1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
10 #include "delayed-inode.h"
12 #include "transaction.h"
16 #include "inode-item.h"
18 #define BTRFS_DELAYED_WRITEBACK 512
19 #define BTRFS_DELAYED_BACKGROUND 128
20 #define BTRFS_DELAYED_BATCH 16
22 static struct kmem_cache *delayed_node_cache;
24 int __init btrfs_delayed_inode_init(void)
26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 sizeof(struct btrfs_delayed_node),
31 if (!delayed_node_cache)
36 void __cold btrfs_delayed_inode_exit(void)
38 kmem_cache_destroy(delayed_node_cache);
41 static inline void btrfs_init_delayed_node(
42 struct btrfs_delayed_node *delayed_node,
43 struct btrfs_root *root, u64 inode_id)
45 delayed_node->root = root;
46 delayed_node->inode_id = inode_id;
47 refcount_set(&delayed_node->refs, 0);
48 delayed_node->ins_root = RB_ROOT_CACHED;
49 delayed_node->del_root = RB_ROOT_CACHED;
50 mutex_init(&delayed_node->mutex);
51 INIT_LIST_HEAD(&delayed_node->n_list);
52 INIT_LIST_HEAD(&delayed_node->p_list);
55 static struct btrfs_delayed_node *btrfs_get_delayed_node(
56 struct btrfs_inode *btrfs_inode)
58 struct btrfs_root *root = btrfs_inode->root;
59 u64 ino = btrfs_ino(btrfs_inode);
60 struct btrfs_delayed_node *node;
62 node = READ_ONCE(btrfs_inode->delayed_node);
64 refcount_inc(&node->refs);
68 spin_lock(&root->inode_lock);
69 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
72 if (btrfs_inode->delayed_node) {
73 refcount_inc(&node->refs); /* can be accessed */
74 BUG_ON(btrfs_inode->delayed_node != node);
75 spin_unlock(&root->inode_lock);
80 * It's possible that we're racing into the middle of removing
81 * this node from the radix tree. In this case, the refcount
82 * was zero and it should never go back to one. Just return
83 * NULL like it was never in the radix at all; our release
84 * function is in the process of removing it.
86 * Some implementations of refcount_inc refuse to bump the
87 * refcount once it has hit zero. If we don't do this dance
88 * here, refcount_inc() may decide to just WARN_ONCE() instead
89 * of actually bumping the refcount.
91 * If this node is properly in the radix, we want to bump the
92 * refcount twice, once for the inode and once for this get
95 if (refcount_inc_not_zero(&node->refs)) {
96 refcount_inc(&node->refs);
97 btrfs_inode->delayed_node = node;
102 spin_unlock(&root->inode_lock);
105 spin_unlock(&root->inode_lock);
110 /* Will return either the node or PTR_ERR(-ENOMEM) */
111 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
112 struct btrfs_inode *btrfs_inode)
114 struct btrfs_delayed_node *node;
115 struct btrfs_root *root = btrfs_inode->root;
116 u64 ino = btrfs_ino(btrfs_inode);
120 node = btrfs_get_delayed_node(btrfs_inode);
124 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
126 return ERR_PTR(-ENOMEM);
127 btrfs_init_delayed_node(node, root, ino);
129 /* cached in the btrfs inode and can be accessed */
130 refcount_set(&node->refs, 2);
132 ret = radix_tree_preload(GFP_NOFS);
134 kmem_cache_free(delayed_node_cache, node);
138 spin_lock(&root->inode_lock);
139 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
140 if (ret == -EEXIST) {
141 spin_unlock(&root->inode_lock);
142 kmem_cache_free(delayed_node_cache, node);
143 radix_tree_preload_end();
146 btrfs_inode->delayed_node = node;
147 spin_unlock(&root->inode_lock);
148 radix_tree_preload_end();
154 * Call it when holding delayed_node->mutex
156 * If mod = 1, add this node into the prepared list.
158 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
159 struct btrfs_delayed_node *node,
162 spin_lock(&root->lock);
163 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
164 if (!list_empty(&node->p_list))
165 list_move_tail(&node->p_list, &root->prepare_list);
167 list_add_tail(&node->p_list, &root->prepare_list);
169 list_add_tail(&node->n_list, &root->node_list);
170 list_add_tail(&node->p_list, &root->prepare_list);
171 refcount_inc(&node->refs); /* inserted into list */
173 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
175 spin_unlock(&root->lock);
178 /* Call it when holding delayed_node->mutex */
179 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
180 struct btrfs_delayed_node *node)
182 spin_lock(&root->lock);
183 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
185 refcount_dec(&node->refs); /* not in the list */
186 list_del_init(&node->n_list);
187 if (!list_empty(&node->p_list))
188 list_del_init(&node->p_list);
189 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
191 spin_unlock(&root->lock);
194 static struct btrfs_delayed_node *btrfs_first_delayed_node(
195 struct btrfs_delayed_root *delayed_root)
198 struct btrfs_delayed_node *node = NULL;
200 spin_lock(&delayed_root->lock);
201 if (list_empty(&delayed_root->node_list))
204 p = delayed_root->node_list.next;
205 node = list_entry(p, struct btrfs_delayed_node, n_list);
206 refcount_inc(&node->refs);
208 spin_unlock(&delayed_root->lock);
213 static struct btrfs_delayed_node *btrfs_next_delayed_node(
214 struct btrfs_delayed_node *node)
216 struct btrfs_delayed_root *delayed_root;
218 struct btrfs_delayed_node *next = NULL;
220 delayed_root = node->root->fs_info->delayed_root;
221 spin_lock(&delayed_root->lock);
222 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
223 /* not in the list */
224 if (list_empty(&delayed_root->node_list))
226 p = delayed_root->node_list.next;
227 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
230 p = node->n_list.next;
232 next = list_entry(p, struct btrfs_delayed_node, n_list);
233 refcount_inc(&next->refs);
235 spin_unlock(&delayed_root->lock);
240 static void __btrfs_release_delayed_node(
241 struct btrfs_delayed_node *delayed_node,
244 struct btrfs_delayed_root *delayed_root;
249 delayed_root = delayed_node->root->fs_info->delayed_root;
251 mutex_lock(&delayed_node->mutex);
252 if (delayed_node->count)
253 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
255 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
256 mutex_unlock(&delayed_node->mutex);
258 if (refcount_dec_and_test(&delayed_node->refs)) {
259 struct btrfs_root *root = delayed_node->root;
261 spin_lock(&root->inode_lock);
263 * Once our refcount goes to zero, nobody is allowed to bump it
264 * back up. We can delete it now.
266 ASSERT(refcount_read(&delayed_node->refs) == 0);
267 radix_tree_delete(&root->delayed_nodes_tree,
268 delayed_node->inode_id);
269 spin_unlock(&root->inode_lock);
270 kmem_cache_free(delayed_node_cache, delayed_node);
274 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
276 __btrfs_release_delayed_node(node, 0);
279 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
280 struct btrfs_delayed_root *delayed_root)
283 struct btrfs_delayed_node *node = NULL;
285 spin_lock(&delayed_root->lock);
286 if (list_empty(&delayed_root->prepare_list))
289 p = delayed_root->prepare_list.next;
291 node = list_entry(p, struct btrfs_delayed_node, p_list);
292 refcount_inc(&node->refs);
294 spin_unlock(&delayed_root->lock);
299 static inline void btrfs_release_prepared_delayed_node(
300 struct btrfs_delayed_node *node)
302 __btrfs_release_delayed_node(node, 1);
305 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
307 struct btrfs_delayed_item *item;
308 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
310 item->data_len = data_len;
311 item->ins_or_del = 0;
312 item->bytes_reserved = 0;
313 item->delayed_node = NULL;
314 refcount_set(&item->refs, 1);
320 * __btrfs_lookup_delayed_item - look up the delayed item by key
321 * @delayed_node: pointer to the delayed node
322 * @key: the key to look up
323 * @prev: used to store the prev item if the right item isn't found
324 * @next: used to store the next item if the right item isn't found
326 * Note: if we don't find the right item, we will return the prev item and
329 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
330 struct rb_root *root,
331 struct btrfs_key *key,
332 struct btrfs_delayed_item **prev,
333 struct btrfs_delayed_item **next)
335 struct rb_node *node, *prev_node = NULL;
336 struct btrfs_delayed_item *delayed_item = NULL;
339 node = root->rb_node;
342 delayed_item = rb_entry(node, struct btrfs_delayed_item,
345 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
347 node = node->rb_right;
349 node = node->rb_left;
358 *prev = delayed_item;
359 else if ((node = rb_prev(prev_node)) != NULL) {
360 *prev = rb_entry(node, struct btrfs_delayed_item,
370 *next = delayed_item;
371 else if ((node = rb_next(prev_node)) != NULL) {
372 *next = rb_entry(node, struct btrfs_delayed_item,
380 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
381 struct btrfs_delayed_node *delayed_node,
382 struct btrfs_key *key)
384 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
388 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
389 struct btrfs_delayed_item *ins)
391 struct rb_node **p, *node;
392 struct rb_node *parent_node = NULL;
393 struct rb_root_cached *root;
394 struct btrfs_delayed_item *item;
396 bool leftmost = true;
398 if (ins->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
399 root = &delayed_node->ins_root;
400 else if (ins->ins_or_del == BTRFS_DELAYED_DELETION_ITEM)
401 root = &delayed_node->del_root;
404 p = &root->rb_root.rb_node;
405 node = &ins->rb_node;
409 item = rb_entry(parent_node, struct btrfs_delayed_item,
412 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
416 } else if (cmp > 0) {
423 rb_link_node(node, parent_node, p);
424 rb_insert_color_cached(node, root, leftmost);
425 ins->delayed_node = delayed_node;
427 /* Delayed items are always for dir index items. */
428 ASSERT(ins->key.type == BTRFS_DIR_INDEX_KEY);
430 if (ins->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM &&
431 ins->key.offset >= delayed_node->index_cnt)
432 delayed_node->index_cnt = ins->key.offset + 1;
434 delayed_node->count++;
435 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
439 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
441 int seq = atomic_inc_return(&delayed_root->items_seq);
443 /* atomic_dec_return implies a barrier */
444 if ((atomic_dec_return(&delayed_root->items) <
445 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
446 cond_wake_up_nomb(&delayed_root->wait);
449 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
451 struct rb_root_cached *root;
452 struct btrfs_delayed_root *delayed_root;
454 /* Not associated with any delayed_node */
455 if (!delayed_item->delayed_node)
457 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
459 BUG_ON(!delayed_root);
460 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
461 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
463 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
464 root = &delayed_item->delayed_node->ins_root;
466 root = &delayed_item->delayed_node->del_root;
468 rb_erase_cached(&delayed_item->rb_node, root);
469 delayed_item->delayed_node->count--;
471 finish_one_item(delayed_root);
474 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
477 __btrfs_remove_delayed_item(item);
478 if (refcount_dec_and_test(&item->refs))
483 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
484 struct btrfs_delayed_node *delayed_node)
487 struct btrfs_delayed_item *item = NULL;
489 p = rb_first_cached(&delayed_node->ins_root);
491 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
496 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
497 struct btrfs_delayed_node *delayed_node)
500 struct btrfs_delayed_item *item = NULL;
502 p = rb_first_cached(&delayed_node->del_root);
504 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
509 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
510 struct btrfs_delayed_item *item)
513 struct btrfs_delayed_item *next = NULL;
515 p = rb_next(&item->rb_node);
517 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
522 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
523 struct btrfs_root *root,
524 struct btrfs_delayed_item *item)
526 struct btrfs_block_rsv *src_rsv;
527 struct btrfs_block_rsv *dst_rsv;
528 struct btrfs_fs_info *fs_info = root->fs_info;
532 if (!trans->bytes_reserved)
535 src_rsv = trans->block_rsv;
536 dst_rsv = &fs_info->delayed_block_rsv;
538 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
541 * Here we migrate space rsv from transaction rsv, since have already
542 * reserved space when starting a transaction. So no need to reserve
545 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
547 trace_btrfs_space_reservation(fs_info, "delayed_item",
551 * For insertions we track reserved metadata space by accounting
552 * for the number of leaves that will be used, based on the delayed
553 * node's index_items_size field.
555 if (item->ins_or_del == BTRFS_DELAYED_DELETION_ITEM)
556 item->bytes_reserved = num_bytes;
562 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
563 struct btrfs_delayed_item *item)
565 struct btrfs_block_rsv *rsv;
566 struct btrfs_fs_info *fs_info = root->fs_info;
568 if (!item->bytes_reserved)
571 rsv = &fs_info->delayed_block_rsv;
573 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
574 * to release/reserve qgroup space.
576 trace_btrfs_space_reservation(fs_info, "delayed_item",
577 item->key.objectid, item->bytes_reserved,
579 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
582 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
583 unsigned int num_leaves)
585 struct btrfs_fs_info *fs_info = node->root->fs_info;
586 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
588 /* There are no space reservations during log replay, bail out. */
589 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
592 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
594 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
597 static int btrfs_delayed_inode_reserve_metadata(
598 struct btrfs_trans_handle *trans,
599 struct btrfs_root *root,
600 struct btrfs_delayed_node *node)
602 struct btrfs_fs_info *fs_info = root->fs_info;
603 struct btrfs_block_rsv *src_rsv;
604 struct btrfs_block_rsv *dst_rsv;
608 src_rsv = trans->block_rsv;
609 dst_rsv = &fs_info->delayed_block_rsv;
611 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
614 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
615 * which doesn't reserve space for speed. This is a problem since we
616 * still need to reserve space for this update, so try to reserve the
619 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
620 * we always reserve enough to update the inode item.
622 if (!src_rsv || (!trans->bytes_reserved &&
623 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
624 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
625 BTRFS_QGROUP_RSV_META_PREALLOC, true);
628 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
629 BTRFS_RESERVE_NO_FLUSH);
630 /* NO_FLUSH could only fail with -ENOSPC */
631 ASSERT(ret == 0 || ret == -ENOSPC);
633 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
635 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
639 trace_btrfs_space_reservation(fs_info, "delayed_inode",
640 node->inode_id, num_bytes, 1);
641 node->bytes_reserved = num_bytes;
647 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
648 struct btrfs_delayed_node *node,
651 struct btrfs_block_rsv *rsv;
653 if (!node->bytes_reserved)
656 rsv = &fs_info->delayed_block_rsv;
657 trace_btrfs_space_reservation(fs_info, "delayed_inode",
658 node->inode_id, node->bytes_reserved, 0);
659 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
661 btrfs_qgroup_free_meta_prealloc(node->root,
662 node->bytes_reserved);
664 btrfs_qgroup_convert_reserved_meta(node->root,
665 node->bytes_reserved);
666 node->bytes_reserved = 0;
670 * Insert a single delayed item or a batch of delayed items, as many as possible
671 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
672 * in the rbtree, and if there's a gap between two consecutive dir index items,
673 * then it means at some point we had delayed dir indexes to add but they got
674 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
675 * into the subvolume tree. Dir index keys also have their offsets coming from a
676 * monotonically increasing counter, so we can't get new keys with an offset that
677 * fits within a gap between delayed dir index items.
679 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
680 struct btrfs_root *root,
681 struct btrfs_path *path,
682 struct btrfs_delayed_item *first_item)
684 struct btrfs_fs_info *fs_info = root->fs_info;
685 struct btrfs_delayed_node *node = first_item->delayed_node;
686 LIST_HEAD(item_list);
687 struct btrfs_delayed_item *curr;
688 struct btrfs_delayed_item *next;
689 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
690 struct btrfs_item_batch batch;
692 char *ins_data = NULL;
694 bool continuous_keys_only = false;
696 lockdep_assert_held(&node->mutex);
699 * During normal operation the delayed index offset is continuously
700 * increasing, so we can batch insert all items as there will not be any
701 * overlapping keys in the tree.
703 * The exception to this is log replay, where we may have interleaved
704 * offsets in the tree, so our batch needs to be continuous keys only in
705 * order to ensure we do not end up with out of order items in our leaf.
707 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
708 continuous_keys_only = true;
711 * For delayed items to insert, we track reserved metadata bytes based
712 * on the number of leaves that we will use.
713 * See btrfs_insert_delayed_dir_index() and
714 * btrfs_delayed_item_reserve_metadata()).
716 ASSERT(first_item->bytes_reserved == 0);
718 list_add_tail(&first_item->tree_list, &item_list);
719 batch.total_data_size = first_item->data_len;
721 total_size = first_item->data_len + sizeof(struct btrfs_item);
727 next = __btrfs_next_delayed_item(curr);
732 * We cannot allow gaps in the key space if we're doing log
735 if (continuous_keys_only &&
736 (next->key.offset != curr->key.offset + 1))
739 ASSERT(next->bytes_reserved == 0);
741 next_size = next->data_len + sizeof(struct btrfs_item);
742 if (total_size + next_size > max_size)
745 list_add_tail(&next->tree_list, &item_list);
747 total_size += next_size;
748 batch.total_data_size += next->data_len;
753 batch.keys = &first_item->key;
754 batch.data_sizes = &first_item->data_len;
756 struct btrfs_key *ins_keys;
760 ins_data = kmalloc(batch.nr * sizeof(u32) +
761 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
766 ins_sizes = (u32 *)ins_data;
767 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
768 batch.keys = ins_keys;
769 batch.data_sizes = ins_sizes;
770 list_for_each_entry(curr, &item_list, tree_list) {
771 ins_keys[i] = curr->key;
772 ins_sizes[i] = curr->data_len;
777 ret = btrfs_insert_empty_items(trans, root, path, &batch);
781 list_for_each_entry(curr, &item_list, tree_list) {
784 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
785 write_extent_buffer(path->nodes[0], &curr->data,
786 (unsigned long)data_ptr, curr->data_len);
791 * Now release our path before releasing the delayed items and their
792 * metadata reservations, so that we don't block other tasks for more
795 btrfs_release_path(path);
797 ASSERT(node->index_item_leaves > 0);
800 * For normal operations we will batch an entire leaf's worth of delayed
801 * items, so if there are more items to process we can decrement
802 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
804 * However for log replay we may not have inserted an entire leaf's
805 * worth of items, we may have not had continuous items, so decrementing
806 * here would mess up the index_item_leaves accounting. For this case
807 * only clean up the accounting when there are no items left.
809 if (next && !continuous_keys_only) {
811 * We inserted one batch of items into a leaf a there are more
812 * items to flush in a future batch, now release one unit of
813 * metadata space from the delayed block reserve, corresponding
814 * the leaf we just flushed to.
816 btrfs_delayed_item_release_leaves(node, 1);
817 node->index_item_leaves--;
820 * There are no more items to insert. We can have a number of
821 * reserved leaves > 1 here - this happens when many dir index
822 * items are added and then removed before they are flushed (file
823 * names with a very short life, never span a transaction). So
824 * release all remaining leaves.
826 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
827 node->index_item_leaves = 0;
830 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
831 list_del(&curr->tree_list);
832 btrfs_release_delayed_item(curr);
839 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
840 struct btrfs_path *path,
841 struct btrfs_root *root,
842 struct btrfs_delayed_node *node)
847 struct btrfs_delayed_item *curr;
849 mutex_lock(&node->mutex);
850 curr = __btrfs_first_delayed_insertion_item(node);
852 mutex_unlock(&node->mutex);
855 ret = btrfs_insert_delayed_item(trans, root, path, curr);
856 mutex_unlock(&node->mutex);
862 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
863 struct btrfs_root *root,
864 struct btrfs_path *path,
865 struct btrfs_delayed_item *item)
867 struct btrfs_fs_info *fs_info = root->fs_info;
868 struct btrfs_delayed_item *curr, *next;
869 struct extent_buffer *leaf = path->nodes[0];
870 LIST_HEAD(batch_list);
871 int nitems, slot, last_slot;
873 u64 total_reserved_size = item->bytes_reserved;
875 ASSERT(leaf != NULL);
877 slot = path->slots[0];
878 last_slot = btrfs_header_nritems(leaf) - 1;
880 * Our caller always gives us a path pointing to an existing item, so
881 * this can not happen.
883 ASSERT(slot <= last_slot);
884 if (WARN_ON(slot > last_slot))
889 list_add_tail(&curr->tree_list, &batch_list);
892 * Keep checking if the next delayed item matches the next item in the
893 * leaf - if so, we can add it to the batch of items to delete from the
896 while (slot < last_slot) {
897 struct btrfs_key key;
899 next = __btrfs_next_delayed_item(curr);
904 btrfs_item_key_to_cpu(leaf, &key, slot);
905 if (btrfs_comp_cpu_keys(&next->key, &key) != 0)
909 list_add_tail(&curr->tree_list, &batch_list);
910 total_reserved_size += curr->bytes_reserved;
913 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
917 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
918 if (total_reserved_size > 0) {
920 * Check btrfs_delayed_item_reserve_metadata() to see why we
921 * don't need to release/reserve qgroup space.
923 trace_btrfs_space_reservation(fs_info, "delayed_item",
924 item->key.objectid, total_reserved_size,
926 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
927 total_reserved_size, NULL);
930 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
931 list_del(&curr->tree_list);
932 btrfs_release_delayed_item(curr);
938 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
939 struct btrfs_path *path,
940 struct btrfs_root *root,
941 struct btrfs_delayed_node *node)
946 struct btrfs_delayed_item *item;
948 mutex_lock(&node->mutex);
949 item = __btrfs_first_delayed_deletion_item(node);
951 mutex_unlock(&node->mutex);
955 ret = btrfs_search_slot(trans, root, &item->key, path, -1, 1);
958 * There's no matching item in the leaf. This means we
959 * have already deleted this item in a past run of the
960 * delayed items. We ignore errors when running delayed
961 * items from an async context, through a work queue job
962 * running btrfs_async_run_delayed_root(), and don't
963 * release delayed items that failed to complete. This
964 * is because we will retry later, and at transaction
965 * commit time we always run delayed items and will
966 * then deal with errors if they fail to run again.
968 * So just release delayed items for which we can't find
969 * an item in the tree, and move to the next item.
971 btrfs_release_path(path);
972 btrfs_release_delayed_item(item);
974 } else if (ret == 0) {
975 ret = btrfs_batch_delete_items(trans, root, path, item);
976 btrfs_release_path(path);
980 * We unlock and relock on each iteration, this is to prevent
981 * blocking other tasks for too long while we are being run from
982 * the async context (work queue job). Those tasks are typically
983 * running system calls like creat/mkdir/rename/unlink/etc which
984 * need to add delayed items to this delayed node.
986 mutex_unlock(&node->mutex);
992 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
994 struct btrfs_delayed_root *delayed_root;
997 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
998 BUG_ON(!delayed_node->root);
999 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1000 delayed_node->count--;
1002 delayed_root = delayed_node->root->fs_info->delayed_root;
1003 finish_one_item(delayed_root);
1007 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1010 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1011 struct btrfs_delayed_root *delayed_root;
1013 ASSERT(delayed_node->root);
1014 delayed_node->count--;
1016 delayed_root = delayed_node->root->fs_info->delayed_root;
1017 finish_one_item(delayed_root);
1021 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1022 struct btrfs_root *root,
1023 struct btrfs_path *path,
1024 struct btrfs_delayed_node *node)
1026 struct btrfs_fs_info *fs_info = root->fs_info;
1027 struct btrfs_key key;
1028 struct btrfs_inode_item *inode_item;
1029 struct extent_buffer *leaf;
1033 key.objectid = node->inode_id;
1034 key.type = BTRFS_INODE_ITEM_KEY;
1037 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1042 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1048 leaf = path->nodes[0];
1049 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1050 struct btrfs_inode_item);
1051 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1052 sizeof(struct btrfs_inode_item));
1053 btrfs_mark_buffer_dirty(leaf);
1055 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1059 if (path->slots[0] >= btrfs_header_nritems(leaf))
1062 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1063 if (key.objectid != node->inode_id)
1066 if (key.type != BTRFS_INODE_REF_KEY &&
1067 key.type != BTRFS_INODE_EXTREF_KEY)
1071 * Delayed iref deletion is for the inode who has only one link,
1072 * so there is only one iref. The case that several irefs are
1073 * in the same item doesn't exist.
1075 btrfs_del_item(trans, root, path);
1077 btrfs_release_delayed_iref(node);
1078 btrfs_release_path(path);
1080 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1081 btrfs_release_delayed_inode(node);
1084 * If we fail to update the delayed inode we need to abort the
1085 * transaction, because we could leave the inode with the improper
1088 if (ret && ret != -ENOENT)
1089 btrfs_abort_transaction(trans, ret);
1094 btrfs_release_path(path);
1096 key.type = BTRFS_INODE_EXTREF_KEY;
1099 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1105 leaf = path->nodes[0];
1110 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1111 struct btrfs_root *root,
1112 struct btrfs_path *path,
1113 struct btrfs_delayed_node *node)
1117 mutex_lock(&node->mutex);
1118 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1119 mutex_unlock(&node->mutex);
1123 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1124 mutex_unlock(&node->mutex);
1129 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1130 struct btrfs_path *path,
1131 struct btrfs_delayed_node *node)
1135 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1139 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1143 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1148 * Called when committing the transaction.
1149 * Returns 0 on success.
1150 * Returns < 0 on error and returns with an aborted transaction with any
1151 * outstanding delayed items cleaned up.
1153 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1155 struct btrfs_fs_info *fs_info = trans->fs_info;
1156 struct btrfs_delayed_root *delayed_root;
1157 struct btrfs_delayed_node *curr_node, *prev_node;
1158 struct btrfs_path *path;
1159 struct btrfs_block_rsv *block_rsv;
1161 bool count = (nr > 0);
1163 if (TRANS_ABORTED(trans))
1166 path = btrfs_alloc_path();
1170 block_rsv = trans->block_rsv;
1171 trans->block_rsv = &fs_info->delayed_block_rsv;
1173 delayed_root = fs_info->delayed_root;
1175 curr_node = btrfs_first_delayed_node(delayed_root);
1176 while (curr_node && (!count || nr--)) {
1177 ret = __btrfs_commit_inode_delayed_items(trans, path,
1180 btrfs_release_delayed_node(curr_node);
1182 btrfs_abort_transaction(trans, ret);
1186 prev_node = curr_node;
1187 curr_node = btrfs_next_delayed_node(curr_node);
1188 btrfs_release_delayed_node(prev_node);
1192 btrfs_release_delayed_node(curr_node);
1193 btrfs_free_path(path);
1194 trans->block_rsv = block_rsv;
1199 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1201 return __btrfs_run_delayed_items(trans, -1);
1204 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1206 return __btrfs_run_delayed_items(trans, nr);
1209 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1210 struct btrfs_inode *inode)
1212 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1213 struct btrfs_path *path;
1214 struct btrfs_block_rsv *block_rsv;
1220 mutex_lock(&delayed_node->mutex);
1221 if (!delayed_node->count) {
1222 mutex_unlock(&delayed_node->mutex);
1223 btrfs_release_delayed_node(delayed_node);
1226 mutex_unlock(&delayed_node->mutex);
1228 path = btrfs_alloc_path();
1230 btrfs_release_delayed_node(delayed_node);
1234 block_rsv = trans->block_rsv;
1235 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1237 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1239 btrfs_release_delayed_node(delayed_node);
1240 btrfs_free_path(path);
1241 trans->block_rsv = block_rsv;
1246 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1248 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1249 struct btrfs_trans_handle *trans;
1250 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1251 struct btrfs_path *path;
1252 struct btrfs_block_rsv *block_rsv;
1258 mutex_lock(&delayed_node->mutex);
1259 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1260 mutex_unlock(&delayed_node->mutex);
1261 btrfs_release_delayed_node(delayed_node);
1264 mutex_unlock(&delayed_node->mutex);
1266 trans = btrfs_join_transaction(delayed_node->root);
1267 if (IS_ERR(trans)) {
1268 ret = PTR_ERR(trans);
1272 path = btrfs_alloc_path();
1278 block_rsv = trans->block_rsv;
1279 trans->block_rsv = &fs_info->delayed_block_rsv;
1281 mutex_lock(&delayed_node->mutex);
1282 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1283 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1284 path, delayed_node);
1287 mutex_unlock(&delayed_node->mutex);
1289 btrfs_free_path(path);
1290 trans->block_rsv = block_rsv;
1292 btrfs_end_transaction(trans);
1293 btrfs_btree_balance_dirty(fs_info);
1295 btrfs_release_delayed_node(delayed_node);
1300 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1302 struct btrfs_delayed_node *delayed_node;
1304 delayed_node = READ_ONCE(inode->delayed_node);
1308 inode->delayed_node = NULL;
1309 btrfs_release_delayed_node(delayed_node);
1312 struct btrfs_async_delayed_work {
1313 struct btrfs_delayed_root *delayed_root;
1315 struct btrfs_work work;
1318 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1320 struct btrfs_async_delayed_work *async_work;
1321 struct btrfs_delayed_root *delayed_root;
1322 struct btrfs_trans_handle *trans;
1323 struct btrfs_path *path;
1324 struct btrfs_delayed_node *delayed_node = NULL;
1325 struct btrfs_root *root;
1326 struct btrfs_block_rsv *block_rsv;
1329 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1330 delayed_root = async_work->delayed_root;
1332 path = btrfs_alloc_path();
1337 if (atomic_read(&delayed_root->items) <
1338 BTRFS_DELAYED_BACKGROUND / 2)
1341 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1345 root = delayed_node->root;
1347 trans = btrfs_join_transaction(root);
1348 if (IS_ERR(trans)) {
1349 btrfs_release_path(path);
1350 btrfs_release_prepared_delayed_node(delayed_node);
1355 block_rsv = trans->block_rsv;
1356 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1358 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1360 trans->block_rsv = block_rsv;
1361 btrfs_end_transaction(trans);
1362 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1364 btrfs_release_path(path);
1365 btrfs_release_prepared_delayed_node(delayed_node);
1368 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1369 || total_done < async_work->nr);
1371 btrfs_free_path(path);
1373 wake_up(&delayed_root->wait);
1378 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1379 struct btrfs_fs_info *fs_info, int nr)
1381 struct btrfs_async_delayed_work *async_work;
1383 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1387 async_work->delayed_root = delayed_root;
1388 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1390 async_work->nr = nr;
1392 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1396 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1398 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1401 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1403 int val = atomic_read(&delayed_root->items_seq);
1405 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1408 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1414 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1416 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1418 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1419 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1422 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1426 seq = atomic_read(&delayed_root->items_seq);
1428 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1432 wait_event_interruptible(delayed_root->wait,
1433 could_end_wait(delayed_root, seq));
1437 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1440 /* Will return 0 or -ENOMEM */
1441 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1442 const char *name, int name_len,
1443 struct btrfs_inode *dir,
1444 struct btrfs_disk_key *disk_key, u8 type,
1447 struct btrfs_fs_info *fs_info = trans->fs_info;
1448 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1449 struct btrfs_delayed_node *delayed_node;
1450 struct btrfs_delayed_item *delayed_item;
1451 struct btrfs_dir_item *dir_item;
1452 bool reserve_leaf_space;
1456 delayed_node = btrfs_get_or_create_delayed_node(dir);
1457 if (IS_ERR(delayed_node))
1458 return PTR_ERR(delayed_node);
1460 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1461 if (!delayed_item) {
1466 delayed_item->key.objectid = btrfs_ino(dir);
1467 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1468 delayed_item->key.offset = index;
1469 delayed_item->ins_or_del = BTRFS_DELAYED_INSERTION_ITEM;
1471 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1472 dir_item->location = *disk_key;
1473 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1474 btrfs_set_stack_dir_data_len(dir_item, 0);
1475 btrfs_set_stack_dir_name_len(dir_item, name_len);
1476 btrfs_set_stack_dir_type(dir_item, type);
1477 memcpy((char *)(dir_item + 1), name, name_len);
1479 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1481 mutex_lock(&delayed_node->mutex);
1483 if (delayed_node->index_item_leaves == 0 ||
1484 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1485 delayed_node->curr_index_batch_size = data_len;
1486 reserve_leaf_space = true;
1488 delayed_node->curr_index_batch_size += data_len;
1489 reserve_leaf_space = false;
1492 if (reserve_leaf_space) {
1493 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root,
1496 * Space was reserved for a dir index item insertion when we
1497 * started the transaction, so getting a failure here should be
1501 mutex_unlock(&delayed_node->mutex);
1502 btrfs_release_delayed_item(delayed_item);
1506 delayed_node->index_item_leaves++;
1507 } else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
1508 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1511 * Adding the new dir index item does not require touching another
1512 * leaf, so we can release 1 unit of metadata that was previously
1513 * reserved when starting the transaction. This applies only to
1514 * the case where we had a transaction start and excludes the
1515 * transaction join case (when replaying log trees).
1517 trace_btrfs_space_reservation(fs_info, "transaction",
1518 trans->transid, bytes, 0);
1519 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1520 ASSERT(trans->bytes_reserved >= bytes);
1521 trans->bytes_reserved -= bytes;
1524 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1525 if (unlikely(ret)) {
1526 btrfs_err(trans->fs_info,
1527 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1528 name_len, name, delayed_node->root->root_key.objectid,
1529 delayed_node->inode_id, ret);
1532 mutex_unlock(&delayed_node->mutex);
1535 btrfs_release_delayed_node(delayed_node);
1539 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1540 struct btrfs_delayed_node *node,
1541 struct btrfs_key *key)
1543 struct btrfs_delayed_item *item;
1545 mutex_lock(&node->mutex);
1546 item = __btrfs_lookup_delayed_insertion_item(node, key);
1548 mutex_unlock(&node->mutex);
1553 * For delayed items to insert, we track reserved metadata bytes based
1554 * on the number of leaves that we will use.
1555 * See btrfs_insert_delayed_dir_index() and
1556 * btrfs_delayed_item_reserve_metadata()).
1558 ASSERT(item->bytes_reserved == 0);
1559 ASSERT(node->index_item_leaves > 0);
1562 * If there's only one leaf reserved, we can decrement this item from the
1563 * current batch, otherwise we can not because we don't know which leaf
1564 * it belongs to. With the current limit on delayed items, we rarely
1565 * accumulate enough dir index items to fill more than one leaf (even
1566 * when using a leaf size of 4K).
1568 if (node->index_item_leaves == 1) {
1569 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1571 ASSERT(node->curr_index_batch_size >= data_len);
1572 node->curr_index_batch_size -= data_len;
1575 btrfs_release_delayed_item(item);
1577 /* If we now have no more dir index items, we can release all leaves. */
1578 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1579 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1580 node->index_item_leaves = 0;
1583 mutex_unlock(&node->mutex);
1587 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1588 struct btrfs_inode *dir, u64 index)
1590 struct btrfs_delayed_node *node;
1591 struct btrfs_delayed_item *item;
1592 struct btrfs_key item_key;
1595 node = btrfs_get_or_create_delayed_node(dir);
1597 return PTR_ERR(node);
1599 item_key.objectid = btrfs_ino(dir);
1600 item_key.type = BTRFS_DIR_INDEX_KEY;
1601 item_key.offset = index;
1603 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1608 item = btrfs_alloc_delayed_item(0);
1614 item->key = item_key;
1615 item->ins_or_del = BTRFS_DELAYED_DELETION_ITEM;
1617 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1619 * we have reserved enough space when we start a new transaction,
1620 * so reserving metadata failure is impossible.
1623 btrfs_err(trans->fs_info,
1624 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1625 btrfs_release_delayed_item(item);
1629 mutex_lock(&node->mutex);
1630 ret = __btrfs_add_delayed_item(node, item);
1631 if (unlikely(ret)) {
1632 btrfs_err(trans->fs_info,
1633 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1634 index, node->root->root_key.objectid,
1635 node->inode_id, ret);
1636 btrfs_delayed_item_release_metadata(dir->root, item);
1637 btrfs_release_delayed_item(item);
1639 mutex_unlock(&node->mutex);
1641 btrfs_release_delayed_node(node);
1645 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1647 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1653 * Since we have held i_mutex of this directory, it is impossible that
1654 * a new directory index is added into the delayed node and index_cnt
1655 * is updated now. So we needn't lock the delayed node.
1657 if (!delayed_node->index_cnt) {
1658 btrfs_release_delayed_node(delayed_node);
1662 inode->index_cnt = delayed_node->index_cnt;
1663 btrfs_release_delayed_node(delayed_node);
1667 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1668 struct list_head *ins_list,
1669 struct list_head *del_list)
1671 struct btrfs_delayed_node *delayed_node;
1672 struct btrfs_delayed_item *item;
1674 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1679 * We can only do one readdir with delayed items at a time because of
1680 * item->readdir_list.
1682 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1683 btrfs_inode_lock(inode, 0);
1685 mutex_lock(&delayed_node->mutex);
1686 item = __btrfs_first_delayed_insertion_item(delayed_node);
1688 refcount_inc(&item->refs);
1689 list_add_tail(&item->readdir_list, ins_list);
1690 item = __btrfs_next_delayed_item(item);
1693 item = __btrfs_first_delayed_deletion_item(delayed_node);
1695 refcount_inc(&item->refs);
1696 list_add_tail(&item->readdir_list, del_list);
1697 item = __btrfs_next_delayed_item(item);
1699 mutex_unlock(&delayed_node->mutex);
1701 * This delayed node is still cached in the btrfs inode, so refs
1702 * must be > 1 now, and we needn't check it is going to be freed
1705 * Besides that, this function is used to read dir, we do not
1706 * insert/delete delayed items in this period. So we also needn't
1707 * requeue or dequeue this delayed node.
1709 refcount_dec(&delayed_node->refs);
1714 void btrfs_readdir_put_delayed_items(struct inode *inode,
1715 struct list_head *ins_list,
1716 struct list_head *del_list)
1718 struct btrfs_delayed_item *curr, *next;
1720 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1721 list_del(&curr->readdir_list);
1722 if (refcount_dec_and_test(&curr->refs))
1726 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1727 list_del(&curr->readdir_list);
1728 if (refcount_dec_and_test(&curr->refs))
1733 * The VFS is going to do up_read(), so we need to downgrade back to a
1736 downgrade_write(&inode->i_rwsem);
1739 int btrfs_should_delete_dir_index(struct list_head *del_list,
1742 struct btrfs_delayed_item *curr;
1745 list_for_each_entry(curr, del_list, readdir_list) {
1746 if (curr->key.offset > index)
1748 if (curr->key.offset == index) {
1757 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1760 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1761 struct list_head *ins_list)
1763 struct btrfs_dir_item *di;
1764 struct btrfs_delayed_item *curr, *next;
1765 struct btrfs_key location;
1769 unsigned char d_type;
1771 if (list_empty(ins_list))
1775 * Changing the data of the delayed item is impossible. So
1776 * we needn't lock them. And we have held i_mutex of the
1777 * directory, nobody can delete any directory indexes now.
1779 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1780 list_del(&curr->readdir_list);
1782 if (curr->key.offset < ctx->pos) {
1783 if (refcount_dec_and_test(&curr->refs))
1788 ctx->pos = curr->key.offset;
1790 di = (struct btrfs_dir_item *)curr->data;
1791 name = (char *)(di + 1);
1792 name_len = btrfs_stack_dir_name_len(di);
1794 d_type = fs_ftype_to_dtype(di->type);
1795 btrfs_disk_key_to_cpu(&location, &di->location);
1797 over = !dir_emit(ctx, name, name_len,
1798 location.objectid, d_type);
1800 if (refcount_dec_and_test(&curr->refs))
1810 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1811 struct btrfs_inode_item *inode_item,
1812 struct inode *inode)
1816 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1817 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1818 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1819 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1820 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1821 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1822 btrfs_set_stack_inode_generation(inode_item,
1823 BTRFS_I(inode)->generation);
1824 btrfs_set_stack_inode_sequence(inode_item,
1825 inode_peek_iversion(inode));
1826 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1827 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1828 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1829 BTRFS_I(inode)->ro_flags);
1830 btrfs_set_stack_inode_flags(inode_item, flags);
1831 btrfs_set_stack_inode_block_group(inode_item, 0);
1833 btrfs_set_stack_timespec_sec(&inode_item->atime,
1834 inode->i_atime.tv_sec);
1835 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1836 inode->i_atime.tv_nsec);
1838 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1839 inode->i_mtime.tv_sec);
1840 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1841 inode->i_mtime.tv_nsec);
1843 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1844 inode->i_ctime.tv_sec);
1845 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1846 inode->i_ctime.tv_nsec);
1848 btrfs_set_stack_timespec_sec(&inode_item->otime,
1849 BTRFS_I(inode)->i_otime.tv_sec);
1850 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1851 BTRFS_I(inode)->i_otime.tv_nsec);
1854 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1856 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1857 struct btrfs_delayed_node *delayed_node;
1858 struct btrfs_inode_item *inode_item;
1860 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1864 mutex_lock(&delayed_node->mutex);
1865 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1866 mutex_unlock(&delayed_node->mutex);
1867 btrfs_release_delayed_node(delayed_node);
1871 inode_item = &delayed_node->inode_item;
1873 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1874 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1875 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1876 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1877 round_up(i_size_read(inode), fs_info->sectorsize));
1878 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1879 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1880 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1881 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1882 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1884 inode_set_iversion_queried(inode,
1885 btrfs_stack_inode_sequence(inode_item));
1887 *rdev = btrfs_stack_inode_rdev(inode_item);
1888 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1889 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1891 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1892 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1894 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1895 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1897 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1898 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1900 BTRFS_I(inode)->i_otime.tv_sec =
1901 btrfs_stack_timespec_sec(&inode_item->otime);
1902 BTRFS_I(inode)->i_otime.tv_nsec =
1903 btrfs_stack_timespec_nsec(&inode_item->otime);
1905 inode->i_generation = BTRFS_I(inode)->generation;
1906 BTRFS_I(inode)->index_cnt = (u64)-1;
1908 mutex_unlock(&delayed_node->mutex);
1909 btrfs_release_delayed_node(delayed_node);
1913 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1914 struct btrfs_root *root,
1915 struct btrfs_inode *inode)
1917 struct btrfs_delayed_node *delayed_node;
1920 delayed_node = btrfs_get_or_create_delayed_node(inode);
1921 if (IS_ERR(delayed_node))
1922 return PTR_ERR(delayed_node);
1924 mutex_lock(&delayed_node->mutex);
1925 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1926 fill_stack_inode_item(trans, &delayed_node->inode_item,
1931 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1935 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1936 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1937 delayed_node->count++;
1938 atomic_inc(&root->fs_info->delayed_root->items);
1940 mutex_unlock(&delayed_node->mutex);
1941 btrfs_release_delayed_node(delayed_node);
1945 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1947 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1948 struct btrfs_delayed_node *delayed_node;
1951 * we don't do delayed inode updates during log recovery because it
1952 * leads to enospc problems. This means we also can't do
1953 * delayed inode refs
1955 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1958 delayed_node = btrfs_get_or_create_delayed_node(inode);
1959 if (IS_ERR(delayed_node))
1960 return PTR_ERR(delayed_node);
1963 * We don't reserve space for inode ref deletion is because:
1964 * - We ONLY do async inode ref deletion for the inode who has only
1965 * one link(i_nlink == 1), it means there is only one inode ref.
1966 * And in most case, the inode ref and the inode item are in the
1967 * same leaf, and we will deal with them at the same time.
1968 * Since we are sure we will reserve the space for the inode item,
1969 * it is unnecessary to reserve space for inode ref deletion.
1970 * - If the inode ref and the inode item are not in the same leaf,
1971 * We also needn't worry about enospc problem, because we reserve
1972 * much more space for the inode update than it needs.
1973 * - At the worst, we can steal some space from the global reservation.
1976 mutex_lock(&delayed_node->mutex);
1977 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1980 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1981 delayed_node->count++;
1982 atomic_inc(&fs_info->delayed_root->items);
1984 mutex_unlock(&delayed_node->mutex);
1985 btrfs_release_delayed_node(delayed_node);
1989 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1991 struct btrfs_root *root = delayed_node->root;
1992 struct btrfs_fs_info *fs_info = root->fs_info;
1993 struct btrfs_delayed_item *curr_item, *prev_item;
1995 mutex_lock(&delayed_node->mutex);
1996 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1998 prev_item = curr_item;
1999 curr_item = __btrfs_next_delayed_item(prev_item);
2000 btrfs_release_delayed_item(prev_item);
2003 if (delayed_node->index_item_leaves > 0) {
2004 btrfs_delayed_item_release_leaves(delayed_node,
2005 delayed_node->index_item_leaves);
2006 delayed_node->index_item_leaves = 0;
2009 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2011 btrfs_delayed_item_release_metadata(root, curr_item);
2012 prev_item = curr_item;
2013 curr_item = __btrfs_next_delayed_item(prev_item);
2014 btrfs_release_delayed_item(prev_item);
2017 btrfs_release_delayed_iref(delayed_node);
2019 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2020 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2021 btrfs_release_delayed_inode(delayed_node);
2023 mutex_unlock(&delayed_node->mutex);
2026 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2028 struct btrfs_delayed_node *delayed_node;
2030 delayed_node = btrfs_get_delayed_node(inode);
2034 __btrfs_kill_delayed_node(delayed_node);
2035 btrfs_release_delayed_node(delayed_node);
2038 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2041 struct btrfs_delayed_node *delayed_nodes[8];
2045 spin_lock(&root->inode_lock);
2046 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2047 (void **)delayed_nodes, inode_id,
2048 ARRAY_SIZE(delayed_nodes));
2050 spin_unlock(&root->inode_lock);
2054 inode_id = delayed_nodes[n - 1]->inode_id + 1;
2055 for (i = 0; i < n; i++) {
2057 * Don't increase refs in case the node is dead and
2058 * about to be removed from the tree in the loop below
2060 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2061 delayed_nodes[i] = NULL;
2063 spin_unlock(&root->inode_lock);
2065 for (i = 0; i < n; i++) {
2066 if (!delayed_nodes[i])
2068 __btrfs_kill_delayed_node(delayed_nodes[i]);
2069 btrfs_release_delayed_node(delayed_nodes[i]);
2074 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2076 struct btrfs_delayed_node *curr_node, *prev_node;
2078 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2080 __btrfs_kill_delayed_node(curr_node);
2082 prev_node = curr_node;
2083 curr_node = btrfs_next_delayed_node(curr_node);
2084 btrfs_release_delayed_node(prev_node);