1 // SPDX-License-Identifier: MIT
3 * Copyright (C) 2019 Google, Inc.
8 #include <linux/average.h>
9 #include <linux/bitops.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
13 #include <drm/drm_atomic.h>
14 #include <drm/drm_atomic_helper.h>
15 #include <drm/drm_connector.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_device.h>
18 #include <drm/drm_mode_config.h>
19 #include <drm/drm_modeset_lock.h>
20 #include <drm/drm_print.h>
21 #include <drm/drm_self_refresh_helper.h>
26 * This helper library provides an easy way for drivers to leverage the atomic
27 * framework to implement panel self refresh (SR) support. Drivers are
28 * responsible for initializing and cleaning up the SR helpers on load/unload
29 * (see &drm_self_refresh_helper_init/&drm_self_refresh_helper_cleanup).
30 * The connector is responsible for setting
31 * &drm_connector_state.self_refresh_aware to true at runtime if it is SR-aware
32 * (meaning it knows how to initiate self refresh on the panel).
34 * Once a crtc has enabled SR using &drm_self_refresh_helper_init, the
35 * helpers will monitor activity and call back into the driver to enable/disable
36 * SR as appropriate. The best way to think about this is that it's a DPMS
37 * on/off request with &drm_crtc_state.self_refresh_active set in crtc state
38 * that tells you to disable/enable SR on the panel instead of power-cycling it.
40 * During SR, drivers may choose to fully disable their crtc/encoder/bridge
41 * hardware (in which case no driver changes are necessary), or they can inspect
42 * &drm_crtc_state.self_refresh_active if they want to enter low power mode
43 * without full disable (in case full disable/enable is too slow).
45 * SR will be deactivated if there are any atomic updates affecting the
46 * pipe that is in SR mode. If a crtc is driving multiple connectors, all
47 * connectors must be SR aware and all will enter/exit SR mode at the same time.
49 * If the crtc and connector are SR aware, but the panel connected does not
50 * support it (or is otherwise unable to enter SR), the driver should fail
51 * atomic_check when &drm_crtc_state.self_refresh_active is true.
54 #define SELF_REFRESH_AVG_SEED_MS 200
56 DECLARE_EWMA(psr_time, 4, 4)
58 struct drm_self_refresh_data {
59 struct drm_crtc *crtc;
60 struct delayed_work entry_work;
62 struct mutex avg_mutex;
63 struct ewma_psr_time entry_avg_ms;
64 struct ewma_psr_time exit_avg_ms;
67 static void drm_self_refresh_helper_entry_work(struct work_struct *work)
69 struct drm_self_refresh_data *sr_data = container_of(
70 to_delayed_work(work),
71 struct drm_self_refresh_data, entry_work);
72 struct drm_crtc *crtc = sr_data->crtc;
73 struct drm_device *dev = crtc->dev;
74 struct drm_modeset_acquire_ctx ctx;
75 struct drm_atomic_state *state;
76 struct drm_connector *conn;
77 struct drm_connector_state *conn_state;
78 struct drm_crtc_state *crtc_state;
81 drm_modeset_acquire_init(&ctx, 0);
83 state = drm_atomic_state_alloc(dev);
90 state->acquire_ctx = &ctx;
92 crtc_state = drm_atomic_get_crtc_state(state, crtc);
93 if (IS_ERR(crtc_state)) {
94 ret = PTR_ERR(crtc_state);
98 if (!crtc_state->enable)
101 ret = drm_atomic_add_affected_connectors(state, crtc);
105 for_each_new_connector_in_state(state, conn, conn_state, i) {
106 if (!conn_state->self_refresh_aware)
110 crtc_state->active = false;
111 crtc_state->self_refresh_active = true;
113 ret = drm_atomic_commit(state);
118 if (ret == -EDEADLK) {
119 drm_atomic_state_clear(state);
120 ret = drm_modeset_backoff(&ctx);
125 drm_atomic_state_put(state);
128 drm_modeset_drop_locks(&ctx);
129 drm_modeset_acquire_fini(&ctx);
133 * drm_self_refresh_helper_update_avg_times - Updates a crtc's SR time averages
134 * @state: the state which has just been applied to hardware
135 * @commit_time_ms: the amount of time in ms that this commit took to complete
137 * Called after &drm_mode_config_funcs.atomic_commit_tail, this function will
138 * update the average entry/exit self refresh times on self refresh transitions.
139 * These averages will be used when calculating how long to delay before
140 * entering self refresh mode after activity.
142 void drm_self_refresh_helper_update_avg_times(struct drm_atomic_state *state,
143 unsigned int commit_time_ms)
145 struct drm_crtc *crtc;
146 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
149 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
151 struct drm_self_refresh_data *sr_data = crtc->self_refresh_data;
152 struct ewma_psr_time *time;
154 if (old_crtc_state->self_refresh_active ==
155 new_crtc_state->self_refresh_active)
158 if (new_crtc_state->self_refresh_active)
159 time = &sr_data->entry_avg_ms;
161 time = &sr_data->exit_avg_ms;
163 mutex_lock(&sr_data->avg_mutex);
164 ewma_psr_time_add(time, commit_time_ms);
165 mutex_unlock(&sr_data->avg_mutex);
168 EXPORT_SYMBOL(drm_self_refresh_helper_update_avg_times);
171 * drm_self_refresh_helper_alter_state - Alters the atomic state for SR exit
172 * @state: the state currently being checked
174 * Called at the end of atomic check. This function checks the state for flags
175 * incompatible with self refresh exit and changes them. This is a bit
176 * disingenuous since userspace is expecting one thing and we're giving it
177 * another. However in order to keep self refresh entirely hidden from
178 * userspace, this is required.
180 * At the end, we queue up the self refresh entry work so we can enter PSR after
183 void drm_self_refresh_helper_alter_state(struct drm_atomic_state *state)
185 struct drm_crtc *crtc;
186 struct drm_crtc_state *crtc_state;
189 if (state->async_update || !state->allow_modeset) {
190 for_each_old_crtc_in_state(state, crtc, crtc_state, i) {
191 if (crtc_state->self_refresh_active) {
192 state->async_update = false;
193 state->allow_modeset = true;
199 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
200 struct drm_self_refresh_data *sr_data;
203 /* Don't trigger the entry timer when we're already in SR */
204 if (crtc_state->self_refresh_active)
207 sr_data = crtc->self_refresh_data;
211 mutex_lock(&sr_data->avg_mutex);
212 delay = (ewma_psr_time_read(&sr_data->entry_avg_ms) +
213 ewma_psr_time_read(&sr_data->exit_avg_ms)) * 2;
214 mutex_unlock(&sr_data->avg_mutex);
216 mod_delayed_work(system_wq, &sr_data->entry_work,
217 msecs_to_jiffies(delay));
220 EXPORT_SYMBOL(drm_self_refresh_helper_alter_state);
223 * drm_self_refresh_helper_init - Initializes self refresh helpers for a crtc
224 * @crtc: the crtc which supports self refresh supported displays
226 * Returns zero if successful or -errno on failure
228 int drm_self_refresh_helper_init(struct drm_crtc *crtc)
230 struct drm_self_refresh_data *sr_data = crtc->self_refresh_data;
232 /* Helper is already initialized */
233 if (WARN_ON(sr_data))
236 sr_data = kzalloc(sizeof(*sr_data), GFP_KERNEL);
240 INIT_DELAYED_WORK(&sr_data->entry_work,
241 drm_self_refresh_helper_entry_work);
242 sr_data->crtc = crtc;
243 mutex_init(&sr_data->avg_mutex);
244 ewma_psr_time_init(&sr_data->entry_avg_ms);
245 ewma_psr_time_init(&sr_data->exit_avg_ms);
248 * Seed the averages so they're non-zero (and sufficiently large
249 * for even poorly performing panels). As time goes on, this will be
250 * averaged out and the values will trend to their true value.
252 ewma_psr_time_add(&sr_data->entry_avg_ms, SELF_REFRESH_AVG_SEED_MS);
253 ewma_psr_time_add(&sr_data->exit_avg_ms, SELF_REFRESH_AVG_SEED_MS);
255 crtc->self_refresh_data = sr_data;
258 EXPORT_SYMBOL(drm_self_refresh_helper_init);
261 * drm_self_refresh_helper_cleanup - Cleans up self refresh helpers for a crtc
262 * @crtc: the crtc to cleanup
264 void drm_self_refresh_helper_cleanup(struct drm_crtc *crtc)
266 struct drm_self_refresh_data *sr_data = crtc->self_refresh_data;
268 /* Helper is already uninitialized */
272 crtc->self_refresh_data = NULL;
274 cancel_delayed_work_sync(&sr_data->entry_work);
277 EXPORT_SYMBOL(drm_self_refresh_helper_cleanup);