]> Git Repo - linux.git/blob - drivers/pwm/core.c
Merge tag 'ti-k3-dt-for-v6.11-part2' into ti-k3-dts-next
[linux.git] / drivers / pwm / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <[email protected]>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8
9 #define DEFAULT_SYMBOL_NAMESPACE PWM
10
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23
24 #include <dt-bindings/pwm/pwm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/pwm.h>
28
29 /* protects access to pwm_chips */
30 static DEFINE_MUTEX(pwm_lock);
31
32 static DEFINE_IDR(pwm_chips);
33
34 static void pwm_apply_debug(struct pwm_device *pwm,
35                             const struct pwm_state *state)
36 {
37         struct pwm_state *last = &pwm->last;
38         struct pwm_chip *chip = pwm->chip;
39         struct pwm_state s1 = { 0 }, s2 = { 0 };
40         int err;
41
42         if (!IS_ENABLED(CONFIG_PWM_DEBUG))
43                 return;
44
45         /* No reasonable diagnosis possible without .get_state() */
46         if (!chip->ops->get_state)
47                 return;
48
49         /*
50          * *state was just applied. Read out the hardware state and do some
51          * checks.
52          */
53
54         err = chip->ops->get_state(chip, pwm, &s1);
55         trace_pwm_get(pwm, &s1, err);
56         if (err)
57                 /* If that failed there isn't much to debug */
58                 return;
59
60         /*
61          * The lowlevel driver either ignored .polarity (which is a bug) or as
62          * best effort inverted .polarity and fixed .duty_cycle respectively.
63          * Undo this inversion and fixup for further tests.
64          */
65         if (s1.enabled && s1.polarity != state->polarity) {
66                 s2.polarity = state->polarity;
67                 s2.duty_cycle = s1.period - s1.duty_cycle;
68                 s2.period = s1.period;
69                 s2.enabled = s1.enabled;
70         } else {
71                 s2 = s1;
72         }
73
74         if (s2.polarity != state->polarity &&
75             state->duty_cycle < state->period)
76                 dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
77
78         if (state->enabled &&
79             last->polarity == state->polarity &&
80             last->period > s2.period &&
81             last->period <= state->period)
82                 dev_warn(pwmchip_parent(chip),
83                          ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
84                          state->period, s2.period, last->period);
85
86         if (state->enabled && state->period < s2.period)
87                 dev_warn(pwmchip_parent(chip),
88                          ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
89                          state->period, s2.period);
90
91         if (state->enabled &&
92             last->polarity == state->polarity &&
93             last->period == s2.period &&
94             last->duty_cycle > s2.duty_cycle &&
95             last->duty_cycle <= state->duty_cycle)
96                 dev_warn(pwmchip_parent(chip),
97                          ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
98                          state->duty_cycle, state->period,
99                          s2.duty_cycle, s2.period,
100                          last->duty_cycle, last->period);
101
102         if (state->enabled && state->duty_cycle < s2.duty_cycle)
103                 dev_warn(pwmchip_parent(chip),
104                          ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
105                          state->duty_cycle, state->period,
106                          s2.duty_cycle, s2.period);
107
108         if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
109                 dev_warn(pwmchip_parent(chip),
110                          "requested disabled, but yielded enabled with duty > 0\n");
111
112         /* reapply the state that the driver reported being configured. */
113         err = chip->ops->apply(chip, pwm, &s1);
114         trace_pwm_apply(pwm, &s1, err);
115         if (err) {
116                 *last = s1;
117                 dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
118                 return;
119         }
120
121         *last = (struct pwm_state){ 0 };
122         err = chip->ops->get_state(chip, pwm, last);
123         trace_pwm_get(pwm, last, err);
124         if (err)
125                 return;
126
127         /* reapplication of the current state should give an exact match */
128         if (s1.enabled != last->enabled ||
129             s1.polarity != last->polarity ||
130             (s1.enabled && s1.period != last->period) ||
131             (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
132                 dev_err(pwmchip_parent(chip),
133                         ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
134                         s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
135                         last->enabled, last->polarity, last->duty_cycle,
136                         last->period);
137         }
138 }
139
140 static bool pwm_state_valid(const struct pwm_state *state)
141 {
142         /*
143          * For a disabled state all other state description is irrelevant and
144          * and supposed to be ignored. So also ignore any strange values and
145          * consider the state ok.
146          */
147         if (state->enabled)
148                 return true;
149
150         if (!state->period)
151                 return false;
152
153         if (state->duty_cycle > state->period)
154                 return false;
155
156         return true;
157 }
158
159 /**
160  * __pwm_apply() - atomically apply a new state to a PWM device
161  * @pwm: PWM device
162  * @state: new state to apply
163  */
164 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
165 {
166         struct pwm_chip *chip;
167         int err;
168
169         if (!pwm || !state)
170                 return -EINVAL;
171
172         if (!pwm_state_valid(state)) {
173                 /*
174                  * Allow to transition from one invalid state to another.
175                  * This ensures that you can e.g. change the polarity while
176                  * the period is zero. (This happens on stm32 when the hardware
177                  * is in its poweron default state.) This greatly simplifies
178                  * working with the sysfs API where you can only change one
179                  * parameter at a time.
180                  */
181                 if (!pwm_state_valid(&pwm->state)) {
182                         pwm->state = *state;
183                         return 0;
184                 }
185
186                 return -EINVAL;
187         }
188
189         chip = pwm->chip;
190
191         if (state->period == pwm->state.period &&
192             state->duty_cycle == pwm->state.duty_cycle &&
193             state->polarity == pwm->state.polarity &&
194             state->enabled == pwm->state.enabled &&
195             state->usage_power == pwm->state.usage_power)
196                 return 0;
197
198         err = chip->ops->apply(chip, pwm, state);
199         trace_pwm_apply(pwm, state, err);
200         if (err)
201                 return err;
202
203         pwm->state = *state;
204
205         /*
206          * only do this after pwm->state was applied as some
207          * implementations of .get_state depend on this
208          */
209         pwm_apply_debug(pwm, state);
210
211         return 0;
212 }
213
214 /**
215  * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
216  * Cannot be used in atomic context.
217  * @pwm: PWM device
218  * @state: new state to apply
219  */
220 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
221 {
222         int err;
223
224         /*
225          * Some lowlevel driver's implementations of .apply() make use of
226          * mutexes, also with some drivers only returning when the new
227          * configuration is active calling pwm_apply_might_sleep() from atomic context
228          * is a bad idea. So make it explicit that calling this function might
229          * sleep.
230          */
231         might_sleep();
232
233         if (IS_ENABLED(CONFIG_PWM_DEBUG) && pwm->chip->atomic) {
234                 /*
235                  * Catch any drivers that have been marked as atomic but
236                  * that will sleep anyway.
237                  */
238                 non_block_start();
239                 err = __pwm_apply(pwm, state);
240                 non_block_end();
241         } else {
242                 err = __pwm_apply(pwm, state);
243         }
244
245         return err;
246 }
247 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
248
249 /**
250  * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
251  * Not all PWM devices support this function, check with pwm_might_sleep().
252  * @pwm: PWM device
253  * @state: new state to apply
254  */
255 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
256 {
257         WARN_ONCE(!pwm->chip->atomic,
258                   "sleeping PWM driver used in atomic context\n");
259
260         return __pwm_apply(pwm, state);
261 }
262 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
263
264 /**
265  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
266  * @pwm: PWM device
267  *
268  * This function will adjust the PWM config to the PWM arguments provided
269  * by the DT or PWM lookup table. This is particularly useful to adapt
270  * the bootloader config to the Linux one.
271  */
272 int pwm_adjust_config(struct pwm_device *pwm)
273 {
274         struct pwm_state state;
275         struct pwm_args pargs;
276
277         pwm_get_args(pwm, &pargs);
278         pwm_get_state(pwm, &state);
279
280         /*
281          * If the current period is zero it means that either the PWM driver
282          * does not support initial state retrieval or the PWM has not yet
283          * been configured.
284          *
285          * In either case, we setup the new period and polarity, and assign a
286          * duty cycle of 0.
287          */
288         if (!state.period) {
289                 state.duty_cycle = 0;
290                 state.period = pargs.period;
291                 state.polarity = pargs.polarity;
292
293                 return pwm_apply_might_sleep(pwm, &state);
294         }
295
296         /*
297          * Adjust the PWM duty cycle/period based on the period value provided
298          * in PWM args.
299          */
300         if (pargs.period != state.period) {
301                 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
302
303                 do_div(dutycycle, state.period);
304                 state.duty_cycle = dutycycle;
305                 state.period = pargs.period;
306         }
307
308         /*
309          * If the polarity changed, we should also change the duty cycle.
310          */
311         if (pargs.polarity != state.polarity) {
312                 state.polarity = pargs.polarity;
313                 state.duty_cycle = state.period - state.duty_cycle;
314         }
315
316         return pwm_apply_might_sleep(pwm, &state);
317 }
318 EXPORT_SYMBOL_GPL(pwm_adjust_config);
319
320 /**
321  * pwm_capture() - capture and report a PWM signal
322  * @pwm: PWM device
323  * @result: structure to fill with capture result
324  * @timeout: time to wait, in milliseconds, before giving up on capture
325  *
326  * Returns: 0 on success or a negative error code on failure.
327  */
328 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
329                 unsigned long timeout)
330 {
331         if (!pwm || !pwm->chip->ops)
332                 return -EINVAL;
333
334         if (!pwm->chip->ops->capture)
335                 return -ENOSYS;
336
337         guard(mutex)(&pwm_lock);
338
339         return pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
340 }
341 EXPORT_SYMBOL_GPL(pwm_capture);
342
343 static struct pwm_chip *pwmchip_find_by_name(const char *name)
344 {
345         struct pwm_chip *chip;
346         unsigned long id, tmp;
347
348         if (!name)
349                 return NULL;
350
351         guard(mutex)(&pwm_lock);
352
353         idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
354                 const char *chip_name = dev_name(pwmchip_parent(chip));
355
356                 if (chip_name && strcmp(chip_name, name) == 0)
357                         return chip;
358         }
359
360         return NULL;
361 }
362
363 static int pwm_device_request(struct pwm_device *pwm, const char *label)
364 {
365         int err;
366         struct pwm_chip *chip = pwm->chip;
367         const struct pwm_ops *ops = chip->ops;
368
369         if (test_bit(PWMF_REQUESTED, &pwm->flags))
370                 return -EBUSY;
371
372         if (!try_module_get(chip->owner))
373                 return -ENODEV;
374
375         if (!get_device(&chip->dev)) {
376                 err = -ENODEV;
377                 goto err_get_device;
378         }
379
380         if (ops->request) {
381                 err = ops->request(chip, pwm);
382                 if (err) {
383                         put_device(&chip->dev);
384 err_get_device:
385                         module_put(chip->owner);
386                         return err;
387                 }
388         }
389
390         if (ops->get_state) {
391                 /*
392                  * Zero-initialize state because most drivers are unaware of
393                  * .usage_power. The other members of state are supposed to be
394                  * set by lowlevel drivers. We still initialize the whole
395                  * structure for simplicity even though this might paper over
396                  * faulty implementations of .get_state().
397                  */
398                 struct pwm_state state = { 0, };
399
400                 err = ops->get_state(chip, pwm, &state);
401                 trace_pwm_get(pwm, &state, err);
402
403                 if (!err)
404                         pwm->state = state;
405
406                 if (IS_ENABLED(CONFIG_PWM_DEBUG))
407                         pwm->last = pwm->state;
408         }
409
410         set_bit(PWMF_REQUESTED, &pwm->flags);
411         pwm->label = label;
412
413         return 0;
414 }
415
416 /**
417  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
418  * @chip: PWM chip
419  * @index: per-chip index of the PWM to request
420  * @label: a literal description string of this PWM
421  *
422  * Returns: A pointer to the PWM device at the given index of the given PWM
423  * chip. A negative error code is returned if the index is not valid for the
424  * specified PWM chip or if the PWM device cannot be requested.
425  */
426 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
427                                                 unsigned int index,
428                                                 const char *label)
429 {
430         struct pwm_device *pwm;
431         int err;
432
433         if (!chip || index >= chip->npwm)
434                 return ERR_PTR(-EINVAL);
435
436         guard(mutex)(&pwm_lock);
437
438         pwm = &chip->pwms[index];
439
440         err = pwm_device_request(pwm, label);
441         if (err < 0)
442                 return ERR_PTR(err);
443
444         return pwm;
445 }
446
447 struct pwm_device *
448 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
449 {
450         struct pwm_device *pwm;
451
452         /* period in the second cell and flags in the third cell are optional */
453         if (args->args_count < 1)
454                 return ERR_PTR(-EINVAL);
455
456         pwm = pwm_request_from_chip(chip, args->args[0], NULL);
457         if (IS_ERR(pwm))
458                 return pwm;
459
460         if (args->args_count > 1)
461                 pwm->args.period = args->args[1];
462
463         pwm->args.polarity = PWM_POLARITY_NORMAL;
464         if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
465                 pwm->args.polarity = PWM_POLARITY_INVERSED;
466
467         return pwm;
468 }
469 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
470
471 struct pwm_device *
472 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
473 {
474         struct pwm_device *pwm;
475
476         pwm = pwm_request_from_chip(chip, 0, NULL);
477         if (IS_ERR(pwm))
478                 return pwm;
479
480         if (args->args_count > 0)
481                 pwm->args.period = args->args[0];
482
483         pwm->args.polarity = PWM_POLARITY_NORMAL;
484         if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
485                 pwm->args.polarity = PWM_POLARITY_INVERSED;
486
487         return pwm;
488 }
489 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
490
491 struct pwm_export {
492         struct device pwm_dev;
493         struct pwm_device *pwm;
494         struct mutex lock;
495         struct pwm_state suspend;
496 };
497
498 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
499 {
500         return container_of(pwmchip_dev, struct pwm_chip, dev);
501 }
502
503 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
504 {
505         return container_of(pwm_dev, struct pwm_export, pwm_dev);
506 }
507
508 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
509 {
510         struct pwm_export *export = pwmexport_from_dev(pwm_dev);
511
512         return export->pwm;
513 }
514
515 static ssize_t period_show(struct device *pwm_dev,
516                            struct device_attribute *attr,
517                            char *buf)
518 {
519         const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
520         struct pwm_state state;
521
522         pwm_get_state(pwm, &state);
523
524         return sysfs_emit(buf, "%llu\n", state.period);
525 }
526
527 static ssize_t period_store(struct device *pwm_dev,
528                             struct device_attribute *attr,
529                             const char *buf, size_t size)
530 {
531         struct pwm_export *export = pwmexport_from_dev(pwm_dev);
532         struct pwm_device *pwm = export->pwm;
533         struct pwm_state state;
534         u64 val;
535         int ret;
536
537         ret = kstrtou64(buf, 0, &val);
538         if (ret)
539                 return ret;
540
541         guard(mutex)(&export->lock);
542
543         pwm_get_state(pwm, &state);
544         state.period = val;
545         ret = pwm_apply_might_sleep(pwm, &state);
546
547         return ret ? : size;
548 }
549
550 static ssize_t duty_cycle_show(struct device *pwm_dev,
551                                struct device_attribute *attr,
552                                char *buf)
553 {
554         const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
555         struct pwm_state state;
556
557         pwm_get_state(pwm, &state);
558
559         return sysfs_emit(buf, "%llu\n", state.duty_cycle);
560 }
561
562 static ssize_t duty_cycle_store(struct device *pwm_dev,
563                                 struct device_attribute *attr,
564                                 const char *buf, size_t size)
565 {
566         struct pwm_export *export = pwmexport_from_dev(pwm_dev);
567         struct pwm_device *pwm = export->pwm;
568         struct pwm_state state;
569         u64 val;
570         int ret;
571
572         ret = kstrtou64(buf, 0, &val);
573         if (ret)
574                 return ret;
575
576         guard(mutex)(&export->lock);
577
578         pwm_get_state(pwm, &state);
579         state.duty_cycle = val;
580         ret = pwm_apply_might_sleep(pwm, &state);
581
582         return ret ? : size;
583 }
584
585 static ssize_t enable_show(struct device *pwm_dev,
586                            struct device_attribute *attr,
587                            char *buf)
588 {
589         const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
590         struct pwm_state state;
591
592         pwm_get_state(pwm, &state);
593
594         return sysfs_emit(buf, "%d\n", state.enabled);
595 }
596
597 static ssize_t enable_store(struct device *pwm_dev,
598                             struct device_attribute *attr,
599                             const char *buf, size_t size)
600 {
601         struct pwm_export *export = pwmexport_from_dev(pwm_dev);
602         struct pwm_device *pwm = export->pwm;
603         struct pwm_state state;
604         int val, ret;
605
606         ret = kstrtoint(buf, 0, &val);
607         if (ret)
608                 return ret;
609
610         guard(mutex)(&export->lock);
611
612         pwm_get_state(pwm, &state);
613
614         switch (val) {
615         case 0:
616                 state.enabled = false;
617                 break;
618         case 1:
619                 state.enabled = true;
620                 break;
621         default:
622                 return -EINVAL;
623         }
624
625         ret = pwm_apply_might_sleep(pwm, &state);
626
627         return ret ? : size;
628 }
629
630 static ssize_t polarity_show(struct device *pwm_dev,
631                              struct device_attribute *attr,
632                              char *buf)
633 {
634         const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
635         const char *polarity = "unknown";
636         struct pwm_state state;
637
638         pwm_get_state(pwm, &state);
639
640         switch (state.polarity) {
641         case PWM_POLARITY_NORMAL:
642                 polarity = "normal";
643                 break;
644
645         case PWM_POLARITY_INVERSED:
646                 polarity = "inversed";
647                 break;
648         }
649
650         return sysfs_emit(buf, "%s\n", polarity);
651 }
652
653 static ssize_t polarity_store(struct device *pwm_dev,
654                               struct device_attribute *attr,
655                               const char *buf, size_t size)
656 {
657         struct pwm_export *export = pwmexport_from_dev(pwm_dev);
658         struct pwm_device *pwm = export->pwm;
659         enum pwm_polarity polarity;
660         struct pwm_state state;
661         int ret;
662
663         if (sysfs_streq(buf, "normal"))
664                 polarity = PWM_POLARITY_NORMAL;
665         else if (sysfs_streq(buf, "inversed"))
666                 polarity = PWM_POLARITY_INVERSED;
667         else
668                 return -EINVAL;
669
670         guard(mutex)(&export->lock);
671
672         pwm_get_state(pwm, &state);
673         state.polarity = polarity;
674         ret = pwm_apply_might_sleep(pwm, &state);
675
676         return ret ? : size;
677 }
678
679 static ssize_t capture_show(struct device *pwm_dev,
680                             struct device_attribute *attr,
681                             char *buf)
682 {
683         struct pwm_device *pwm = pwm_from_dev(pwm_dev);
684         struct pwm_capture result;
685         int ret;
686
687         ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
688         if (ret)
689                 return ret;
690
691         return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
692 }
693
694 static DEVICE_ATTR_RW(period);
695 static DEVICE_ATTR_RW(duty_cycle);
696 static DEVICE_ATTR_RW(enable);
697 static DEVICE_ATTR_RW(polarity);
698 static DEVICE_ATTR_RO(capture);
699
700 static struct attribute *pwm_attrs[] = {
701         &dev_attr_period.attr,
702         &dev_attr_duty_cycle.attr,
703         &dev_attr_enable.attr,
704         &dev_attr_polarity.attr,
705         &dev_attr_capture.attr,
706         NULL
707 };
708 ATTRIBUTE_GROUPS(pwm);
709
710 static void pwm_export_release(struct device *pwm_dev)
711 {
712         struct pwm_export *export = pwmexport_from_dev(pwm_dev);
713
714         kfree(export);
715 }
716
717 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
718 {
719         struct pwm_export *export;
720         char *pwm_prop[2];
721         int ret;
722
723         if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
724                 return -EBUSY;
725
726         export = kzalloc(sizeof(*export), GFP_KERNEL);
727         if (!export) {
728                 clear_bit(PWMF_EXPORTED, &pwm->flags);
729                 return -ENOMEM;
730         }
731
732         export->pwm = pwm;
733         mutex_init(&export->lock);
734
735         export->pwm_dev.release = pwm_export_release;
736         export->pwm_dev.parent = pwmchip_dev;
737         export->pwm_dev.devt = MKDEV(0, 0);
738         export->pwm_dev.groups = pwm_groups;
739         dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
740
741         ret = device_register(&export->pwm_dev);
742         if (ret) {
743                 clear_bit(PWMF_EXPORTED, &pwm->flags);
744                 put_device(&export->pwm_dev);
745                 export = NULL;
746                 return ret;
747         }
748         pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
749         pwm_prop[1] = NULL;
750         kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
751         kfree(pwm_prop[0]);
752
753         return 0;
754 }
755
756 static int pwm_unexport_match(struct device *pwm_dev, void *data)
757 {
758         return pwm_from_dev(pwm_dev) == data;
759 }
760
761 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
762 {
763         struct device *pwm_dev;
764         char *pwm_prop[2];
765
766         if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
767                 return -ENODEV;
768
769         pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
770         if (!pwm_dev)
771                 return -ENODEV;
772
773         pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
774         pwm_prop[1] = NULL;
775         kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
776         kfree(pwm_prop[0]);
777
778         /* for device_find_child() */
779         put_device(pwm_dev);
780         device_unregister(pwm_dev);
781         pwm_put(pwm);
782
783         return 0;
784 }
785
786 static ssize_t export_store(struct device *pwmchip_dev,
787                             struct device_attribute *attr,
788                             const char *buf, size_t len)
789 {
790         struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
791         struct pwm_device *pwm;
792         unsigned int hwpwm;
793         int ret;
794
795         ret = kstrtouint(buf, 0, &hwpwm);
796         if (ret < 0)
797                 return ret;
798
799         if (hwpwm >= chip->npwm)
800                 return -ENODEV;
801
802         pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
803         if (IS_ERR(pwm))
804                 return PTR_ERR(pwm);
805
806         ret = pwm_export_child(pwmchip_dev, pwm);
807         if (ret < 0)
808                 pwm_put(pwm);
809
810         return ret ? : len;
811 }
812 static DEVICE_ATTR_WO(export);
813
814 static ssize_t unexport_store(struct device *pwmchip_dev,
815                               struct device_attribute *attr,
816                               const char *buf, size_t len)
817 {
818         struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
819         unsigned int hwpwm;
820         int ret;
821
822         ret = kstrtouint(buf, 0, &hwpwm);
823         if (ret < 0)
824                 return ret;
825
826         if (hwpwm >= chip->npwm)
827                 return -ENODEV;
828
829         ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
830
831         return ret ? : len;
832 }
833 static DEVICE_ATTR_WO(unexport);
834
835 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
836                          char *buf)
837 {
838         const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
839
840         return sysfs_emit(buf, "%u\n", chip->npwm);
841 }
842 static DEVICE_ATTR_RO(npwm);
843
844 static struct attribute *pwm_chip_attrs[] = {
845         &dev_attr_export.attr,
846         &dev_attr_unexport.attr,
847         &dev_attr_npwm.attr,
848         NULL,
849 };
850 ATTRIBUTE_GROUPS(pwm_chip);
851
852 /* takes export->lock on success */
853 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
854                                               struct pwm_device *pwm,
855                                               struct pwm_state *state)
856 {
857         struct device *pwm_dev;
858         struct pwm_export *export;
859
860         if (!test_bit(PWMF_EXPORTED, &pwm->flags))
861                 return NULL;
862
863         pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
864         if (!pwm_dev)
865                 return NULL;
866
867         export = pwmexport_from_dev(pwm_dev);
868         put_device(pwm_dev);    /* for device_find_child() */
869
870         mutex_lock(&export->lock);
871         pwm_get_state(pwm, state);
872
873         return export;
874 }
875
876 static int pwm_class_apply_state(struct pwm_export *export,
877                                  struct pwm_device *pwm,
878                                  struct pwm_state *state)
879 {
880         int ret = pwm_apply_might_sleep(pwm, state);
881
882         /* release lock taken in pwm_class_get_state */
883         mutex_unlock(&export->lock);
884
885         return ret;
886 }
887
888 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
889 {
890         struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
891         unsigned int i;
892         int ret = 0;
893
894         for (i = 0; i < npwm; i++) {
895                 struct pwm_device *pwm = &chip->pwms[i];
896                 struct pwm_state state;
897                 struct pwm_export *export;
898
899                 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
900                 if (!export)
901                         continue;
902
903                 /* If pwmchip was not enabled before suspend, do nothing. */
904                 if (!export->suspend.enabled) {
905                         /* release lock taken in pwm_class_get_state */
906                         mutex_unlock(&export->lock);
907                         continue;
908                 }
909
910                 state.enabled = export->suspend.enabled;
911                 ret = pwm_class_apply_state(export, pwm, &state);
912                 if (ret < 0)
913                         break;
914         }
915
916         return ret;
917 }
918
919 static int pwm_class_suspend(struct device *pwmchip_dev)
920 {
921         struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
922         unsigned int i;
923         int ret = 0;
924
925         for (i = 0; i < chip->npwm; i++) {
926                 struct pwm_device *pwm = &chip->pwms[i];
927                 struct pwm_state state;
928                 struct pwm_export *export;
929
930                 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
931                 if (!export)
932                         continue;
933
934                 /*
935                  * If pwmchip was not enabled before suspend, save
936                  * state for resume time and do nothing else.
937                  */
938                 export->suspend = state;
939                 if (!state.enabled) {
940                         /* release lock taken in pwm_class_get_state */
941                         mutex_unlock(&export->lock);
942                         continue;
943                 }
944
945                 state.enabled = false;
946                 ret = pwm_class_apply_state(export, pwm, &state);
947                 if (ret < 0) {
948                         /*
949                          * roll back the PWM devices that were disabled by
950                          * this suspend function.
951                          */
952                         pwm_class_resume_npwm(pwmchip_dev, i);
953                         break;
954                 }
955         }
956
957         return ret;
958 }
959
960 static int pwm_class_resume(struct device *pwmchip_dev)
961 {
962         struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
963
964         return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
965 }
966
967 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
968
969 static struct class pwm_class = {
970         .name = "pwm",
971         .dev_groups = pwm_chip_groups,
972         .pm = pm_sleep_ptr(&pwm_class_pm_ops),
973 };
974
975 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
976 {
977         unsigned int i;
978
979         for (i = 0; i < chip->npwm; i++) {
980                 struct pwm_device *pwm = &chip->pwms[i];
981
982                 if (test_bit(PWMF_EXPORTED, &pwm->flags))
983                         pwm_unexport_child(&chip->dev, pwm);
984         }
985 }
986
987 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
988
989 static void *pwmchip_priv(struct pwm_chip *chip)
990 {
991         return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
992 }
993
994 /* This is the counterpart to pwmchip_alloc() */
995 void pwmchip_put(struct pwm_chip *chip)
996 {
997         put_device(&chip->dev);
998 }
999 EXPORT_SYMBOL_GPL(pwmchip_put);
1000
1001 static void pwmchip_release(struct device *pwmchip_dev)
1002 {
1003         struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1004
1005         kfree(chip);
1006 }
1007
1008 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1009 {
1010         struct pwm_chip *chip;
1011         struct device *pwmchip_dev;
1012         size_t alloc_size;
1013         unsigned int i;
1014
1015         alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1016                               sizeof_priv);
1017
1018         chip = kzalloc(alloc_size, GFP_KERNEL);
1019         if (!chip)
1020                 return ERR_PTR(-ENOMEM);
1021
1022         chip->npwm = npwm;
1023         chip->uses_pwmchip_alloc = true;
1024
1025         pwmchip_dev = &chip->dev;
1026         device_initialize(pwmchip_dev);
1027         pwmchip_dev->class = &pwm_class;
1028         pwmchip_dev->parent = parent;
1029         pwmchip_dev->release = pwmchip_release;
1030
1031         pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1032
1033         for (i = 0; i < chip->npwm; i++) {
1034                 struct pwm_device *pwm = &chip->pwms[i];
1035                 pwm->chip = chip;
1036                 pwm->hwpwm = i;
1037         }
1038
1039         return chip;
1040 }
1041 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1042
1043 static void devm_pwmchip_put(void *data)
1044 {
1045         struct pwm_chip *chip = data;
1046
1047         pwmchip_put(chip);
1048 }
1049
1050 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1051 {
1052         struct pwm_chip *chip;
1053         int ret;
1054
1055         chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1056         if (IS_ERR(chip))
1057                 return chip;
1058
1059         ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1060         if (ret)
1061                 return ERR_PTR(ret);
1062
1063         return chip;
1064 }
1065 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1066
1067 static void of_pwmchip_add(struct pwm_chip *chip)
1068 {
1069         if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1070                 return;
1071
1072         if (!chip->of_xlate)
1073                 chip->of_xlate = of_pwm_xlate_with_flags;
1074
1075         of_node_get(pwmchip_parent(chip)->of_node);
1076 }
1077
1078 static void of_pwmchip_remove(struct pwm_chip *chip)
1079 {
1080         if (pwmchip_parent(chip))
1081                 of_node_put(pwmchip_parent(chip)->of_node);
1082 }
1083
1084 static bool pwm_ops_check(const struct pwm_chip *chip)
1085 {
1086         const struct pwm_ops *ops = chip->ops;
1087
1088         if (!ops->apply)
1089                 return false;
1090
1091         if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1092                 dev_warn(pwmchip_parent(chip),
1093                          "Please implement the .get_state() callback\n");
1094
1095         return true;
1096 }
1097
1098 /**
1099  * __pwmchip_add() - register a new PWM chip
1100  * @chip: the PWM chip to add
1101  * @owner: reference to the module providing the chip.
1102  *
1103  * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
1104  * pwmchip_add wrapper to do this right.
1105  *
1106  * Returns: 0 on success or a negative error code on failure.
1107  */
1108 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
1109 {
1110         int ret;
1111
1112         if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
1113                 return -EINVAL;
1114
1115         /*
1116          * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
1117          * otherwise the embedded struct device might disappear too early
1118          * resulting in memory corruption.
1119          * Catch drivers that were not converted appropriately.
1120          */
1121         if (!chip->uses_pwmchip_alloc)
1122                 return -EINVAL;
1123
1124         if (!pwm_ops_check(chip))
1125                 return -EINVAL;
1126
1127         chip->owner = owner;
1128
1129         guard(mutex)(&pwm_lock);
1130
1131         ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
1132         if (ret < 0)
1133                 return ret;
1134
1135         chip->id = ret;
1136
1137         dev_set_name(&chip->dev, "pwmchip%u", chip->id);
1138
1139         if (IS_ENABLED(CONFIG_OF))
1140                 of_pwmchip_add(chip);
1141
1142         ret = device_add(&chip->dev);
1143         if (ret)
1144                 goto err_device_add;
1145
1146         return 0;
1147
1148 err_device_add:
1149         if (IS_ENABLED(CONFIG_OF))
1150                 of_pwmchip_remove(chip);
1151
1152         idr_remove(&pwm_chips, chip->id);
1153
1154         return ret;
1155 }
1156 EXPORT_SYMBOL_GPL(__pwmchip_add);
1157
1158 /**
1159  * pwmchip_remove() - remove a PWM chip
1160  * @chip: the PWM chip to remove
1161  *
1162  * Removes a PWM chip.
1163  */
1164 void pwmchip_remove(struct pwm_chip *chip)
1165 {
1166         pwmchip_sysfs_unexport(chip);
1167
1168         if (IS_ENABLED(CONFIG_OF))
1169                 of_pwmchip_remove(chip);
1170
1171         scoped_guard(mutex, &pwm_lock)
1172                 idr_remove(&pwm_chips, chip->id);
1173
1174         device_del(&chip->dev);
1175 }
1176 EXPORT_SYMBOL_GPL(pwmchip_remove);
1177
1178 static void devm_pwmchip_remove(void *data)
1179 {
1180         struct pwm_chip *chip = data;
1181
1182         pwmchip_remove(chip);
1183 }
1184
1185 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
1186 {
1187         int ret;
1188
1189         ret = __pwmchip_add(chip, owner);
1190         if (ret)
1191                 return ret;
1192
1193         return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
1194 }
1195 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
1196
1197 static struct device_link *pwm_device_link_add(struct device *dev,
1198                                                struct pwm_device *pwm)
1199 {
1200         struct device_link *dl;
1201
1202         if (!dev) {
1203                 /*
1204                  * No device for the PWM consumer has been provided. It may
1205                  * impact the PM sequence ordering: the PWM supplier may get
1206                  * suspended before the consumer.
1207                  */
1208                 dev_warn(pwmchip_parent(pwm->chip),
1209                          "No consumer device specified to create a link to\n");
1210                 return NULL;
1211         }
1212
1213         dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1214         if (!dl) {
1215                 dev_err(dev, "failed to create device link to %s\n",
1216                         dev_name(pwmchip_parent(pwm->chip)));
1217                 return ERR_PTR(-EINVAL);
1218         }
1219
1220         return dl;
1221 }
1222
1223 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1224 {
1225         struct pwm_chip *chip;
1226         unsigned long id, tmp;
1227
1228         guard(mutex)(&pwm_lock);
1229
1230         idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1231                 if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1232                         return chip;
1233
1234         return ERR_PTR(-EPROBE_DEFER);
1235 }
1236
1237 /**
1238  * of_pwm_get() - request a PWM via the PWM framework
1239  * @dev: device for PWM consumer
1240  * @np: device node to get the PWM from
1241  * @con_id: consumer name
1242  *
1243  * Returns the PWM device parsed from the phandle and index specified in the
1244  * "pwms" property of a device tree node or a negative error-code on failure.
1245  * Values parsed from the device tree are stored in the returned PWM device
1246  * object.
1247  *
1248  * If con_id is NULL, the first PWM device listed in the "pwms" property will
1249  * be requested. Otherwise the "pwm-names" property is used to do a reverse
1250  * lookup of the PWM index. This also means that the "pwm-names" property
1251  * becomes mandatory for devices that look up the PWM device via the con_id
1252  * parameter.
1253  *
1254  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1255  * error code on failure.
1256  */
1257 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1258                                      const char *con_id)
1259 {
1260         struct pwm_device *pwm = NULL;
1261         struct of_phandle_args args;
1262         struct device_link *dl;
1263         struct pwm_chip *chip;
1264         int index = 0;
1265         int err;
1266
1267         if (con_id) {
1268                 index = of_property_match_string(np, "pwm-names", con_id);
1269                 if (index < 0)
1270                         return ERR_PTR(index);
1271         }
1272
1273         err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
1274                                          &args);
1275         if (err) {
1276                 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1277                 return ERR_PTR(err);
1278         }
1279
1280         chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1281         if (IS_ERR(chip)) {
1282                 if (PTR_ERR(chip) != -EPROBE_DEFER)
1283                         pr_err("%s(): PWM chip not found\n", __func__);
1284
1285                 pwm = ERR_CAST(chip);
1286                 goto put;
1287         }
1288
1289         pwm = chip->of_xlate(chip, &args);
1290         if (IS_ERR(pwm))
1291                 goto put;
1292
1293         dl = pwm_device_link_add(dev, pwm);
1294         if (IS_ERR(dl)) {
1295                 /* of_xlate ended up calling pwm_request_from_chip() */
1296                 pwm_put(pwm);
1297                 pwm = ERR_CAST(dl);
1298                 goto put;
1299         }
1300
1301         /*
1302          * If a consumer name was not given, try to look it up from the
1303          * "pwm-names" property if it exists. Otherwise use the name of
1304          * the user device node.
1305          */
1306         if (!con_id) {
1307                 err = of_property_read_string_index(np, "pwm-names", index,
1308                                                     &con_id);
1309                 if (err < 0)
1310                         con_id = np->name;
1311         }
1312
1313         pwm->label = con_id;
1314
1315 put:
1316         of_node_put(args.np);
1317
1318         return pwm;
1319 }
1320
1321 /**
1322  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1323  * @fwnode: firmware node to get the "pwms" property from
1324  *
1325  * Returns the PWM device parsed from the fwnode and index specified in the
1326  * "pwms" property or a negative error-code on failure.
1327  * Values parsed from the device tree are stored in the returned PWM device
1328  * object.
1329  *
1330  * This is analogous to of_pwm_get() except con_id is not yet supported.
1331  * ACPI entries must look like
1332  * Package () {"pwms", Package ()
1333  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1334  *
1335  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1336  * error code on failure.
1337  */
1338 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1339 {
1340         struct pwm_device *pwm;
1341         struct fwnode_reference_args args;
1342         struct pwm_chip *chip;
1343         int ret;
1344
1345         memset(&args, 0, sizeof(args));
1346
1347         ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1348         if (ret < 0)
1349                 return ERR_PTR(ret);
1350
1351         if (args.nargs < 2)
1352                 return ERR_PTR(-EPROTO);
1353
1354         chip = fwnode_to_pwmchip(args.fwnode);
1355         if (IS_ERR(chip))
1356                 return ERR_CAST(chip);
1357
1358         pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1359         if (IS_ERR(pwm))
1360                 return pwm;
1361
1362         pwm->args.period = args.args[1];
1363         pwm->args.polarity = PWM_POLARITY_NORMAL;
1364
1365         if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1366                 pwm->args.polarity = PWM_POLARITY_INVERSED;
1367
1368         return pwm;
1369 }
1370
1371 static DEFINE_MUTEX(pwm_lookup_lock);
1372 static LIST_HEAD(pwm_lookup_list);
1373
1374 /**
1375  * pwm_add_table() - register PWM device consumers
1376  * @table: array of consumers to register
1377  * @num: number of consumers in table
1378  */
1379 void pwm_add_table(struct pwm_lookup *table, size_t num)
1380 {
1381         guard(mutex)(&pwm_lookup_lock);
1382
1383         while (num--) {
1384                 list_add_tail(&table->list, &pwm_lookup_list);
1385                 table++;
1386         }
1387 }
1388
1389 /**
1390  * pwm_remove_table() - unregister PWM device consumers
1391  * @table: array of consumers to unregister
1392  * @num: number of consumers in table
1393  */
1394 void pwm_remove_table(struct pwm_lookup *table, size_t num)
1395 {
1396         guard(mutex)(&pwm_lookup_lock);
1397
1398         while (num--) {
1399                 list_del(&table->list);
1400                 table++;
1401         }
1402 }
1403
1404 /**
1405  * pwm_get() - look up and request a PWM device
1406  * @dev: device for PWM consumer
1407  * @con_id: consumer name
1408  *
1409  * Lookup is first attempted using DT. If the device was not instantiated from
1410  * a device tree, a PWM chip and a relative index is looked up via a table
1411  * supplied by board setup code (see pwm_add_table()).
1412  *
1413  * Once a PWM chip has been found the specified PWM device will be requested
1414  * and is ready to be used.
1415  *
1416  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1417  * error code on failure.
1418  */
1419 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1420 {
1421         const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1422         const char *dev_id = dev ? dev_name(dev) : NULL;
1423         struct pwm_device *pwm;
1424         struct pwm_chip *chip;
1425         struct device_link *dl;
1426         unsigned int best = 0;
1427         struct pwm_lookup *p, *chosen = NULL;
1428         unsigned int match;
1429         int err;
1430
1431         /* look up via DT first */
1432         if (is_of_node(fwnode))
1433                 return of_pwm_get(dev, to_of_node(fwnode), con_id);
1434
1435         /* then lookup via ACPI */
1436         if (is_acpi_node(fwnode)) {
1437                 pwm = acpi_pwm_get(fwnode);
1438                 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1439                         return pwm;
1440         }
1441
1442         /*
1443          * We look up the provider in the static table typically provided by
1444          * board setup code. We first try to lookup the consumer device by
1445          * name. If the consumer device was passed in as NULL or if no match
1446          * was found, we try to find the consumer by directly looking it up
1447          * by name.
1448          *
1449          * If a match is found, the provider PWM chip is looked up by name
1450          * and a PWM device is requested using the PWM device per-chip index.
1451          *
1452          * The lookup algorithm was shamelessly taken from the clock
1453          * framework:
1454          *
1455          * We do slightly fuzzy matching here:
1456          *  An entry with a NULL ID is assumed to be a wildcard.
1457          *  If an entry has a device ID, it must match
1458          *  If an entry has a connection ID, it must match
1459          * Then we take the most specific entry - with the following order
1460          * of precedence: dev+con > dev only > con only.
1461          */
1462         scoped_guard(mutex, &pwm_lookup_lock)
1463                 list_for_each_entry(p, &pwm_lookup_list, list) {
1464                         match = 0;
1465
1466                         if (p->dev_id) {
1467                                 if (!dev_id || strcmp(p->dev_id, dev_id))
1468                                         continue;
1469
1470                                 match += 2;
1471                         }
1472
1473                         if (p->con_id) {
1474                                 if (!con_id || strcmp(p->con_id, con_id))
1475                                         continue;
1476
1477                                 match += 1;
1478                         }
1479
1480                         if (match > best) {
1481                                 chosen = p;
1482
1483                                 if (match != 3)
1484                                         best = match;
1485                                 else
1486                                         break;
1487                         }
1488                 }
1489
1490         if (!chosen)
1491                 return ERR_PTR(-ENODEV);
1492
1493         chip = pwmchip_find_by_name(chosen->provider);
1494
1495         /*
1496          * If the lookup entry specifies a module, load the module and retry
1497          * the PWM chip lookup. This can be used to work around driver load
1498          * ordering issues if driver's can't be made to properly support the
1499          * deferred probe mechanism.
1500          */
1501         if (!chip && chosen->module) {
1502                 err = request_module(chosen->module);
1503                 if (err == 0)
1504                         chip = pwmchip_find_by_name(chosen->provider);
1505         }
1506
1507         if (!chip)
1508                 return ERR_PTR(-EPROBE_DEFER);
1509
1510         pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1511         if (IS_ERR(pwm))
1512                 return pwm;
1513
1514         dl = pwm_device_link_add(dev, pwm);
1515         if (IS_ERR(dl)) {
1516                 pwm_put(pwm);
1517                 return ERR_CAST(dl);
1518         }
1519
1520         pwm->args.period = chosen->period;
1521         pwm->args.polarity = chosen->polarity;
1522
1523         return pwm;
1524 }
1525 EXPORT_SYMBOL_GPL(pwm_get);
1526
1527 /**
1528  * pwm_put() - release a PWM device
1529  * @pwm: PWM device
1530  */
1531 void pwm_put(struct pwm_device *pwm)
1532 {
1533         struct pwm_chip *chip;
1534
1535         if (!pwm)
1536                 return;
1537
1538         chip = pwm->chip;
1539
1540         guard(mutex)(&pwm_lock);
1541
1542         if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1543                 pr_warn("PWM device already freed\n");
1544                 return;
1545         }
1546
1547         if (chip->ops->free)
1548                 pwm->chip->ops->free(pwm->chip, pwm);
1549
1550         pwm->label = NULL;
1551
1552         put_device(&chip->dev);
1553
1554         module_put(chip->owner);
1555 }
1556 EXPORT_SYMBOL_GPL(pwm_put);
1557
1558 static void devm_pwm_release(void *pwm)
1559 {
1560         pwm_put(pwm);
1561 }
1562
1563 /**
1564  * devm_pwm_get() - resource managed pwm_get()
1565  * @dev: device for PWM consumer
1566  * @con_id: consumer name
1567  *
1568  * This function performs like pwm_get() but the acquired PWM device will
1569  * automatically be released on driver detach.
1570  *
1571  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1572  * error code on failure.
1573  */
1574 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1575 {
1576         struct pwm_device *pwm;
1577         int ret;
1578
1579         pwm = pwm_get(dev, con_id);
1580         if (IS_ERR(pwm))
1581                 return pwm;
1582
1583         ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1584         if (ret)
1585                 return ERR_PTR(ret);
1586
1587         return pwm;
1588 }
1589 EXPORT_SYMBOL_GPL(devm_pwm_get);
1590
1591 /**
1592  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1593  * @dev: device for PWM consumer
1594  * @fwnode: firmware node to get the PWM from
1595  * @con_id: consumer name
1596  *
1597  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1598  * acpi_pwm_get() for a detailed description.
1599  *
1600  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1601  * error code on failure.
1602  */
1603 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1604                                        struct fwnode_handle *fwnode,
1605                                        const char *con_id)
1606 {
1607         struct pwm_device *pwm = ERR_PTR(-ENODEV);
1608         int ret;
1609
1610         if (is_of_node(fwnode))
1611                 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1612         else if (is_acpi_node(fwnode))
1613                 pwm = acpi_pwm_get(fwnode);
1614         if (IS_ERR(pwm))
1615                 return pwm;
1616
1617         ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1618         if (ret)
1619                 return ERR_PTR(ret);
1620
1621         return pwm;
1622 }
1623 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1624
1625 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1626 {
1627         unsigned int i;
1628
1629         for (i = 0; i < chip->npwm; i++) {
1630                 struct pwm_device *pwm = &chip->pwms[i];
1631                 struct pwm_state state;
1632
1633                 pwm_get_state(pwm, &state);
1634
1635                 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1636
1637                 if (test_bit(PWMF_REQUESTED, &pwm->flags))
1638                         seq_puts(s, " requested");
1639
1640                 if (state.enabled)
1641                         seq_puts(s, " enabled");
1642
1643                 seq_printf(s, " period: %llu ns", state.period);
1644                 seq_printf(s, " duty: %llu ns", state.duty_cycle);
1645                 seq_printf(s, " polarity: %s",
1646                            state.polarity ? "inverse" : "normal");
1647
1648                 if (state.usage_power)
1649                         seq_puts(s, " usage_power");
1650
1651                 seq_puts(s, "\n");
1652         }
1653 }
1654
1655 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1656 {
1657         unsigned long id = *pos;
1658         void *ret;
1659
1660         mutex_lock(&pwm_lock);
1661         s->private = "";
1662
1663         ret = idr_get_next_ul(&pwm_chips, &id);
1664         *pos = id;
1665         return ret;
1666 }
1667
1668 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1669 {
1670         unsigned long id = *pos + 1;
1671         void *ret;
1672
1673         s->private = "\n";
1674
1675         ret = idr_get_next_ul(&pwm_chips, &id);
1676         *pos = id;
1677         return ret;
1678 }
1679
1680 static void pwm_seq_stop(struct seq_file *s, void *v)
1681 {
1682         mutex_unlock(&pwm_lock);
1683 }
1684
1685 static int pwm_seq_show(struct seq_file *s, void *v)
1686 {
1687         struct pwm_chip *chip = v;
1688
1689         seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
1690                    (char *)s->private, chip->id,
1691                    pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
1692                    dev_name(pwmchip_parent(chip)), chip->npwm,
1693                    (chip->npwm != 1) ? "s" : "");
1694
1695         pwm_dbg_show(chip, s);
1696
1697         return 0;
1698 }
1699
1700 static const struct seq_operations pwm_debugfs_sops = {
1701         .start = pwm_seq_start,
1702         .next = pwm_seq_next,
1703         .stop = pwm_seq_stop,
1704         .show = pwm_seq_show,
1705 };
1706
1707 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1708
1709 static int __init pwm_init(void)
1710 {
1711         int ret;
1712
1713         ret = class_register(&pwm_class);
1714         if (ret) {
1715                 pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
1716                 return ret;
1717         }
1718
1719         if (IS_ENABLED(CONFIG_DEBUG_FS))
1720                 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
1721
1722         return 0;
1723 }
1724 subsys_initcall(pwm_init);
This page took 0.129502 seconds and 4 git commands to generate.