]> Git Repo - linux.git/blob - drivers/pwm/pwm-stm32.c
Merge tag 'ti-k3-dt-for-v6.11-part2' into ti-k3-dts-next
[linux.git] / drivers / pwm / pwm-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2016
4  *
5  * Author: Gerald Baeza <[email protected]>
6  *
7  * Inspired by timer-stm32.c from Maxime Coquelin
8  *             pwm-atmel.c from Bo Shen
9  */
10
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/pwm.h>
18
19 #define CCMR_CHANNEL_SHIFT 8
20 #define CCMR_CHANNEL_MASK  0xFF
21 #define MAX_BREAKINPUT 2
22
23 struct stm32_breakinput {
24         u32 index;
25         u32 level;
26         u32 filter;
27 };
28
29 struct stm32_pwm {
30         struct mutex lock; /* protect pwm config/enable */
31         struct clk *clk;
32         struct regmap *regmap;
33         u32 max_arr;
34         bool have_complementary_output;
35         struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
36         unsigned int num_breakinputs;
37         u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
38 };
39
40 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
41 {
42         return pwmchip_get_drvdata(chip);
43 }
44
45 static u32 active_channels(struct stm32_pwm *dev)
46 {
47         u32 ccer;
48
49         regmap_read(dev->regmap, TIM_CCER, &ccer);
50
51         return ccer & TIM_CCER_CCXE;
52 }
53
54 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
55 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
56 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
57 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
58
59 /*
60  * Capture using PWM input mode:
61  *                              ___          ___
62  * TI[1, 2, 3 or 4]: ........._|   |________|
63  *                             ^0  ^1       ^2
64  *                              .   .        .
65  *                              .   .        XXXXX
66  *                              .   .   XXXXX     |
67  *                              .  XXXXX     .    |
68  *                            XXXXX .        .    |
69  * COUNTER:        ______XXXXX  .   .        .    |_XXX
70  *                 start^       .   .        .        ^stop
71  *                      .       .   .        .
72  *                      v       v   .        v
73  *                                  v
74  * CCR1/CCR3:       tx..........t0...........t2
75  * CCR2/CCR4:       tx..............t1.........
76  *
77  * DMA burst transfer:          |            |
78  *                              v            v
79  * DMA buffer:                  { t0, tx }   { t2, t1 }
80  * DMA done:                                 ^
81  *
82  * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
83  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
84  * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
85  * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
86  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
87  *
88  * DMA done, compute:
89  * - Period     = t2 - t0
90  * - Duty cycle = t1 - t0
91  */
92 static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm,
93                                  unsigned long tmo_ms, u32 *raw_prd,
94                                  u32 *raw_dty)
95 {
96         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
97         struct device *parent = pwmchip_parent(chip)->parent;
98         enum stm32_timers_dmas dma_id;
99         u32 ccen, ccr;
100         int ret;
101
102         /* Ensure registers have been updated, enable counter and capture */
103         regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
104         regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
105
106         /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
107         dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
108         ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
109         ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
110         regmap_set_bits(priv->regmap, TIM_CCER, ccen);
111
112         /*
113          * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
114          * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
115          * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
116          * or { CCR3, CCR4 }, { CCR3, CCR4 }
117          */
118         ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
119                                           2, tmo_ms);
120         if (ret)
121                 goto stop;
122
123         /* Period: t2 - t0 (take care of counter overflow) */
124         if (priv->capture[0] <= priv->capture[2])
125                 *raw_prd = priv->capture[2] - priv->capture[0];
126         else
127                 *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
128
129         /* Duty cycle capture requires at least two capture units */
130         if (pwm->chip->npwm < 2)
131                 *raw_dty = 0;
132         else if (priv->capture[0] <= priv->capture[3])
133                 *raw_dty = priv->capture[3] - priv->capture[0];
134         else
135                 *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
136
137         if (*raw_dty > *raw_prd) {
138                 /*
139                  * Race beetween PWM input and DMA: it may happen
140                  * falling edge triggers new capture on TI2/4 before DMA
141                  * had a chance to read CCR2/4. It means capture[1]
142                  * contains period + duty_cycle. So, subtract period.
143                  */
144                 *raw_dty -= *raw_prd;
145         }
146
147 stop:
148         regmap_clear_bits(priv->regmap, TIM_CCER, ccen);
149         regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
150
151         return ret;
152 }
153
154 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
155                              struct pwm_capture *result, unsigned long tmo_ms)
156 {
157         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
158         unsigned long long prd, div, dty;
159         unsigned long rate;
160         unsigned int psc = 0, icpsc, scale;
161         u32 raw_prd = 0, raw_dty = 0;
162         int ret = 0;
163
164         mutex_lock(&priv->lock);
165
166         if (active_channels(priv)) {
167                 ret = -EBUSY;
168                 goto unlock;
169         }
170
171         ret = clk_enable(priv->clk);
172         if (ret) {
173                 dev_err(pwmchip_parent(chip), "failed to enable counter clock\n");
174                 goto unlock;
175         }
176
177         rate = clk_get_rate(priv->clk);
178         if (!rate) {
179                 ret = -EINVAL;
180                 goto clk_dis;
181         }
182
183         /* prescaler: fit timeout window provided by upper layer */
184         div = (unsigned long long)rate * (unsigned long long)tmo_ms;
185         do_div(div, MSEC_PER_SEC);
186         prd = div;
187         while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
188                 psc++;
189                 div = prd;
190                 do_div(div, psc + 1);
191         }
192         regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
193         regmap_write(priv->regmap, TIM_PSC, psc);
194
195         /* Reset input selector to its default input and disable slave mode */
196         regmap_write(priv->regmap, TIM_TISEL, 0x0);
197         regmap_write(priv->regmap, TIM_SMCR, 0x0);
198
199         /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
200         regmap_update_bits(priv->regmap,
201                            pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
202                            TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
203                            TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
204                            TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
205
206         /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
207         regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
208                            TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
209                            TIM_CCER_CC2P : TIM_CCER_CC4P);
210
211         ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
212         if (ret)
213                 goto stop;
214
215         /*
216          * Got a capture. Try to improve accuracy at high rates:
217          * - decrease counter clock prescaler, scale up to max rate.
218          * - use input prescaler, capture once every /2 /4 or /8 edges.
219          */
220         if (raw_prd) {
221                 u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
222
223                 scale = max_arr / min(max_arr, raw_prd);
224         } else {
225                 scale = priv->max_arr; /* bellow resolution, use max scale */
226         }
227
228         if (psc && scale > 1) {
229                 /* 2nd measure with new scale */
230                 psc /= scale;
231                 regmap_write(priv->regmap, TIM_PSC, psc);
232                 ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd,
233                                             &raw_dty);
234                 if (ret)
235                         goto stop;
236         }
237
238         /* Compute intermediate period not to exceed timeout at low rates */
239         prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
240         do_div(prd, rate);
241
242         for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
243                 /* input prescaler: also keep arbitrary margin */
244                 if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
245                         break;
246                 if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
247                         break;
248         }
249
250         if (!icpsc)
251                 goto done;
252
253         /* Last chance to improve period accuracy, using input prescaler */
254         regmap_update_bits(priv->regmap,
255                            pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
256                            TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
257                            FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
258                            FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
259
260         ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
261         if (ret)
262                 goto stop;
263
264         if (raw_dty >= (raw_prd >> icpsc)) {
265                 /*
266                  * We may fall here using input prescaler, when input
267                  * capture starts on high side (before falling edge).
268                  * Example with icpsc to capture on each 4 events:
269                  *
270                  *       start   1st capture                     2nd capture
271                  *         v     v                               v
272                  *         ___   _____   _____   _____   _____   ____
273                  * TI1..4     |__|    |__|    |__|    |__|    |__|
274                  *            v  v    .  .    .  .    .       v  v
275                  * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
276                  * icpsc2/4:  0       1       2       3       0
277                  *            v  v                            v  v
278                  * CCR1/3  ......t0..............................t2
279                  * CCR2/4  ..t1..............................t1'...
280                  *               .                            .  .
281                  * Capture0:     .<----------------------------->.
282                  * Capture1:     .<-------------------------->.  .
283                  *               .                            .  .
284                  * Period:       .<------>                    .  .
285                  * Low side:                                  .<>.
286                  *
287                  * Result:
288                  * - Period = Capture0 / icpsc
289                  * - Duty = Period - Low side = Period - (Capture0 - Capture1)
290                  */
291                 raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
292         }
293
294 done:
295         prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
296         result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
297         dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
298         result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
299 stop:
300         regmap_write(priv->regmap, TIM_CCER, 0);
301         regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
302         regmap_write(priv->regmap, TIM_PSC, 0);
303 clk_dis:
304         clk_disable(priv->clk);
305 unlock:
306         mutex_unlock(&priv->lock);
307
308         return ret;
309 }
310
311 static int stm32_pwm_config(struct stm32_pwm *priv, unsigned int ch,
312                             u64 duty_ns, u64 period_ns)
313 {
314         unsigned long long prd, dty;
315         unsigned long long prescaler;
316         u32 ccmr, mask, shift;
317
318         /*
319          * .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so
320          * the calculations here won't overflow.
321          * First we need to find the minimal value for prescaler such that
322          *
323          *        period_ns * clkrate
324          *   ------------------------------ < max_arr + 1
325          *   NSEC_PER_SEC * (prescaler + 1)
326          *
327          * This equation is equivalent to
328          *
329          *        period_ns * clkrate
330          *   ---------------------------- < prescaler + 1
331          *   NSEC_PER_SEC * (max_arr + 1)
332          *
333          * Using integer division and knowing that the right hand side is
334          * integer, this is further equivalent to
335          *
336          *   (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) â‰¤ prescaler
337          */
338
339         prescaler = mul_u64_u64_div_u64(period_ns, clk_get_rate(priv->clk),
340                                         (u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1));
341         if (prescaler > MAX_TIM_PSC)
342                 return -EINVAL;
343
344         prd = mul_u64_u64_div_u64(period_ns, clk_get_rate(priv->clk),
345                                   (u64)NSEC_PER_SEC * (prescaler + 1));
346         if (!prd)
347                 return -EINVAL;
348
349         /*
350          * All channels share the same prescaler and counter so when two
351          * channels are active at the same time we can't change them
352          */
353         if (active_channels(priv) & ~(1 << ch * 4)) {
354                 u32 psc, arr;
355
356                 regmap_read(priv->regmap, TIM_PSC, &psc);
357                 regmap_read(priv->regmap, TIM_ARR, &arr);
358
359                 if ((psc != prescaler) || (arr != prd - 1))
360                         return -EBUSY;
361         }
362
363         regmap_write(priv->regmap, TIM_PSC, prescaler);
364         regmap_write(priv->regmap, TIM_ARR, prd - 1);
365         regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
366
367         /* Calculate the duty cycles */
368         dty = mul_u64_u64_div_u64(duty_ns, clk_get_rate(priv->clk),
369                                   (u64)NSEC_PER_SEC * (prescaler + 1));
370
371         regmap_write(priv->regmap, TIM_CCRx(ch + 1), dty);
372
373         /* Configure output mode */
374         shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
375         ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
376         mask = CCMR_CHANNEL_MASK << shift;
377
378         if (ch < 2)
379                 regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
380         else
381                 regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
382
383         regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
384
385         return 0;
386 }
387
388 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, unsigned int ch,
389                                   enum pwm_polarity polarity)
390 {
391         u32 mask;
392
393         mask = TIM_CCER_CCxP(ch + 1);
394         if (priv->have_complementary_output)
395                 mask |= TIM_CCER_CCxNP(ch + 1);
396
397         regmap_update_bits(priv->regmap, TIM_CCER, mask,
398                            polarity == PWM_POLARITY_NORMAL ? 0 : mask);
399
400         return 0;
401 }
402
403 static int stm32_pwm_enable(struct stm32_pwm *priv, unsigned int ch)
404 {
405         u32 mask;
406         int ret;
407
408         ret = clk_enable(priv->clk);
409         if (ret)
410                 return ret;
411
412         /* Enable channel */
413         mask = TIM_CCER_CCxE(ch + 1);
414         if (priv->have_complementary_output)
415                 mask |= TIM_CCER_CCxNE(ch);
416
417         regmap_set_bits(priv->regmap, TIM_CCER, mask);
418
419         /* Make sure that registers are updated */
420         regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
421
422         /* Enable controller */
423         regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
424
425         return 0;
426 }
427
428 static void stm32_pwm_disable(struct stm32_pwm *priv, unsigned int ch)
429 {
430         u32 mask;
431
432         /* Disable channel */
433         mask = TIM_CCER_CCxE(ch + 1);
434         if (priv->have_complementary_output)
435                 mask |= TIM_CCER_CCxNE(ch + 1);
436
437         regmap_clear_bits(priv->regmap, TIM_CCER, mask);
438
439         /* When all channels are disabled, we can disable the controller */
440         if (!active_channels(priv))
441                 regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
442
443         clk_disable(priv->clk);
444 }
445
446 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
447                            const struct pwm_state *state)
448 {
449         bool enabled;
450         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
451         int ret;
452
453         enabled = pwm->state.enabled;
454
455         if (!state->enabled) {
456                 if (enabled)
457                         stm32_pwm_disable(priv, pwm->hwpwm);
458                 return 0;
459         }
460
461         if (state->polarity != pwm->state.polarity)
462                 stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
463
464         ret = stm32_pwm_config(priv, pwm->hwpwm,
465                                state->duty_cycle, state->period);
466         if (ret)
467                 return ret;
468
469         if (!enabled && state->enabled)
470                 ret = stm32_pwm_enable(priv, pwm->hwpwm);
471
472         return ret;
473 }
474
475 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
476                                   const struct pwm_state *state)
477 {
478         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
479         int ret;
480
481         /* protect common prescaler for all active channels */
482         mutex_lock(&priv->lock);
483         ret = stm32_pwm_apply(chip, pwm, state);
484         mutex_unlock(&priv->lock);
485
486         return ret;
487 }
488
489 static int stm32_pwm_get_state(struct pwm_chip *chip,
490                                struct pwm_device *pwm, struct pwm_state *state)
491 {
492         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
493         int ch = pwm->hwpwm;
494         unsigned long rate;
495         u32 ccer, psc, arr, ccr;
496         u64 dty, prd;
497         int ret;
498
499         mutex_lock(&priv->lock);
500
501         ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
502         if (ret)
503                 goto out;
504
505         state->enabled = ccer & TIM_CCER_CCxE(ch + 1);
506         state->polarity = (ccer & TIM_CCER_CCxP(ch + 1)) ?
507                           PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
508         ret = regmap_read(priv->regmap, TIM_PSC, &psc);
509         if (ret)
510                 goto out;
511         ret = regmap_read(priv->regmap, TIM_ARR, &arr);
512         if (ret)
513                 goto out;
514         ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &ccr);
515         if (ret)
516                 goto out;
517
518         rate = clk_get_rate(priv->clk);
519
520         prd = (u64)NSEC_PER_SEC * (psc + 1) * (arr + 1);
521         state->period = DIV_ROUND_UP_ULL(prd, rate);
522         dty = (u64)NSEC_PER_SEC * (psc + 1) * ccr;
523         state->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
524
525 out:
526         mutex_unlock(&priv->lock);
527         return ret;
528 }
529
530 static const struct pwm_ops stm32pwm_ops = {
531         .apply = stm32_pwm_apply_locked,
532         .get_state = stm32_pwm_get_state,
533         .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
534 };
535
536 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
537                                     const struct stm32_breakinput *bi)
538 {
539         u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
540         u32 bke = TIM_BDTR_BKE(bi->index);
541         u32 bkp = TIM_BDTR_BKP(bi->index);
542         u32 bkf = TIM_BDTR_BKF(bi->index);
543         u32 mask = bkf | bkp | bke;
544         u32 bdtr;
545
546         bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
547
548         if (bi->level)
549                 bdtr |= bkp;
550
551         regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
552
553         regmap_read(priv->regmap, TIM_BDTR, &bdtr);
554
555         return (bdtr & bke) ? 0 : -EINVAL;
556 }
557
558 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
559 {
560         unsigned int i;
561         int ret;
562
563         for (i = 0; i < priv->num_breakinputs; i++) {
564                 ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
565                 if (ret < 0)
566                         return ret;
567         }
568
569         return 0;
570 }
571
572 static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
573                                        struct device_node *np)
574 {
575         int nb, ret, array_size;
576         unsigned int i;
577
578         nb = of_property_count_elems_of_size(np, "st,breakinput",
579                                              sizeof(struct stm32_breakinput));
580
581         /*
582          * Because "st,breakinput" parameter is optional do not make probe
583          * failed if it doesn't exist.
584          */
585         if (nb <= 0)
586                 return 0;
587
588         if (nb > MAX_BREAKINPUT)
589                 return -EINVAL;
590
591         priv->num_breakinputs = nb;
592         array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
593         ret = of_property_read_u32_array(np, "st,breakinput",
594                                          (u32 *)priv->breakinputs, array_size);
595         if (ret)
596                 return ret;
597
598         for (i = 0; i < priv->num_breakinputs; i++) {
599                 if (priv->breakinputs[i].index > 1 ||
600                     priv->breakinputs[i].level > 1 ||
601                     priv->breakinputs[i].filter > 15)
602                         return -EINVAL;
603         }
604
605         return stm32_pwm_apply_breakinputs(priv);
606 }
607
608 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
609 {
610         u32 ccer;
611
612         /*
613          * If complementary bit doesn't exist writing 1 will have no
614          * effect so we can detect it.
615          */
616         regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
617         regmap_read(priv->regmap, TIM_CCER, &ccer);
618         regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
619
620         priv->have_complementary_output = (ccer != 0);
621 }
622
623 static unsigned int stm32_pwm_detect_channels(struct regmap *regmap,
624                                               unsigned int *num_enabled)
625 {
626         u32 ccer, ccer_backup;
627
628         /*
629          * If channels enable bits don't exist writing 1 will have no
630          * effect so we can detect and count them.
631          */
632         regmap_read(regmap, TIM_CCER, &ccer_backup);
633         regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE);
634         regmap_read(regmap, TIM_CCER, &ccer);
635         regmap_write(regmap, TIM_CCER, ccer_backup);
636
637         *num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE);
638
639         return hweight32(ccer & TIM_CCER_CCXE);
640 }
641
642 static int stm32_pwm_probe(struct platform_device *pdev)
643 {
644         struct device *dev = &pdev->dev;
645         struct device_node *np = dev->of_node;
646         struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
647         struct pwm_chip *chip;
648         struct stm32_pwm *priv;
649         unsigned int npwm, num_enabled;
650         unsigned int i;
651         int ret;
652
653         npwm = stm32_pwm_detect_channels(ddata->regmap, &num_enabled);
654
655         chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv));
656         if (IS_ERR(chip))
657                 return PTR_ERR(chip);
658         priv = to_stm32_pwm_dev(chip);
659
660         mutex_init(&priv->lock);
661         priv->regmap = ddata->regmap;
662         priv->clk = ddata->clk;
663         priv->max_arr = ddata->max_arr;
664
665         if (!priv->regmap || !priv->clk)
666                 return dev_err_probe(dev, -EINVAL, "Failed to get %s\n",
667                                      priv->regmap ? "clk" : "regmap");
668
669         ret = stm32_pwm_probe_breakinputs(priv, np);
670         if (ret)
671                 return dev_err_probe(dev, ret,
672                                      "Failed to configure breakinputs\n");
673
674         stm32_pwm_detect_complementary(priv);
675
676         ret = devm_clk_rate_exclusive_get(dev, priv->clk);
677         if (ret)
678                 return dev_err_probe(dev, ret, "Failed to lock clock\n");
679
680         /*
681          * With the clk running with not more than 1 GHz the calculations in
682          * .apply() won't overflow.
683          */
684         if (clk_get_rate(priv->clk) > 1000000000)
685                 return dev_err_probe(dev, -EINVAL, "Clock freq too high (%lu)\n",
686                                      clk_get_rate(priv->clk));
687
688         chip->ops = &stm32pwm_ops;
689
690         /* Initialize clock refcount to number of enabled PWM channels. */
691         for (i = 0; i < num_enabled; i++)
692                 clk_enable(priv->clk);
693
694         ret = devm_pwmchip_add(dev, chip);
695         if (ret < 0)
696                 return dev_err_probe(dev, ret,
697                                      "Failed to register pwmchip\n");
698
699         platform_set_drvdata(pdev, chip);
700
701         return 0;
702 }
703
704 static int stm32_pwm_suspend(struct device *dev)
705 {
706         struct pwm_chip *chip = dev_get_drvdata(dev);
707         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
708         unsigned int i;
709         u32 ccer, mask;
710
711         /* Look for active channels */
712         ccer = active_channels(priv);
713
714         for (i = 0; i < chip->npwm; i++) {
715                 mask = TIM_CCER_CCxE(i + 1);
716                 if (ccer & mask) {
717                         dev_err(dev, "PWM %u still in use by consumer %s\n",
718                                 i, chip->pwms[i].label);
719                         return -EBUSY;
720                 }
721         }
722
723         return pinctrl_pm_select_sleep_state(dev);
724 }
725
726 static int stm32_pwm_resume(struct device *dev)
727 {
728         struct pwm_chip *chip = dev_get_drvdata(dev);
729         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
730         int ret;
731
732         ret = pinctrl_pm_select_default_state(dev);
733         if (ret)
734                 return ret;
735
736         /* restore breakinput registers that may have been lost in low power */
737         return stm32_pwm_apply_breakinputs(priv);
738 }
739
740 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
741
742 static const struct of_device_id stm32_pwm_of_match[] = {
743         { .compatible = "st,stm32-pwm", },
744         { /* end node */ },
745 };
746 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
747
748 static struct platform_driver stm32_pwm_driver = {
749         .probe  = stm32_pwm_probe,
750         .driver = {
751                 .name = "stm32-pwm",
752                 .of_match_table = stm32_pwm_of_match,
753                 .pm = pm_ptr(&stm32_pwm_pm_ops),
754         },
755 };
756 module_platform_driver(stm32_pwm_driver);
757
758 MODULE_ALIAS("platform:stm32-pwm");
759 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
760 MODULE_LICENSE("GPL v2");
This page took 0.08275 seconds and 4 git commands to generate.