1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
23 #include "trace_gfs2.h"
26 * gfs2_update_stats - Update time based stats
27 * @s: The stats to update (local or global)
28 * @index: The index inside @s
29 * @sample: New data to include
31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
35 * @delta is the difference between the current rtt sample and the
36 * running average srtt. We add 1/8 of that to the srtt in order to
37 * update the current srtt estimate. The variance estimate is a bit
38 * more complicated. We subtract the current variance estimate from
39 * the abs value of the @delta and add 1/4 of that to the running
40 * total. That's equivalent to 3/4 of the current variance
41 * estimate plus 1/4 of the abs of @delta.
43 * Note that the index points at the array entry containing the
44 * smoothed mean value, and the variance is always in the following
47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 * case, they are not scaled fixed point.
52 s64 delta = sample - s->stats[index];
53 s->stats[index] += (delta >> 3);
55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
59 * gfs2_update_reply_times - Update locking statistics
60 * @gl: The glock to update
62 * This assumes that gl->gl_dstamp has been set earlier.
64 * The rtt (lock round trip time) is an estimate of the time
65 * taken to perform a dlm lock request. We update it on each
68 * The blocking flag is set on the glock for all dlm requests
69 * which may potentially block due to lock requests from other nodes.
70 * DLM requests where the current lock state is exclusive, the
71 * requested state is null (or unlocked) or where the TRY or
72 * TRY_1CB flags are set are classified as non-blocking. All
73 * other DLM requests are counted as (potentially) blocking.
75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
77 struct gfs2_pcpu_lkstats *lks;
78 const unsigned gltype = gl->gl_name.ln_type;
79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
90 trace_gfs2_glock_lock_time(gl, rtt);
94 * gfs2_update_request_times - Update locking statistics
95 * @gl: The glock to update
97 * The irt (lock inter-request times) measures the average time
98 * between requests to the dlm. It is updated immediately before
102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
104 struct gfs2_pcpu_lkstats *lks;
105 const unsigned gltype = gl->gl_name.ln_type;
110 dstamp = gl->gl_dstamp;
111 gl->gl_dstamp = ktime_get_real();
112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
119 static void gdlm_ast(void *arg)
121 struct gfs2_glock *gl = arg;
122 unsigned ret = gl->gl_state;
124 /* If the glock is dead, we only react to a dlm_unlock() reply. */
125 if (__lockref_is_dead(&gl->gl_lockref) &&
126 gl->gl_lksb.sb_status != -DLM_EUNLOCK)
129 gfs2_update_reply_times(gl);
130 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
132 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
133 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
135 switch (gl->gl_lksb.sb_status) {
136 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
137 if (gl->gl_ops->go_free)
138 gl->gl_ops->go_free(gl);
141 case -DLM_ECANCEL: /* Cancel while getting lock */
142 ret |= LM_OUT_CANCELED;
144 case -EAGAIN: /* Try lock fails */
145 case -EDEADLK: /* Deadlock detected */
147 case -ETIMEDOUT: /* Canceled due to timeout */
150 case 0: /* Success */
152 default: /* Something unexpected */
157 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
158 if (gl->gl_req == LM_ST_SHARED)
159 ret = LM_ST_DEFERRED;
160 else if (gl->gl_req == LM_ST_DEFERRED)
166 set_bit(GLF_INITIAL, &gl->gl_flags);
167 gfs2_glock_complete(gl, ret);
170 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
171 gl->gl_lksb.sb_lkid = 0;
172 gfs2_glock_complete(gl, ret);
175 static void gdlm_bast(void *arg, int mode)
177 struct gfs2_glock *gl = arg;
179 if (__lockref_is_dead(&gl->gl_lockref))
184 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
187 gfs2_glock_cb(gl, LM_ST_DEFERRED);
190 gfs2_glock_cb(gl, LM_ST_SHARED);
193 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
198 /* convert gfs lock-state to dlm lock-mode */
200 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
205 case LM_ST_EXCLUSIVE:
212 fs_err(sdp, "unknown LM state %d\n", lmstate);
217 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
222 if (gl->gl_lksb.sb_lvbptr)
223 lkf |= DLM_LKF_VALBLK;
225 if (gfs_flags & LM_FLAG_TRY)
226 lkf |= DLM_LKF_NOQUEUE;
228 if (gfs_flags & LM_FLAG_TRY_1CB) {
229 lkf |= DLM_LKF_NOQUEUE;
230 lkf |= DLM_LKF_NOQUEUEBAST;
233 if (gfs_flags & LM_FLAG_ANY) {
234 if (req == DLM_LOCK_PR)
235 lkf |= DLM_LKF_ALTCW;
236 else if (req == DLM_LOCK_CW)
237 lkf |= DLM_LKF_ALTPR;
242 if (gl->gl_lksb.sb_lkid != 0) {
243 lkf |= DLM_LKF_CONVERT;
244 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
245 lkf |= DLM_LKF_QUECVT;
251 static void gfs2_reverse_hex(char *c, u64 value)
255 *c-- = hex_asc[value & 0x0f];
260 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
263 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
266 char strname[GDLM_STRNAME_BYTES] = "";
269 req = make_mode(gl->gl_name.ln_sbd, req_state);
270 lkf = make_flags(gl, flags, req);
271 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
272 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
273 if (gl->gl_lksb.sb_lkid) {
274 gfs2_update_request_times(gl);
276 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
277 strname[GDLM_STRNAME_BYTES - 1] = '\0';
278 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
279 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
280 gl->gl_dstamp = ktime_get_real();
283 * Submit the actual lock request.
287 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
288 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
289 if (error == -EBUSY) {
296 static void gdlm_put_lock(struct gfs2_glock *gl)
298 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
299 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
302 BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
304 if (gl->gl_lksb.sb_lkid == 0) {
309 clear_bit(GLF_BLOCKING, &gl->gl_flags);
310 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
311 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
312 gfs2_update_request_times(gl);
314 /* don't want to call dlm if we've unmounted the lock protocol */
315 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
321 * When the lockspace is released, all remaining glocks will be
322 * unlocked automatically. This is more efficient than unlocking them
323 * individually, but when the lock is held in DLM_LOCK_EX or
324 * DLM_LOCK_PW mode, the lock value block (LVB) will be lost.
327 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
328 (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
329 gfs2_glock_free_later(gl);
334 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
336 if (error == -EBUSY) {
342 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
344 (unsigned long long)gl->gl_name.ln_number, error);
348 static void gdlm_cancel(struct gfs2_glock *gl)
350 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
351 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
355 * dlm/gfs2 recovery coordination using dlm_recover callbacks
357 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
358 * 1. dlm_controld sees lockspace members change
359 * 2. dlm_controld blocks dlm-kernel locking activity
360 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
361 * 4. dlm_controld starts and finishes its own user level recovery
362 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
363 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
364 * 7. dlm_recoverd does its own lock recovery
365 * 8. dlm_recoverd unblocks dlm-kernel locking activity
366 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
367 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
368 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
369 * 12. gfs2_recover dequeues and recovers journals of failed nodes
370 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
371 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
372 * 15. gfs2_control unblocks normal locking when all journals are recovered
374 * - failures during recovery
376 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
377 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
378 * recovering for a prior failure. gfs2_control needs a way to detect
379 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
380 * the recover_block and recover_start values.
382 * recover_done() provides a new lockspace generation number each time it
383 * is called (step 9). This generation number is saved as recover_start.
384 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
385 * recover_block = recover_start. So, while recover_block is equal to
386 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
387 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
389 * - more specific gfs2 steps in sequence above
391 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
392 * 6. recover_slot records any failed jids (maybe none)
393 * 9. recover_done sets recover_start = new generation number
394 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
395 * 12. gfs2_recover does journal recoveries for failed jids identified above
396 * 14. gfs2_control clears control_lock lvb bits for recovered jids
397 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
398 * again) then do nothing, otherwise if recover_start > recover_block
399 * then clear BLOCK_LOCKS.
401 * - parallel recovery steps across all nodes
403 * All nodes attempt to update the control_lock lvb with the new generation
404 * number and jid bits, but only the first to get the control_lock EX will
405 * do so; others will see that it's already done (lvb already contains new
406 * generation number.)
408 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
409 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
410 * . One node gets control_lock first and writes the lvb, others see it's done
411 * . All nodes attempt to recover jids for which they see control_lock bits set
412 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
413 * . All nodes will eventually see all lvb bits clear and unblock locks
415 * - is there a problem with clearing an lvb bit that should be set
416 * and missing a journal recovery?
419 * 2. lvb bit set for step 1
420 * 3. jid recovered for step 1
421 * 4. jid taken again (new mount)
422 * 5. jid fails (for step 4)
423 * 6. lvb bit set for step 5 (will already be set)
424 * 7. lvb bit cleared for step 3
426 * This is not a problem because the failure in step 5 does not
427 * require recovery, because the mount in step 4 could not have
428 * progressed far enough to unblock locks and access the fs. The
429 * control_mount() function waits for all recoveries to be complete
430 * for the latest lockspace generation before ever unblocking locks
431 * and returning. The mount in step 4 waits until the recovery in
434 * - special case of first mounter: first node to mount the fs
436 * The first node to mount a gfs2 fs needs to check all the journals
437 * and recover any that need recovery before other nodes are allowed
438 * to mount the fs. (Others may begin mounting, but they must wait
439 * for the first mounter to be done before taking locks on the fs
440 * or accessing the fs.) This has two parts:
442 * 1. The mounted_lock tells a node it's the first to mount the fs.
443 * Each node holds the mounted_lock in PR while it's mounted.
444 * Each node tries to acquire the mounted_lock in EX when it mounts.
445 * If a node is granted the mounted_lock EX it means there are no
446 * other mounted nodes (no PR locks exist), and it is the first mounter.
447 * The mounted_lock is demoted to PR when first recovery is done, so
448 * others will fail to get an EX lock, but will get a PR lock.
450 * 2. The control_lock blocks others in control_mount() while the first
451 * mounter is doing first mount recovery of all journals.
452 * A mounting node needs to acquire control_lock in EX mode before
453 * it can proceed. The first mounter holds control_lock in EX while doing
454 * the first mount recovery, blocking mounts from other nodes, then demotes
455 * control_lock to NL when it's done (others_may_mount/first_done),
456 * allowing other nodes to continue mounting.
459 * control_lock EX/NOQUEUE success
460 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
462 * do first mounter recovery
463 * mounted_lock EX->PR
464 * control_lock EX->NL, write lvb generation
467 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
468 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
469 * mounted_lock PR/NOQUEUE success
470 * read lvb generation
471 * control_lock EX->NL
474 * - mount during recovery
476 * If a node mounts while others are doing recovery (not first mounter),
477 * the mounting node will get its initial recover_done() callback without
478 * having seen any previous failures/callbacks.
480 * It must wait for all recoveries preceding its mount to be finished
481 * before it unblocks locks. It does this by repeating the "other mounter"
482 * steps above until the lvb generation number is >= its mount generation
483 * number (from initial recover_done) and all lvb bits are clear.
485 * - control_lock lvb format
487 * 4 bytes generation number: the latest dlm lockspace generation number
488 * from recover_done callback. Indicates the jid bitmap has been updated
489 * to reflect all slot failures through that generation.
491 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
492 * that jid N needs recovery.
495 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
497 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
501 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
502 memcpy(&gen, lvb_bits, sizeof(__le32));
503 *lvb_gen = le32_to_cpu(gen);
506 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
510 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
511 gen = cpu_to_le32(lvb_gen);
512 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
515 static int all_jid_bits_clear(char *lvb)
517 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
518 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
521 static void sync_wait_cb(void *arg)
523 struct lm_lockstruct *ls = arg;
524 complete(&ls->ls_sync_wait);
527 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
529 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
532 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
534 fs_err(sdp, "%s lkid %x error %d\n",
535 name, lksb->sb_lkid, error);
539 wait_for_completion(&ls->ls_sync_wait);
541 if (lksb->sb_status != -DLM_EUNLOCK) {
542 fs_err(sdp, "%s lkid %x status %d\n",
543 name, lksb->sb_lkid, lksb->sb_status);
549 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
550 unsigned int num, struct dlm_lksb *lksb, char *name)
552 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
553 char strname[GDLM_STRNAME_BYTES];
556 memset(strname, 0, GDLM_STRNAME_BYTES);
557 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
559 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
560 strname, GDLM_STRNAME_BYTES - 1,
561 0, sync_wait_cb, ls, NULL);
563 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
564 name, lksb->sb_lkid, flags, mode, error);
568 wait_for_completion(&ls->ls_sync_wait);
570 status = lksb->sb_status;
572 if (status && status != -EAGAIN) {
573 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
574 name, lksb->sb_lkid, flags, mode, status);
580 static int mounted_unlock(struct gfs2_sbd *sdp)
582 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
583 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
586 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
588 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
589 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
590 &ls->ls_mounted_lksb, "mounted_lock");
593 static int control_unlock(struct gfs2_sbd *sdp)
595 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
596 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
599 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
601 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
602 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
603 &ls->ls_control_lksb, "control_lock");
607 * remote_withdraw - react to a node withdrawing from the file system
608 * @sdp: The superblock
610 static void remote_withdraw(struct gfs2_sbd *sdp)
612 struct gfs2_jdesc *jd;
613 int ret = 0, count = 0;
615 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
616 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
618 ret = gfs2_recover_journal(jd, true);
624 /* Now drop the additional reference we acquired */
625 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
628 static void gfs2_control_func(struct work_struct *work)
630 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
631 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
632 uint32_t block_gen, start_gen, lvb_gen, flags;
638 /* First check for other nodes that may have done a withdraw. */
639 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
640 remote_withdraw(sdp);
641 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
645 spin_lock(&ls->ls_recover_spin);
647 * No MOUNT_DONE means we're still mounting; control_mount()
648 * will set this flag, after which this thread will take over
649 * all further clearing of BLOCK_LOCKS.
651 * FIRST_MOUNT means this node is doing first mounter recovery,
652 * for which recovery control is handled by
653 * control_mount()/control_first_done(), not this thread.
655 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
656 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
657 spin_unlock(&ls->ls_recover_spin);
660 block_gen = ls->ls_recover_block;
661 start_gen = ls->ls_recover_start;
662 spin_unlock(&ls->ls_recover_spin);
665 * Equal block_gen and start_gen implies we are between
666 * recover_prep and recover_done callbacks, which means
667 * dlm recovery is in progress and dlm locking is blocked.
668 * There's no point trying to do any work until recover_done.
671 if (block_gen == start_gen)
675 * Propagate recover_submit[] and recover_result[] to lvb:
676 * dlm_recoverd adds to recover_submit[] jids needing recovery
677 * gfs2_recover adds to recover_result[] journal recovery results
679 * set lvb bit for jids in recover_submit[] if the lvb has not
680 * yet been updated for the generation of the failure
682 * clear lvb bit for jids in recover_result[] if the result of
683 * the journal recovery is SUCCESS
686 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
688 fs_err(sdp, "control lock EX error %d\n", error);
692 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
694 spin_lock(&ls->ls_recover_spin);
695 if (block_gen != ls->ls_recover_block ||
696 start_gen != ls->ls_recover_start) {
697 fs_info(sdp, "recover generation %u block1 %u %u\n",
698 start_gen, block_gen, ls->ls_recover_block);
699 spin_unlock(&ls->ls_recover_spin);
700 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
704 recover_size = ls->ls_recover_size;
706 if (lvb_gen <= start_gen) {
708 * Clear lvb bits for jids we've successfully recovered.
709 * Because all nodes attempt to recover failed journals,
710 * a journal can be recovered multiple times successfully
711 * in succession. Only the first will really do recovery,
712 * the others find it clean, but still report a successful
713 * recovery. So, another node may have already recovered
714 * the jid and cleared the lvb bit for it.
716 for (i = 0; i < recover_size; i++) {
717 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
720 ls->ls_recover_result[i] = 0;
722 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
725 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
730 if (lvb_gen == start_gen) {
732 * Failed slots before start_gen are already set in lvb.
734 for (i = 0; i < recover_size; i++) {
735 if (!ls->ls_recover_submit[i])
737 if (ls->ls_recover_submit[i] < lvb_gen)
738 ls->ls_recover_submit[i] = 0;
740 } else if (lvb_gen < start_gen) {
742 * Failed slots before start_gen are not yet set in lvb.
744 for (i = 0; i < recover_size; i++) {
745 if (!ls->ls_recover_submit[i])
747 if (ls->ls_recover_submit[i] < start_gen) {
748 ls->ls_recover_submit[i] = 0;
749 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
752 /* even if there are no bits to set, we need to write the
753 latest generation to the lvb */
757 * we should be getting a recover_done() for lvb_gen soon
760 spin_unlock(&ls->ls_recover_spin);
763 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
764 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
766 flags = DLM_LKF_CONVERT;
769 error = control_lock(sdp, DLM_LOCK_NL, flags);
771 fs_err(sdp, "control lock NL error %d\n", error);
776 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
777 * and clear a jid bit in the lvb if the recovery is a success.
778 * Eventually all journals will be recovered, all jid bits will
779 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
782 for (i = 0; i < recover_size; i++) {
783 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
784 fs_info(sdp, "recover generation %u jid %d\n",
786 gfs2_recover_set(sdp, i);
794 * No more jid bits set in lvb, all recovery is done, unblock locks
795 * (unless a new recover_prep callback has occured blocking locks
796 * again while working above)
799 spin_lock(&ls->ls_recover_spin);
800 if (ls->ls_recover_block == block_gen &&
801 ls->ls_recover_start == start_gen) {
802 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
803 spin_unlock(&ls->ls_recover_spin);
804 fs_info(sdp, "recover generation %u done\n", start_gen);
805 gfs2_glock_thaw(sdp);
807 fs_info(sdp, "recover generation %u block2 %u %u\n",
808 start_gen, block_gen, ls->ls_recover_block);
809 spin_unlock(&ls->ls_recover_spin);
813 static int control_mount(struct gfs2_sbd *sdp)
815 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
816 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
821 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
822 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
823 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
824 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
825 init_completion(&ls->ls_sync_wait);
827 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
829 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
831 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
835 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
837 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
841 mounted_mode = DLM_LOCK_NL;
844 if (retries++ && signal_pending(current)) {
850 * We always start with both locks in NL. control_lock is
851 * demoted to NL below so we don't need to do it here.
854 if (mounted_mode != DLM_LOCK_NL) {
855 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
858 mounted_mode = DLM_LOCK_NL;
862 * Other nodes need to do some work in dlm recovery and gfs2_control
863 * before the recover_done and control_lock will be ready for us below.
864 * A delay here is not required but often avoids having to retry.
867 msleep_interruptible(500);
870 * Acquire control_lock in EX and mounted_lock in either EX or PR.
871 * control_lock lvb keeps track of any pending journal recoveries.
872 * mounted_lock indicates if any other nodes have the fs mounted.
875 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
876 if (error == -EAGAIN) {
879 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
884 * If we're a spectator, we don't want to take the lock in EX because
885 * we cannot do the first-mount responsibility it implies: recovery.
887 if (sdp->sd_args.ar_spectator)
890 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
892 mounted_mode = DLM_LOCK_EX;
894 } else if (error != -EAGAIN) {
895 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
899 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
901 mounted_mode = DLM_LOCK_PR;
904 /* not even -EAGAIN should happen here */
905 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
911 * If we got both locks above in EX, then we're the first mounter.
912 * If not, then we need to wait for the control_lock lvb to be
913 * updated by other mounted nodes to reflect our mount generation.
915 * In simple first mounter cases, first mounter will see zero lvb_gen,
916 * but in cases where all existing nodes leave/fail before mounting
917 * nodes finish control_mount, then all nodes will be mounting and
918 * lvb_gen will be non-zero.
921 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
923 if (lvb_gen == 0xFFFFFFFF) {
924 /* special value to force mount attempts to fail */
925 fs_err(sdp, "control_mount control_lock disabled\n");
930 if (mounted_mode == DLM_LOCK_EX) {
931 /* first mounter, keep both EX while doing first recovery */
932 spin_lock(&ls->ls_recover_spin);
933 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
934 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
935 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
936 spin_unlock(&ls->ls_recover_spin);
937 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
941 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
946 * We are not first mounter, now we need to wait for the control_lock
947 * lvb generation to be >= the generation from our first recover_done
948 * and all lvb bits to be clear (no pending journal recoveries.)
951 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
952 /* journals need recovery, wait until all are clear */
953 fs_info(sdp, "control_mount wait for journal recovery\n");
957 spin_lock(&ls->ls_recover_spin);
958 block_gen = ls->ls_recover_block;
959 start_gen = ls->ls_recover_start;
960 mount_gen = ls->ls_recover_mount;
962 if (lvb_gen < mount_gen) {
963 /* wait for mounted nodes to update control_lock lvb to our
964 generation, which might include new recovery bits set */
965 if (sdp->sd_args.ar_spectator) {
966 fs_info(sdp, "Recovery is required. Waiting for a "
967 "non-spectator to mount.\n");
968 msleep_interruptible(1000);
970 fs_info(sdp, "control_mount wait1 block %u start %u "
971 "mount %u lvb %u flags %lx\n", block_gen,
972 start_gen, mount_gen, lvb_gen,
973 ls->ls_recover_flags);
975 spin_unlock(&ls->ls_recover_spin);
979 if (lvb_gen != start_gen) {
980 /* wait for mounted nodes to update control_lock lvb to the
981 latest recovery generation */
982 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
983 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
984 lvb_gen, ls->ls_recover_flags);
985 spin_unlock(&ls->ls_recover_spin);
989 if (block_gen == start_gen) {
990 /* dlm recovery in progress, wait for it to finish */
991 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
992 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
993 lvb_gen, ls->ls_recover_flags);
994 spin_unlock(&ls->ls_recover_spin);
998 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
999 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1000 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1001 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1002 spin_unlock(&ls->ls_recover_spin);
1006 mounted_unlock(sdp);
1007 control_unlock(sdp);
1011 static int control_first_done(struct gfs2_sbd *sdp)
1013 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1014 uint32_t start_gen, block_gen;
1018 spin_lock(&ls->ls_recover_spin);
1019 start_gen = ls->ls_recover_start;
1020 block_gen = ls->ls_recover_block;
1022 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1023 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1024 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1025 /* sanity check, should not happen */
1026 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1027 start_gen, block_gen, ls->ls_recover_flags);
1028 spin_unlock(&ls->ls_recover_spin);
1029 control_unlock(sdp);
1033 if (start_gen == block_gen) {
1035 * Wait for the end of a dlm recovery cycle to switch from
1036 * first mounter recovery. We can ignore any recover_slot
1037 * callbacks between the recover_prep and next recover_done
1038 * because we are still the first mounter and any failed nodes
1039 * have not fully mounted, so they don't need recovery.
1041 spin_unlock(&ls->ls_recover_spin);
1042 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1044 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1045 TASK_UNINTERRUPTIBLE);
1049 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1050 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1051 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1052 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1053 spin_unlock(&ls->ls_recover_spin);
1055 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1056 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1058 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1060 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1062 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1064 fs_err(sdp, "control_first_done control NL error %d\n", error);
1070 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1071 * to accommodate the largest slot number. (NB dlm slot numbers start at 1,
1072 * gfs2 jids start at 0, so jid = slot - 1)
1075 #define RECOVER_SIZE_INC 16
1077 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1080 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1081 uint32_t *submit = NULL;
1082 uint32_t *result = NULL;
1083 uint32_t old_size, new_size;
1086 if (!ls->ls_lvb_bits) {
1087 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1088 if (!ls->ls_lvb_bits)
1093 for (i = 0; i < num_slots; i++) {
1094 if (max_jid < slots[i].slot - 1)
1095 max_jid = slots[i].slot - 1;
1098 old_size = ls->ls_recover_size;
1099 new_size = old_size;
1100 while (new_size < max_jid + 1)
1101 new_size += RECOVER_SIZE_INC;
1102 if (new_size == old_size)
1105 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1106 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1107 if (!submit || !result) {
1113 spin_lock(&ls->ls_recover_spin);
1114 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1115 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1116 kfree(ls->ls_recover_submit);
1117 kfree(ls->ls_recover_result);
1118 ls->ls_recover_submit = submit;
1119 ls->ls_recover_result = result;
1120 ls->ls_recover_size = new_size;
1121 spin_unlock(&ls->ls_recover_spin);
1125 static void free_recover_size(struct lm_lockstruct *ls)
1127 kfree(ls->ls_lvb_bits);
1128 kfree(ls->ls_recover_submit);
1129 kfree(ls->ls_recover_result);
1130 ls->ls_recover_submit = NULL;
1131 ls->ls_recover_result = NULL;
1132 ls->ls_recover_size = 0;
1133 ls->ls_lvb_bits = NULL;
1136 /* dlm calls before it does lock recovery */
1138 static void gdlm_recover_prep(void *arg)
1140 struct gfs2_sbd *sdp = arg;
1141 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1143 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1144 fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1147 spin_lock(&ls->ls_recover_spin);
1148 ls->ls_recover_block = ls->ls_recover_start;
1149 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1151 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1152 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1153 spin_unlock(&ls->ls_recover_spin);
1156 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1157 spin_unlock(&ls->ls_recover_spin);
1160 /* dlm calls after recover_prep has been completed on all lockspace members;
1161 identifies slot/jid of failed member */
1163 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1165 struct gfs2_sbd *sdp = arg;
1166 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1167 int jid = slot->slot - 1;
1169 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1170 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1174 spin_lock(&ls->ls_recover_spin);
1175 if (ls->ls_recover_size < jid + 1) {
1176 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1177 jid, ls->ls_recover_block, ls->ls_recover_size);
1178 spin_unlock(&ls->ls_recover_spin);
1182 if (ls->ls_recover_submit[jid]) {
1183 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1184 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1186 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1187 spin_unlock(&ls->ls_recover_spin);
1190 /* dlm calls after recover_slot and after it completes lock recovery */
1192 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1193 int our_slot, uint32_t generation)
1195 struct gfs2_sbd *sdp = arg;
1196 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1198 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1199 fs_err(sdp, "recover_done ignored due to withdraw.\n");
1202 /* ensure the ls jid arrays are large enough */
1203 set_recover_size(sdp, slots, num_slots);
1205 spin_lock(&ls->ls_recover_spin);
1206 ls->ls_recover_start = generation;
1208 if (!ls->ls_recover_mount) {
1209 ls->ls_recover_mount = generation;
1210 ls->ls_jid = our_slot - 1;
1213 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1214 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1216 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1217 smp_mb__after_atomic();
1218 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1219 spin_unlock(&ls->ls_recover_spin);
1222 /* gfs2_recover thread has a journal recovery result */
1224 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1225 unsigned int result)
1227 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1229 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1230 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1234 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1237 /* don't care about the recovery of own journal during mount */
1238 if (jid == ls->ls_jid)
1241 spin_lock(&ls->ls_recover_spin);
1242 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1243 spin_unlock(&ls->ls_recover_spin);
1246 if (ls->ls_recover_size < jid + 1) {
1247 fs_err(sdp, "recovery_result jid %d short size %d\n",
1248 jid, ls->ls_recover_size);
1249 spin_unlock(&ls->ls_recover_spin);
1253 fs_info(sdp, "recover jid %d result %s\n", jid,
1254 result == LM_RD_GAVEUP ? "busy" : "success");
1256 ls->ls_recover_result[jid] = result;
1258 /* GAVEUP means another node is recovering the journal; delay our
1259 next attempt to recover it, to give the other node a chance to
1260 finish before trying again */
1262 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1263 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1264 result == LM_RD_GAVEUP ? HZ : 0);
1265 spin_unlock(&ls->ls_recover_spin);
1268 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1269 .recover_prep = gdlm_recover_prep,
1270 .recover_slot = gdlm_recover_slot,
1271 .recover_done = gdlm_recover_done,
1274 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1276 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1277 char cluster[GFS2_LOCKNAME_LEN];
1280 int error, ops_result;
1283 * initialize everything
1286 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1287 spin_lock_init(&ls->ls_recover_spin);
1288 ls->ls_recover_flags = 0;
1289 ls->ls_recover_mount = 0;
1290 ls->ls_recover_start = 0;
1291 ls->ls_recover_block = 0;
1292 ls->ls_recover_size = 0;
1293 ls->ls_recover_submit = NULL;
1294 ls->ls_recover_result = NULL;
1295 ls->ls_lvb_bits = NULL;
1297 error = set_recover_size(sdp, NULL, 0);
1302 * prepare dlm_new_lockspace args
1305 fsname = strchr(table, ':');
1307 fs_info(sdp, "no fsname found\n");
1311 memset(cluster, 0, sizeof(cluster));
1312 memcpy(cluster, table, strlen(table) - strlen(fsname));
1315 flags = DLM_LSFL_NEWEXCL;
1318 * create/join lockspace
1321 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1322 &gdlm_lockspace_ops, sdp, &ops_result,
1325 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1329 if (ops_result < 0) {
1331 * dlm does not support ops callbacks,
1332 * old dlm_controld/gfs_controld are used, try without ops.
1334 fs_info(sdp, "dlm lockspace ops not used\n");
1335 free_recover_size(ls);
1336 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1340 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1341 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1347 * control_mount() uses control_lock to determine first mounter,
1348 * and for later mounts, waits for any recoveries to be cleared.
1351 error = control_mount(sdp);
1353 fs_err(sdp, "mount control error %d\n", error);
1357 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1358 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1359 smp_mb__after_atomic();
1360 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1364 dlm_release_lockspace(ls->ls_dlm, 2);
1366 free_recover_size(ls);
1371 static void gdlm_first_done(struct gfs2_sbd *sdp)
1373 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1376 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1379 error = control_first_done(sdp);
1381 fs_err(sdp, "mount first_done error %d\n", error);
1384 static void gdlm_unmount(struct gfs2_sbd *sdp)
1386 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1388 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1391 /* wait for gfs2_control_wq to be done with this mount */
1393 spin_lock(&ls->ls_recover_spin);
1394 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1395 spin_unlock(&ls->ls_recover_spin);
1396 flush_delayed_work(&sdp->sd_control_work);
1398 /* mounted_lock and control_lock will be purged in dlm recovery */
1401 dlm_release_lockspace(ls->ls_dlm, 2);
1405 free_recover_size(ls);
1408 static const match_table_t dlm_tokens = {
1409 { Opt_jid, "jid=%d"},
1411 { Opt_first, "first=%d"},
1412 { Opt_nodir, "nodir=%d"},
1416 const struct lm_lockops gfs2_dlm_ops = {
1417 .lm_proto_name = "lock_dlm",
1418 .lm_mount = gdlm_mount,
1419 .lm_first_done = gdlm_first_done,
1420 .lm_recovery_result = gdlm_recovery_result,
1421 .lm_unmount = gdlm_unmount,
1422 .lm_put_lock = gdlm_put_lock,
1423 .lm_lock = gdlm_lock,
1424 .lm_cancel = gdlm_cancel,
1425 .lm_tokens = &dlm_tokens,