1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2017, Microsoft Corporation.
7 #include <linux/module.h>
8 #include <linux/highmem.h>
10 #include "cifs_debug.h"
11 #include "cifsproto.h"
12 #include "smb2proto.h"
14 static struct smbd_response *get_empty_queue_buffer(
15 struct smbd_connection *info);
16 static struct smbd_response *get_receive_buffer(
17 struct smbd_connection *info);
18 static void put_receive_buffer(
19 struct smbd_connection *info,
20 struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
24 static void put_empty_packet(
25 struct smbd_connection *info, struct smbd_response *response);
26 static void enqueue_reassembly(
27 struct smbd_connection *info,
28 struct smbd_response *response, int data_length);
29 static struct smbd_response *_get_first_reassembly(
30 struct smbd_connection *info);
32 static int smbd_post_recv(
33 struct smbd_connection *info,
34 struct smbd_response *response);
36 static int smbd_post_send_empty(struct smbd_connection *info);
37 static int smbd_post_send_data(
38 struct smbd_connection *info,
39 struct kvec *iov, int n_vec, int remaining_data_length);
40 static int smbd_post_send_page(struct smbd_connection *info,
41 struct page *page, unsigned long offset,
42 size_t size, int remaining_data_length);
44 static void destroy_mr_list(struct smbd_connection *info);
45 static int allocate_mr_list(struct smbd_connection *info);
47 /* SMBD version number */
48 #define SMBD_V1 0x0100
50 /* Port numbers for SMBD transport */
52 #define SMBD_PORT 5445
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT 5000
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT 120
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE 128
62 #define SMBD_MIN_FRAGMENTED_SIZE 131072
65 * Default maximum number of RDMA read/write outstanding on this connection
66 * This value is possibly decreased during QP creation on hardware limit
68 #define SMBD_CM_RESPONDER_RESOURCES 32
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY 6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY 0
76 * User configurable initial values per SMBD transport connection
77 * as defined in [MS-SMBD] 3.1.1.1
78 * Those may change after a SMBD negotiation
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
89 /* The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
92 /* The maximum single-message size which can be received */
93 int smbd_max_receive_size = 8192;
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
99 * User configurable initial values for RDMA transport
100 * The actual values used may be lower and are limited to hardware capabilities
102 /* Default maximum number of SGEs in a RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
108 /* Transport logging functions
109 * Logging are defined as classes. They can be OR'ed to define the actual
110 * logging level via module parameter smbd_logging_class
111 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
114 #define LOG_OUTGOING 0x1
115 #define LOG_INCOMING 0x2
117 #define LOG_WRITE 0x8
118 #define LOG_RDMA_SEND 0x10
119 #define LOG_RDMA_RECV 0x20
120 #define LOG_KEEP_ALIVE 0x40
121 #define LOG_RDMA_EVENT 0x80
122 #define LOG_RDMA_MR 0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126 "Logging class for SMBD transport 0x0 to 0x100");
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133 "Logging level for SMBD transport, 0 (default): error, 1: info");
135 #define log_rdma(level, class, fmt, args...) \
137 if (level <= smbd_logging_level || class & smbd_logging_class) \
138 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
141 #define log_outgoing(level, fmt, args...) \
142 log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144 log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
158 static void smbd_disconnect_rdma_work(struct work_struct *work)
160 struct smbd_connection *info =
161 container_of(work, struct smbd_connection, disconnect_work);
163 if (info->transport_status == SMBD_CONNECTED) {
164 info->transport_status = SMBD_DISCONNECTING;
165 rdma_disconnect(info->id);
169 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
171 queue_work(info->workqueue, &info->disconnect_work);
174 /* Upcall from RDMA CM */
175 static int smbd_conn_upcall(
176 struct rdma_cm_id *id, struct rdma_cm_event *event)
178 struct smbd_connection *info = id->context;
180 log_rdma_event(INFO, "event=%d status=%d\n",
181 event->event, event->status);
183 switch (event->event) {
184 case RDMA_CM_EVENT_ADDR_RESOLVED:
185 case RDMA_CM_EVENT_ROUTE_RESOLVED:
187 complete(&info->ri_done);
190 case RDMA_CM_EVENT_ADDR_ERROR:
191 info->ri_rc = -EHOSTUNREACH;
192 complete(&info->ri_done);
195 case RDMA_CM_EVENT_ROUTE_ERROR:
196 info->ri_rc = -ENETUNREACH;
197 complete(&info->ri_done);
200 case RDMA_CM_EVENT_ESTABLISHED:
201 log_rdma_event(INFO, "connected event=%d\n", event->event);
202 info->transport_status = SMBD_CONNECTED;
203 wake_up_interruptible(&info->conn_wait);
206 case RDMA_CM_EVENT_CONNECT_ERROR:
207 case RDMA_CM_EVENT_UNREACHABLE:
208 case RDMA_CM_EVENT_REJECTED:
209 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
210 info->transport_status = SMBD_DISCONNECTED;
211 wake_up_interruptible(&info->conn_wait);
214 case RDMA_CM_EVENT_DEVICE_REMOVAL:
215 case RDMA_CM_EVENT_DISCONNECTED:
216 /* This happenes when we fail the negotiation */
217 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
218 info->transport_status = SMBD_DISCONNECTED;
219 wake_up(&info->conn_wait);
223 info->transport_status = SMBD_DISCONNECTED;
224 wake_up_interruptible(&info->disconn_wait);
225 wake_up_interruptible(&info->wait_reassembly_queue);
226 wake_up_interruptible_all(&info->wait_send_queue);
236 /* Upcall from RDMA QP */
238 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
240 struct smbd_connection *info = context;
242 log_rdma_event(ERR, "%s on device %s info %p\n",
243 ib_event_msg(event->event), event->device->name, info);
245 switch (event->event) {
246 case IB_EVENT_CQ_ERR:
247 case IB_EVENT_QP_FATAL:
248 smbd_disconnect_rdma_connection(info);
256 static inline void *smbd_request_payload(struct smbd_request *request)
258 return (void *)request->packet;
261 static inline void *smbd_response_payload(struct smbd_response *response)
263 return (void *)response->packet;
266 /* Called when a RDMA send is done */
267 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
270 struct smbd_request *request =
271 container_of(wc->wr_cqe, struct smbd_request, cqe);
273 log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
274 request, wc->status);
276 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
277 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
278 wc->status, wc->opcode);
279 smbd_disconnect_rdma_connection(request->info);
282 for (i = 0; i < request->num_sge; i++)
283 ib_dma_unmap_single(request->info->id->device,
284 request->sge[i].addr,
285 request->sge[i].length,
288 if (atomic_dec_and_test(&request->info->send_pending))
289 wake_up(&request->info->wait_send_pending);
291 wake_up(&request->info->wait_post_send);
293 mempool_free(request, request->info->request_mempool);
296 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
298 log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
299 resp->min_version, resp->max_version,
300 resp->negotiated_version, resp->credits_requested,
301 resp->credits_granted, resp->status,
302 resp->max_readwrite_size, resp->preferred_send_size,
303 resp->max_receive_size, resp->max_fragmented_size);
307 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
308 * response, packet_length: the negotiation response message
309 * return value: true if negotiation is a success, false if failed
311 static bool process_negotiation_response(
312 struct smbd_response *response, int packet_length)
314 struct smbd_connection *info = response->info;
315 struct smbd_negotiate_resp *packet = smbd_response_payload(response);
317 if (packet_length < sizeof(struct smbd_negotiate_resp)) {
319 "error: packet_length=%d\n", packet_length);
323 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
324 log_rdma_event(ERR, "error: negotiated_version=%x\n",
325 le16_to_cpu(packet->negotiated_version));
328 info->protocol = le16_to_cpu(packet->negotiated_version);
330 if (packet->credits_requested == 0) {
331 log_rdma_event(ERR, "error: credits_requested==0\n");
334 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
336 if (packet->credits_granted == 0) {
337 log_rdma_event(ERR, "error: credits_granted==0\n");
340 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
342 atomic_set(&info->receive_credits, 0);
344 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
345 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
346 le32_to_cpu(packet->preferred_send_size));
349 info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
351 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
352 log_rdma_event(ERR, "error: max_receive_size=%d\n",
353 le32_to_cpu(packet->max_receive_size));
356 info->max_send_size = min_t(int, info->max_send_size,
357 le32_to_cpu(packet->max_receive_size));
359 if (le32_to_cpu(packet->max_fragmented_size) <
360 SMBD_MIN_FRAGMENTED_SIZE) {
361 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
362 le32_to_cpu(packet->max_fragmented_size));
365 info->max_fragmented_send_size =
366 le32_to_cpu(packet->max_fragmented_size);
367 info->rdma_readwrite_threshold =
368 rdma_readwrite_threshold > info->max_fragmented_send_size ?
369 info->max_fragmented_send_size :
370 rdma_readwrite_threshold;
373 info->max_readwrite_size = min_t(u32,
374 le32_to_cpu(packet->max_readwrite_size),
375 info->max_frmr_depth * PAGE_SIZE);
376 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
381 static void smbd_post_send_credits(struct work_struct *work)
384 int use_receive_queue = 1;
386 struct smbd_response *response;
387 struct smbd_connection *info =
388 container_of(work, struct smbd_connection,
389 post_send_credits_work);
391 if (info->transport_status != SMBD_CONNECTED) {
392 wake_up(&info->wait_receive_queues);
396 if (info->receive_credit_target >
397 atomic_read(&info->receive_credits)) {
399 if (use_receive_queue)
400 response = get_receive_buffer(info);
402 response = get_empty_queue_buffer(info);
404 /* now switch to emtpy packet queue */
405 if (use_receive_queue) {
406 use_receive_queue = 0;
412 response->type = SMBD_TRANSFER_DATA;
413 response->first_segment = false;
414 rc = smbd_post_recv(info, response);
417 "post_recv failed rc=%d\n", rc);
418 put_receive_buffer(info, response);
426 spin_lock(&info->lock_new_credits_offered);
427 info->new_credits_offered += ret;
428 spin_unlock(&info->lock_new_credits_offered);
430 /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
431 info->send_immediate = true;
432 if (atomic_read(&info->receive_credits) <
433 info->receive_credit_target - 1) {
434 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
435 info->send_immediate) {
436 log_keep_alive(INFO, "send an empty message\n");
437 smbd_post_send_empty(info);
442 /* Called from softirq, when recv is done */
443 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
445 struct smbd_data_transfer *data_transfer;
446 struct smbd_response *response =
447 container_of(wc->wr_cqe, struct smbd_response, cqe);
448 struct smbd_connection *info = response->info;
451 log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%x\n",
452 response, response->type, wc->status, wc->opcode,
453 wc->byte_len, wc->pkey_index);
455 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
456 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
457 wc->status, wc->opcode);
458 smbd_disconnect_rdma_connection(info);
462 ib_dma_sync_single_for_cpu(
465 response->sge.length,
468 switch (response->type) {
469 /* SMBD negotiation response */
470 case SMBD_NEGOTIATE_RESP:
471 dump_smbd_negotiate_resp(smbd_response_payload(response));
472 info->full_packet_received = true;
473 info->negotiate_done =
474 process_negotiation_response(response, wc->byte_len);
475 complete(&info->negotiate_completion);
478 /* SMBD data transfer packet */
479 case SMBD_TRANSFER_DATA:
480 data_transfer = smbd_response_payload(response);
481 data_length = le32_to_cpu(data_transfer->data_length);
484 * If this is a packet with data playload place the data in
485 * reassembly queue and wake up the reading thread
488 if (info->full_packet_received)
489 response->first_segment = true;
491 if (le32_to_cpu(data_transfer->remaining_data_length))
492 info->full_packet_received = false;
494 info->full_packet_received = true;
501 put_empty_packet(info, response);
504 wake_up_interruptible(&info->wait_reassembly_queue);
506 atomic_dec(&info->receive_credits);
507 info->receive_credit_target =
508 le16_to_cpu(data_transfer->credits_requested);
509 if (le16_to_cpu(data_transfer->credits_granted)) {
510 atomic_add(le16_to_cpu(data_transfer->credits_granted),
511 &info->send_credits);
513 * We have new send credits granted from remote peer
514 * If any sender is waiting for credits, unblock it
516 wake_up_interruptible(&info->wait_send_queue);
519 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
520 le16_to_cpu(data_transfer->flags),
521 le32_to_cpu(data_transfer->data_offset),
522 le32_to_cpu(data_transfer->data_length),
523 le32_to_cpu(data_transfer->remaining_data_length));
525 /* Send a KEEP_ALIVE response right away if requested */
526 info->keep_alive_requested = KEEP_ALIVE_NONE;
527 if (le16_to_cpu(data_transfer->flags) &
528 SMB_DIRECT_RESPONSE_REQUESTED) {
529 info->keep_alive_requested = KEEP_ALIVE_PENDING;
536 "unexpected response type=%d\n", response->type);
540 put_receive_buffer(info, response);
543 static struct rdma_cm_id *smbd_create_id(
544 struct smbd_connection *info,
545 struct sockaddr *dstaddr, int port)
547 struct rdma_cm_id *id;
551 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
552 RDMA_PS_TCP, IB_QPT_RC);
555 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
559 if (dstaddr->sa_family == AF_INET6)
560 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
562 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
564 *sport = htons(port);
566 init_completion(&info->ri_done);
567 info->ri_rc = -ETIMEDOUT;
569 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
570 RDMA_RESOLVE_TIMEOUT);
572 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
575 rc = wait_for_completion_interruptible_timeout(
576 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
577 /* e.g. if interrupted returns -ERESTARTSYS */
579 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
584 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
588 info->ri_rc = -ETIMEDOUT;
589 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
591 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
594 rc = wait_for_completion_interruptible_timeout(
595 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
596 /* e.g. if interrupted returns -ERESTARTSYS */
598 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
603 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
615 * Test if FRWR (Fast Registration Work Requests) is supported on the device
616 * This implementation requries FRWR on RDMA read/write
617 * return value: true if it is supported
619 static bool frwr_is_supported(struct ib_device_attr *attrs)
621 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
623 if (attrs->max_fast_reg_page_list_len == 0)
628 static int smbd_ia_open(
629 struct smbd_connection *info,
630 struct sockaddr *dstaddr, int port)
634 info->id = smbd_create_id(info, dstaddr, port);
635 if (IS_ERR(info->id)) {
636 rc = PTR_ERR(info->id);
640 if (!frwr_is_supported(&info->id->device->attrs)) {
641 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
642 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
643 info->id->device->attrs.device_cap_flags,
644 info->id->device->attrs.max_fast_reg_page_list_len);
645 rc = -EPROTONOSUPPORT;
648 info->max_frmr_depth = min_t(int,
650 info->id->device->attrs.max_fast_reg_page_list_len);
651 info->mr_type = IB_MR_TYPE_MEM_REG;
652 if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
653 info->mr_type = IB_MR_TYPE_SG_GAPS;
655 info->pd = ib_alloc_pd(info->id->device, 0);
656 if (IS_ERR(info->pd)) {
657 rc = PTR_ERR(info->pd);
658 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
665 rdma_destroy_id(info->id);
673 * Send a negotiation request message to the peer
674 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
675 * After negotiation, the transport is connected and ready for
676 * carrying upper layer SMB payload
678 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
680 struct ib_send_wr send_wr;
682 struct smbd_request *request;
683 struct smbd_negotiate_req *packet;
685 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
689 request->info = info;
691 packet = smbd_request_payload(request);
692 packet->min_version = cpu_to_le16(SMBD_V1);
693 packet->max_version = cpu_to_le16(SMBD_V1);
694 packet->reserved = 0;
695 packet->credits_requested = cpu_to_le16(info->send_credit_target);
696 packet->preferred_send_size = cpu_to_le32(info->max_send_size);
697 packet->max_receive_size = cpu_to_le32(info->max_receive_size);
698 packet->max_fragmented_size =
699 cpu_to_le32(info->max_fragmented_recv_size);
701 request->num_sge = 1;
702 request->sge[0].addr = ib_dma_map_single(
703 info->id->device, (void *)packet,
704 sizeof(*packet), DMA_TO_DEVICE);
705 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
707 goto dma_mapping_failed;
710 request->sge[0].length = sizeof(*packet);
711 request->sge[0].lkey = info->pd->local_dma_lkey;
713 ib_dma_sync_single_for_device(
714 info->id->device, request->sge[0].addr,
715 request->sge[0].length, DMA_TO_DEVICE);
717 request->cqe.done = send_done;
720 send_wr.wr_cqe = &request->cqe;
721 send_wr.sg_list = request->sge;
722 send_wr.num_sge = request->num_sge;
723 send_wr.opcode = IB_WR_SEND;
724 send_wr.send_flags = IB_SEND_SIGNALED;
726 log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
727 request->sge[0].addr,
728 request->sge[0].length, request->sge[0].lkey);
730 atomic_inc(&info->send_pending);
731 rc = ib_post_send(info->id->qp, &send_wr, NULL);
735 /* if we reach here, post send failed */
736 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
737 atomic_dec(&info->send_pending);
738 ib_dma_unmap_single(info->id->device, request->sge[0].addr,
739 request->sge[0].length, DMA_TO_DEVICE);
741 smbd_disconnect_rdma_connection(info);
744 mempool_free(request, info->request_mempool);
749 * Extend the credits to remote peer
750 * This implements [MS-SMBD] 3.1.5.9
751 * The idea is that we should extend credits to remote peer as quickly as
752 * it's allowed, to maintain data flow. We allocate as much receive
753 * buffer as possible, and extend the receive credits to remote peer
754 * return value: the new credtis being granted.
756 static int manage_credits_prior_sending(struct smbd_connection *info)
760 spin_lock(&info->lock_new_credits_offered);
761 new_credits = info->new_credits_offered;
762 info->new_credits_offered = 0;
763 spin_unlock(&info->lock_new_credits_offered);
769 * Check if we need to send a KEEP_ALIVE message
770 * The idle connection timer triggers a KEEP_ALIVE message when expires
771 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
774 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
777 static int manage_keep_alive_before_sending(struct smbd_connection *info)
779 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
780 info->keep_alive_requested = KEEP_ALIVE_SENT;
786 /* Post the send request */
787 static int smbd_post_send(struct smbd_connection *info,
788 struct smbd_request *request)
790 struct ib_send_wr send_wr;
793 for (i = 0; i < request->num_sge; i++) {
795 "rdma_request sge[%d] addr=%llu length=%u\n",
796 i, request->sge[i].addr, request->sge[i].length);
797 ib_dma_sync_single_for_device(
799 request->sge[i].addr,
800 request->sge[i].length,
804 request->cqe.done = send_done;
807 send_wr.wr_cqe = &request->cqe;
808 send_wr.sg_list = request->sge;
809 send_wr.num_sge = request->num_sge;
810 send_wr.opcode = IB_WR_SEND;
811 send_wr.send_flags = IB_SEND_SIGNALED;
813 rc = ib_post_send(info->id->qp, &send_wr, NULL);
815 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
816 smbd_disconnect_rdma_connection(info);
819 /* Reset timer for idle connection after packet is sent */
820 mod_delayed_work(info->workqueue, &info->idle_timer_work,
821 info->keep_alive_interval*HZ);
826 static int smbd_post_send_sgl(struct smbd_connection *info,
827 struct scatterlist *sgl, int data_length, int remaining_data_length)
832 struct smbd_request *request;
833 struct smbd_data_transfer *packet;
835 struct scatterlist *sg;
838 /* Wait for send credits. A SMBD packet needs one credit */
839 rc = wait_event_interruptible(info->wait_send_queue,
840 atomic_read(&info->send_credits) > 0 ||
841 info->transport_status != SMBD_CONNECTED);
843 goto err_wait_credit;
845 if (info->transport_status != SMBD_CONNECTED) {
846 log_outgoing(ERR, "disconnected not sending on wait_credit\n");
848 goto err_wait_credit;
850 if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
851 atomic_inc(&info->send_credits);
856 wait_event(info->wait_post_send,
857 atomic_read(&info->send_pending) < info->send_credit_target ||
858 info->transport_status != SMBD_CONNECTED);
860 if (info->transport_status != SMBD_CONNECTED) {
861 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
863 goto err_wait_send_queue;
866 if (unlikely(atomic_inc_return(&info->send_pending) >
867 info->send_credit_target)) {
868 atomic_dec(&info->send_pending);
869 goto wait_send_queue;
872 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
878 request->info = info;
880 /* Fill in the packet header */
881 packet = smbd_request_payload(request);
882 packet->credits_requested = cpu_to_le16(info->send_credit_target);
884 new_credits = manage_credits_prior_sending(info);
885 atomic_add(new_credits, &info->receive_credits);
886 packet->credits_granted = cpu_to_le16(new_credits);
888 info->send_immediate = false;
891 if (manage_keep_alive_before_sending(info))
892 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
894 packet->reserved = 0;
896 packet->data_offset = 0;
898 packet->data_offset = cpu_to_le32(24);
899 packet->data_length = cpu_to_le32(data_length);
900 packet->remaining_data_length = cpu_to_le32(remaining_data_length);
903 log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
904 le16_to_cpu(packet->credits_requested),
905 le16_to_cpu(packet->credits_granted),
906 le32_to_cpu(packet->data_offset),
907 le32_to_cpu(packet->data_length),
908 le32_to_cpu(packet->remaining_data_length));
910 /* Map the packet to DMA */
911 header_length = sizeof(struct smbd_data_transfer);
912 /* If this is a packet without payload, don't send padding */
914 header_length = offsetof(struct smbd_data_transfer, padding);
916 request->num_sge = 1;
917 request->sge[0].addr = ib_dma_map_single(info->id->device,
921 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
923 request->sge[0].addr = 0;
927 request->sge[0].length = header_length;
928 request->sge[0].lkey = info->pd->local_dma_lkey;
930 /* Fill in the packet data payload */
931 num_sgs = sgl ? sg_nents(sgl) : 0;
932 for_each_sg(sgl, sg, num_sgs, i) {
933 request->sge[i+1].addr =
934 ib_dma_map_page(info->id->device, sg_page(sg),
935 sg->offset, sg->length, DMA_TO_DEVICE);
936 if (ib_dma_mapping_error(
937 info->id->device, request->sge[i+1].addr)) {
939 request->sge[i+1].addr = 0;
942 request->sge[i+1].length = sg->length;
943 request->sge[i+1].lkey = info->pd->local_dma_lkey;
947 rc = smbd_post_send(info, request);
952 for (i = 0; i < request->num_sge; i++)
953 if (request->sge[i].addr)
954 ib_dma_unmap_single(info->id->device,
955 request->sge[i].addr,
956 request->sge[i].length,
958 mempool_free(request, info->request_mempool);
960 /* roll back receive credits and credits to be offered */
961 spin_lock(&info->lock_new_credits_offered);
962 info->new_credits_offered += new_credits;
963 spin_unlock(&info->lock_new_credits_offered);
964 atomic_sub(new_credits, &info->receive_credits);
967 if (atomic_dec_and_test(&info->send_pending))
968 wake_up(&info->wait_send_pending);
971 /* roll back send credits and pending */
972 atomic_inc(&info->send_credits);
980 * page: the page to send
981 * offset: offset in the page to send
982 * size: length in the page to send
983 * remaining_data_length: remaining data to send in this payload
985 static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
986 unsigned long offset, size_t size, int remaining_data_length)
988 struct scatterlist sgl;
990 sg_init_table(&sgl, 1);
991 sg_set_page(&sgl, page, size, offset);
993 return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
997 * Send an empty message
998 * Empty message is used to extend credits to peer to for keep live
999 * while there is no upper layer payload to send at the time
1001 static int smbd_post_send_empty(struct smbd_connection *info)
1003 info->count_send_empty++;
1004 return smbd_post_send_sgl(info, NULL, 0, 0);
1008 * Send a data buffer
1009 * iov: the iov array describing the data buffers
1010 * n_vec: number of iov array
1011 * remaining_data_length: remaining data to send following this packet
1012 * in segmented SMBD packet
1014 static int smbd_post_send_data(
1015 struct smbd_connection *info, struct kvec *iov, int n_vec,
1016 int remaining_data_length)
1019 u32 data_length = 0;
1020 struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1022 if (n_vec > SMBDIRECT_MAX_SGE) {
1023 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1027 sg_init_table(sgl, n_vec);
1028 for (i = 0; i < n_vec; i++) {
1029 data_length += iov[i].iov_len;
1030 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1033 return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1037 * Post a receive request to the transport
1038 * The remote peer can only send data when a receive request is posted
1039 * The interaction is controlled by send/receive credit system
1041 static int smbd_post_recv(
1042 struct smbd_connection *info, struct smbd_response *response)
1044 struct ib_recv_wr recv_wr;
1047 response->sge.addr = ib_dma_map_single(
1048 info->id->device, response->packet,
1049 info->max_receive_size, DMA_FROM_DEVICE);
1050 if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1053 response->sge.length = info->max_receive_size;
1054 response->sge.lkey = info->pd->local_dma_lkey;
1056 response->cqe.done = recv_done;
1058 recv_wr.wr_cqe = &response->cqe;
1059 recv_wr.next = NULL;
1060 recv_wr.sg_list = &response->sge;
1061 recv_wr.num_sge = 1;
1063 rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1065 ib_dma_unmap_single(info->id->device, response->sge.addr,
1066 response->sge.length, DMA_FROM_DEVICE);
1067 smbd_disconnect_rdma_connection(info);
1068 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1074 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1075 static int smbd_negotiate(struct smbd_connection *info)
1078 struct smbd_response *response = get_receive_buffer(info);
1080 response->type = SMBD_NEGOTIATE_RESP;
1081 rc = smbd_post_recv(info, response);
1082 log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x iov.lkey=%x\n",
1083 rc, response->sge.addr,
1084 response->sge.length, response->sge.lkey);
1088 init_completion(&info->negotiate_completion);
1089 info->negotiate_done = false;
1090 rc = smbd_post_send_negotiate_req(info);
1094 rc = wait_for_completion_interruptible_timeout(
1095 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1096 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1098 if (info->negotiate_done)
1103 else if (rc == -ERESTARTSYS)
1111 static void put_empty_packet(
1112 struct smbd_connection *info, struct smbd_response *response)
1114 spin_lock(&info->empty_packet_queue_lock);
1115 list_add_tail(&response->list, &info->empty_packet_queue);
1116 info->count_empty_packet_queue++;
1117 spin_unlock(&info->empty_packet_queue_lock);
1119 queue_work(info->workqueue, &info->post_send_credits_work);
1123 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1124 * This is a queue for reassembling upper layer payload and present to upper
1125 * layer. All the inncoming payload go to the reassembly queue, regardless of
1126 * if reassembly is required. The uuper layer code reads from the queue for all
1127 * incoming payloads.
1128 * Put a received packet to the reassembly queue
1129 * response: the packet received
1130 * data_length: the size of payload in this packet
1132 static void enqueue_reassembly(
1133 struct smbd_connection *info,
1134 struct smbd_response *response,
1137 spin_lock(&info->reassembly_queue_lock);
1138 list_add_tail(&response->list, &info->reassembly_queue);
1139 info->reassembly_queue_length++;
1141 * Make sure reassembly_data_length is updated after list and
1142 * reassembly_queue_length are updated. On the dequeue side
1143 * reassembly_data_length is checked without a lock to determine
1144 * if reassembly_queue_length and list is up to date
1147 info->reassembly_data_length += data_length;
1148 spin_unlock(&info->reassembly_queue_lock);
1149 info->count_reassembly_queue++;
1150 info->count_enqueue_reassembly_queue++;
1154 * Get the first entry at the front of reassembly queue
1155 * Caller is responsible for locking
1156 * return value: the first entry if any, NULL if queue is empty
1158 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1160 struct smbd_response *ret = NULL;
1162 if (!list_empty(&info->reassembly_queue)) {
1163 ret = list_first_entry(
1164 &info->reassembly_queue,
1165 struct smbd_response, list);
1170 static struct smbd_response *get_empty_queue_buffer(
1171 struct smbd_connection *info)
1173 struct smbd_response *ret = NULL;
1174 unsigned long flags;
1176 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1177 if (!list_empty(&info->empty_packet_queue)) {
1178 ret = list_first_entry(
1179 &info->empty_packet_queue,
1180 struct smbd_response, list);
1181 list_del(&ret->list);
1182 info->count_empty_packet_queue--;
1184 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1190 * Get a receive buffer
1191 * For each remote send, we need to post a receive. The receive buffers are
1192 * pre-allocated in advance.
1193 * return value: the receive buffer, NULL if none is available
1195 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1197 struct smbd_response *ret = NULL;
1198 unsigned long flags;
1200 spin_lock_irqsave(&info->receive_queue_lock, flags);
1201 if (!list_empty(&info->receive_queue)) {
1202 ret = list_first_entry(
1203 &info->receive_queue,
1204 struct smbd_response, list);
1205 list_del(&ret->list);
1206 info->count_receive_queue--;
1207 info->count_get_receive_buffer++;
1209 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1215 * Return a receive buffer
1216 * Upon returning of a receive buffer, we can post new receive and extend
1217 * more receive credits to remote peer. This is done immediately after a
1218 * receive buffer is returned.
1220 static void put_receive_buffer(
1221 struct smbd_connection *info, struct smbd_response *response)
1223 unsigned long flags;
1225 ib_dma_unmap_single(info->id->device, response->sge.addr,
1226 response->sge.length, DMA_FROM_DEVICE);
1228 spin_lock_irqsave(&info->receive_queue_lock, flags);
1229 list_add_tail(&response->list, &info->receive_queue);
1230 info->count_receive_queue++;
1231 info->count_put_receive_buffer++;
1232 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1234 queue_work(info->workqueue, &info->post_send_credits_work);
1237 /* Preallocate all receive buffer on transport establishment */
1238 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1241 struct smbd_response *response;
1243 INIT_LIST_HEAD(&info->reassembly_queue);
1244 spin_lock_init(&info->reassembly_queue_lock);
1245 info->reassembly_data_length = 0;
1246 info->reassembly_queue_length = 0;
1248 INIT_LIST_HEAD(&info->receive_queue);
1249 spin_lock_init(&info->receive_queue_lock);
1250 info->count_receive_queue = 0;
1252 INIT_LIST_HEAD(&info->empty_packet_queue);
1253 spin_lock_init(&info->empty_packet_queue_lock);
1254 info->count_empty_packet_queue = 0;
1256 init_waitqueue_head(&info->wait_receive_queues);
1258 for (i = 0; i < num_buf; i++) {
1259 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1261 goto allocate_failed;
1263 response->info = info;
1264 list_add_tail(&response->list, &info->receive_queue);
1265 info->count_receive_queue++;
1271 while (!list_empty(&info->receive_queue)) {
1272 response = list_first_entry(
1273 &info->receive_queue,
1274 struct smbd_response, list);
1275 list_del(&response->list);
1276 info->count_receive_queue--;
1278 mempool_free(response, info->response_mempool);
1283 static void destroy_receive_buffers(struct smbd_connection *info)
1285 struct smbd_response *response;
1287 while ((response = get_receive_buffer(info)))
1288 mempool_free(response, info->response_mempool);
1290 while ((response = get_empty_queue_buffer(info)))
1291 mempool_free(response, info->response_mempool);
1294 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1295 static void idle_connection_timer(struct work_struct *work)
1297 struct smbd_connection *info = container_of(
1298 work, struct smbd_connection,
1299 idle_timer_work.work);
1301 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1303 "error status info->keep_alive_requested=%d\n",
1304 info->keep_alive_requested);
1305 smbd_disconnect_rdma_connection(info);
1309 log_keep_alive(INFO, "about to send an empty idle message\n");
1310 smbd_post_send_empty(info);
1312 /* Setup the next idle timeout work */
1313 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1314 info->keep_alive_interval*HZ);
1318 * Destroy the transport and related RDMA and memory resources
1319 * Need to go through all the pending counters and make sure on one is using
1320 * the transport while it is destroyed
1322 void smbd_destroy(struct TCP_Server_Info *server)
1324 struct smbd_connection *info = server->smbd_conn;
1325 struct smbd_response *response;
1326 unsigned long flags;
1329 log_rdma_event(INFO, "rdma session already destroyed\n");
1333 log_rdma_event(INFO, "destroying rdma session\n");
1334 if (info->transport_status != SMBD_DISCONNECTED) {
1335 rdma_disconnect(server->smbd_conn->id);
1336 log_rdma_event(INFO, "wait for transport being disconnected\n");
1337 wait_event_interruptible(
1339 info->transport_status == SMBD_DISCONNECTED);
1342 log_rdma_event(INFO, "destroying qp\n");
1343 ib_drain_qp(info->id->qp);
1344 rdma_destroy_qp(info->id);
1346 log_rdma_event(INFO, "cancelling idle timer\n");
1347 cancel_delayed_work_sync(&info->idle_timer_work);
1349 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1350 wait_event(info->wait_send_pending,
1351 atomic_read(&info->send_pending) == 0);
1353 /* It's not possible for upper layer to get to reassembly */
1354 log_rdma_event(INFO, "drain the reassembly queue\n");
1356 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1357 response = _get_first_reassembly(info);
1359 list_del(&response->list);
1360 spin_unlock_irqrestore(
1361 &info->reassembly_queue_lock, flags);
1362 put_receive_buffer(info, response);
1364 spin_unlock_irqrestore(
1365 &info->reassembly_queue_lock, flags);
1367 info->reassembly_data_length = 0;
1369 log_rdma_event(INFO, "free receive buffers\n");
1370 wait_event(info->wait_receive_queues,
1371 info->count_receive_queue + info->count_empty_packet_queue
1372 == info->receive_credit_max);
1373 destroy_receive_buffers(info);
1376 * For performance reasons, memory registration and deregistration
1377 * are not locked by srv_mutex. It is possible some processes are
1378 * blocked on transport srv_mutex while holding memory registration.
1379 * Release the transport srv_mutex to allow them to hit the failure
1380 * path when sending data, and then release memory registartions.
1382 log_rdma_event(INFO, "freeing mr list\n");
1383 wake_up_interruptible_all(&info->wait_mr);
1384 while (atomic_read(&info->mr_used_count)) {
1385 cifs_server_unlock(server);
1387 cifs_server_lock(server);
1389 destroy_mr_list(info);
1391 ib_free_cq(info->send_cq);
1392 ib_free_cq(info->recv_cq);
1393 ib_dealloc_pd(info->pd);
1394 rdma_destroy_id(info->id);
1397 mempool_destroy(info->request_mempool);
1398 kmem_cache_destroy(info->request_cache);
1400 mempool_destroy(info->response_mempool);
1401 kmem_cache_destroy(info->response_cache);
1403 info->transport_status = SMBD_DESTROYED;
1405 destroy_workqueue(info->workqueue);
1406 log_rdma_event(INFO, "rdma session destroyed\n");
1411 * Reconnect this SMBD connection, called from upper layer
1412 * return value: 0 on success, or actual error code
1414 int smbd_reconnect(struct TCP_Server_Info *server)
1416 log_rdma_event(INFO, "reconnecting rdma session\n");
1418 if (!server->smbd_conn) {
1419 log_rdma_event(INFO, "rdma session already destroyed\n");
1424 * This is possible if transport is disconnected and we haven't received
1425 * notification from RDMA, but upper layer has detected timeout
1427 if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1428 log_rdma_event(INFO, "disconnecting transport\n");
1429 smbd_destroy(server);
1433 log_rdma_event(INFO, "creating rdma session\n");
1434 server->smbd_conn = smbd_get_connection(
1435 server, (struct sockaddr *) &server->dstaddr);
1437 if (server->smbd_conn)
1438 cifs_dbg(VFS, "RDMA transport re-established\n");
1440 return server->smbd_conn ? 0 : -ENOENT;
1443 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1445 destroy_receive_buffers(info);
1446 destroy_workqueue(info->workqueue);
1447 mempool_destroy(info->response_mempool);
1448 kmem_cache_destroy(info->response_cache);
1449 mempool_destroy(info->request_mempool);
1450 kmem_cache_destroy(info->request_cache);
1453 #define MAX_NAME_LEN 80
1454 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1456 char name[MAX_NAME_LEN];
1459 scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1460 info->request_cache =
1463 sizeof(struct smbd_request) +
1464 sizeof(struct smbd_data_transfer),
1465 0, SLAB_HWCACHE_ALIGN, NULL);
1466 if (!info->request_cache)
1469 info->request_mempool =
1470 mempool_create(info->send_credit_target, mempool_alloc_slab,
1471 mempool_free_slab, info->request_cache);
1472 if (!info->request_mempool)
1475 scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1476 info->response_cache =
1479 sizeof(struct smbd_response) +
1480 info->max_receive_size,
1481 0, SLAB_HWCACHE_ALIGN, NULL);
1482 if (!info->response_cache)
1485 info->response_mempool =
1486 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1487 mempool_free_slab, info->response_cache);
1488 if (!info->response_mempool)
1491 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1492 info->workqueue = create_workqueue(name);
1493 if (!info->workqueue)
1496 rc = allocate_receive_buffers(info, info->receive_credit_max);
1498 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1505 destroy_workqueue(info->workqueue);
1507 mempool_destroy(info->response_mempool);
1509 kmem_cache_destroy(info->response_cache);
1511 mempool_destroy(info->request_mempool);
1513 kmem_cache_destroy(info->request_cache);
1517 /* Create a SMBD connection, called by upper layer */
1518 static struct smbd_connection *_smbd_get_connection(
1519 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1522 struct smbd_connection *info;
1523 struct rdma_conn_param conn_param;
1524 struct ib_qp_init_attr qp_attr;
1525 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1526 struct ib_port_immutable port_immutable;
1529 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1533 info->transport_status = SMBD_CONNECTING;
1534 rc = smbd_ia_open(info, dstaddr, port);
1536 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1537 goto create_id_failed;
1540 if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1541 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1542 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
1543 smbd_send_credit_target,
1544 info->id->device->attrs.max_cqe,
1545 info->id->device->attrs.max_qp_wr);
1549 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1550 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1551 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
1552 smbd_receive_credit_max,
1553 info->id->device->attrs.max_cqe,
1554 info->id->device->attrs.max_qp_wr);
1558 info->receive_credit_max = smbd_receive_credit_max;
1559 info->send_credit_target = smbd_send_credit_target;
1560 info->max_send_size = smbd_max_send_size;
1561 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1562 info->max_receive_size = smbd_max_receive_size;
1563 info->keep_alive_interval = smbd_keep_alive_interval;
1565 if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SGE) {
1567 "warning: device max_send_sge = %d too small\n",
1568 info->id->device->attrs.max_send_sge);
1569 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1571 if (info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_SGE) {
1573 "warning: device max_recv_sge = %d too small\n",
1574 info->id->device->attrs.max_recv_sge);
1575 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1578 info->send_cq = NULL;
1579 info->recv_cq = NULL;
1581 ib_alloc_cq_any(info->id->device, info,
1582 info->send_credit_target, IB_POLL_SOFTIRQ);
1583 if (IS_ERR(info->send_cq)) {
1584 info->send_cq = NULL;
1585 goto alloc_cq_failed;
1589 ib_alloc_cq_any(info->id->device, info,
1590 info->receive_credit_max, IB_POLL_SOFTIRQ);
1591 if (IS_ERR(info->recv_cq)) {
1592 info->recv_cq = NULL;
1593 goto alloc_cq_failed;
1596 memset(&qp_attr, 0, sizeof(qp_attr));
1597 qp_attr.event_handler = smbd_qp_async_error_upcall;
1598 qp_attr.qp_context = info;
1599 qp_attr.cap.max_send_wr = info->send_credit_target;
1600 qp_attr.cap.max_recv_wr = info->receive_credit_max;
1601 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1602 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1603 qp_attr.cap.max_inline_data = 0;
1604 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1605 qp_attr.qp_type = IB_QPT_RC;
1606 qp_attr.send_cq = info->send_cq;
1607 qp_attr.recv_cq = info->recv_cq;
1608 qp_attr.port_num = ~0;
1610 rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1612 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1613 goto create_qp_failed;
1616 memset(&conn_param, 0, sizeof(conn_param));
1617 conn_param.initiator_depth = 0;
1619 conn_param.responder_resources =
1620 info->id->device->attrs.max_qp_rd_atom
1621 < SMBD_CM_RESPONDER_RESOURCES ?
1622 info->id->device->attrs.max_qp_rd_atom :
1623 SMBD_CM_RESPONDER_RESOURCES;
1624 info->responder_resources = conn_param.responder_resources;
1625 log_rdma_mr(INFO, "responder_resources=%d\n",
1626 info->responder_resources);
1628 /* Need to send IRD/ORD in private data for iWARP */
1629 info->id->device->ops.get_port_immutable(
1630 info->id->device, info->id->port_num, &port_immutable);
1631 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1632 ird_ord_hdr[0] = info->responder_resources;
1634 conn_param.private_data = ird_ord_hdr;
1635 conn_param.private_data_len = sizeof(ird_ord_hdr);
1637 conn_param.private_data = NULL;
1638 conn_param.private_data_len = 0;
1641 conn_param.retry_count = SMBD_CM_RETRY;
1642 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1643 conn_param.flow_control = 0;
1645 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1646 &addr_in->sin_addr, port);
1648 init_waitqueue_head(&info->conn_wait);
1649 init_waitqueue_head(&info->disconn_wait);
1650 init_waitqueue_head(&info->wait_reassembly_queue);
1651 rc = rdma_connect(info->id, &conn_param);
1653 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1654 goto rdma_connect_failed;
1657 wait_event_interruptible(
1658 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1660 if (info->transport_status != SMBD_CONNECTED) {
1661 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1662 goto rdma_connect_failed;
1665 log_rdma_event(INFO, "rdma_connect connected\n");
1667 rc = allocate_caches_and_workqueue(info);
1669 log_rdma_event(ERR, "cache allocation failed\n");
1670 goto allocate_cache_failed;
1673 init_waitqueue_head(&info->wait_send_queue);
1674 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1675 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1676 info->keep_alive_interval*HZ);
1678 init_waitqueue_head(&info->wait_send_pending);
1679 atomic_set(&info->send_pending, 0);
1681 init_waitqueue_head(&info->wait_post_send);
1683 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1684 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1685 info->new_credits_offered = 0;
1686 spin_lock_init(&info->lock_new_credits_offered);
1688 rc = smbd_negotiate(info);
1690 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1691 goto negotiation_failed;
1694 rc = allocate_mr_list(info);
1696 log_rdma_mr(ERR, "memory registration allocation failed\n");
1697 goto allocate_mr_failed;
1703 /* At this point, need to a full transport shutdown */
1704 smbd_destroy(server);
1708 cancel_delayed_work_sync(&info->idle_timer_work);
1709 destroy_caches_and_workqueue(info);
1710 info->transport_status = SMBD_NEGOTIATE_FAILED;
1711 init_waitqueue_head(&info->conn_wait);
1712 rdma_disconnect(info->id);
1713 wait_event(info->conn_wait,
1714 info->transport_status == SMBD_DISCONNECTED);
1716 allocate_cache_failed:
1717 rdma_connect_failed:
1718 rdma_destroy_qp(info->id);
1723 ib_free_cq(info->send_cq);
1725 ib_free_cq(info->recv_cq);
1728 ib_dealloc_pd(info->pd);
1729 rdma_destroy_id(info->id);
1736 struct smbd_connection *smbd_get_connection(
1737 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1739 struct smbd_connection *ret;
1740 int port = SMBD_PORT;
1743 ret = _smbd_get_connection(server, dstaddr, port);
1745 /* Try SMB_PORT if SMBD_PORT doesn't work */
1746 if (!ret && port == SMBD_PORT) {
1754 * Receive data from receive reassembly queue
1755 * All the incoming data packets are placed in reassembly queue
1756 * buf: the buffer to read data into
1757 * size: the length of data to read
1758 * return value: actual data read
1759 * Note: this implementation copies the data from reassebmly queue to receive
1760 * buffers used by upper layer. This is not the optimal code path. A better way
1761 * to do it is to not have upper layer allocate its receive buffers but rather
1762 * borrow the buffer from reassembly queue, and return it after data is
1763 * consumed. But this will require more changes to upper layer code, and also
1764 * need to consider packet boundaries while they still being reassembled.
1766 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1769 struct smbd_response *response;
1770 struct smbd_data_transfer *data_transfer;
1771 int to_copy, to_read, data_read, offset;
1772 u32 data_length, remaining_data_length, data_offset;
1777 * No need to hold the reassembly queue lock all the time as we are
1778 * the only one reading from the front of the queue. The transport
1779 * may add more entries to the back of the queue at the same time
1781 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1782 info->reassembly_data_length);
1783 if (info->reassembly_data_length >= size) {
1785 int queue_removed = 0;
1788 * Need to make sure reassembly_data_length is read before
1789 * reading reassembly_queue_length and calling
1790 * _get_first_reassembly. This call is lock free
1791 * as we never read at the end of the queue which are being
1792 * updated in SOFTIRQ as more data is received
1795 queue_length = info->reassembly_queue_length;
1798 offset = info->first_entry_offset;
1799 while (data_read < size) {
1800 response = _get_first_reassembly(info);
1801 data_transfer = smbd_response_payload(response);
1802 data_length = le32_to_cpu(data_transfer->data_length);
1803 remaining_data_length =
1805 data_transfer->remaining_data_length);
1806 data_offset = le32_to_cpu(data_transfer->data_offset);
1809 * The upper layer expects RFC1002 length at the
1810 * beginning of the payload. Return it to indicate
1811 * the total length of the packet. This minimize the
1812 * change to upper layer packet processing logic. This
1813 * will be eventually remove when an intermediate
1814 * transport layer is added
1816 if (response->first_segment && size == 4) {
1817 unsigned int rfc1002_len =
1818 data_length + remaining_data_length;
1819 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1821 response->first_segment = false;
1822 log_read(INFO, "returning rfc1002 length %d\n",
1824 goto read_rfc1002_done;
1827 to_copy = min_t(int, data_length - offset, to_read);
1830 (char *)data_transfer + data_offset + offset,
1833 /* move on to the next buffer? */
1834 if (to_copy == data_length - offset) {
1837 * No need to lock if we are not at the
1841 list_del(&response->list);
1844 &info->reassembly_queue_lock);
1845 list_del(&response->list);
1847 &info->reassembly_queue_lock);
1850 info->count_reassembly_queue--;
1851 info->count_dequeue_reassembly_queue++;
1852 put_receive_buffer(info, response);
1854 log_read(INFO, "put_receive_buffer offset=0\n");
1859 data_read += to_copy;
1861 log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1862 to_copy, data_length - offset,
1863 to_read, data_read, offset);
1866 spin_lock_irq(&info->reassembly_queue_lock);
1867 info->reassembly_data_length -= data_read;
1868 info->reassembly_queue_length -= queue_removed;
1869 spin_unlock_irq(&info->reassembly_queue_lock);
1871 info->first_entry_offset = offset;
1872 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1873 data_read, info->reassembly_data_length,
1874 info->first_entry_offset);
1879 log_read(INFO, "wait_event on more data\n");
1880 rc = wait_event_interruptible(
1881 info->wait_reassembly_queue,
1882 info->reassembly_data_length >= size ||
1883 info->transport_status != SMBD_CONNECTED);
1884 /* Don't return any data if interrupted */
1888 if (info->transport_status != SMBD_CONNECTED) {
1889 log_read(ERR, "disconnected\n");
1890 return -ECONNABORTED;
1897 * Receive a page from receive reassembly queue
1898 * page: the page to read data into
1899 * to_read: the length of data to read
1900 * return value: actual data read
1902 static int smbd_recv_page(struct smbd_connection *info,
1903 struct page *page, unsigned int page_offset,
1904 unsigned int to_read)
1910 /* make sure we have the page ready for read */
1911 ret = wait_event_interruptible(
1912 info->wait_reassembly_queue,
1913 info->reassembly_data_length >= to_read ||
1914 info->transport_status != SMBD_CONNECTED);
1918 /* now we can read from reassembly queue and not sleep */
1919 page_address = kmap_atomic(page);
1920 to_address = (char *) page_address + page_offset;
1922 log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1923 page, to_address, to_read);
1925 ret = smbd_recv_buf(info, to_address, to_read);
1926 kunmap_atomic(page_address);
1932 * Receive data from transport
1933 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1934 * return: total bytes read, or 0. SMB Direct will not do partial read.
1936 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1940 unsigned int to_read, page_offset;
1943 if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1944 /* It's a bug in upper layer to get there */
1945 cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1946 iov_iter_rw(&msg->msg_iter));
1951 switch (iov_iter_type(&msg->msg_iter)) {
1953 buf = msg->msg_iter.kvec->iov_base;
1954 to_read = msg->msg_iter.kvec->iov_len;
1955 rc = smbd_recv_buf(info, buf, to_read);
1959 page = msg->msg_iter.bvec->bv_page;
1960 page_offset = msg->msg_iter.bvec->bv_offset;
1961 to_read = msg->msg_iter.bvec->bv_len;
1962 rc = smbd_recv_page(info, page, page_offset, to_read);
1966 /* It's a bug in upper layer to get there */
1967 cifs_dbg(VFS, "Invalid msg type %d\n",
1968 iov_iter_type(&msg->msg_iter));
1973 /* SMBDirect will read it all or nothing */
1975 msg->msg_iter.count = 0;
1980 * Send data to transport
1981 * Each rqst is transported as a SMBDirect payload
1982 * rqst: the data to write
1983 * return value: 0 if successfully write, otherwise error code
1985 int smbd_send(struct TCP_Server_Info *server,
1986 int num_rqst, struct smb_rqst *rqst_array)
1988 struct smbd_connection *info = server->smbd_conn;
1992 unsigned int buflen, remaining_data_length;
1995 info->max_send_size - sizeof(struct smbd_data_transfer);
1998 struct smb_rqst *rqst;
2001 if (info->transport_status != SMBD_CONNECTED) {
2007 * Add in the page array if there is one. The caller needs to set
2008 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2009 * ends at page boundary
2011 remaining_data_length = 0;
2012 for (i = 0; i < num_rqst; i++)
2013 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2015 if (remaining_data_length > info->max_fragmented_send_size) {
2016 log_write(ERR, "payload size %d > max size %d\n",
2017 remaining_data_length, info->max_fragmented_send_size);
2022 log_write(INFO, "num_rqst=%d total length=%u\n",
2023 num_rqst, remaining_data_length);
2027 rqst = &rqst_array[rqst_idx];
2030 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2031 rqst_idx, smb_rqst_len(server, rqst));
2032 for (i = 0; i < rqst->rq_nvec; i++)
2033 dump_smb(iov[i].iov_base, iov[i].iov_len);
2036 log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d rq_tailsz=%d buflen=%lu\n",
2037 rqst_idx, rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2038 rqst->rq_tailsz, smb_rqst_len(server, rqst));
2043 buflen += iov[i].iov_len;
2044 if (buflen > max_iov_size) {
2046 remaining_data_length -=
2047 (buflen-iov[i].iov_len);
2048 log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
2049 start, i, i - start,
2050 remaining_data_length);
2051 rc = smbd_post_send_data(
2052 info, &iov[start], i-start,
2053 remaining_data_length);
2057 /* iov[start] is too big, break it */
2058 nvecs = (buflen+max_iov_size-1)/max_iov_size;
2059 log_write(INFO, "iov[%d] iov_base=%p buflen=%d break to %d vectors\n",
2060 start, iov[start].iov_base,
2062 for (j = 0; j < nvecs; j++) {
2064 (char *)iov[start].iov_base +
2066 vec.iov_len = max_iov_size;
2070 max_iov_size*(nvecs-1);
2071 remaining_data_length -= vec.iov_len;
2073 "sending vec j=%d iov_base=%p iov_len=%zu remaining_data_length=%d\n",
2074 j, vec.iov_base, vec.iov_len,
2075 remaining_data_length);
2076 rc = smbd_post_send_data(
2078 remaining_data_length);
2083 if (i == rqst->rq_nvec)
2090 if (i == rqst->rq_nvec) {
2091 /* send out all remaining vecs */
2092 remaining_data_length -= buflen;
2093 log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
2094 start, i, i - start,
2095 remaining_data_length);
2096 rc = smbd_post_send_data(info, &iov[start],
2097 i-start, remaining_data_length);
2103 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2106 /* now sending pages if there are any */
2107 for (i = 0; i < rqst->rq_npages; i++) {
2108 unsigned int offset;
2110 rqst_page_get_length(rqst, i, &buflen, &offset);
2111 nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2112 log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2114 for (j = 0; j < nvecs; j++) {
2115 size = max_iov_size;
2117 size = buflen - j*max_iov_size;
2118 remaining_data_length -= size;
2119 log_write(INFO, "sending pages i=%d offset=%d size=%d remaining_data_length=%d\n",
2120 i, j * max_iov_size + offset, size,
2121 remaining_data_length);
2122 rc = smbd_post_send_page(
2123 info, rqst->rq_pages[i],
2124 j*max_iov_size + offset,
2125 size, remaining_data_length);
2132 if (rqst_idx < num_rqst)
2137 * As an optimization, we don't wait for individual I/O to finish
2138 * before sending the next one.
2139 * Send them all and wait for pending send count to get to 0
2140 * that means all the I/Os have been out and we are good to return
2143 wait_event(info->wait_send_pending,
2144 atomic_read(&info->send_pending) == 0);
2149 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2155 log_rdma_mr(ERR, "status=%d\n", wc->status);
2157 mr = container_of(cqe, struct smbd_mr, cqe);
2158 smbd_disconnect_rdma_connection(mr->conn);
2163 * The work queue function that recovers MRs
2164 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2165 * again. Both calls are slow, so finish them in a workqueue. This will not
2167 * There is one workqueue that recovers MRs, there is no need to lock as the
2168 * I/O requests calling smbd_register_mr will never update the links in the
2171 static void smbd_mr_recovery_work(struct work_struct *work)
2173 struct smbd_connection *info =
2174 container_of(work, struct smbd_connection, mr_recovery_work);
2175 struct smbd_mr *smbdirect_mr;
2178 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2179 if (smbdirect_mr->state == MR_ERROR) {
2181 /* recover this MR entry */
2182 rc = ib_dereg_mr(smbdirect_mr->mr);
2185 "ib_dereg_mr failed rc=%x\n",
2187 smbd_disconnect_rdma_connection(info);
2191 smbdirect_mr->mr = ib_alloc_mr(
2192 info->pd, info->mr_type,
2193 info->max_frmr_depth);
2194 if (IS_ERR(smbdirect_mr->mr)) {
2195 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2197 info->max_frmr_depth);
2198 smbd_disconnect_rdma_connection(info);
2202 /* This MR is being used, don't recover it */
2205 smbdirect_mr->state = MR_READY;
2207 /* smbdirect_mr->state is updated by this function
2208 * and is read and updated by I/O issuing CPUs trying
2209 * to get a MR, the call to atomic_inc_return
2210 * implicates a memory barrier and guarantees this
2211 * value is updated before waking up any calls to
2212 * get_mr() from the I/O issuing CPUs
2214 if (atomic_inc_return(&info->mr_ready_count) == 1)
2215 wake_up_interruptible(&info->wait_mr);
2219 static void destroy_mr_list(struct smbd_connection *info)
2221 struct smbd_mr *mr, *tmp;
2223 cancel_work_sync(&info->mr_recovery_work);
2224 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2225 if (mr->state == MR_INVALIDATED)
2226 ib_dma_unmap_sg(info->id->device, mr->sgl,
2227 mr->sgl_count, mr->dir);
2228 ib_dereg_mr(mr->mr);
2235 * Allocate MRs used for RDMA read/write
2236 * The number of MRs will not exceed hardware capability in responder_resources
2237 * All MRs are kept in mr_list. The MR can be recovered after it's used
2238 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2239 * as MRs are used and recovered for I/O, but the list links will not change
2241 static int allocate_mr_list(struct smbd_connection *info)
2244 struct smbd_mr *smbdirect_mr, *tmp;
2246 INIT_LIST_HEAD(&info->mr_list);
2247 init_waitqueue_head(&info->wait_mr);
2248 spin_lock_init(&info->mr_list_lock);
2249 atomic_set(&info->mr_ready_count, 0);
2250 atomic_set(&info->mr_used_count, 0);
2251 init_waitqueue_head(&info->wait_for_mr_cleanup);
2252 /* Allocate more MRs (2x) than hardware responder_resources */
2253 for (i = 0; i < info->responder_resources * 2; i++) {
2254 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2257 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2258 info->max_frmr_depth);
2259 if (IS_ERR(smbdirect_mr->mr)) {
2260 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2261 info->mr_type, info->max_frmr_depth);
2264 smbdirect_mr->sgl = kcalloc(
2265 info->max_frmr_depth,
2266 sizeof(struct scatterlist),
2268 if (!smbdirect_mr->sgl) {
2269 log_rdma_mr(ERR, "failed to allocate sgl\n");
2270 ib_dereg_mr(smbdirect_mr->mr);
2273 smbdirect_mr->state = MR_READY;
2274 smbdirect_mr->conn = info;
2276 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2277 atomic_inc(&info->mr_ready_count);
2279 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2283 kfree(smbdirect_mr);
2285 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2286 ib_dereg_mr(smbdirect_mr->mr);
2287 kfree(smbdirect_mr->sgl);
2288 kfree(smbdirect_mr);
2294 * Get a MR from mr_list. This function waits until there is at least one
2295 * MR available in the list. It may access the list while the
2296 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2297 * as they never modify the same places. However, there may be several CPUs
2298 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2299 * protect this situation.
2301 static struct smbd_mr *get_mr(struct smbd_connection *info)
2303 struct smbd_mr *ret;
2306 rc = wait_event_interruptible(info->wait_mr,
2307 atomic_read(&info->mr_ready_count) ||
2308 info->transport_status != SMBD_CONNECTED);
2310 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2314 if (info->transport_status != SMBD_CONNECTED) {
2315 log_rdma_mr(ERR, "info->transport_status=%x\n",
2316 info->transport_status);
2320 spin_lock(&info->mr_list_lock);
2321 list_for_each_entry(ret, &info->mr_list, list) {
2322 if (ret->state == MR_READY) {
2323 ret->state = MR_REGISTERED;
2324 spin_unlock(&info->mr_list_lock);
2325 atomic_dec(&info->mr_ready_count);
2326 atomic_inc(&info->mr_used_count);
2331 spin_unlock(&info->mr_list_lock);
2333 * It is possible that we could fail to get MR because other processes may
2334 * try to acquire a MR at the same time. If this is the case, retry it.
2340 * Register memory for RDMA read/write
2341 * pages[]: the list of pages to register memory with
2342 * num_pages: the number of pages to register
2343 * tailsz: if non-zero, the bytes to register in the last page
2344 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2345 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2346 * return value: the MR registered, NULL if failed.
2348 struct smbd_mr *smbd_register_mr(
2349 struct smbd_connection *info, struct page *pages[], int num_pages,
2350 int offset, int tailsz, bool writing, bool need_invalidate)
2352 struct smbd_mr *smbdirect_mr;
2354 enum dma_data_direction dir;
2355 struct ib_reg_wr *reg_wr;
2357 if (num_pages > info->max_frmr_depth) {
2358 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2359 num_pages, info->max_frmr_depth);
2363 smbdirect_mr = get_mr(info);
2364 if (!smbdirect_mr) {
2365 log_rdma_mr(ERR, "get_mr returning NULL\n");
2368 smbdirect_mr->need_invalidate = need_invalidate;
2369 smbdirect_mr->sgl_count = num_pages;
2370 sg_init_table(smbdirect_mr->sgl, num_pages);
2372 log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
2373 num_pages, offset, tailsz);
2375 if (num_pages == 1) {
2376 sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
2377 goto skip_multiple_pages;
2380 /* We have at least two pages to register */
2382 &smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
2384 while (i < num_pages - 1) {
2385 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2388 sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2389 tailsz ? tailsz : PAGE_SIZE, 0);
2391 skip_multiple_pages:
2392 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2393 smbdirect_mr->dir = dir;
2394 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2396 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2397 num_pages, dir, rc);
2401 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2403 if (rc != num_pages) {
2405 "ib_map_mr_sg failed rc = %d num_pages = %x\n",
2410 ib_update_fast_reg_key(smbdirect_mr->mr,
2411 ib_inc_rkey(smbdirect_mr->mr->rkey));
2412 reg_wr = &smbdirect_mr->wr;
2413 reg_wr->wr.opcode = IB_WR_REG_MR;
2414 smbdirect_mr->cqe.done = register_mr_done;
2415 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2416 reg_wr->wr.num_sge = 0;
2417 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2418 reg_wr->mr = smbdirect_mr->mr;
2419 reg_wr->key = smbdirect_mr->mr->rkey;
2420 reg_wr->access = writing ?
2421 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2422 IB_ACCESS_REMOTE_READ;
2425 * There is no need for waiting for complemtion on ib_post_send
2426 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2427 * on the next ib_post_send when we actaully send I/O to remote peer
2429 rc = ib_post_send(info->id->qp, ®_wr->wr, NULL);
2431 return smbdirect_mr;
2433 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2436 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2438 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2439 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2442 smbdirect_mr->state = MR_ERROR;
2443 if (atomic_dec_and_test(&info->mr_used_count))
2444 wake_up(&info->wait_for_mr_cleanup);
2446 smbd_disconnect_rdma_connection(info);
2451 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2453 struct smbd_mr *smbdirect_mr;
2457 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2458 smbdirect_mr->state = MR_INVALIDATED;
2459 if (wc->status != IB_WC_SUCCESS) {
2460 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2461 smbdirect_mr->state = MR_ERROR;
2463 complete(&smbdirect_mr->invalidate_done);
2467 * Deregister a MR after I/O is done
2468 * This function may wait if remote invalidation is not used
2469 * and we have to locally invalidate the buffer to prevent data is being
2470 * modified by remote peer after upper layer consumes it
2472 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2474 struct ib_send_wr *wr;
2475 struct smbd_connection *info = smbdirect_mr->conn;
2478 if (smbdirect_mr->need_invalidate) {
2479 /* Need to finish local invalidation before returning */
2480 wr = &smbdirect_mr->inv_wr;
2481 wr->opcode = IB_WR_LOCAL_INV;
2482 smbdirect_mr->cqe.done = local_inv_done;
2483 wr->wr_cqe = &smbdirect_mr->cqe;
2485 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2486 wr->send_flags = IB_SEND_SIGNALED;
2488 init_completion(&smbdirect_mr->invalidate_done);
2489 rc = ib_post_send(info->id->qp, wr, NULL);
2491 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2492 smbd_disconnect_rdma_connection(info);
2495 wait_for_completion(&smbdirect_mr->invalidate_done);
2496 smbdirect_mr->need_invalidate = false;
2499 * For remote invalidation, just set it to MR_INVALIDATED
2500 * and defer to mr_recovery_work to recover the MR for next use
2502 smbdirect_mr->state = MR_INVALIDATED;
2504 if (smbdirect_mr->state == MR_INVALIDATED) {
2506 info->id->device, smbdirect_mr->sgl,
2507 smbdirect_mr->sgl_count,
2509 smbdirect_mr->state = MR_READY;
2510 if (atomic_inc_return(&info->mr_ready_count) == 1)
2511 wake_up_interruptible(&info->wait_mr);
2514 * Schedule the work to do MR recovery for future I/Os MR
2515 * recovery is slow and don't want it to block current I/O
2517 queue_work(info->workqueue, &info->mr_recovery_work);
2520 if (atomic_dec_and_test(&info->mr_used_count))
2521 wake_up(&info->wait_for_mr_cleanup);