2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements commit-related functionality of the LEB properties
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
33 static int dbg_populate_lsave(struct ubifs_info *c);
36 * first_dirty_cnode - find first dirty cnode.
37 * @c: UBIFS file-system description object
38 * @nnode: nnode at which to start
40 * This function returns the first dirty cnode or %NULL if there is not one.
42 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
48 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
49 struct ubifs_cnode *cnode;
51 cnode = nnode->nbranch[i].cnode;
53 test_bit(DIRTY_CNODE, &cnode->flags)) {
54 if (cnode->level == 0)
56 nnode = (struct ubifs_nnode *)cnode;
62 return (struct ubifs_cnode *)nnode;
67 * next_dirty_cnode - find next dirty cnode.
68 * @cnode: cnode from which to begin searching
70 * This function returns the next dirty cnode or %NULL if there is not one.
72 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
74 struct ubifs_nnode *nnode;
78 nnode = cnode->parent;
81 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
82 cnode = nnode->nbranch[i].cnode;
83 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
84 if (cnode->level == 0)
85 return cnode; /* cnode is a pnode */
86 /* cnode is a nnode */
87 return first_dirty_cnode((struct ubifs_nnode *)cnode);
90 return (struct ubifs_cnode *)nnode;
94 * get_cnodes_to_commit - create list of dirty cnodes to commit.
95 * @c: UBIFS file-system description object
97 * This function returns the number of cnodes to commit.
99 static int get_cnodes_to_commit(struct ubifs_info *c)
101 struct ubifs_cnode *cnode, *cnext;
107 if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
110 c->lpt_cnext = first_dirty_cnode(c->nroot);
111 cnode = c->lpt_cnext;
116 ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
117 __set_bit(COW_CNODE, &cnode->flags);
118 cnext = next_dirty_cnode(cnode);
120 cnode->cnext = c->lpt_cnext;
123 cnode->cnext = cnext;
127 dbg_cmt("committing %d cnodes", cnt);
128 dbg_lp("committing %d cnodes", cnt);
129 ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
134 * upd_ltab - update LPT LEB properties.
135 * @c: UBIFS file-system description object
137 * @free: amount of free space
138 * @dirty: amount of dirty space to add
140 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
142 dbg_lp("LEB %d free %d dirty %d to %d +%d",
143 lnum, c->ltab[lnum - c->lpt_first].free,
144 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
145 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
146 c->ltab[lnum - c->lpt_first].free = free;
147 c->ltab[lnum - c->lpt_first].dirty += dirty;
151 * alloc_lpt_leb - allocate an LPT LEB that is empty.
152 * @c: UBIFS file-system description object
153 * @lnum: LEB number is passed and returned here
155 * This function finds the next empty LEB in the ltab starting from @lnum. If a
156 * an empty LEB is found it is returned in @lnum and the function returns %0.
157 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
158 * never to run out of space.
160 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
164 n = *lnum - c->lpt_first + 1;
165 for (i = n; i < c->lpt_lebs; i++) {
166 if (c->ltab[i].tgc || c->ltab[i].cmt)
168 if (c->ltab[i].free == c->leb_size) {
170 *lnum = i + c->lpt_first;
175 for (i = 0; i < n; i++) {
176 if (c->ltab[i].tgc || c->ltab[i].cmt)
178 if (c->ltab[i].free == c->leb_size) {
180 *lnum = i + c->lpt_first;
188 * layout_cnodes - layout cnodes for commit.
189 * @c: UBIFS file-system description object
191 * This function returns %0 on success and a negative error code on failure.
193 static int layout_cnodes(struct ubifs_info *c)
195 int lnum, offs, len, alen, done_lsave, done_ltab, err;
196 struct ubifs_cnode *cnode;
198 err = dbg_chk_lpt_sz(c, 0, 0);
201 cnode = c->lpt_cnext;
204 lnum = c->nhead_lnum;
205 offs = c->nhead_offs;
206 /* Try to place lsave and ltab nicely */
207 done_lsave = !c->big_lpt;
209 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
211 c->lsave_lnum = lnum;
212 c->lsave_offs = offs;
214 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
217 if (offs + c->ltab_sz <= c->leb_size) {
222 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
228 c->dirty_nn_cnt -= 1;
231 c->dirty_pn_cnt -= 1;
233 while (offs + len > c->leb_size) {
234 alen = ALIGN(offs, c->min_io_size);
235 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
236 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
237 err = alloc_lpt_leb(c, &lnum);
241 ubifs_assert(lnum >= c->lpt_first &&
242 lnum <= c->lpt_last);
243 /* Try to place lsave and ltab nicely */
246 c->lsave_lnum = lnum;
247 c->lsave_offs = offs;
249 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
257 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
263 cnode->parent->nbranch[cnode->iip].lnum = lnum;
264 cnode->parent->nbranch[cnode->iip].offs = offs;
270 dbg_chk_lpt_sz(c, 1, len);
271 cnode = cnode->cnext;
272 } while (cnode && cnode != c->lpt_cnext);
274 /* Make sure to place LPT's save table */
276 if (offs + c->lsave_sz > c->leb_size) {
277 alen = ALIGN(offs, c->min_io_size);
278 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
279 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
280 err = alloc_lpt_leb(c, &lnum);
284 ubifs_assert(lnum >= c->lpt_first &&
285 lnum <= c->lpt_last);
288 c->lsave_lnum = lnum;
289 c->lsave_offs = offs;
291 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
294 /* Make sure to place LPT's own lprops table */
296 if (offs + c->ltab_sz > c->leb_size) {
297 alen = ALIGN(offs, c->min_io_size);
298 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
299 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
300 err = alloc_lpt_leb(c, &lnum);
304 ubifs_assert(lnum >= c->lpt_first &&
305 lnum <= c->lpt_last);
310 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
313 alen = ALIGN(offs, c->min_io_size);
314 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
315 dbg_chk_lpt_sz(c, 4, alen - offs);
316 err = dbg_chk_lpt_sz(c, 3, alen);
322 ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
323 lnum, offs, len, done_ltab, done_lsave);
324 ubifs_dump_lpt_info(c);
325 ubifs_dump_lpt_lebs(c);
331 * realloc_lpt_leb - allocate an LPT LEB that is empty.
332 * @c: UBIFS file-system description object
333 * @lnum: LEB number is passed and returned here
335 * This function duplicates exactly the results of the function alloc_lpt_leb.
336 * It is used during end commit to reallocate the same LEB numbers that were
337 * allocated by alloc_lpt_leb during start commit.
339 * This function finds the next LEB that was allocated by the alloc_lpt_leb
340 * function starting from @lnum. If a LEB is found it is returned in @lnum and
341 * the function returns %0. Otherwise the function returns -ENOSPC.
342 * Note however, that LPT is designed never to run out of space.
344 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
348 n = *lnum - c->lpt_first + 1;
349 for (i = n; i < c->lpt_lebs; i++)
350 if (c->ltab[i].cmt) {
352 *lnum = i + c->lpt_first;
356 for (i = 0; i < n; i++)
357 if (c->ltab[i].cmt) {
359 *lnum = i + c->lpt_first;
366 * write_cnodes - write cnodes for commit.
367 * @c: UBIFS file-system description object
369 * This function returns %0 on success and a negative error code on failure.
371 static int write_cnodes(struct ubifs_info *c)
373 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
374 struct ubifs_cnode *cnode;
375 void *buf = c->lpt_buf;
377 cnode = c->lpt_cnext;
380 lnum = c->nhead_lnum;
381 offs = c->nhead_offs;
383 /* Ensure empty LEB is unmapped */
385 err = ubifs_leb_unmap(c, lnum);
389 /* Try to place lsave and ltab nicely */
390 done_lsave = !c->big_lpt;
392 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
394 ubifs_pack_lsave(c, buf + offs, c->lsave);
396 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
399 if (offs + c->ltab_sz <= c->leb_size) {
401 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
403 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
406 /* Loop for each cnode */
412 while (offs + len > c->leb_size) {
415 alen = ALIGN(wlen, c->min_io_size);
416 memset(buf + offs, 0xff, alen - wlen);
417 err = ubifs_leb_write(c, lnum, buf + from, from,
422 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
423 err = realloc_lpt_leb(c, &lnum);
427 ubifs_assert(lnum >= c->lpt_first &&
428 lnum <= c->lpt_last);
429 err = ubifs_leb_unmap(c, lnum);
432 /* Try to place lsave and ltab nicely */
435 ubifs_pack_lsave(c, buf + offs, c->lsave);
437 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
442 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
444 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
450 ubifs_pack_nnode(c, buf + offs,
451 (struct ubifs_nnode *)cnode);
453 ubifs_pack_pnode(c, buf + offs,
454 (struct ubifs_pnode *)cnode);
456 * The reason for the barriers is the same as in case of TNC.
457 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
458 * 'dirty_cow_pnode()' are the functions for which this is
461 clear_bit(DIRTY_CNODE, &cnode->flags);
462 smp_mb__before_atomic();
463 clear_bit(COW_CNODE, &cnode->flags);
464 smp_mb__after_atomic();
466 dbg_chk_lpt_sz(c, 1, len);
467 cnode = cnode->cnext;
468 } while (cnode && cnode != c->lpt_cnext);
470 /* Make sure to place LPT's save table */
472 if (offs + c->lsave_sz > c->leb_size) {
474 alen = ALIGN(wlen, c->min_io_size);
475 memset(buf + offs, 0xff, alen - wlen);
476 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
479 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
480 err = realloc_lpt_leb(c, &lnum);
484 ubifs_assert(lnum >= c->lpt_first &&
485 lnum <= c->lpt_last);
486 err = ubifs_leb_unmap(c, lnum);
491 ubifs_pack_lsave(c, buf + offs, c->lsave);
493 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
496 /* Make sure to place LPT's own lprops table */
498 if (offs + c->ltab_sz > c->leb_size) {
500 alen = ALIGN(wlen, c->min_io_size);
501 memset(buf + offs, 0xff, alen - wlen);
502 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
505 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
506 err = realloc_lpt_leb(c, &lnum);
510 ubifs_assert(lnum >= c->lpt_first &&
511 lnum <= c->lpt_last);
512 err = ubifs_leb_unmap(c, lnum);
516 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
518 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
521 /* Write remaining data in buffer */
523 alen = ALIGN(wlen, c->min_io_size);
524 memset(buf + offs, 0xff, alen - wlen);
525 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
529 dbg_chk_lpt_sz(c, 4, alen - wlen);
530 err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
534 c->nhead_lnum = lnum;
535 c->nhead_offs = ALIGN(offs, c->min_io_size);
537 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
538 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
539 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
541 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
546 ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
547 lnum, offs, len, done_ltab, done_lsave);
548 ubifs_dump_lpt_info(c);
549 ubifs_dump_lpt_lebs(c);
555 * next_pnode_to_dirty - find next pnode to dirty.
556 * @c: UBIFS file-system description object
559 * This function returns the next pnode to dirty or %NULL if there are no more
560 * pnodes. Note that pnodes that have never been written (lnum == 0) are
563 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
564 struct ubifs_pnode *pnode)
566 struct ubifs_nnode *nnode;
569 /* Try to go right */
570 nnode = pnode->parent;
571 for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
572 if (nnode->nbranch[iip].lnum)
573 return ubifs_get_pnode(c, nnode, iip);
576 /* Go up while can't go right */
578 iip = nnode->iip + 1;
579 nnode = nnode->parent;
582 for (; iip < UBIFS_LPT_FANOUT; iip++) {
583 if (nnode->nbranch[iip].lnum)
586 } while (iip >= UBIFS_LPT_FANOUT);
589 nnode = ubifs_get_nnode(c, nnode, iip);
591 return (void *)nnode;
593 /* Go down to level 1 */
594 while (nnode->level > 1) {
595 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
596 if (nnode->nbranch[iip].lnum)
599 if (iip >= UBIFS_LPT_FANOUT) {
601 * Should not happen, but we need to keep going
606 nnode = ubifs_get_nnode(c, nnode, iip);
608 return (void *)nnode;
611 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
612 if (nnode->nbranch[iip].lnum)
614 if (iip >= UBIFS_LPT_FANOUT)
615 /* Should not happen, but we need to keep going if it does */
617 return ubifs_get_pnode(c, nnode, iip);
621 * pnode_lookup - lookup a pnode in the LPT.
622 * @c: UBIFS file-system description object
623 * @i: pnode number (0 to main_lebs - 1)
625 * This function returns a pointer to the pnode on success or a negative
626 * error code on failure.
628 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
630 int err, h, iip, shft;
631 struct ubifs_nnode *nnode;
634 err = ubifs_read_nnode(c, NULL, 0);
638 i <<= UBIFS_LPT_FANOUT_SHIFT;
640 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
641 for (h = 1; h < c->lpt_hght; h++) {
642 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
643 shft -= UBIFS_LPT_FANOUT_SHIFT;
644 nnode = ubifs_get_nnode(c, nnode, iip);
646 return ERR_CAST(nnode);
648 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
649 return ubifs_get_pnode(c, nnode, iip);
653 * add_pnode_dirt - add dirty space to LPT LEB properties.
654 * @c: UBIFS file-system description object
655 * @pnode: pnode for which to add dirt
657 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
659 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
664 * do_make_pnode_dirty - mark a pnode dirty.
665 * @c: UBIFS file-system description object
666 * @pnode: pnode to mark dirty
668 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
670 /* Assumes cnext list is empty i.e. not called during commit */
671 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
672 struct ubifs_nnode *nnode;
674 c->dirty_pn_cnt += 1;
675 add_pnode_dirt(c, pnode);
676 /* Mark parent and ancestors dirty too */
677 nnode = pnode->parent;
679 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
680 c->dirty_nn_cnt += 1;
681 ubifs_add_nnode_dirt(c, nnode);
682 nnode = nnode->parent;
690 * make_tree_dirty - mark the entire LEB properties tree dirty.
691 * @c: UBIFS file-system description object
693 * This function is used by the "small" LPT model to cause the entire LEB
694 * properties tree to be written. The "small" LPT model does not use LPT
695 * garbage collection because it is more efficient to write the entire tree
696 * (because it is small).
698 * This function returns %0 on success and a negative error code on failure.
700 static int make_tree_dirty(struct ubifs_info *c)
702 struct ubifs_pnode *pnode;
704 pnode = pnode_lookup(c, 0);
706 return PTR_ERR(pnode);
709 do_make_pnode_dirty(c, pnode);
710 pnode = next_pnode_to_dirty(c, pnode);
712 return PTR_ERR(pnode);
718 * need_write_all - determine if the LPT area is running out of free space.
719 * @c: UBIFS file-system description object
721 * This function returns %1 if the LPT area is running out of free space and %0
724 static int need_write_all(struct ubifs_info *c)
729 for (i = 0; i < c->lpt_lebs; i++) {
730 if (i + c->lpt_first == c->nhead_lnum)
731 free += c->leb_size - c->nhead_offs;
732 else if (c->ltab[i].free == c->leb_size)
734 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
737 /* Less than twice the size left */
738 if (free <= c->lpt_sz * 2)
744 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
745 * @c: UBIFS file-system description object
747 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
748 * free space and so may be reused as soon as the next commit is completed.
749 * This function is called during start commit to mark LPT LEBs for trivial GC.
751 static void lpt_tgc_start(struct ubifs_info *c)
755 for (i = 0; i < c->lpt_lebs; i++) {
756 if (i + c->lpt_first == c->nhead_lnum)
758 if (c->ltab[i].dirty > 0 &&
759 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
761 c->ltab[i].free = c->leb_size;
762 c->ltab[i].dirty = 0;
763 dbg_lp("LEB %d", i + c->lpt_first);
769 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
770 * @c: UBIFS file-system description object
772 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
773 * free space and so may be reused as soon as the next commit is completed.
774 * This function is called after the commit is completed (master node has been
775 * written) and un-maps LPT LEBs that were marked for trivial GC.
777 static int lpt_tgc_end(struct ubifs_info *c)
781 for (i = 0; i < c->lpt_lebs; i++)
782 if (c->ltab[i].tgc) {
783 err = ubifs_leb_unmap(c, i + c->lpt_first);
787 dbg_lp("LEB %d", i + c->lpt_first);
793 * populate_lsave - fill the lsave array with important LEB numbers.
794 * @c: the UBIFS file-system description object
796 * This function is only called for the "big" model. It records a small number
797 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
798 * most important to least important): empty, freeable, freeable index, dirty
799 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
800 * their pnodes into memory. That will stop us from having to scan the LPT
801 * straight away. For the "small" model we assume that scanning the LPT is no
804 static void populate_lsave(struct ubifs_info *c)
806 struct ubifs_lprops *lprops;
807 struct ubifs_lpt_heap *heap;
810 ubifs_assert(c->big_lpt);
811 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
812 c->lpt_drty_flgs |= LSAVE_DIRTY;
813 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
816 if (dbg_populate_lsave(c))
819 list_for_each_entry(lprops, &c->empty_list, list) {
820 c->lsave[cnt++] = lprops->lnum;
821 if (cnt >= c->lsave_cnt)
824 list_for_each_entry(lprops, &c->freeable_list, list) {
825 c->lsave[cnt++] = lprops->lnum;
826 if (cnt >= c->lsave_cnt)
829 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
830 c->lsave[cnt++] = lprops->lnum;
831 if (cnt >= c->lsave_cnt)
834 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
835 for (i = 0; i < heap->cnt; i++) {
836 c->lsave[cnt++] = heap->arr[i]->lnum;
837 if (cnt >= c->lsave_cnt)
840 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
841 for (i = 0; i < heap->cnt; i++) {
842 c->lsave[cnt++] = heap->arr[i]->lnum;
843 if (cnt >= c->lsave_cnt)
846 heap = &c->lpt_heap[LPROPS_FREE - 1];
847 for (i = 0; i < heap->cnt; i++) {
848 c->lsave[cnt++] = heap->arr[i]->lnum;
849 if (cnt >= c->lsave_cnt)
852 /* Fill it up completely */
853 while (cnt < c->lsave_cnt)
854 c->lsave[cnt++] = c->main_first;
858 * nnode_lookup - lookup a nnode in the LPT.
859 * @c: UBIFS file-system description object
862 * This function returns a pointer to the nnode on success or a negative
863 * error code on failure.
865 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
868 struct ubifs_nnode *nnode;
871 err = ubifs_read_nnode(c, NULL, 0);
877 iip = i & (UBIFS_LPT_FANOUT - 1);
878 i >>= UBIFS_LPT_FANOUT_SHIFT;
881 nnode = ubifs_get_nnode(c, nnode, iip);
889 * make_nnode_dirty - find a nnode and, if found, make it dirty.
890 * @c: UBIFS file-system description object
891 * @node_num: nnode number of nnode to make dirty
892 * @lnum: LEB number where nnode was written
893 * @offs: offset where nnode was written
895 * This function is used by LPT garbage collection. LPT garbage collection is
896 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
897 * simply involves marking all the nodes in the LEB being garbage-collected as
898 * dirty. The dirty nodes are written next commit, after which the LEB is free
901 * This function returns %0 on success and a negative error code on failure.
903 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
906 struct ubifs_nnode *nnode;
908 nnode = nnode_lookup(c, node_num);
910 return PTR_ERR(nnode);
912 struct ubifs_nbranch *branch;
914 branch = &nnode->parent->nbranch[nnode->iip];
915 if (branch->lnum != lnum || branch->offs != offs)
916 return 0; /* nnode is obsolete */
917 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
918 return 0; /* nnode is obsolete */
919 /* Assumes cnext list is empty i.e. not called during commit */
920 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
921 c->dirty_nn_cnt += 1;
922 ubifs_add_nnode_dirt(c, nnode);
923 /* Mark parent and ancestors dirty too */
924 nnode = nnode->parent;
926 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
927 c->dirty_nn_cnt += 1;
928 ubifs_add_nnode_dirt(c, nnode);
929 nnode = nnode->parent;
938 * make_pnode_dirty - find a pnode and, if found, make it dirty.
939 * @c: UBIFS file-system description object
940 * @node_num: pnode number of pnode to make dirty
941 * @lnum: LEB number where pnode was written
942 * @offs: offset where pnode was written
944 * This function is used by LPT garbage collection. LPT garbage collection is
945 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
946 * simply involves marking all the nodes in the LEB being garbage-collected as
947 * dirty. The dirty nodes are written next commit, after which the LEB is free
950 * This function returns %0 on success and a negative error code on failure.
952 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
955 struct ubifs_pnode *pnode;
956 struct ubifs_nbranch *branch;
958 pnode = pnode_lookup(c, node_num);
960 return PTR_ERR(pnode);
961 branch = &pnode->parent->nbranch[pnode->iip];
962 if (branch->lnum != lnum || branch->offs != offs)
964 do_make_pnode_dirty(c, pnode);
969 * make_ltab_dirty - make ltab node dirty.
970 * @c: UBIFS file-system description object
971 * @lnum: LEB number where ltab was written
972 * @offs: offset where ltab was written
974 * This function is used by LPT garbage collection. LPT garbage collection is
975 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
976 * simply involves marking all the nodes in the LEB being garbage-collected as
977 * dirty. The dirty nodes are written next commit, after which the LEB is free
980 * This function returns %0 on success and a negative error code on failure.
982 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
984 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
985 return 0; /* This ltab node is obsolete */
986 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
987 c->lpt_drty_flgs |= LTAB_DIRTY;
988 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
994 * make_lsave_dirty - make lsave node dirty.
995 * @c: UBIFS file-system description object
996 * @lnum: LEB number where lsave was written
997 * @offs: offset where lsave was written
999 * This function is used by LPT garbage collection. LPT garbage collection is
1000 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1001 * simply involves marking all the nodes in the LEB being garbage-collected as
1002 * dirty. The dirty nodes are written next commit, after which the LEB is free
1005 * This function returns %0 on success and a negative error code on failure.
1007 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1009 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1010 return 0; /* This lsave node is obsolete */
1011 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1012 c->lpt_drty_flgs |= LSAVE_DIRTY;
1013 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1019 * make_node_dirty - make node dirty.
1020 * @c: UBIFS file-system description object
1021 * @node_type: LPT node type
1022 * @node_num: node number
1023 * @lnum: LEB number where node was written
1024 * @offs: offset where node was written
1026 * This function is used by LPT garbage collection. LPT garbage collection is
1027 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1028 * simply involves marking all the nodes in the LEB being garbage-collected as
1029 * dirty. The dirty nodes are written next commit, after which the LEB is free
1032 * This function returns %0 on success and a negative error code on failure.
1034 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1037 switch (node_type) {
1038 case UBIFS_LPT_NNODE:
1039 return make_nnode_dirty(c, node_num, lnum, offs);
1040 case UBIFS_LPT_PNODE:
1041 return make_pnode_dirty(c, node_num, lnum, offs);
1042 case UBIFS_LPT_LTAB:
1043 return make_ltab_dirty(c, lnum, offs);
1044 case UBIFS_LPT_LSAVE:
1045 return make_lsave_dirty(c, lnum, offs);
1051 * get_lpt_node_len - return the length of a node based on its type.
1052 * @c: UBIFS file-system description object
1053 * @node_type: LPT node type
1055 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1057 switch (node_type) {
1058 case UBIFS_LPT_NNODE:
1060 case UBIFS_LPT_PNODE:
1062 case UBIFS_LPT_LTAB:
1064 case UBIFS_LPT_LSAVE:
1071 * get_pad_len - return the length of padding in a buffer.
1072 * @c: UBIFS file-system description object
1074 * @len: length of buffer
1076 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1080 if (c->min_io_size == 1)
1082 offs = c->leb_size - len;
1083 pad_len = ALIGN(offs, c->min_io_size) - offs;
1088 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1089 * @c: UBIFS file-system description object
1091 * @node_num: node number is returned here
1093 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1096 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1097 int pos = 0, node_type;
1099 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1100 *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1105 * is_a_node - determine if a buffer contains a node.
1106 * @c: UBIFS file-system description object
1108 * @len: length of buffer
1110 * This function returns %1 if the buffer contains a node or %0 if it does not.
1112 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1114 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1115 int pos = 0, node_type, node_len;
1116 uint16_t crc, calc_crc;
1118 if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1120 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1121 if (node_type == UBIFS_LPT_NOT_A_NODE)
1123 node_len = get_lpt_node_len(c, node_type);
1124 if (!node_len || node_len > len)
1128 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1129 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1130 node_len - UBIFS_LPT_CRC_BYTES);
1131 if (crc != calc_crc)
1137 * lpt_gc_lnum - garbage collect a LPT LEB.
1138 * @c: UBIFS file-system description object
1139 * @lnum: LEB number to garbage collect
1141 * LPT garbage collection is used only for the "big" LPT model
1142 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1143 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1144 * next commit, after which the LEB is free to be reused.
1146 * This function returns %0 on success and a negative error code on failure.
1148 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1150 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1151 void *buf = c->lpt_buf;
1153 dbg_lp("LEB %d", lnum);
1155 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1160 if (!is_a_node(c, buf, len)) {
1163 pad_len = get_pad_len(c, buf, len);
1171 node_type = get_lpt_node_type(c, buf, &node_num);
1172 node_len = get_lpt_node_len(c, node_type);
1173 offs = c->leb_size - len;
1174 ubifs_assert(node_len != 0);
1175 mutex_lock(&c->lp_mutex);
1176 err = make_node_dirty(c, node_type, node_num, lnum, offs);
1177 mutex_unlock(&c->lp_mutex);
1187 * lpt_gc - LPT garbage collection.
1188 * @c: UBIFS file-system description object
1190 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1191 * Returns %0 on success and a negative error code on failure.
1193 static int lpt_gc(struct ubifs_info *c)
1195 int i, lnum = -1, dirty = 0;
1197 mutex_lock(&c->lp_mutex);
1198 for (i = 0; i < c->lpt_lebs; i++) {
1199 ubifs_assert(!c->ltab[i].tgc);
1200 if (i + c->lpt_first == c->nhead_lnum ||
1201 c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1203 if (c->ltab[i].dirty > dirty) {
1204 dirty = c->ltab[i].dirty;
1205 lnum = i + c->lpt_first;
1208 mutex_unlock(&c->lp_mutex);
1211 return lpt_gc_lnum(c, lnum);
1215 * ubifs_lpt_start_commit - UBIFS commit starts.
1216 * @c: the UBIFS file-system description object
1218 * This function has to be called when UBIFS starts the commit operation.
1219 * This function "freezes" all currently dirty LEB properties and does not
1220 * change them anymore. Further changes are saved and tracked separately
1221 * because they are not part of this commit. This function returns zero in case
1222 * of success and a negative error code in case of failure.
1224 int ubifs_lpt_start_commit(struct ubifs_info *c)
1230 mutex_lock(&c->lp_mutex);
1231 err = dbg_chk_lpt_free_spc(c);
1234 err = dbg_check_ltab(c);
1238 if (c->check_lpt_free) {
1240 * We ensure there is enough free space in
1241 * ubifs_lpt_post_commit() by marking nodes dirty. That
1242 * information is lost when we unmount, so we also need
1243 * to check free space once after mounting also.
1245 c->check_lpt_free = 0;
1246 while (need_write_all(c)) {
1247 mutex_unlock(&c->lp_mutex);
1251 mutex_lock(&c->lp_mutex);
1257 if (!c->dirty_pn_cnt) {
1258 dbg_cmt("no cnodes to commit");
1263 if (!c->big_lpt && need_write_all(c)) {
1264 /* If needed, write everything */
1265 err = make_tree_dirty(c);
1274 cnt = get_cnodes_to_commit(c);
1275 ubifs_assert(cnt != 0);
1277 err = layout_cnodes(c);
1281 /* Copy the LPT's own lprops for end commit to write */
1282 memcpy(c->ltab_cmt, c->ltab,
1283 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1284 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1287 mutex_unlock(&c->lp_mutex);
1292 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1293 * @c: UBIFS file-system description object
1295 static void free_obsolete_cnodes(struct ubifs_info *c)
1297 struct ubifs_cnode *cnode, *cnext;
1299 cnext = c->lpt_cnext;
1304 cnext = cnode->cnext;
1305 if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1308 cnode->cnext = NULL;
1309 } while (cnext != c->lpt_cnext);
1310 c->lpt_cnext = NULL;
1314 * ubifs_lpt_end_commit - finish the commit operation.
1315 * @c: the UBIFS file-system description object
1317 * This function has to be called when the commit operation finishes. It
1318 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1319 * the media. Returns zero in case of success and a negative error code in case
1322 int ubifs_lpt_end_commit(struct ubifs_info *c)
1331 err = write_cnodes(c);
1335 mutex_lock(&c->lp_mutex);
1336 free_obsolete_cnodes(c);
1337 mutex_unlock(&c->lp_mutex);
1343 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1344 * @c: UBIFS file-system description object
1346 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1347 * commit for the "big" LPT model.
1349 int ubifs_lpt_post_commit(struct ubifs_info *c)
1353 mutex_lock(&c->lp_mutex);
1354 err = lpt_tgc_end(c);
1358 while (need_write_all(c)) {
1359 mutex_unlock(&c->lp_mutex);
1363 mutex_lock(&c->lp_mutex);
1366 mutex_unlock(&c->lp_mutex);
1371 * first_nnode - find the first nnode in memory.
1372 * @c: UBIFS file-system description object
1373 * @hght: height of tree where nnode found is returned here
1375 * This function returns a pointer to the nnode found or %NULL if no nnode is
1376 * found. This function is a helper to 'ubifs_lpt_free()'.
1378 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1380 struct ubifs_nnode *nnode;
1387 for (h = 1; h < c->lpt_hght; h++) {
1389 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1390 if (nnode->nbranch[i].nnode) {
1392 nnode = nnode->nbranch[i].nnode;
1404 * next_nnode - find the next nnode in memory.
1405 * @c: UBIFS file-system description object
1406 * @nnode: nnode from which to start.
1407 * @hght: height of tree where nnode is, is passed and returned here
1409 * This function returns a pointer to the nnode found or %NULL if no nnode is
1410 * found. This function is a helper to 'ubifs_lpt_free()'.
1412 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1413 struct ubifs_nnode *nnode, int *hght)
1415 struct ubifs_nnode *parent;
1416 int iip, h, i, found;
1418 parent = nnode->parent;
1421 if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1425 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1426 nnode = parent->nbranch[iip].nnode;
1434 for (h = *hght + 1; h < c->lpt_hght; h++) {
1436 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1437 if (nnode->nbranch[i].nnode) {
1439 nnode = nnode->nbranch[i].nnode;
1451 * ubifs_lpt_free - free resources owned by the LPT.
1452 * @c: UBIFS file-system description object
1453 * @wr_only: free only resources used for writing
1455 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1457 struct ubifs_nnode *nnode;
1460 /* Free write-only things first */
1462 free_obsolete_cnodes(c); /* Leftover from a failed commit */
1474 /* Now free the rest */
1476 nnode = first_nnode(c, &hght);
1478 for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1479 kfree(nnode->nbranch[i].nnode);
1480 nnode = next_nnode(c, nnode, &hght);
1482 for (i = 0; i < LPROPS_HEAP_CNT; i++)
1483 kfree(c->lpt_heap[i].arr);
1484 kfree(c->dirty_idx.arr);
1487 kfree(c->lpt_nod_buf);
1491 * Everything below is related to debugging.
1495 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1497 * @len: buffer length
1499 static int dbg_is_all_ff(uint8_t *buf, int len)
1503 for (i = 0; i < len; i++)
1510 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1511 * @c: the UBIFS file-system description object
1512 * @lnum: LEB number where nnode was written
1513 * @offs: offset where nnode was written
1515 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1517 struct ubifs_nnode *nnode;
1520 /* Entire tree is in memory so first_nnode / next_nnode are OK */
1521 nnode = first_nnode(c, &hght);
1522 for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1523 struct ubifs_nbranch *branch;
1526 if (nnode->parent) {
1527 branch = &nnode->parent->nbranch[nnode->iip];
1528 if (branch->lnum != lnum || branch->offs != offs)
1530 if (test_bit(DIRTY_CNODE, &nnode->flags))
1534 if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1536 if (test_bit(DIRTY_CNODE, &nnode->flags))
1545 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1546 * @c: the UBIFS file-system description object
1547 * @lnum: LEB number where pnode was written
1548 * @offs: offset where pnode was written
1550 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1554 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1555 for (i = 0; i < cnt; i++) {
1556 struct ubifs_pnode *pnode;
1557 struct ubifs_nbranch *branch;
1560 pnode = pnode_lookup(c, i);
1562 return PTR_ERR(pnode);
1563 branch = &pnode->parent->nbranch[pnode->iip];
1564 if (branch->lnum != lnum || branch->offs != offs)
1566 if (test_bit(DIRTY_CNODE, &pnode->flags))
1574 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1575 * @c: the UBIFS file-system description object
1576 * @lnum: LEB number where ltab node was written
1577 * @offs: offset where ltab node was written
1579 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1581 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1583 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1587 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1588 * @c: the UBIFS file-system description object
1589 * @lnum: LEB number where lsave node was written
1590 * @offs: offset where lsave node was written
1592 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1594 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1596 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1600 * dbg_is_node_dirty - determine if a node is dirty.
1601 * @c: the UBIFS file-system description object
1602 * @node_type: node type
1603 * @lnum: LEB number where node was written
1604 * @offs: offset where node was written
1606 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1609 switch (node_type) {
1610 case UBIFS_LPT_NNODE:
1611 return dbg_is_nnode_dirty(c, lnum, offs);
1612 case UBIFS_LPT_PNODE:
1613 return dbg_is_pnode_dirty(c, lnum, offs);
1614 case UBIFS_LPT_LTAB:
1615 return dbg_is_ltab_dirty(c, lnum, offs);
1616 case UBIFS_LPT_LSAVE:
1617 return dbg_is_lsave_dirty(c, lnum, offs);
1623 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1624 * @c: the UBIFS file-system description object
1625 * @lnum: LEB number where node was written
1626 * @offs: offset where node was written
1628 * This function returns %0 on success and a negative error code on failure.
1630 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1632 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1636 if (!dbg_is_chk_lprops(c))
1639 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1641 ubifs_err(c, "cannot allocate memory for ltab checking");
1645 dbg_lp("LEB %d", lnum);
1647 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1652 if (!is_a_node(c, p, len)) {
1655 pad_len = get_pad_len(c, p, len);
1662 if (!dbg_is_all_ff(p, len)) {
1663 ubifs_err(c, "invalid empty space in LEB %d at %d",
1664 lnum, c->leb_size - len);
1667 i = lnum - c->lpt_first;
1668 if (len != c->ltab[i].free) {
1669 ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)",
1670 lnum, len, c->ltab[i].free);
1673 if (dirty != c->ltab[i].dirty) {
1674 ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1675 lnum, dirty, c->ltab[i].dirty);
1680 node_type = get_lpt_node_type(c, p, &node_num);
1681 node_len = get_lpt_node_len(c, node_type);
1682 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1696 * dbg_check_ltab - check the free and dirty space in the ltab.
1697 * @c: the UBIFS file-system description object
1699 * This function returns %0 on success and a negative error code on failure.
1701 int dbg_check_ltab(struct ubifs_info *c)
1703 int lnum, err, i, cnt;
1705 if (!dbg_is_chk_lprops(c))
1708 /* Bring the entire tree into memory */
1709 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1710 for (i = 0; i < cnt; i++) {
1711 struct ubifs_pnode *pnode;
1713 pnode = pnode_lookup(c, i);
1715 return PTR_ERR(pnode);
1720 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1724 /* Check each LEB */
1725 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1726 err = dbg_check_ltab_lnum(c, lnum);
1728 ubifs_err(c, "failed at LEB %d", lnum);
1733 dbg_lp("succeeded");
1738 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1739 * @c: the UBIFS file-system description object
1741 * This function returns %0 on success and a negative error code on failure.
1743 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1748 if (!dbg_is_chk_lprops(c))
1751 for (i = 0; i < c->lpt_lebs; i++) {
1752 if (c->ltab[i].tgc || c->ltab[i].cmt)
1754 if (i + c->lpt_first == c->nhead_lnum)
1755 free += c->leb_size - c->nhead_offs;
1756 else if (c->ltab[i].free == c->leb_size)
1757 free += c->leb_size;
1759 if (free < c->lpt_sz) {
1760 ubifs_err(c, "LPT space error: free %lld lpt_sz %lld",
1762 ubifs_dump_lpt_info(c);
1763 ubifs_dump_lpt_lebs(c);
1771 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1772 * @c: the UBIFS file-system description object
1773 * @action: what to do
1774 * @len: length written
1776 * This function returns %0 on success and a negative error code on failure.
1777 * The @action argument may be one of:
1778 * o %0 - LPT debugging checking starts, initialize debugging variables;
1779 * o %1 - wrote an LPT node, increase LPT size by @len bytes;
1780 * o %2 - switched to a different LEB and wasted @len bytes;
1781 * o %3 - check that we've written the right number of bytes.
1782 * o %4 - wasted @len bytes;
1784 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1786 struct ubifs_debug_info *d = c->dbg;
1787 long long chk_lpt_sz, lpt_sz;
1790 if (!dbg_is_chk_lprops(c))
1797 d->chk_lpt_lebs = 0;
1798 d->chk_lpt_wastage = 0;
1799 if (c->dirty_pn_cnt > c->pnode_cnt) {
1800 ubifs_err(c, "dirty pnodes %d exceed max %d",
1801 c->dirty_pn_cnt, c->pnode_cnt);
1804 if (c->dirty_nn_cnt > c->nnode_cnt) {
1805 ubifs_err(c, "dirty nnodes %d exceed max %d",
1806 c->dirty_nn_cnt, c->nnode_cnt);
1811 d->chk_lpt_sz += len;
1814 d->chk_lpt_sz += len;
1815 d->chk_lpt_wastage += len;
1816 d->chk_lpt_lebs += 1;
1819 chk_lpt_sz = c->leb_size;
1820 chk_lpt_sz *= d->chk_lpt_lebs;
1821 chk_lpt_sz += len - c->nhead_offs;
1822 if (d->chk_lpt_sz != chk_lpt_sz) {
1823 ubifs_err(c, "LPT wrote %lld but space used was %lld",
1824 d->chk_lpt_sz, chk_lpt_sz);
1827 if (d->chk_lpt_sz > c->lpt_sz) {
1828 ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld",
1829 d->chk_lpt_sz, c->lpt_sz);
1832 if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1833 ubifs_err(c, "LPT layout size %lld but wrote %lld",
1834 d->chk_lpt_sz, d->chk_lpt_sz2);
1837 if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1838 ubifs_err(c, "LPT new nhead offs: expected %d was %d",
1839 d->new_nhead_offs, len);
1842 lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1843 lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1844 lpt_sz += c->ltab_sz;
1846 lpt_sz += c->lsave_sz;
1847 if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1848 ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1849 d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1853 ubifs_dump_lpt_info(c);
1854 ubifs_dump_lpt_lebs(c);
1857 d->chk_lpt_sz2 = d->chk_lpt_sz;
1859 d->chk_lpt_wastage = 0;
1860 d->chk_lpt_lebs = 0;
1861 d->new_nhead_offs = len;
1864 d->chk_lpt_sz += len;
1865 d->chk_lpt_wastage += len;
1873 * ubifs_dump_lpt_leb - dump an LPT LEB.
1874 * @c: UBIFS file-system description object
1875 * @lnum: LEB number to dump
1877 * This function dumps an LEB from LPT area. Nodes in this area are very
1878 * different to nodes in the main area (e.g., they do not have common headers,
1879 * they do not have 8-byte alignments, etc), so we have a separate function to
1880 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1882 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1884 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1887 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1888 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1890 ubifs_err(c, "cannot allocate memory to dump LPT");
1894 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1899 offs = c->leb_size - len;
1900 if (!is_a_node(c, p, len)) {
1903 pad_len = get_pad_len(c, p, len);
1905 pr_err("LEB %d:%d, pad %d bytes\n",
1906 lnum, offs, pad_len);
1912 pr_err("LEB %d:%d, free %d bytes\n",
1917 node_type = get_lpt_node_type(c, p, &node_num);
1918 switch (node_type) {
1919 case UBIFS_LPT_PNODE:
1921 node_len = c->pnode_sz;
1923 pr_err("LEB %d:%d, pnode num %d\n",
1924 lnum, offs, node_num);
1926 pr_err("LEB %d:%d, pnode\n", lnum, offs);
1929 case UBIFS_LPT_NNODE:
1932 struct ubifs_nnode nnode;
1934 node_len = c->nnode_sz;
1936 pr_err("LEB %d:%d, nnode num %d, ",
1937 lnum, offs, node_num);
1939 pr_err("LEB %d:%d, nnode, ",
1941 err = ubifs_unpack_nnode(c, p, &nnode);
1943 pr_err("failed to unpack_node, error %d\n",
1947 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1948 pr_cont("%d:%d", nnode.nbranch[i].lnum,
1949 nnode.nbranch[i].offs);
1950 if (i != UBIFS_LPT_FANOUT - 1)
1956 case UBIFS_LPT_LTAB:
1957 node_len = c->ltab_sz;
1958 pr_err("LEB %d:%d, ltab\n", lnum, offs);
1960 case UBIFS_LPT_LSAVE:
1961 node_len = c->lsave_sz;
1962 pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1965 ubifs_err(c, "LPT node type %d not recognized", node_type);
1973 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1980 * ubifs_dump_lpt_lebs - dump LPT lebs.
1981 * @c: UBIFS file-system description object
1983 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1986 void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1990 pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1991 for (i = 0; i < c->lpt_lebs; i++)
1992 dump_lpt_leb(c, i + c->lpt_first);
1993 pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1997 * dbg_populate_lsave - debugging version of 'populate_lsave()'
1998 * @c: UBIFS file-system description object
2000 * This is a debugging version for 'populate_lsave()' which populates lsave
2001 * with random LEBs instead of useful LEBs, which is good for test coverage.
2002 * Returns zero if lsave has not been populated (this debugging feature is
2003 * disabled) an non-zero if lsave has been populated.
2005 static int dbg_populate_lsave(struct ubifs_info *c)
2007 struct ubifs_lprops *lprops;
2008 struct ubifs_lpt_heap *heap;
2011 if (!dbg_is_chk_gen(c))
2013 if (prandom_u32() & 3)
2016 for (i = 0; i < c->lsave_cnt; i++)
2017 c->lsave[i] = c->main_first;
2019 list_for_each_entry(lprops, &c->empty_list, list)
2020 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2021 list_for_each_entry(lprops, &c->freeable_list, list)
2022 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2023 list_for_each_entry(lprops, &c->frdi_idx_list, list)
2024 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2026 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2027 for (i = 0; i < heap->cnt; i++)
2028 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2029 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2030 for (i = 0; i < heap->cnt; i++)
2031 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2032 heap = &c->lpt_heap[LPROPS_FREE - 1];
2033 for (i = 0; i < heap->cnt; i++)
2034 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;