __ksm_exit()
2731                  * because the "mm_slot" is still hashed and
2732                  * ksm_scan.mm_slot doesn't point to it anymore.
2733                  */
2734                 spin_unlock(&ksm_mmlist_lock);
2735         }
2736
2737         /* Repeat until we've completed scanning the whole list */
2738         mm_slot = ksm_scan.mm_slot;
2739         if (mm_slot != &ksm_mm_head)
2740                 goto next_mm;
2741
2742         advisor_stop_scan();
2743
2744         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2745         ksm_scan.seqnr++;
2746         return NULL;
2747 }
2748
2749 /**
2750  * ksm_do_scan  - the ksm scanner main worker function.
2751  * @scan_npages:  number of pages we want to scan before we return.
2752  */
2753 static void ksm_do_scan(unsigned int scan_npages)
2754 {
2755         struct ksm_rmap_item *rmap_item;
2756         struct page *page;
2757         unsigned int npages = scan_npages;
2758
2759         while (npages-- && likely(!freezing(current))) {
2760                 cond_resched();
2761                 rmap_item = scan_get_next_rmap_item(&page);
2762                 if (!rmap_item)
2763                         return;
2764                 cmp_and_merge_page(page, rmap_item);
2765                 put_page(page);
2766         }
2767
2768         ksm_pages_scanned += scan_npages - npages;
2769 }
2770
2771 static int ksmd_should_run(void)
2772 {
2773         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2774 }
2775
2776 static int ksm_scan_thread(void *nothing)
2777 {
2778         unsigned int sleep_ms;
2779
2780         set_freezable();
2781         set_user_nice(current, 5);
2782
2783         while (!kthread_should_stop()) {
2784                 mutex_lock(&ksm_thread_mutex);
2785                 wait_while_offlining();
2786                 if (ksmd_should_run())
2787                         ksm_do_scan(ksm_thread_pages_to_scan);
2788                 mutex_unlock(&ksm_thread_mutex);
2789
2790                 if (ksmd_should_run()) {
2791                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2792                         wait_event_freezable_timeout(ksm_iter_wait,
2793                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2794                                 msecs_to_jiffies(sleep_ms));
2795                 } else {
2796                         wait_event_freezable(ksm_thread_wait,
2797                                 ksmd_should_run() || kthread_should_stop());
2798                 }
2799         }
2800         return 0;
2801 }
2802
2803 static void __ksm_add_vma(struct vm_area_struct *vma)
2804 {
2805         unsigned long vm_flags = vma->vm_flags;
2806
2807         if (vm_flags & VM_MERGEABLE)
2808                 return;
2809
2810         if (vma_ksm_compatible(vma))
2811                 vm_flags_set(vma, VM_MERGEABLE);
2812 }
2813
2814 static int __ksm_del_vma(struct vm_area_struct *vma)
2815 {
2816         int err;
2817
2818         if (!(vma->vm_flags & VM_MERGEABLE))
2819                 return 0;
2820
2821         if (vma->anon_vma) {
2822                 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2823                 if (err)
2824                         return err;
2825         }
2826
2827         vm_flags_clear(vma, VM_MERGEABLE);
2828         return 0;
2829 }
2830 /**
2831  * ksm_add_vma - Mark vma as mergeable if compatible
2832  *
2833  * @vma:  Pointer to vma
2834  */
2835 void ksm_add_vma(struct vm_area_struct *vma)
2836 {
2837         struct mm_struct *mm = vma->vm_mm;
2838
2839         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2840                 __ksm_add_vma(vma);
2841 }
2842
2843 static void ksm_add_vmas(struct mm_struct *mm)
2844 {
2845         struct vm_area_struct *vma;
2846
2847         VMA_ITERATOR(vmi, mm, 0);
2848         for_each_vma(vmi, vma)
2849                 __ksm_add_vma(vma);
2850 }
2851
2852 static int ksm_del_vmas(struct mm_struct *mm)
2853 {
2854         struct vm_area_struct *vma;
2855         int err;
2856
2857         VMA_ITERATOR(vmi, mm, 0);
2858         for_each_vma(vmi, vma) {
2859                 err = __ksm_del_vma(vma);
2860                 if (err)
2861                         return err;
2862         }
2863         return 0;
2864 }
2865
2866 /**
2867  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2868  *                        compatible VMA's
2869  *
2870  * @mm:  Pointer to mm
2871  *
2872  * Returns 0 on success, otherwise error code
2873  */
2874 int ksm_enable_merge_any(struct mm_struct *mm)
2875 {
2876         int err;
2877
2878         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2879                 return 0;
2880
2881         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2882                 err = __ksm_enter(mm);
2883                 if (err)
2884                         return err;
2885         }
2886
2887         set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2888         ksm_add_vmas(mm);
2889
2890         return 0;
2891 }
2892
2893 /**
2894  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2895  *                         previously enabled via ksm_enable_merge_any().
2896  *
2897  * Disabling merging implies unmerging any merged pages, like setting
2898  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2899  * merging on all compatible VMA's remains enabled.
2900  *
2901  * @mm: Pointer to mm
2902  *
2903  * Returns 0 on success, otherwise error code
2904  */
2905 int ksm_disable_merge_any(struct mm_struct *mm)
2906 {
2907         int err;
2908
2909         if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2910                 return 0;
2911
2912         err = ksm_del_vmas(mm);
2913         if (err) {
2914                 ksm_add_vmas(mm);
2915                 return err;
2916         }
2917
2918         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2919         return 0;
2920 }
2921
2922 int ksm_disable(struct mm_struct *mm)
2923 {
2924         mmap_assert_write_locked(mm);
2925
2926         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2927                 return 0;
2928         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2929                 return ksm_disable_merge_any(mm);
2930         return ksm_del_vmas(mm);
2931 }
2932
2933 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2934                 unsigned long end, int advice, unsigned long *vm_flags)
2935 {
2936         struct mm_struct *mm = vma->vm_mm;
2937         int err;
2938
2939         switch (advice) {
2940         case MADV_MERGEABLE:
2941                 if (vma->vm_flags & VM_MERGEABLE)
2942                         return 0;
2943                 if (!vma_ksm_compatible(vma))
2944                         return 0;
2945
2946                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2947                         err = __ksm_enter(mm);
2948                         if (err)
2949                                 return err;
2950                 }
2951
2952                 *vm_flags |= VM_MERGEABLE;
2953                 break;
2954
2955         case MADV_UNMERGEABLE:
2956                 if (!(*vm_flags & VM_MERGEABLE))
2957                         return 0;               /* just ignore the advice */
2958
2959                 if (vma->anon_vma) {
2960                         err = unmerge_ksm_pages(vma, start, end, true);
2961                         if (err)
2962                                 return err;
2963                 }
2964
2965                 *vm_flags &= ~VM_MERGEABLE;
2966                 break;
2967         }
2968
2969         return 0;
2970 }
2971 EXPORT_SYMBOL_GPL(ksm_madvise);
2972
2973 int __ksm_enter(struct mm_struct *mm)
2974 {
2975         struct ksm_mm_slot *mm_slot;
2976         struct mm_slot *slot;
2977         int needs_wakeup;
2978
2979         mm_slot = mm_slot_alloc(mm_slot_cache);
2980         if (!mm_slot)
2981                 return -ENOMEM;
2982
2983         slot = &mm_slot->slot;
2984
2985         /* Check ksm_run too?  Would need tighter locking */
2986         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2987
2988         spin_lock(&ksm_mmlist_lock);
2989         mm_slot_insert(mm_slots_hash, mm, slot);
2990         /*
2991          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2992          * insert just behind the scanning cursor, to let the area settle
2993          * down a little; when fork is followed by immediate exec, we don't
2994          * want ksmd to waste time setting up and tearing down an rmap_list.
2995          *
2996          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2997          * scanning cursor, otherwise KSM pages in newly forked mms will be
2998          * missed: then we might as well insert at the end of the list.
2999          */
3000         if (ksm_run & KSM_RUN_UNMERGE)
3001                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
3002         else
3003                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
3004         spin_unlock(&ksm_mmlist_lock);
3005
3006         set_bit(MMF_VM_MERGEABLE, &mm->flags);
3007         mmgrab(mm);
3008
3009         if (needs_wakeup)
3010                 wake_up_interruptible(&ksm_thread_wait);
3011
3012         trace_ksm_enter(mm);
3013         return 0;
3014 }
3015
3016 void __ksm_exit(struct mm_struct *mm)
3017 {
3018         struct ksm_mm_slot *mm_slot;
3019         struct mm_slot *slot;
3020         int easy_to_free = 0;
3021
3022         /*
3023          * This process is exiting: if it's straightforward (as is the
3024          * case when ksmd was never running), free mm_slot immediately.
3025          * But if it's at the cursor or has rmap_items linked to it, use
3026          * mmap_lock to synchronize with any break_cows before pagetables
3027          * are freed, and leave the mm_slot on the list for ksmd to free.
3028          * Beware: ksm may already have noticed it exiting and freed the slot.
3029          */
3030
3031         spin_lock(&ksm_mmlist_lock);
3032         slot = mm_slot_lookup(mm_slots_hash, mm);
3033         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
3034         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
3035                 if (!mm_slot->rmap_list) {
3036                         hash_del(&slot->hash);
3037                         list_del(&slot->mm_node);
3038                         easy_to_free = 1;
3039                 } else {
3040                         list_move(&slot->mm_node,
3041                                   &ksm_scan.mm_slot->slot.mm_node);
3042                 }
3043         }
3044         spin_unlock(&ksm_mmlist_lock);
3045
3046         if (easy_to_free) {
3047                 mm_slot_free(mm_slot_cache, mm_slot);
3048                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
3049                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
3050                 mmdrop(mm);
3051         } else if (mm_slot) {
3052                 mmap_write_lock(mm);
3053                 mmap_write_unlock(mm);
3054         }
3055
3056         trace_ksm_exit(mm);
3057 }
3058
3059 struct folio *ksm_might_need_to_copy(struct folio *folio,
3060                         struct vm_area_struct *vma, unsigned long addr)
3061 {
3062         struct page *page = folio_page(folio, 0);
3063         struct anon_vma *anon_vma = folio_anon_vma(folio);
3064         struct folio *new_folio;
3065
3066         if (folio_test_large(folio))
3067                 return folio;
3068
3069         if (folio_test_ksm(folio)) {
3070                 if (folio_stable_node(folio) &&
3071                     !(ksm_run & KSM_RUN_UNMERGE))
3072                         return folio;   /* no need to copy it */
3073         } else if (!anon_vma) {
3074                 return folio;           /* no need to copy it */
3075         } else if (folio->index == linear_page_index(vma, addr) &&
3076                         anon_vma->root == vma->anon_vma->root) {
3077                 return folio;           /* still no need to copy it */
3078         }
3079         if (PageHWPoison(page))
3080                 return ERR_PTR(-EHWPOISON);
3081         if (!folio_test_uptodate(folio))
3082                 return folio;           /* let do_swap_page report the error */
3083
3084         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
3085         if (new_folio &&
3086             mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3087                 folio_put(new_folio);
3088                 new_folio = NULL;
3089         }
3090         if (new_folio) {
3091                 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3092                                                                 addr, vma)) {
3093                         folio_put(new_folio);
3094                         memory_failure_queue(folio_pfn(folio), 0);
3095                         return ERR_PTR(-EHWPOISON);
3096                 }
3097                 folio_set_dirty(new_folio);
3098                 __folio_mark_uptodate(new_folio);
3099                 __folio_set_locked(new_folio);
3100 #ifdef CONFIG_SWAP
3101                 count_vm_event(KSM_SWPIN_COPY);
3102 #endif
3103         }
3104
3105         return new_folio;
3106 }
3107
3108 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3109 {
3110         struct ksm_stable_node *stable_node;
3111         struct ksm_rmap_item *rmap_item;
3112         int search_new_forks = 0;
3113
3114         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3115
3116         /*
3117          * Rely on the page lock to protect against concurrent modifications
3118          * to that page's node of the stable tree.
3119          */
3120         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3121
3122         stable_node = folio_stable_node(folio);
3123         if (!stable_node)
3124                 return;
3125 again:
3126         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3127                 struct anon_vma *anon_vma = rmap_item->anon_vma;
3128                 struct anon_vma_chain *vmac;
3129                 struct vm_area_struct *vma;
3130
3131                 cond_resched();
3132                 if (!anon_vma_trylock_read(anon_vma)) {
3133                         if (rwc->try_lock) {
3134                                 rwc->contended = true;
3135                                 return;
3136                         }
3137                         anon_vma_lock_read(anon_vma);
3138                 }
3139                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3140                                                0, ULONG_MAX) {
3141                         unsigned long addr;
3142
3143                         cond_resched();
3144                         vma = vmac->vma;
3145
3146                         /* Ignore the stable/unstable/sqnr flags */
3147                         addr = rmap_item->address & PAGE_MASK;
3148
3149                         if (addr < vma->vm_start || addr >= vma->vm_end)
3150                                 continue;
3151                         /*
3152                          * Initially we examine only the vma which covers this
3153                          * rmap_item; but later, if there is still work to do,
3154                          * we examine covering vmas in other mms: in case they
3155                          * were forked from the original since ksmd passed.
3156                          */
3157                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3158                                 continue;
3159
3160                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3161                                 continue;
3162
3163                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3164                                 anon_vma_unlock_read(anon_vma);
3165                                 return;
3166                         }
3167                         if (rwc->done && rwc->done(folio)) {
3168                                 anon_vma_unlock_read(anon_vma);
3169                                 return;
3170                         }
3171                 }
3172                 anon_vma_unlock_read(anon_vma);
3173         }
3174         if (!search_new_forks++)
3175                 goto again;
3176 }
3177
3178 #ifdef CONFIG_MEMORY_FAILURE
3179 /*
3180  * Collect processes when the error hit an ksm page.
3181  */
3182 void collect_procs_ksm(struct folio *folio, struct page *page,
3183                 struct list_head *to_kill, int force_early)
3184 {
3185         struct ksm_stable_node *stable_node;
3186         struct ksm_rmap_item *rmap_item;
3187         struct vm_area_struct *vma;
3188         struct task_struct *tsk;
3189
3190         stable_node = folio_stable_node(folio);
3191         if (!stable_node)
3192                 return;
3193         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3194                 struct anon_vma *av = rmap_item->anon_vma;
3195
3196                 anon_vma_lock_read(av);
3197                 rcu_read_lock();
3198                 for_each_process(tsk) {
3199                         struct anon_vma_chain *vmac;
3200                         unsigned long addr;
3201                         struct task_struct *t =
3202                                 task_early_kill(tsk, force_early);
3203                         if (!t)
3204                                 continue;
3205                         anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3206                                                        ULONG_MAX)
3207                         {
3208                                 vma = vmac->vma;
3209                                 if (vma->vm_mm == t->mm) {
3210                                         addr = rmap_item->address & PAGE_MASK;
3211                                         add_to_kill_ksm(t, page, vma, to_kill,
3212                                                         addr);
3213                                 }
3214                         }
3215                 }
3216                 rcu_read_unlock();
3217                 anon_vma_unlock_read(av);
3218         }
3219 }
3220 #endif
3221
3222 #ifdef CONFIG_MIGRATION
3223 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3224 {
3225         struct ksm_stable_node *stable_node;
3226
3227         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3228         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3229         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3230
3231         stable_node = folio_stable_node(folio);
3232         if (stable_node) {
3233                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3234                 stable_node->kpfn = folio_pfn(newfolio);
3235                 /*
3236                  * newfolio->mapping was set in advance; now we need smp_wmb()
3237                  * to make sure that the new stable_node->kpfn is visible
3238                  * to ksm_get_folio() before it can see that folio->mapping
3239                  * has gone stale (or that folio_test_swapcache has been cleared).
3240                  */
3241                 smp_wmb();
3242                 folio_set_stable_node(folio, NULL);
3243         }
3244 }
3245 #endif /* CONFIG_MIGRATION */
3246
3247 #ifdef CONFIG_MEMORY_HOTREMOVE
3248 static void wait_while_offlining(void)
3249 {
3250         while (ksm_run & KSM_RUN_OFFLINE) {
3251                 mutex_unlock(&ksm_thread_mutex);
3252                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3253                             TASK_UNINTERRUPTIBLE);
3254                 mutex_lock(&ksm_thread_mutex);
3255         }
3256 }
3257
3258 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3259                                          unsigned long start_pfn,
3260                                          unsigned long end_pfn)
3261 {
3262         if (stable_node->kpfn >= start_pfn &&
3263             stable_node->kpfn < end_pfn) {
3264                 /*
3265                  * Don't ksm_get_folio, page has already gone:
3266                  * which is why we keep kpfn instead of page*
3267                  */
3268                 remove_node_from_stable_tree(stable_node);
3269                 return true;
3270         }
3271         return false;
3272 }
3273
3274 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3275                                            unsigned long start_pfn,
3276                                            unsigned long end_pfn,
3277                                            struct rb_root *root)
3278 {
3279         struct ksm_stable_node *dup;
3280         struct hlist_node *hlist_safe;
3281
3282         if (!is_stable_node_chain(stable_node)) {
3283                 VM_BUG_ON(is_stable_node_dup(stable_node));
3284                 return stable_node_dup_remove_range(stable_node, start_pfn,
3285                                                     end_pfn);
3286         }
3287
3288         hlist_for_each_entry_safe(dup, hlist_safe,
3289                                   &stable_node->hlist, hlist_dup) {
3290                 VM_BUG_ON(!is_stable_node_dup(dup));
3291                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3292         }
3293         if (hlist_empty(&stable_node->hlist)) {
3294                 free_stable_node_chain(stable_node, root);
3295                 return true; /* notify caller that tree was rebalanced */
3296         } else
3297                 return false;
3298 }
3299
3300 static void ksm_check_stable_tree(unsigned long start_pfn,
3301                                   unsigned long end_pfn)
3302 {
3303         struct ksm_stable_node *stable_node, *next;
3304         struct rb_node *node;
3305         int nid;
3306
3307         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3308                 node = rb_first(root_stable_tree + nid);
3309                 while (node) {
3310                         stable_node = rb_entry(node, struct ksm_stable_node, node);
3311                         if (stable_node_chain_remove_range(stable_node,
3312                                                            start_pfn, end_pfn,
3313                                                            root_stable_tree +
3314                                                            nid))
3315                                 node = rb_first(root_stable_tree + nid);
3316                         else
3317                                 node = rb_next(node);
3318                         cond_resched();
3319                 }
3320         }
3321         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3322                 if (stable_node->kpfn >= start_pfn &&
3323                     stable_node->kpfn < end_pfn)
3324                         remove_node_from_stable_tree(stable_node);
3325                 cond_resched();
3326         }
3327 }
3328
3329 static int ksm_memory_callback(struct notifier_block *self,
3330                                unsigned long action, void *arg)
3331 {
3332         struct memory_notify *mn = arg;
3333
3334         switch (action) {
3335         case MEM_GOING_OFFLINE:
3336                 /*
3337                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3338                  * and remove_all_stable_nodes() while memory is going offline:
3339                  * it is unsafe for them to touch the stable tree at this time.
3340                  * But unmerge_ksm_pages(), rmap lookups and other entry points
3341                  * which do not need the ksm_thread_mutex are all safe.
3342                  */
3343                 mutex_lock(&ksm_thread_mutex);
3344                 ksm_run |= KSM_RUN_OFFLINE;
3345                 mutex_unlock(&ksm_thread_mutex);
3346                 break;
3347
3348         case MEM_OFFLINE:
3349                 /*
3350                  * Most of the work is done by page migration; but there might
3351                  * be a few stable_nodes left over, still pointing to struct
3352                  * pages which have been offlined: prune those from the tree,
3353                  * otherwise ksm_get_folio() might later try to access a
3354                  * non-existent struct page.
3355                  */
3356                 ksm_check_stable_tree(mn->start_pfn,
3357                                       mn->start_pfn + mn->nr_pages);
3358                 fallthrough;
3359         case MEM_CANCEL_OFFLINE:
3360                 mutex_lock(&ksm_thread_mutex);
3361                 ksm_run &= ~KSM_RUN_OFFLINE;
3362                 mutex_unlock(&ksm_thread_mutex);
3363
3364                 smp_mb();       /* wake_up_bit advises this */
3365                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3366                 break;
3367         }
3368         return NOTIFY_OK;
3369 }
3370 #else
3371 static void wait_while_offlining(void)
3372 {
3373 }
3374 #endif /* CONFIG_MEMORY_HOTREMOVE */
3375
3376 #ifdef CONFIG_PROC_FS
3377 long ksm_process_profit(struct mm_struct *mm)
3378 {
3379         return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3380                 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3381 }
3382 #endif /* CONFIG_PROC_FS */
3383
3384 #ifdef CONFIG_SYSFS
3385 /*
3386  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3387  */
3388
3389 #define KSM_ATTR_RO(_name) \
3390         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3391 #define KSM_ATTR(_name) \
3392         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3393
3394 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3395                                     struct kobj_attribute *attr, char *buf)
3396 {
3397         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3398 }
3399
3400 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3401                                      struct kobj_attribute *attr,
3402                                      const char *buf, size_t count)
3403 {
3404         unsigned int msecs;
3405         int err;
3406
3407         err = kstrtouint(buf, 10, &msecs);
3408         if (err)
3409                 return -EINVAL;
3410
3411         ksm_thread_sleep_millisecs = msecs;
3412         wake_up_interruptible(&ksm_iter_wait);
3413
3414         return count;
3415 }
3416 KSM_ATTR(sleep_millisecs);
3417
3418 static ssize_t pages_to_scan_show(struct kobject *kobj,
3419                                   struct kobj_attribute *attr, char *buf)
3420 {
3421         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3422 }
3423
3424 static ssize_t pages_to_scan_store(struct kobject *kobj,
3425                                    struct kobj_attribute *attr,
3426                                    const char *buf, size_t count)
3427 {
3428         unsigned int nr_pages;
3429         int err;
3430
3431         if (ksm_advisor != KSM_ADVISOR_NONE)
3432                 return -EINVAL;
3433
3434         err = kstrtouint(buf, 10, &nr_pages);
3435         if (err)
3436                 return -EINVAL;
3437
3438         ksm_thread_pages_to_scan = nr_pages;
3439
3440         return count;
3441 }
3442 KSM_ATTR(pages_to_scan);
3443
3444 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3445                         char *buf)
3446 {
3447         return sysfs_emit(buf, "%lu\n", ksm_run);
3448 }
3449
3450 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3451                          const char *buf, size_t count)
3452 {
3453         unsigned int flags;
3454         int err;
3455
3456         err = kstrtouint(buf, 10, &flags);
3457         if (err)
3458                 return -EINVAL;
3459         if (flags > KSM_RUN_UNMERGE)
3460                 return -EINVAL;
3461
3462         /*
3463          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3464          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3465          * breaking COW to free the pages_shared (but leaves mm_slots
3466          * on the list for when ksmd may be set running again).
3467          */
3468
3469         mutex_lock(&ksm_thread_mutex);
3470         wait_while_offlining();
3471         if (ksm_run != flags) {
3472                 ksm_run = flags;
3473                 if (flags & KSM_RUN_UNMERGE) {
3474                         set_current_oom_origin();
3475                         err = unmerge_and_remove_all_rmap_items();
3476                         clear_current_oom_origin();
3477                         if (err) {
3478                                 ksm_run = KSM_RUN_STOP;
3479                                 count = err;
3480                         }
3481                 }
3482         }
3483         mutex_unlock(&ksm_thread_mutex);
3484
3485         if (flags & KSM_RUN_MERGE)
3486                 wake_up_interruptible(&ksm_thread_wait);
3487
3488         return count;
3489 }
3490 KSM_ATTR(run);
3491
3492 #ifdef CONFIG_NUMA
3493 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3494                                        struct kobj_attribute *attr, char *buf)
3495 {
3496         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3497 }
3498
3499 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3500                                    struct kobj_attribute *attr,
3501                                    const char *buf, size_t count)
3502 {
3503         int err;
3504         unsigned long knob;
3505
3506         err = kstrtoul(buf, 10, &knob);
3507         if (err)
3508                 return err;
3509         if (knob > 1)
3510                 return -EINVAL;
3511
3512         mutex_lock(&ksm_thread_mutex);
3513         wait_while_offlining();
3514         if (ksm_merge_across_nodes != knob) {
3515                 if (ksm_pages_shared || remove_all_stable_nodes())
3516                         err = -EBUSY;
3517                 else if (root_stable_tree == one_stable_tree) {
3518                         struct rb_root *buf;
3519                         /*
3520                          * This is the first time that we switch away from the
3521                          * default of merging across nodes: must now allocate
3522                          * a buffer to hold as many roots as may be needed.
3523                          * Allocate stable and unstable together:
3524                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3525                          */
3526                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3527                                       GFP_KERNEL);
3528                         /* Let us assume that RB_ROOT is NULL is zero */
3529                         if (!buf)
3530                                 err = -ENOMEM;
3531                         else {
3532                                 root_stable_tree = buf;
3533                                 root_unstable_tree = buf + nr_node_ids;
3534                                 /* Stable tree is empty but not the unstable */
3535                                 root_unstable_tree[0] = one_unstable_tree[0];
3536                         }
3537                 }
3538                 if (!err) {
3539                         ksm_merge_across_nodes = knob;
3540                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3541                 }
3542         }
3543         mutex_unlock(&ksm_thread_mutex);
3544
3545         return err ? err : count;
3546 }
3547 KSM_ATTR(merge_across_nodes);
3548 #endif
3549
3550 static ssize_t use_zero_pages_show(struct kobject *kobj,
3551                                    struct kobj_attribute *attr, char *buf)
3552 {
3553         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3554 }
3555 static ssize_t use_zero_pages_store(struct kobject *kobj,
3556                                    struct kobj_attribute *attr,
3557                                    const char *buf, size_t count)
3558 {
3559         int err;
3560         bool value;
3561
3562         err = kstrtobool(buf, &value);
3563         if (err)
3564                 return -EINVAL;
3565
3566         ksm_use_zero_pages = value;
3567
3568         return count;
3569 }
3570 KSM_ATTR(use_zero_pages);
3571
3572 static ssize_t max_page_sharing_show(struct kobject *kobj,
3573                                      struct kobj_attribute *attr, char *buf)
3574 {
3575         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3576 }
3577
3578 static ssize_t max_page_sharing_store(struct kobject *kobj,
3579                                       struct kobj_attribute *attr,
3580                                       const char *buf, size_t count)
3581 {
3582         int err;
3583         int knob;
3584
3585         err = kstrtoint(buf, 10, &knob);
3586         if (err)
3587                 return err;
3588         /*
3589          * When a KSM page is created it is shared by 2 mappings. This
3590          * being a signed comparison, it implicitly verifies it's not
3591          * negative.
3592          */
3593         if (knob < 2)
3594                 return -EINVAL;
3595
3596         if (READ_ONCE(ksm_max_page_sharing) == knob)
3597                 return count;
3598
3599         mutex_lock(&ksm_thread_mutex);
3600         wait_while_offlining();
3601         if (ksm_max_page_sharing != knob) {
3602                 if (ksm_pages_shared || remove_all_stable_nodes())
3603                         err = -EBUSY;
3604                 else
3605                         ksm_max_page_sharing = knob;
3606         }
3607         mutex_unlock(&ksm_thread_mutex);
3608
3609         return err ? err : count;
3610 }
3611 KSM_ATTR(max_page_sharing);
3612
3613 static ssize_t pages_scanned_show(struct kobject *kobj,
3614                                   struct kobj_attribute *attr, char *buf)
3615 {
3616         return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3617 }
3618 KSM_ATTR_RO(pages_scanned);
3619
3620 static ssize_t pages_shared_show(struct kobject *kobj,
3621                                  struct kobj_attribute *attr, char *buf)
3622 {
3623         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3624 }
3625 KSM_ATTR_RO(pages_shared);
3626
3627 static ssize_t pages_sharing_show(struct kobject *kobj,
3628                                   struct kobj_attribute *attr, char *buf)
3629 {
3630         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3631 }
3632 KSM_ATTR_RO(pages_sharing);
3633
3634 static ssize_t pages_unshared_show(struct kobject *kobj,
3635                                    struct kobj_attribute *attr, char *buf)
3636 {
3637         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3638 }
3639 KSM_ATTR_RO(pages_unshared);
3640
3641 static ssize_t pages_volatile_show(struct kobject *kobj,
3642                                    struct kobj_attribute *attr, char *buf)
3643 {
3644         long ksm_pages_volatile;
3645
3646         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3647                                 - ksm_pages_sharing - ksm_pages_unshared;
3648         /*
3649          * It was not worth any locking to calculate that statistic,
3650          * but it might therefore sometimes be negative: conceal that.
3651          */
3652         if (ksm_pages_volatile < 0)
3653                 ksm_pages_volatile = 0;
3654         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3655 }
3656 KSM_ATTR_RO(pages_volatile);
3657
3658 static ssize_t pages_skipped_show(struct kobject *kobj,
3659                                   struct kobj_attribute *attr, char *buf)
3660 {
3661         return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3662 }
3663 KSM_ATTR_RO(pages_skipped);
3664
3665 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3666                                 struct kobj_attribute *attr, char *buf)
3667 {
3668         return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3669 }
3670 KSM_ATTR_RO(ksm_zero_pages);
3671
3672 static ssize_t general_profit_show(struct kobject *kobj,
3673                                    struct kobj_attribute *attr, char *buf)
3674 {
3675         long general_profit;
3676
3677         general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3678                                 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3679
3680         return sysfs_emit(buf, "%ld\n", general_profit);
3681 }
3682 KSM_ATTR_RO(general_profit);
3683
3684 static ssize_t stable_node_dups_show(struct kobject *kobj,
3685                                      struct kobj_attribute *attr, char *buf)
3686 {
3687         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3688 }
3689 KSM_ATTR_RO(stable_node_dups);
3690
3691 static ssize_t stable_node_chains_show(struct kobject *kobj,
3692                                        struct kobj_attribute *attr, char *buf)
3693 {
3694         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3695 }
3696 KSM_ATTR_RO(stable_node_chains);
3697
3698 static ssize_t
3699 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3700                                         struct kobj_attribute *attr,
3701                                         char *buf)
3702 {
3703         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3704 }
3705
3706 static ssize_t
3707 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3708                                          struct kobj_attribute *attr,
3709                                          const char *buf, size_t count)
3710 {
3711         unsigned int msecs;
3712         int err;
3713
3714         err = kstrtouint(buf, 10, &msecs);
3715         if (err)
3716                 return -EINVAL;
3717
3718         ksm_stable_node_chains_prune_millisecs = msecs;
3719
3720         return count;
3721 }
3722 KSM_ATTR(stable_node_chains_prune_millisecs);
3723
3724 static ssize_t full_scans_show(struct kobject *kobj,
3725                                struct kobj_attribute *attr, char *buf)
3726 {
3727         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3728 }
3729 KSM_ATTR_RO(full_scans);
3730
3731 static ssize_t smart_scan_show(struct kobject *kobj,
3732                                struct kobj_attribute *attr, char *buf)
3733 {
3734         return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3735 }
3736
3737 static ssize_t smart_scan_store(struct kobject *kobj,
3738                                 struct kobj_attribute *attr,
3739                                 const char *buf, size_t count)
3740 {
3741         int err;
3742         bool value;
3743
3744         err = kstrtobool(buf, &value);
3745         if (err)
3746                 return -EINVAL;
3747
3748         ksm_smart_scan = value;
3749         return count;
3750 }
3751 KSM_ATTR(smart_scan);
3752
3753 static ssize_t advisor_mode_show(struct kobject *kobj,
3754                                  struct kobj_attribute *attr, char *buf)
3755 {
3756         const char *output;
3757
3758         if (ksm_advisor == KSM_ADVISOR_NONE)
3759                 output = "[none] scan-time";
3760         else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3761                 output = "none [scan-time]";
3762
3763         return sysfs_emit(buf, "%s\n", output);
3764 }
3765
3766 static ssize_t advisor_mode_store(struct kobject *kobj,
3767                                   struct kobj_attribute *attr, const char *buf,
3768                                   size_t count)
3769 {
3770         enum ksm_advisor_type curr_advisor = ksm_advisor;
3771
3772         if (sysfs_streq("scan-time", buf))
3773                 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3774         else if (sysfs_streq("none", buf))
3775                 ksm_advisor = KSM_ADVISOR_NONE;
3776         else
3777                 return -EINVAL;
3778
3779         /* Set advisor default values */
3780         if (curr_advisor != ksm_advisor)
3781                 set_advisor_defaults();
3782
3783         return count;
3784 }
3785 KSM_ATTR(advisor_mode);
3786
3787 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3788                                     struct kobj_attribute *attr, char *buf)
3789 {
3790         return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3791 }
3792
3793 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3794                                      struct kobj_attribute *attr,
3795                                      const char *buf, size_t count)
3796 {
3797         int err;
3798         unsigned long value;
3799
3800         err = kstrtoul(buf, 10, &value);
3801         if (err)
3802                 return -EINVAL;
3803
3804         ksm_advisor_max_cpu = value;
3805         return count;
3806 }
3807 KSM_ATTR(advisor_max_cpu);
3808
3809 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3810                                         struct kobj_attribute *attr, char *buf)
3811 {
3812         return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3813 }
3814
3815 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3816                                         struct kobj_attribute *attr,
3817                                         const char *buf, size_t count)
3818 {
3819         int err;
3820         unsigned long value;
3821
3822         err = kstrtoul(buf, 10, &value);
3823         if (err)
3824                 return -EINVAL;
3825
3826         ksm_advisor_min_pages_to_scan = value;
3827         return count;
3828 }
3829 KSM_ATTR(advisor_min_pages_to_scan);
3830
3831 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3832                                         struct kobj_attribute *attr, char *buf)
3833 {
3834         return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3835 }
3836
3837 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3838                                         struct kobj_attribute *attr,
3839                                         const char *buf, size_t count)
3840 {
3841         int err;
3842         unsigned long value;
3843
3844         err = kstrtoul(buf, 10, &value);
3845         if (err)
3846                 return -EINVAL;
3847
3848         ksm_advisor_max_pages_to_scan = value;
3849         return count;
3850 }
3851 KSM_ATTR(advisor_max_pages_to_scan);
3852
3853 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3854                                              struct kobj_attribute *attr, char *buf)
3855 {
3856         return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3857 }
3858
3859 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3860                                               struct kobj_attribute *attr,
3861                                               const char *buf, size_t count)
3862 {
3863         int err;
3864         unsigned long value;
3865
3866         err = kstrtoul(buf, 10, &value);
3867         if (err)
3868                 return -EINVAL;
3869         if (value < 1)
3870                 return -EINVAL;
3871
3872         ksm_advisor_target_scan_time = value;
3873         return count;
3874 }
3875 KSM_ATTR(advisor_target_scan_time);
3876
3877 static struct attribute *ksm_attrs[] = {
3878         &sleep_millisecs_attr.attr,
3879         &pages_to_scan_attr.attr,
3880         &run_attr.attr,
3881         &pages_scanned_attr.attr,
3882         &pages_shared_attr.attr,
3883         &pages_sharing_attr.attr,
3884         &pages_unshared_attr.attr,
3885         &pages_volatile_attr.attr,
3886         &pages_skipped_attr.attr,
3887         &ksm_zero_pages_attr.attr,
3888         &full_scans_attr.attr,
3889 #ifdef CONFIG_NUMA
3890         &merge_across_nodes_attr.attr,
3891 #endif
3892         &max_page_sharing_attr.attr,
3893         &stable_node_chains_attr.attr,
3894         &stable_node_dups_attr.attr,
3895         &stable_node_chains_prune_millisecs_attr.attr,
3896         &use_zero_pages_attr.attr,
3897         &general_profit_attr.attr,
3898         &smart_scan_attr.attr,
3899         &advisor_mode_attr.attr,
3900         &advisor_max_cpu_attr.attr,
3901         &advisor_min_pages_to_scan_attr.attr,
3902         &advisor_max_pages_to_scan_attr.attr,
3903         &advisor_target_scan_time_attr.attr,
3904         NULL,
3905 };
3906
3907 static const struct attribute_group ksm_attr_group = {
3908         .attrs = ksm_attrs,
3909         .name = "ksm",
3910 };
3911 #endif /* CONFIG_SYSFS */
3912
3913 static int __init ksm_init(void)
3914 {
3915         struct task_struct *ksm_thread;
3916         int err;
3917
3918         /* The correct value depends on page size and endianness */
3919         zero_checksum = calc_checksum(ZERO_PAGE(0));
3920         /* Default to false for backwards compatibility */
3921         ksm_use_zero_pages = false;
3922
3923         err = ksm_slab_init();
3924         if (err)
3925                 goto out;
3926
3927         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3928         if (IS_ERR(ksm_thread)) {
3929                 pr_err("ksm: creating kthread failed\n");
3930                 err = PTR_ERR(ksm_thread);
3931                 goto out_free;
3932         }
3933
3934 #ifdef CONFIG_SYSFS
3935         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3936         if (err) {
3937                 pr_err("ksm: register sysfs failed\n");
3938                 kthread_stop(ksm_thread);
3939                 goto out_free;
3940         }
3941 #else
3942         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3943
3944 #endif /* CONFIG_SYSFS */
3945
3946 #ifdef CONFIG_MEMORY_HOTREMOVE
3947         /* There is no significance to this priority 100 */
3948         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3949 #endif
3950         return 0;
3951
3952 out_free:
3953         ksm_slab_free();
3954 out:
3955         return err;
3956 }
3957 subsys_initcall(ksm_init);
This page took 0.251247 seconds and 4 git commands to generate.