]> Git Repo - linux.git/blob - drivers/spi/spi-dw-core.c
Merge tag 'ti-k3-dt-for-v6.11-part2' into ti-k3-dts-next
[linux.git] / drivers / spi / spi-dw-core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Designware SPI core controller driver (refer pxa2xx_spi.c)
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7
8 #include <linux/bitfield.h>
9 #include <linux/bitops.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/preempt.h>
14 #include <linux/highmem.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19 #include <linux/string.h>
20 #include <linux/of.h>
21
22 #include "internals.h"
23 #include "spi-dw.h"
24
25 #ifdef CONFIG_DEBUG_FS
26 #include <linux/debugfs.h>
27 #endif
28
29 /* Slave spi_device related */
30 struct dw_spi_chip_data {
31         u32 cr0;
32         u32 rx_sample_dly;      /* RX sample delay */
33 };
34
35 #ifdef CONFIG_DEBUG_FS
36
37 #define DW_SPI_DBGFS_REG(_name, _off)   \
38 {                                       \
39         .name = _name,                  \
40         .offset = _off,                 \
41 }
42
43 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
44         DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
45         DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
46         DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
47         DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
48         DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
49         DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
50         DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
51         DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
52         DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
53         DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
54         DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
55         DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
56         DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
57         DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
58         DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
59         DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
60 };
61
62 static void dw_spi_debugfs_init(struct dw_spi *dws)
63 {
64         char name[32];
65
66         snprintf(name, 32, "dw_spi%d", dws->host->bus_num);
67         dws->debugfs = debugfs_create_dir(name, NULL);
68
69         dws->regset.regs = dw_spi_dbgfs_regs;
70         dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
71         dws->regset.base = dws->regs;
72         debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
73 }
74
75 static void dw_spi_debugfs_remove(struct dw_spi *dws)
76 {
77         debugfs_remove_recursive(dws->debugfs);
78 }
79
80 #else
81 static inline void dw_spi_debugfs_init(struct dw_spi *dws)
82 {
83 }
84
85 static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
86 {
87 }
88 #endif /* CONFIG_DEBUG_FS */
89
90 void dw_spi_set_cs(struct spi_device *spi, bool enable)
91 {
92         struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
93         bool cs_high = !!(spi->mode & SPI_CS_HIGH);
94
95         /*
96          * DW SPI controller demands any native CS being set in order to
97          * proceed with data transfer. So in order to activate the SPI
98          * communications we must set a corresponding bit in the Slave
99          * Enable register no matter whether the SPI core is configured to
100          * support active-high or active-low CS level.
101          */
102         if (cs_high == enable)
103                 dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0)));
104         else
105                 dw_writel(dws, DW_SPI_SER, 0);
106 }
107 EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE);
108
109 /* Return the max entries we can fill into tx fifo */
110 static inline u32 dw_spi_tx_max(struct dw_spi *dws)
111 {
112         u32 tx_room, rxtx_gap;
113
114         tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
115
116         /*
117          * Another concern is about the tx/rx mismatch, we
118          * though to use (dws->fifo_len - rxflr - txflr) as
119          * one maximum value for tx, but it doesn't cover the
120          * data which is out of tx/rx fifo and inside the
121          * shift registers. So a control from sw point of
122          * view is taken.
123          */
124         rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
125
126         return min3((u32)dws->tx_len, tx_room, rxtx_gap);
127 }
128
129 /* Return the max entries we should read out of rx fifo */
130 static inline u32 dw_spi_rx_max(struct dw_spi *dws)
131 {
132         return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
133 }
134
135 static void dw_writer(struct dw_spi *dws)
136 {
137         u32 max = dw_spi_tx_max(dws);
138         u32 txw = 0;
139
140         while (max--) {
141                 if (dws->tx) {
142                         if (dws->n_bytes == 1)
143                                 txw = *(u8 *)(dws->tx);
144                         else if (dws->n_bytes == 2)
145                                 txw = *(u16 *)(dws->tx);
146                         else
147                                 txw = *(u32 *)(dws->tx);
148
149                         dws->tx += dws->n_bytes;
150                 }
151                 dw_write_io_reg(dws, DW_SPI_DR, txw);
152                 --dws->tx_len;
153         }
154 }
155
156 static void dw_reader(struct dw_spi *dws)
157 {
158         u32 max = dw_spi_rx_max(dws);
159         u32 rxw;
160
161         while (max--) {
162                 rxw = dw_read_io_reg(dws, DW_SPI_DR);
163                 if (dws->rx) {
164                         if (dws->n_bytes == 1)
165                                 *(u8 *)(dws->rx) = rxw;
166                         else if (dws->n_bytes == 2)
167                                 *(u16 *)(dws->rx) = rxw;
168                         else
169                                 *(u32 *)(dws->rx) = rxw;
170
171                         dws->rx += dws->n_bytes;
172                 }
173                 --dws->rx_len;
174         }
175 }
176
177 int dw_spi_check_status(struct dw_spi *dws, bool raw)
178 {
179         u32 irq_status;
180         int ret = 0;
181
182         if (raw)
183                 irq_status = dw_readl(dws, DW_SPI_RISR);
184         else
185                 irq_status = dw_readl(dws, DW_SPI_ISR);
186
187         if (irq_status & DW_SPI_INT_RXOI) {
188                 dev_err(&dws->host->dev, "RX FIFO overflow detected\n");
189                 ret = -EIO;
190         }
191
192         if (irq_status & DW_SPI_INT_RXUI) {
193                 dev_err(&dws->host->dev, "RX FIFO underflow detected\n");
194                 ret = -EIO;
195         }
196
197         if (irq_status & DW_SPI_INT_TXOI) {
198                 dev_err(&dws->host->dev, "TX FIFO overflow detected\n");
199                 ret = -EIO;
200         }
201
202         /* Generically handle the erroneous situation */
203         if (ret) {
204                 dw_spi_reset_chip(dws);
205                 if (dws->host->cur_msg)
206                         dws->host->cur_msg->status = ret;
207         }
208
209         return ret;
210 }
211 EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE);
212
213 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
214 {
215         u16 irq_status = dw_readl(dws, DW_SPI_ISR);
216
217         if (dw_spi_check_status(dws, false)) {
218                 spi_finalize_current_transfer(dws->host);
219                 return IRQ_HANDLED;
220         }
221
222         /*
223          * Read data from the Rx FIFO every time we've got a chance executing
224          * this method. If there is nothing left to receive, terminate the
225          * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
226          * final stage of the transfer. By doing so we'll get the next IRQ
227          * right when the leftover incoming data is received.
228          */
229         dw_reader(dws);
230         if (!dws->rx_len) {
231                 dw_spi_mask_intr(dws, 0xff);
232                 spi_finalize_current_transfer(dws->host);
233         } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
234                 dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
235         }
236
237         /*
238          * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
239          * disabled after the data transmission is finished so not to
240          * have the TXE IRQ flood at the final stage of the transfer.
241          */
242         if (irq_status & DW_SPI_INT_TXEI) {
243                 dw_writer(dws);
244                 if (!dws->tx_len)
245                         dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
246         }
247
248         return IRQ_HANDLED;
249 }
250
251 static irqreturn_t dw_spi_irq(int irq, void *dev_id)
252 {
253         struct spi_controller *host = dev_id;
254         struct dw_spi *dws = spi_controller_get_devdata(host);
255         u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;
256
257         if (!irq_status)
258                 return IRQ_NONE;
259
260         if (!host->cur_msg) {
261                 dw_spi_mask_intr(dws, 0xff);
262                 return IRQ_HANDLED;
263         }
264
265         return dws->transfer_handler(dws);
266 }
267
268 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
269 {
270         u32 cr0 = 0;
271
272         if (dw_spi_ip_is(dws, PSSI)) {
273                 /* CTRLR0[ 5: 4] Frame Format */
274                 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
275
276                 /*
277                  * SPI mode (SCPOL|SCPH)
278                  * CTRLR0[ 6] Serial Clock Phase
279                  * CTRLR0[ 7] Serial Clock Polarity
280                  */
281                 if (spi->mode & SPI_CPOL)
282                         cr0 |= DW_PSSI_CTRLR0_SCPOL;
283                 if (spi->mode & SPI_CPHA)
284                         cr0 |= DW_PSSI_CTRLR0_SCPHA;
285
286                 /* CTRLR0[11] Shift Register Loop */
287                 if (spi->mode & SPI_LOOP)
288                         cr0 |= DW_PSSI_CTRLR0_SRL;
289         } else {
290                 /* CTRLR0[ 7: 6] Frame Format */
291                 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
292
293                 /*
294                  * SPI mode (SCPOL|SCPH)
295                  * CTRLR0[ 8] Serial Clock Phase
296                  * CTRLR0[ 9] Serial Clock Polarity
297                  */
298                 if (spi->mode & SPI_CPOL)
299                         cr0 |= DW_HSSI_CTRLR0_SCPOL;
300                 if (spi->mode & SPI_CPHA)
301                         cr0 |= DW_HSSI_CTRLR0_SCPHA;
302
303                 /* CTRLR0[13] Shift Register Loop */
304                 if (spi->mode & SPI_LOOP)
305                         cr0 |= DW_HSSI_CTRLR0_SRL;
306
307                 /* CTRLR0[31] MST */
308                 if (dw_spi_ver_is_ge(dws, HSSI, 102A))
309                         cr0 |= DW_HSSI_CTRLR0_MST;
310         }
311
312         return cr0;
313 }
314
315 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
316                           struct dw_spi_cfg *cfg)
317 {
318         struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
319         u32 cr0 = chip->cr0;
320         u32 speed_hz;
321         u16 clk_div;
322
323         /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
324         cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
325
326         if (dw_spi_ip_is(dws, PSSI))
327                 /* CTRLR0[ 9:8] Transfer Mode */
328                 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
329         else
330                 /* CTRLR0[11:10] Transfer Mode */
331                 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);
332
333         dw_writel(dws, DW_SPI_CTRLR0, cr0);
334
335         if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
336             cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
337                 dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
338
339         /* Note DW APB SSI clock divider doesn't support odd numbers */
340         clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
341         speed_hz = dws->max_freq / clk_div;
342
343         if (dws->current_freq != speed_hz) {
344                 dw_spi_set_clk(dws, clk_div);
345                 dws->current_freq = speed_hz;
346         }
347
348         /* Update RX sample delay if required */
349         if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
350                 dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
351                 dws->cur_rx_sample_dly = chip->rx_sample_dly;
352         }
353 }
354 EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE);
355
356 static void dw_spi_irq_setup(struct dw_spi *dws)
357 {
358         u16 level;
359         u8 imask;
360
361         /*
362          * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
363          * will be adjusted at the final stage of the IRQ-based SPI transfer
364          * execution so not to lose the leftover of the incoming data.
365          */
366         level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
367         dw_writel(dws, DW_SPI_TXFTLR, level);
368         dw_writel(dws, DW_SPI_RXFTLR, level - 1);
369
370         dws->transfer_handler = dw_spi_transfer_handler;
371
372         imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
373                 DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
374         dw_spi_umask_intr(dws, imask);
375 }
376
377 /*
378  * The iterative procedure of the poll-based transfer is simple: write as much
379  * as possible to the Tx FIFO, wait until the pending to receive data is ready
380  * to be read, read it from the Rx FIFO and check whether the performed
381  * procedure has been successful.
382  *
383  * Note this method the same way as the IRQ-based transfer won't work well for
384  * the SPI devices connected to the controller with native CS due to the
385  * automatic CS assertion/de-assertion.
386  */
387 static int dw_spi_poll_transfer(struct dw_spi *dws,
388                                 struct spi_transfer *transfer)
389 {
390         struct spi_delay delay;
391         u16 nbits;
392         int ret;
393
394         delay.unit = SPI_DELAY_UNIT_SCK;
395         nbits = dws->n_bytes * BITS_PER_BYTE;
396
397         do {
398                 dw_writer(dws);
399
400                 delay.value = nbits * (dws->rx_len - dws->tx_len);
401                 spi_delay_exec(&delay, transfer);
402
403                 dw_reader(dws);
404
405                 ret = dw_spi_check_status(dws, true);
406                 if (ret)
407                         return ret;
408         } while (dws->rx_len);
409
410         return 0;
411 }
412
413 static int dw_spi_transfer_one(struct spi_controller *host,
414                                struct spi_device *spi,
415                                struct spi_transfer *transfer)
416 {
417         struct dw_spi *dws = spi_controller_get_devdata(host);
418         struct dw_spi_cfg cfg = {
419                 .tmode = DW_SPI_CTRLR0_TMOD_TR,
420                 .dfs = transfer->bits_per_word,
421                 .freq = transfer->speed_hz,
422         };
423         int ret;
424
425         dws->dma_mapped = 0;
426         dws->n_bytes = roundup_pow_of_two(BITS_TO_BYTES(transfer->bits_per_word));
427         dws->tx = (void *)transfer->tx_buf;
428         dws->tx_len = transfer->len / dws->n_bytes;
429         dws->rx = transfer->rx_buf;
430         dws->rx_len = dws->tx_len;
431
432         /* Ensure the data above is visible for all CPUs */
433         smp_mb();
434
435         dw_spi_enable_chip(dws, 0);
436
437         dw_spi_update_config(dws, spi, &cfg);
438
439         transfer->effective_speed_hz = dws->current_freq;
440
441         /* Check if current transfer is a DMA transaction */
442         dws->dma_mapped = spi_xfer_is_dma_mapped(host, spi, transfer);
443
444         /* For poll mode just disable all interrupts */
445         dw_spi_mask_intr(dws, 0xff);
446
447         if (dws->dma_mapped) {
448                 ret = dws->dma_ops->dma_setup(dws, transfer);
449                 if (ret)
450                         return ret;
451         }
452
453         dw_spi_enable_chip(dws, 1);
454
455         if (dws->dma_mapped)
456                 return dws->dma_ops->dma_transfer(dws, transfer);
457         else if (dws->irq == IRQ_NOTCONNECTED)
458                 return dw_spi_poll_transfer(dws, transfer);
459
460         dw_spi_irq_setup(dws);
461
462         return 1;
463 }
464
465 static void dw_spi_handle_err(struct spi_controller *host,
466                               struct spi_message *msg)
467 {
468         struct dw_spi *dws = spi_controller_get_devdata(host);
469
470         if (dws->dma_mapped)
471                 dws->dma_ops->dma_stop(dws);
472
473         dw_spi_reset_chip(dws);
474 }
475
476 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
477 {
478         if (op->data.dir == SPI_MEM_DATA_IN)
479                 op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);
480
481         return 0;
482 }
483
484 static bool dw_spi_supports_mem_op(struct spi_mem *mem,
485                                    const struct spi_mem_op *op)
486 {
487         if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
488             op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
489                 return false;
490
491         return spi_mem_default_supports_op(mem, op);
492 }
493
494 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
495 {
496         unsigned int i, j, len;
497         u8 *out;
498
499         /*
500          * Calculate the total length of the EEPROM command transfer and
501          * either use the pre-allocated buffer or create a temporary one.
502          */
503         len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
504         if (op->data.dir == SPI_MEM_DATA_OUT)
505                 len += op->data.nbytes;
506
507         if (len <= DW_SPI_BUF_SIZE) {
508                 out = dws->buf;
509         } else {
510                 out = kzalloc(len, GFP_KERNEL);
511                 if (!out)
512                         return -ENOMEM;
513         }
514
515         /*
516          * Collect the operation code, address and dummy bytes into the single
517          * buffer. If it's a transfer with data to be sent, also copy it into the
518          * single buffer in order to speed the data transmission up.
519          */
520         for (i = 0; i < op->cmd.nbytes; ++i)
521                 out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
522         for (j = 0; j < op->addr.nbytes; ++i, ++j)
523                 out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
524         for (j = 0; j < op->dummy.nbytes; ++i, ++j)
525                 out[i] = 0x0;
526
527         if (op->data.dir == SPI_MEM_DATA_OUT)
528                 memcpy(&out[i], op->data.buf.out, op->data.nbytes);
529
530         dws->n_bytes = 1;
531         dws->tx = out;
532         dws->tx_len = len;
533         if (op->data.dir == SPI_MEM_DATA_IN) {
534                 dws->rx = op->data.buf.in;
535                 dws->rx_len = op->data.nbytes;
536         } else {
537                 dws->rx = NULL;
538                 dws->rx_len = 0;
539         }
540
541         return 0;
542 }
543
544 static void dw_spi_free_mem_buf(struct dw_spi *dws)
545 {
546         if (dws->tx != dws->buf)
547                 kfree(dws->tx);
548 }
549
550 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
551 {
552         u32 room, entries, sts;
553         unsigned int len;
554         u8 *buf;
555
556         /*
557          * At initial stage we just pre-fill the Tx FIFO in with no rush,
558          * since native CS hasn't been enabled yet and the automatic data
559          * transmission won't start til we do that.
560          */
561         len = min(dws->fifo_len, dws->tx_len);
562         buf = dws->tx;
563         while (len--)
564                 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
565
566         /*
567          * After setting any bit in the SER register the transmission will
568          * start automatically. We have to keep up with that procedure
569          * otherwise the CS de-assertion will happen whereupon the memory
570          * operation will be pre-terminated.
571          */
572         len = dws->tx_len - ((void *)buf - dws->tx);
573         dw_spi_set_cs(spi, false);
574         while (len) {
575                 entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
576                 if (!entries) {
577                         dev_err(&dws->host->dev, "CS de-assertion on Tx\n");
578                         return -EIO;
579                 }
580                 room = min(dws->fifo_len - entries, len);
581                 for (; room; --room, --len)
582                         dw_write_io_reg(dws, DW_SPI_DR, *buf++);
583         }
584
585         /*
586          * Data fetching will start automatically if the EEPROM-read mode is
587          * activated. We have to keep up with the incoming data pace to
588          * prevent the Rx FIFO overflow causing the inbound data loss.
589          */
590         len = dws->rx_len;
591         buf = dws->rx;
592         while (len) {
593                 entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
594                 if (!entries) {
595                         sts = readl_relaxed(dws->regs + DW_SPI_RISR);
596                         if (sts & DW_SPI_INT_RXOI) {
597                                 dev_err(&dws->host->dev, "FIFO overflow on Rx\n");
598                                 return -EIO;
599                         }
600                         continue;
601                 }
602                 entries = min(entries, len);
603                 for (; entries; --entries, --len)
604                         *buf++ = dw_read_io_reg(dws, DW_SPI_DR);
605         }
606
607         return 0;
608 }
609
610 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
611 {
612         return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
613 }
614
615 static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
616 {
617         int retry = DW_SPI_WAIT_RETRIES;
618         struct spi_delay delay;
619         unsigned long ns, us;
620         u32 nents;
621
622         nents = dw_readl(dws, DW_SPI_TXFLR);
623         ns = NSEC_PER_SEC / dws->current_freq * nents;
624         ns *= dws->n_bytes * BITS_PER_BYTE;
625         if (ns <= NSEC_PER_USEC) {
626                 delay.unit = SPI_DELAY_UNIT_NSECS;
627                 delay.value = ns;
628         } else {
629                 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
630                 delay.unit = SPI_DELAY_UNIT_USECS;
631                 delay.value = clamp_val(us, 0, USHRT_MAX);
632         }
633
634         while (dw_spi_ctlr_busy(dws) && retry--)
635                 spi_delay_exec(&delay, NULL);
636
637         if (retry < 0) {
638                 dev_err(&dws->host->dev, "Mem op hanged up\n");
639                 return -EIO;
640         }
641
642         return 0;
643 }
644
645 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
646 {
647         dw_spi_enable_chip(dws, 0);
648         dw_spi_set_cs(spi, true);
649         dw_spi_enable_chip(dws, 1);
650 }
651
652 /*
653  * The SPI memory operation implementation below is the best choice for the
654  * devices, which are selected by the native chip-select lane. It's
655  * specifically developed to workaround the problem with automatic chip-select
656  * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
657  * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
658  * unavailable.
659  */
660 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
661 {
662         struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
663         struct dw_spi_cfg cfg;
664         unsigned long flags;
665         int ret;
666
667         /*
668          * Collect the outbound data into a single buffer to speed the
669          * transmission up at least on the initial stage.
670          */
671         ret = dw_spi_init_mem_buf(dws, op);
672         if (ret)
673                 return ret;
674
675         /*
676          * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
677          * operation. Transmit-only mode is suitable for the rest of them.
678          */
679         cfg.dfs = 8;
680         cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
681         if (op->data.dir == SPI_MEM_DATA_IN) {
682                 cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
683                 cfg.ndf = op->data.nbytes;
684         } else {
685                 cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
686         }
687
688         dw_spi_enable_chip(dws, 0);
689
690         dw_spi_update_config(dws, mem->spi, &cfg);
691
692         dw_spi_mask_intr(dws, 0xff);
693
694         dw_spi_enable_chip(dws, 1);
695
696         /*
697          * DW APB SSI controller has very nasty peculiarities. First originally
698          * (without any vendor-specific modifications) it doesn't provide a
699          * direct way to set and clear the native chip-select signal. Instead
700          * the controller asserts the CS lane if Tx FIFO isn't empty and a
701          * transmission is going on, and automatically de-asserts it back to
702          * the high level if the Tx FIFO doesn't have anything to be pushed
703          * out. Due to that a multi-tasking or heavy IRQs activity might be
704          * fatal, since the transfer procedure preemption may cause the Tx FIFO
705          * getting empty and sudden CS de-assertion, which in the middle of the
706          * transfer will most likely cause the data loss. Secondly the
707          * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
708          * data being automatically pulled in into the Rx FIFO. So if the
709          * driver software is late in fetching the data from the FIFO before
710          * it's overflown, new incoming data will be lost. In order to make
711          * sure the executed memory operations are CS-atomic and to prevent the
712          * Rx FIFO overflow we have to disable the local interrupts so to block
713          * any preemption during the subsequent IO operations.
714          *
715          * Note. At some circumstances disabling IRQs may not help to prevent
716          * the problems described above. The CS de-assertion and Rx FIFO
717          * overflow may still happen due to the relatively slow system bus or
718          * CPU not working fast enough, so the write-then-read algo implemented
719          * here just won't keep up with the SPI bus data transfer. Such
720          * situation is highly platform specific and is supposed to be fixed by
721          * manually restricting the SPI bus frequency using the
722          * dws->max_mem_freq parameter.
723          */
724         local_irq_save(flags);
725         preempt_disable();
726
727         ret = dw_spi_write_then_read(dws, mem->spi);
728
729         local_irq_restore(flags);
730         preempt_enable();
731
732         /*
733          * Wait for the operation being finished and check the controller
734          * status only if there hasn't been any run-time error detected. In the
735          * former case it's just pointless. In the later one to prevent an
736          * additional error message printing since any hw error flag being set
737          * would be due to an error detected on the data transfer.
738          */
739         if (!ret) {
740                 ret = dw_spi_wait_mem_op_done(dws);
741                 if (!ret)
742                         ret = dw_spi_check_status(dws, true);
743         }
744
745         dw_spi_stop_mem_op(dws, mem->spi);
746
747         dw_spi_free_mem_buf(dws);
748
749         return ret;
750 }
751
752 /*
753  * Initialize the default memory operations if a glue layer hasn't specified
754  * custom ones. Direct mapping operations will be preserved anyway since DW SPI
755  * controller doesn't have an embedded dirmap interface. Note the memory
756  * operations implemented in this driver is the best choice only for the DW APB
757  * SSI controller with standard native CS functionality. If a hardware vendor
758  * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
759  * be safer to use the normal SPI-messages-based transfers implementation.
760  */
761 static void dw_spi_init_mem_ops(struct dw_spi *dws)
762 {
763         if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
764             !dws->set_cs) {
765                 dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
766                 dws->mem_ops.supports_op = dw_spi_supports_mem_op;
767                 dws->mem_ops.exec_op = dw_spi_exec_mem_op;
768                 if (!dws->max_mem_freq)
769                         dws->max_mem_freq = dws->max_freq;
770         }
771 }
772
773 /* This may be called twice for each spi dev */
774 static int dw_spi_setup(struct spi_device *spi)
775 {
776         struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
777         struct dw_spi_chip_data *chip;
778
779         /* Only alloc on first setup */
780         chip = spi_get_ctldata(spi);
781         if (!chip) {
782                 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
783                 u32 rx_sample_dly_ns;
784
785                 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
786                 if (!chip)
787                         return -ENOMEM;
788                 spi_set_ctldata(spi, chip);
789                 /* Get specific / default rx-sample-delay */
790                 if (device_property_read_u32(&spi->dev,
791                                              "rx-sample-delay-ns",
792                                              &rx_sample_dly_ns) != 0)
793                         /* Use default controller value */
794                         rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
795                 chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
796                                                         NSEC_PER_SEC /
797                                                         dws->max_freq);
798         }
799
800         /*
801          * Update CR0 data each time the setup callback is invoked since
802          * the device parameters could have been changed, for instance, by
803          * the MMC SPI driver or something else.
804          */
805         chip->cr0 = dw_spi_prepare_cr0(dws, spi);
806
807         return 0;
808 }
809
810 static void dw_spi_cleanup(struct spi_device *spi)
811 {
812         struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
813
814         kfree(chip);
815         spi_set_ctldata(spi, NULL);
816 }
817
818 /* Restart the controller, disable all interrupts, clean rx fifo */
819 static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
820 {
821         dw_spi_reset_chip(dws);
822
823         /*
824          * Retrieve the Synopsys component version if it hasn't been specified
825          * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
826          * code enclosed with '*' (typical for the most of Synopsys IP-cores).
827          */
828         if (!dws->ver) {
829                 dws->ver = dw_readl(dws, DW_SPI_VERSION);
830
831                 dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
832                         dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
833                         DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
834                         DW_SPI_GET_BYTE(dws->ver, 1));
835         }
836
837         /*
838          * Try to detect the number of native chip-selects if the platform
839          * driver didn't set it up. There can be up to 16 lines configured.
840          */
841         if (!dws->num_cs) {
842                 u32 ser;
843
844                 dw_writel(dws, DW_SPI_SER, 0xffff);
845                 ser = dw_readl(dws, DW_SPI_SER);
846                 dw_writel(dws, DW_SPI_SER, 0);
847
848                 dws->num_cs = hweight16(ser);
849         }
850
851         /*
852          * Try to detect the FIFO depth if not set by interface driver,
853          * the depth could be from 2 to 256 from HW spec
854          */
855         if (!dws->fifo_len) {
856                 u32 fifo;
857
858                 for (fifo = 1; fifo < 256; fifo++) {
859                         dw_writel(dws, DW_SPI_TXFTLR, fifo);
860                         if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
861                                 break;
862                 }
863                 dw_writel(dws, DW_SPI_TXFTLR, 0);
864
865                 dws->fifo_len = (fifo == 1) ? 0 : fifo;
866                 dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
867         }
868
869         /*
870          * Detect CTRLR0.DFS field size and offset by testing the lowest bits
871          * writability. Note DWC SSI controller also has the extended DFS, but
872          * with zero offset.
873          */
874         if (dw_spi_ip_is(dws, PSSI)) {
875                 u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
876
877                 dw_spi_enable_chip(dws, 0);
878                 dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
879                 cr0 = dw_readl(dws, DW_SPI_CTRLR0);
880                 dw_writel(dws, DW_SPI_CTRLR0, tmp);
881                 dw_spi_enable_chip(dws, 1);
882
883                 if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
884                         dws->caps |= DW_SPI_CAP_DFS32;
885                         dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
886                         dev_dbg(dev, "Detected 32-bits max data frame size\n");
887                 }
888         } else {
889                 dws->caps |= DW_SPI_CAP_DFS32;
890         }
891
892         /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
893         if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
894                 dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
895 }
896
897 int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
898 {
899         struct spi_controller *host;
900         int ret;
901
902         if (!dws)
903                 return -EINVAL;
904
905         host = spi_alloc_host(dev, 0);
906         if (!host)
907                 return -ENOMEM;
908
909         device_set_node(&host->dev, dev_fwnode(dev));
910
911         dws->host = host;
912         dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
913
914         spi_controller_set_devdata(host, dws);
915
916         /* Basic HW init */
917         dw_spi_hw_init(dev, dws);
918
919         ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
920                           host);
921         if (ret < 0 && ret != -ENOTCONN) {
922                 dev_err(dev, "can not get IRQ\n");
923                 goto err_free_host;
924         }
925
926         dw_spi_init_mem_ops(dws);
927
928         host->use_gpio_descriptors = true;
929         host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
930         if (dws->caps & DW_SPI_CAP_DFS32)
931                 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
932         else
933                 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
934         host->bus_num = dws->bus_num;
935         host->num_chipselect = dws->num_cs;
936         host->setup = dw_spi_setup;
937         host->cleanup = dw_spi_cleanup;
938         if (dws->set_cs)
939                 host->set_cs = dws->set_cs;
940         else
941                 host->set_cs = dw_spi_set_cs;
942         host->transfer_one = dw_spi_transfer_one;
943         host->handle_err = dw_spi_handle_err;
944         if (dws->mem_ops.exec_op)
945                 host->mem_ops = &dws->mem_ops;
946         host->max_speed_hz = dws->max_freq;
947         host->flags = SPI_CONTROLLER_GPIO_SS;
948         host->auto_runtime_pm = true;
949
950         /* Get default rx sample delay */
951         device_property_read_u32(dev, "rx-sample-delay-ns",
952                                  &dws->def_rx_sample_dly_ns);
953
954         if (dws->dma_ops && dws->dma_ops->dma_init) {
955                 ret = dws->dma_ops->dma_init(dev, dws);
956                 if (ret == -EPROBE_DEFER) {
957                         goto err_free_irq;
958                 } else if (ret) {
959                         dev_warn(dev, "DMA init failed\n");
960                 } else {
961                         host->can_dma = dws->dma_ops->can_dma;
962                         host->flags |= SPI_CONTROLLER_MUST_TX;
963                 }
964         }
965
966         ret = spi_register_controller(host);
967         if (ret) {
968                 dev_err_probe(dev, ret, "problem registering spi host\n");
969                 goto err_dma_exit;
970         }
971
972         dw_spi_debugfs_init(dws);
973         return 0;
974
975 err_dma_exit:
976         if (dws->dma_ops && dws->dma_ops->dma_exit)
977                 dws->dma_ops->dma_exit(dws);
978         dw_spi_enable_chip(dws, 0);
979 err_free_irq:
980         free_irq(dws->irq, host);
981 err_free_host:
982         spi_controller_put(host);
983         return ret;
984 }
985 EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE);
986
987 void dw_spi_remove_host(struct dw_spi *dws)
988 {
989         dw_spi_debugfs_remove(dws);
990
991         spi_unregister_controller(dws->host);
992
993         if (dws->dma_ops && dws->dma_ops->dma_exit)
994                 dws->dma_ops->dma_exit(dws);
995
996         dw_spi_shutdown_chip(dws);
997
998         free_irq(dws->irq, dws->host);
999 }
1000 EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE);
1001
1002 int dw_spi_suspend_host(struct dw_spi *dws)
1003 {
1004         int ret;
1005
1006         ret = spi_controller_suspend(dws->host);
1007         if (ret)
1008                 return ret;
1009
1010         dw_spi_shutdown_chip(dws);
1011         return 0;
1012 }
1013 EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE);
1014
1015 int dw_spi_resume_host(struct dw_spi *dws)
1016 {
1017         dw_spi_hw_init(&dws->host->dev, dws);
1018         return spi_controller_resume(dws->host);
1019 }
1020 EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE);
1021
1022 MODULE_AUTHOR("Feng Tang <[email protected]>");
1023 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
1024 MODULE_LICENSE("GPL v2");
This page took 0.0917 seconds and 4 git commands to generate.