1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
32 #include <linux/aer.h>
33 #include <linux/bitfield.h>
36 DEFINE_MUTEX(pci_slot_mutex);
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 EXPORT_SYMBOL_GPL(pci_power_names);
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
49 EXPORT_SYMBOL(pci_pci_problems);
51 unsigned int pci_pm_d3hot_delay;
53 static void pci_pme_list_scan(struct work_struct *work);
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 struct pci_pme_device {
60 struct list_head list;
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
67 * Following exit from Conventional Reset, devices must be ready within 1 sec
68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
69 * Reset (PCIe r6.0 sec 5.8).
71 #define PCI_RESET_WAIT 1000 /* msec */
74 * Devices may extend the 1 sec period through Request Retry Status
75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
76 * limit, but 60 sec ought to be enough for any device to become
79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
87 /* Use a 20% upper bound, 1ms minimum */
88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 usleep_range(delay_ms * USEC_PER_MSEC,
90 (delay_ms + upper) * USEC_PER_MSEC);
94 bool pci_reset_supported(struct pci_dev *dev)
96 return dev->reset_methods[0] != 0;
99 #ifdef CONFIG_PCI_DOMAINS
100 int pci_domains_supported = 1;
103 #define DEFAULT_CARDBUS_IO_SIZE (256)
104 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 #define DEFAULT_HOTPLUG_IO_SIZE (256)
110 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
112 /* hpiosize=nn can override this */
113 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117 * pci=hpmemsize=nnM overrides both
119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 #define DEFAULT_HOTPLUG_BUS_SIZE 1
123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129 #elif defined CONFIG_PCIE_BUS_SAFE
130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133 #elif defined CONFIG_PCIE_BUS_PEER2PEER
134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
140 * The default CLS is used if arch didn't set CLS explicitly and not
141 * all pci devices agree on the same value. Arch can override either
142 * the dfl or actual value as it sees fit. Don't forget this is
143 * measured in 32-bit words, not bytes.
145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146 u8 pci_cache_line_size __ro_after_init ;
149 * If we set up a device for bus mastering, we need to check the latency
150 * timer as certain BIOSes forget to set it properly.
152 unsigned int pcibios_max_latency = 255;
154 /* If set, the PCIe ARI capability will not be used. */
155 static bool pcie_ari_disabled;
157 /* If set, the PCIe ATS capability will not be used. */
158 static bool pcie_ats_disabled;
160 /* If set, the PCI config space of each device is printed during boot. */
163 bool pci_ats_disabled(void)
165 return pcie_ats_disabled;
167 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 /* Disable bridge_d3 for all PCIe ports */
170 static bool pci_bridge_d3_disable;
171 /* Force bridge_d3 for all PCIe ports */
172 static bool pci_bridge_d3_force;
174 static int __init pcie_port_pm_setup(char *str)
176 if (!strcmp(str, "off"))
177 pci_bridge_d3_disable = true;
178 else if (!strcmp(str, "force"))
179 pci_bridge_d3_force = true;
182 __setup("pcie_port_pm=", pcie_port_pm_setup);
185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186 * @bus: pointer to PCI bus structure to search
188 * Given a PCI bus, returns the highest PCI bus number present in the set
189 * including the given PCI bus and its list of child PCI buses.
191 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
194 unsigned char max, n;
196 max = bus->busn_res.end;
197 list_for_each_entry(tmp, &bus->children, node) {
198 n = pci_bus_max_busnr(tmp);
204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208 * @pdev: the PCI device
210 * Returns error bits set in PCI_STATUS and clears them.
212 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
217 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 if (ret != PCIBIOS_SUCCESSFUL)
221 status &= PCI_STATUS_ERROR_BITS;
223 pci_write_config_word(pdev, PCI_STATUS, status);
227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 #ifdef CONFIG_HAS_IOMEM
230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
233 struct resource *res = &pdev->resource[bar];
234 resource_size_t start = res->start;
235 resource_size_t size = resource_size(res);
238 * Make sure the BAR is actually a memory resource, not an IO resource
240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
246 return ioremap_wc(start, size);
248 return ioremap(start, size);
251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 return __pci_ioremap_resource(pdev, bar, false);
255 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 return __pci_ioremap_resource(pdev, bar, true);
261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
265 * pci_dev_str_match_path - test if a path string matches a device
266 * @dev: the PCI device to test
267 * @path: string to match the device against
268 * @endptr: pointer to the string after the match
270 * Test if a string (typically from a kernel parameter) formatted as a
271 * path of device/function addresses matches a PCI device. The string must
274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276 * A path for a device can be obtained using 'lspci -t'. Using a path
277 * is more robust against bus renumbering than using only a single bus,
278 * device and function address.
280 * Returns 1 if the string matches the device, 0 if it does not and
281 * a negative error code if it fails to parse the string.
283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
287 unsigned int seg, bus, slot, func;
291 *endptr = strchrnul(path, ';');
293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
298 p = strrchr(wpath, '/');
301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
307 if (dev->devfn != PCI_DEVFN(slot, func)) {
313 * Note: we don't need to get a reference to the upstream
314 * bridge because we hold a reference to the top level
315 * device which should hold a reference to the bridge,
318 dev = pci_upstream_bridge(dev);
327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
338 ret = (seg == pci_domain_nr(dev->bus) &&
339 bus == dev->bus->number &&
340 dev->devfn == PCI_DEVFN(slot, func));
348 * pci_dev_str_match - test if a string matches a device
349 * @dev: the PCI device to test
350 * @p: string to match the device against
351 * @endptr: pointer to the string after the match
353 * Test if a string (typically from a kernel parameter) matches a specified
354 * PCI device. The string may be of one of the following formats:
356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359 * The first format specifies a PCI bus/device/function address which
360 * may change if new hardware is inserted, if motherboard firmware changes,
361 * or due to changes caused in kernel parameters. If the domain is
362 * left unspecified, it is taken to be 0. In order to be robust against
363 * bus renumbering issues, a path of PCI device/function numbers may be used
364 * to address the specific device. The path for a device can be determined
365 * through the use of 'lspci -t'.
367 * The second format matches devices using IDs in the configuration
368 * space which may match multiple devices in the system. A value of 0
369 * for any field will match all devices. (Note: this differs from
370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371 * legacy reasons and convenience so users don't have to specify
372 * FFFFFFFFs on the command line.)
374 * Returns 1 if the string matches the device, 0 if it does not and
375 * a negative error code if the string cannot be parsed.
377 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
382 unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 if (strncmp(p, "pci:", 4) == 0) {
385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 &subsystem_vendor, &subsystem_device, &count);
390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
394 subsystem_vendor = 0;
395 subsystem_device = 0;
400 if ((!vendor || vendor == dev->vendor) &&
401 (!device || device == dev->device) &&
402 (!subsystem_vendor ||
403 subsystem_vendor == dev->subsystem_vendor) &&
404 (!subsystem_device ||
405 subsystem_device == dev->subsystem_device))
409 * PCI Bus, Device, Function IDs are specified
410 * (optionally, may include a path of devfns following it)
412 ret = pci_dev_str_match_path(dev, p, &p);
427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 u8 pos, int cap, int *ttl)
433 pci_bus_read_config_byte(bus, devfn, pos, &pos);
439 pci_bus_read_config_word(bus, devfn, pos, &ent);
451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
454 int ttl = PCI_FIND_CAP_TTL;
456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 return __pci_find_next_cap(dev->bus, dev->devfn,
462 pos + PCI_CAP_LIST_NEXT, cap);
464 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 unsigned int devfn, u8 hdr_type)
471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 if (!(status & PCI_STATUS_CAP_LIST))
476 case PCI_HEADER_TYPE_NORMAL:
477 case PCI_HEADER_TYPE_BRIDGE:
478 return PCI_CAPABILITY_LIST;
479 case PCI_HEADER_TYPE_CARDBUS:
480 return PCI_CB_CAPABILITY_LIST;
487 * pci_find_capability - query for devices' capabilities
488 * @dev: PCI device to query
489 * @cap: capability code
491 * Tell if a device supports a given PCI capability.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it. Possible values for @cap include:
496 * %PCI_CAP_ID_PM Power Management
497 * %PCI_CAP_ID_AGP Accelerated Graphics Port
498 * %PCI_CAP_ID_VPD Vital Product Data
499 * %PCI_CAP_ID_SLOTID Slot Identification
500 * %PCI_CAP_ID_MSI Message Signalled Interrupts
501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
502 * %PCI_CAP_ID_PCIX PCI-X
503 * %PCI_CAP_ID_EXP PCI Express
505 u8 pci_find_capability(struct pci_dev *dev, int cap)
509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
515 EXPORT_SYMBOL(pci_find_capability);
518 * pci_bus_find_capability - query for devices' capabilities
519 * @bus: the PCI bus to query
520 * @devfn: PCI device to query
521 * @cap: capability code
523 * Like pci_find_capability() but works for PCI devices that do not have a
524 * pci_dev structure set up yet.
526 * Returns the address of the requested capability structure within the
527 * device's PCI configuration space or 0 in case the device does not
530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
538 pos = __pci_find_next_cap(bus, devfn, pos, cap);
542 EXPORT_SYMBOL(pci_bus_find_capability);
545 * pci_find_next_ext_capability - Find an extended capability
546 * @dev: PCI device to query
547 * @start: address at which to start looking (0 to start at beginning of list)
548 * @cap: capability code
550 * Returns the address of the next matching extended capability structure
551 * within the device's PCI configuration space or 0 if the device does
552 * not support it. Some capabilities can occur several times, e.g., the
553 * vendor-specific capability, and this provides a way to find them all.
555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
559 u16 pos = PCI_CFG_SPACE_SIZE;
561 /* minimum 8 bytes per capability */
562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
574 * If we have no capabilities, this is indicated by cap ID,
575 * cap version and next pointer all being 0.
581 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
584 pos = PCI_EXT_CAP_NEXT(header);
585 if (pos < PCI_CFG_SPACE_SIZE)
588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
597 * pci_find_ext_capability - Find an extended capability
598 * @dev: PCI device to query
599 * @cap: capability code
601 * Returns the address of the requested extended capability structure
602 * within the device's PCI configuration space or 0 if the device does
603 * not support it. Possible values for @cap include:
605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
606 * %PCI_EXT_CAP_ID_VC Virtual Channel
607 * %PCI_EXT_CAP_ID_DSN Device Serial Number
608 * %PCI_EXT_CAP_ID_PWR Power Budgeting
610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 return pci_find_next_ext_capability(dev, 0, cap);
614 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
618 * @dev: PCI device to query
620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
623 * Returns the DSN, or zero if the capability does not exist.
625 u64 pci_get_dsn(struct pci_dev *dev)
631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
636 * The Device Serial Number is two dwords offset 4 bytes from the
637 * capability position. The specification says that the first dword is
638 * the lower half, and the second dword is the upper half.
641 pci_read_config_dword(dev, pos, &dword);
643 pci_read_config_dword(dev, pos + 4, &dword);
644 dsn |= ((u64)dword) << 32;
648 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 int rc, ttl = PCI_FIND_CAP_TTL;
655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 mask = HT_3BIT_CAP_MASK;
658 mask = HT_5BIT_CAP_MASK;
660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 PCI_CAP_ID_HT, &ttl);
663 rc = pci_read_config_byte(dev, pos + 3, &cap);
664 if (rc != PCIBIOS_SUCCESSFUL)
667 if ((cap & mask) == ht_cap)
670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 pos + PCI_CAP_LIST_NEXT,
672 PCI_CAP_ID_HT, &ttl);
679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @pos: Position from which to continue searching
682 * @ht_cap: HyperTransport capability code
684 * To be used in conjunction with pci_find_ht_capability() to search for
685 * all capabilities matching @ht_cap. @pos should always be a value returned
686 * from pci_find_ht_capability().
688 * NB. To be 100% safe against broken PCI devices, the caller should take
689 * steps to avoid an infinite loop.
691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
698 * pci_find_ht_capability - query a device's HyperTransport capabilities
699 * @dev: PCI device to query
700 * @ht_cap: HyperTransport capability code
702 * Tell if a device supports a given HyperTransport capability.
703 * Returns an address within the device's PCI configuration space
704 * or 0 in case the device does not support the request capability.
705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706 * which has a HyperTransport capability matching @ht_cap.
708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
718 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
721 * pci_find_vsec_capability - Find a vendor-specific extended capability
722 * @dev: PCI device to query
723 * @vendor: Vendor ID for which capability is defined
724 * @cap: Vendor-specific capability ID
726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
727 * VSEC ID @cap. If found, return the capability offset in
728 * config space; otherwise return 0.
730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
736 if (vendor != dev->vendor)
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 if (ret != PCIBIOS_SUCCESSFUL)
745 if (PCI_VNDR_HEADER_ID(header) == cap)
751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
754 * pci_find_dvsec_capability - Find DVSEC for vendor
755 * @dev: PCI device to query
756 * @vendor: Vendor ID to match for the DVSEC
757 * @dvsec: Designated Vendor-specific capability ID
759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760 * offset in config space; otherwise return 0.
762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 if (vendor == v && dvsec == id)
778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
786 * pci_find_parent_resource - return resource region of parent bus of given
788 * @dev: PCI device structure contains resources to be searched
789 * @res: child resource record for which parent is sought
791 * For given resource region of given device, return the resource region of
792 * parent bus the given region is contained in.
794 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 struct resource *res)
797 const struct pci_bus *bus = dev->bus;
800 pci_bus_for_each_resource(bus, r) {
803 if (resource_contains(r, res)) {
806 * If the window is prefetchable but the BAR is
807 * not, the allocator made a mistake.
809 if (r->flags & IORESOURCE_PREFETCH &&
810 !(res->flags & IORESOURCE_PREFETCH))
814 * If we're below a transparent bridge, there may
815 * be both a positively-decoded aperture and a
816 * subtractively-decoded region that contain the BAR.
817 * We want the positively-decoded one, so this depends
818 * on pci_bus_for_each_resource() giving us those
826 EXPORT_SYMBOL(pci_find_parent_resource);
829 * pci_find_resource - Return matching PCI device resource
830 * @dev: PCI device to query
831 * @res: Resource to look for
833 * Goes over standard PCI resources (BARs) and checks if the given resource
834 * is partially or fully contained in any of them. In that case the
835 * matching resource is returned, %NULL otherwise.
837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
841 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 struct resource *r = &dev->resource[i];
844 if (r->start && resource_contains(r, res))
850 EXPORT_SYMBOL(pci_find_resource);
853 * pci_resource_name - Return the name of the PCI resource
854 * @dev: PCI device to query
855 * @i: index of the resource
857 * Return the standard PCI resource (BAR) name according to their index.
859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
861 static const char * const bar_name[] = {
869 #ifdef CONFIG_PCI_IOV
877 "bridge window", /* "io" included in %pR */
878 "bridge window", /* "mem" included in %pR */
879 "bridge window", /* "mem pref" included in %pR */
881 static const char * const cardbus_name[] = {
888 #ifdef CONFIG_PCI_IOV
896 "CardBus bridge window 0", /* I/O */
897 "CardBus bridge window 1", /* I/O */
898 "CardBus bridge window 0", /* mem */
899 "CardBus bridge window 1", /* mem */
902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 i < ARRAY_SIZE(cardbus_name))
904 return cardbus_name[i];
906 if (i < ARRAY_SIZE(bar_name))
913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914 * @dev: the PCI device to operate on
915 * @pos: config space offset of status word
916 * @mask: mask of bit(s) to care about in status word
918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
924 /* Wait for Transaction Pending bit clean */
925 for (i = 0; i < 4; i++) {
928 msleep((1 << (i - 1)) * 100);
930 pci_read_config_word(dev, pos, &status);
931 if (!(status & mask))
938 static int pci_acs_enable;
941 * pci_request_acs - ask for ACS to be enabled if supported
943 void pci_request_acs(void)
948 static const char *disable_acs_redir_param;
949 static const char *config_acs_param;
957 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
958 const char *p, u16 mask, u16 flags)
968 /* Check for ACS flags */
969 delimit = strstr(p, "@");
974 end = delimit - p - 1;
977 if (*(p + end) == '0') {
981 } else if (*(p + end) == '1') {
986 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
990 pci_err(dev, "Invalid ACS flags... Ignoring\n");
996 pci_err(dev, "ACS Flags missing\n");
1001 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003 pci_err(dev, "Invalid ACS flags specified\n");
1007 ret = pci_dev_str_match(dev, p, &p);
1009 pr_info_once("PCI: Can't parse ACS command line parameter\n");
1011 } else if (ret == 1) {
1016 if (*p != ';' && *p != ',') {
1017 /* End of param or invalid format */
1026 if (!pci_dev_specific_disable_acs_redir(dev))
1029 pci_dbg(dev, "ACS mask = %#06x\n", mask);
1030 pci_dbg(dev, "ACS flags = %#06x\n", flags);
1032 /* If mask is 0 then we copy the bit from the firmware setting. */
1033 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034 caps->ctrl |= flags;
1036 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041 * @dev: the PCI device
1042 * @caps: default ACS controls
1044 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1046 /* Source Validation */
1047 caps->ctrl |= (caps->cap & PCI_ACS_SV);
1049 /* P2P Request Redirect */
1050 caps->ctrl |= (caps->cap & PCI_ACS_RR);
1052 /* P2P Completion Redirect */
1053 caps->ctrl |= (caps->cap & PCI_ACS_CR);
1055 /* Upstream Forwarding */
1056 caps->ctrl |= (caps->cap & PCI_ACS_UF);
1058 /* Enable Translation Blocking for external devices and noats */
1059 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060 caps->ctrl |= (caps->cap & PCI_ACS_TB);
1064 * pci_enable_acs - enable ACS if hardware support it
1065 * @dev: the PCI device
1067 static void pci_enable_acs(struct pci_dev *dev)
1069 struct pci_acs caps;
1076 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1077 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1078 caps.fw_ctrl = caps.ctrl;
1080 /* If an iommu is present we start with kernel default caps */
1081 if (pci_acs_enable) {
1082 if (pci_dev_specific_enable_acs(dev))
1083 pci_std_enable_acs(dev, &caps);
1087 * Always apply caps from the command line, even if there is no iommu.
1088 * Trust that the admin has a reason to change the ACS settings.
1090 __pci_config_acs(dev, &caps, disable_acs_redir_param,
1091 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1092 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1093 __pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1095 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1099 * pcie_read_tlp_log - read TLP Header Log
1101 * @where: PCI Config offset of TLP Header Log
1102 * @tlp_log: TLP Log structure to fill
1104 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1106 * Return: 0 on success and filled TLP Log structure, <0 on error.
1108 int pcie_read_tlp_log(struct pci_dev *dev, int where,
1109 struct pcie_tlp_log *tlp_log)
1113 memset(tlp_log, 0, sizeof(*tlp_log));
1115 for (i = 0; i < 4; i++) {
1116 ret = pci_read_config_dword(dev, where + i * 4,
1119 return pcibios_err_to_errno(ret);
1124 EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1127 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1128 * @dev: PCI device to have its BARs restored
1130 * Restore the BAR values for a given device, so as to make it
1131 * accessible by its driver.
1133 static void pci_restore_bars(struct pci_dev *dev)
1137 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1138 pci_update_resource(dev, i);
1141 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1143 if (pci_use_mid_pm())
1146 return acpi_pci_power_manageable(dev);
1149 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1152 if (pci_use_mid_pm())
1153 return mid_pci_set_power_state(dev, t);
1155 return acpi_pci_set_power_state(dev, t);
1158 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1160 if (pci_use_mid_pm())
1161 return mid_pci_get_power_state(dev);
1163 return acpi_pci_get_power_state(dev);
1166 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1168 if (!pci_use_mid_pm())
1169 acpi_pci_refresh_power_state(dev);
1172 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1174 if (pci_use_mid_pm())
1175 return PCI_POWER_ERROR;
1177 return acpi_pci_choose_state(dev);
1180 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1182 if (pci_use_mid_pm())
1183 return PCI_POWER_ERROR;
1185 return acpi_pci_wakeup(dev, enable);
1188 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1190 if (pci_use_mid_pm())
1193 return acpi_pci_need_resume(dev);
1196 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1198 if (pci_use_mid_pm())
1201 return acpi_pci_bridge_d3(dev);
1205 * pci_update_current_state - Read power state of given device and cache it
1206 * @dev: PCI device to handle.
1207 * @state: State to cache in case the device doesn't have the PM capability
1209 * The power state is read from the PMCSR register, which however is
1210 * inaccessible in D3cold. The platform firmware is therefore queried first
1211 * to detect accessibility of the register. In case the platform firmware
1212 * reports an incorrect state or the device isn't power manageable by the
1213 * platform at all, we try to detect D3cold by testing accessibility of the
1214 * vendor ID in config space.
1216 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1218 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1219 dev->current_state = PCI_D3cold;
1220 } else if (dev->pm_cap) {
1223 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1224 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1225 dev->current_state = PCI_D3cold;
1228 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1230 dev->current_state = state;
1235 * pci_refresh_power_state - Refresh the given device's power state data
1236 * @dev: Target PCI device.
1238 * Ask the platform to refresh the devices power state information and invoke
1239 * pci_update_current_state() to update its current PCI power state.
1241 void pci_refresh_power_state(struct pci_dev *dev)
1243 platform_pci_refresh_power_state(dev);
1244 pci_update_current_state(dev, dev->current_state);
1248 * pci_platform_power_transition - Use platform to change device power state
1249 * @dev: PCI device to handle.
1250 * @state: State to put the device into.
1252 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1256 error = platform_pci_set_power_state(dev, state);
1258 pci_update_current_state(dev, state);
1259 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1260 dev->current_state = PCI_D0;
1264 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1266 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1268 pm_request_resume(&pci_dev->dev);
1273 * pci_resume_bus - Walk given bus and runtime resume devices on it
1274 * @bus: Top bus of the subtree to walk.
1276 void pci_resume_bus(struct pci_bus *bus)
1279 pci_walk_bus(bus, pci_resume_one, NULL);
1282 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1285 bool retrain = false;
1286 struct pci_dev *bridge;
1288 if (pci_is_pcie(dev)) {
1289 bridge = pci_upstream_bridge(dev);
1295 * After reset, the device should not silently discard config
1296 * requests, but it may still indicate that it needs more time by
1297 * responding to them with CRS completions. The Root Port will
1298 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1299 * the read (except when CRS SV is enabled and the read was for the
1300 * Vendor ID; in that case it synthesizes 0x0001 data).
1302 * Wait for the device to return a non-CRS completion. Read the
1303 * Command register instead of Vendor ID so we don't have to
1304 * contend with the CRS SV value.
1309 if (pci_dev_is_disconnected(dev)) {
1310 pci_dbg(dev, "disconnected; not waiting\n");
1314 pci_read_config_dword(dev, PCI_COMMAND, &id);
1315 if (!PCI_POSSIBLE_ERROR(id))
1318 if (delay > timeout) {
1319 pci_warn(dev, "not ready %dms after %s; giving up\n",
1320 delay - 1, reset_type);
1324 if (delay > PCI_RESET_WAIT) {
1327 if (pcie_failed_link_retrain(bridge)) {
1332 pci_info(dev, "not ready %dms after %s; waiting\n",
1333 delay - 1, reset_type);
1340 if (delay > PCI_RESET_WAIT)
1341 pci_info(dev, "ready %dms after %s\n", delay - 1,
1344 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1351 * pci_power_up - Put the given device into D0
1352 * @dev: PCI device to power up
1354 * On success, return 0 or 1, depending on whether or not it is necessary to
1355 * restore the device's BARs subsequently (1 is returned in that case).
1357 * On failure, return a negative error code. Always return failure if @dev
1358 * lacks a Power Management Capability, even if the platform was able to
1359 * put the device in D0 via non-PCI means.
1361 int pci_power_up(struct pci_dev *dev)
1367 platform_pci_set_power_state(dev, PCI_D0);
1370 state = platform_pci_get_power_state(dev);
1371 if (state == PCI_UNKNOWN)
1372 dev->current_state = PCI_D0;
1374 dev->current_state = state;
1379 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1380 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1381 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1382 pci_power_name(dev->current_state));
1383 dev->current_state = PCI_D3cold;
1387 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1389 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1390 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1392 if (state == PCI_D0)
1396 * Force the entire word to 0. This doesn't affect PME_Status, disables
1397 * PME_En, and sets PowerState to 0.
1399 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1401 /* Mandatory transition delays; see PCI PM 1.2. */
1402 if (state == PCI_D3hot)
1403 pci_dev_d3_sleep(dev);
1404 else if (state == PCI_D2)
1405 udelay(PCI_PM_D2_DELAY);
1408 dev->current_state = PCI_D0;
1416 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1417 * @dev: PCI device to power up
1418 * @locked: whether pci_bus_sem is held
1420 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1421 * to confirm the state change, restore its BARs if they might be lost and
1422 * reconfigure ASPM in accordance with the new power state.
1424 * If pci_restore_state() is going to be called right after a power state change
1425 * to D0, it is more efficient to use pci_power_up() directly instead of this
1428 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1433 ret = pci_power_up(dev);
1435 if (dev->current_state == PCI_D0)
1441 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1442 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1443 if (dev->current_state != PCI_D0) {
1444 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1445 pci_power_name(dev->current_state));
1446 } else if (ret > 0) {
1448 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1449 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1450 * from D3hot to D0 _may_ perform an internal reset, thereby
1451 * going to "D0 Uninitialized" rather than "D0 Initialized".
1452 * For example, at least some versions of the 3c905B and the
1453 * 3c556B exhibit this behaviour.
1455 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1456 * devices in a D3hot state at boot. Consequently, we need to
1457 * restore at least the BARs so that the device will be
1458 * accessible to its driver.
1460 pci_restore_bars(dev);
1464 pcie_aspm_pm_state_change(dev->bus->self, locked);
1470 * __pci_dev_set_current_state - Set current state of a PCI device
1471 * @dev: Device to handle
1472 * @data: pointer to state to be set
1474 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1476 pci_power_t state = *(pci_power_t *)data;
1478 dev->current_state = state;
1483 * pci_bus_set_current_state - Walk given bus and set current state of devices
1484 * @bus: Top bus of the subtree to walk.
1485 * @state: state to be set
1487 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1490 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1493 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1499 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1501 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1505 * pci_set_low_power_state - Put a PCI device into a low-power state.
1506 * @dev: PCI device to handle.
1507 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1508 * @locked: whether pci_bus_sem is held
1510 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1513 * -EINVAL if the requested state is invalid.
1514 * -EIO if device does not support PCI PM or its PM capabilities register has a
1515 * wrong version, or device doesn't support the requested state.
1516 * 0 if device already is in the requested state.
1517 * 0 if device's power state has been successfully changed.
1519 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1527 * Validate transition: We can enter D0 from any state, but if
1528 * we're already in a low-power state, we can only go deeper. E.g.,
1529 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1530 * we'd have to go from D3 to D0, then to D1.
1532 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1533 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1534 pci_power_name(dev->current_state),
1535 pci_power_name(state));
1539 /* Check if this device supports the desired state */
1540 if ((state == PCI_D1 && !dev->d1_support)
1541 || (state == PCI_D2 && !dev->d2_support))
1544 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1545 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1546 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1547 pci_power_name(dev->current_state),
1548 pci_power_name(state));
1549 dev->current_state = PCI_D3cold;
1553 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1556 /* Enter specified state */
1557 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1559 /* Mandatory power management transition delays; see PCI PM 1.2. */
1560 if (state == PCI_D3hot)
1561 pci_dev_d3_sleep(dev);
1562 else if (state == PCI_D2)
1563 udelay(PCI_PM_D2_DELAY);
1565 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1566 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1567 if (dev->current_state != state)
1568 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1569 pci_power_name(dev->current_state),
1570 pci_power_name(state));
1573 pcie_aspm_pm_state_change(dev->bus->self, locked);
1578 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1582 /* Bound the state we're entering */
1583 if (state > PCI_D3cold)
1585 else if (state < PCI_D0)
1587 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1590 * If the device or the parent bridge do not support PCI
1591 * PM, ignore the request if we're doing anything other
1592 * than putting it into D0 (which would only happen on
1597 /* Check if we're already there */
1598 if (dev->current_state == state)
1601 if (state == PCI_D0)
1602 return pci_set_full_power_state(dev, locked);
1605 * This device is quirked not to be put into D3, so don't put it in
1608 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1611 if (state == PCI_D3cold) {
1613 * To put the device in D3cold, put it into D3hot in the native
1614 * way, then put it into D3cold using platform ops.
1616 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1618 if (pci_platform_power_transition(dev, PCI_D3cold))
1621 /* Powering off a bridge may power off the whole hierarchy */
1622 if (dev->current_state == PCI_D3cold)
1623 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1625 error = pci_set_low_power_state(dev, state, locked);
1627 if (pci_platform_power_transition(dev, state))
1635 * pci_set_power_state - Set the power state of a PCI device
1636 * @dev: PCI device to handle.
1637 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1639 * Transition a device to a new power state, using the platform firmware and/or
1640 * the device's PCI PM registers.
1643 * -EINVAL if the requested state is invalid.
1644 * -EIO if device does not support PCI PM or its PM capabilities register has a
1645 * wrong version, or device doesn't support the requested state.
1646 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1647 * 0 if device already is in the requested state.
1648 * 0 if the transition is to D3 but D3 is not supported.
1649 * 0 if device's power state has been successfully changed.
1651 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1653 return __pci_set_power_state(dev, state, false);
1655 EXPORT_SYMBOL(pci_set_power_state);
1657 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1659 lockdep_assert_held(&pci_bus_sem);
1661 return __pci_set_power_state(dev, state, true);
1663 EXPORT_SYMBOL(pci_set_power_state_locked);
1665 #define PCI_EXP_SAVE_REGS 7
1667 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1668 u16 cap, bool extended)
1670 struct pci_cap_saved_state *tmp;
1672 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1673 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1679 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1681 return _pci_find_saved_cap(dev, cap, false);
1684 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1686 return _pci_find_saved_cap(dev, cap, true);
1689 static int pci_save_pcie_state(struct pci_dev *dev)
1692 struct pci_cap_saved_state *save_state;
1695 if (!pci_is_pcie(dev))
1698 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1700 pci_err(dev, "buffer not found in %s\n", __func__);
1704 cap = (u16 *)&save_state->cap.data[0];
1705 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1706 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1707 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1708 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1709 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1710 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1711 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1713 pci_save_aspm_l1ss_state(dev);
1714 pci_save_ltr_state(dev);
1719 static void pci_restore_pcie_state(struct pci_dev *dev)
1722 struct pci_cap_saved_state *save_state;
1726 * Restore max latencies (in the LTR capability) before enabling
1727 * LTR itself in PCI_EXP_DEVCTL2.
1729 pci_restore_ltr_state(dev);
1730 pci_restore_aspm_l1ss_state(dev);
1732 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1737 * Downstream ports reset the LTR enable bit when link goes down.
1738 * Check and re-configure the bit here before restoring device.
1739 * PCIe r5.0, sec 7.5.3.16.
1741 pci_bridge_reconfigure_ltr(dev);
1743 cap = (u16 *)&save_state->cap.data[0];
1744 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1745 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1746 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1747 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1748 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1749 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1750 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1753 static int pci_save_pcix_state(struct pci_dev *dev)
1756 struct pci_cap_saved_state *save_state;
1758 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1762 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1764 pci_err(dev, "buffer not found in %s\n", __func__);
1768 pci_read_config_word(dev, pos + PCI_X_CMD,
1769 (u16 *)save_state->cap.data);
1774 static void pci_restore_pcix_state(struct pci_dev *dev)
1777 struct pci_cap_saved_state *save_state;
1780 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1781 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1782 if (!save_state || !pos)
1784 cap = (u16 *)&save_state->cap.data[0];
1786 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1790 * pci_save_state - save the PCI configuration space of a device before
1792 * @dev: PCI device that we're dealing with
1794 int pci_save_state(struct pci_dev *dev)
1797 /* XXX: 100% dword access ok here? */
1798 for (i = 0; i < 16; i++) {
1799 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1800 pci_dbg(dev, "save config %#04x: %#010x\n",
1801 i * 4, dev->saved_config_space[i]);
1803 dev->state_saved = true;
1805 i = pci_save_pcie_state(dev);
1809 i = pci_save_pcix_state(dev);
1813 pci_save_dpc_state(dev);
1814 pci_save_aer_state(dev);
1815 pci_save_ptm_state(dev);
1816 return pci_save_vc_state(dev);
1818 EXPORT_SYMBOL(pci_save_state);
1820 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1821 u32 saved_val, int retry, bool force)
1825 pci_read_config_dword(pdev, offset, &val);
1826 if (!force && val == saved_val)
1830 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1831 offset, val, saved_val);
1832 pci_write_config_dword(pdev, offset, saved_val);
1836 pci_read_config_dword(pdev, offset, &val);
1837 if (val == saved_val)
1844 static void pci_restore_config_space_range(struct pci_dev *pdev,
1845 int start, int end, int retry,
1850 for (index = end; index >= start; index--)
1851 pci_restore_config_dword(pdev, 4 * index,
1852 pdev->saved_config_space[index],
1856 static void pci_restore_config_space(struct pci_dev *pdev)
1858 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1859 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1860 /* Restore BARs before the command register. */
1861 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1862 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1863 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1864 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1867 * Force rewriting of prefetch registers to avoid S3 resume
1868 * issues on Intel PCI bridges that occur when these
1869 * registers are not explicitly written.
1871 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1872 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1874 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1878 static void pci_restore_rebar_state(struct pci_dev *pdev)
1880 unsigned int pos, nbars, i;
1883 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1887 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1888 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1890 for (i = 0; i < nbars; i++, pos += 8) {
1891 struct resource *res;
1894 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1895 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1896 res = pdev->resource + bar_idx;
1897 size = pci_rebar_bytes_to_size(resource_size(res));
1898 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1899 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1900 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1905 * pci_restore_state - Restore the saved state of a PCI device
1906 * @dev: PCI device that we're dealing with
1908 void pci_restore_state(struct pci_dev *dev)
1910 if (!dev->state_saved)
1913 pci_restore_pcie_state(dev);
1914 pci_restore_pasid_state(dev);
1915 pci_restore_pri_state(dev);
1916 pci_restore_ats_state(dev);
1917 pci_restore_vc_state(dev);
1918 pci_restore_rebar_state(dev);
1919 pci_restore_dpc_state(dev);
1920 pci_restore_ptm_state(dev);
1922 pci_aer_clear_status(dev);
1923 pci_restore_aer_state(dev);
1925 pci_restore_config_space(dev);
1927 pci_restore_pcix_state(dev);
1928 pci_restore_msi_state(dev);
1930 /* Restore ACS and IOV configuration state */
1931 pci_enable_acs(dev);
1932 pci_restore_iov_state(dev);
1934 dev->state_saved = false;
1936 EXPORT_SYMBOL(pci_restore_state);
1938 struct pci_saved_state {
1939 u32 config_space[16];
1940 struct pci_cap_saved_data cap[];
1944 * pci_store_saved_state - Allocate and return an opaque struct containing
1945 * the device saved state.
1946 * @dev: PCI device that we're dealing with
1948 * Return NULL if no state or error.
1950 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1952 struct pci_saved_state *state;
1953 struct pci_cap_saved_state *tmp;
1954 struct pci_cap_saved_data *cap;
1957 if (!dev->state_saved)
1960 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1962 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1963 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1965 state = kzalloc(size, GFP_KERNEL);
1969 memcpy(state->config_space, dev->saved_config_space,
1970 sizeof(state->config_space));
1973 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1974 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1975 memcpy(cap, &tmp->cap, len);
1976 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1978 /* Empty cap_save terminates list */
1982 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1985 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1986 * @dev: PCI device that we're dealing with
1987 * @state: Saved state returned from pci_store_saved_state()
1989 int pci_load_saved_state(struct pci_dev *dev,
1990 struct pci_saved_state *state)
1992 struct pci_cap_saved_data *cap;
1994 dev->state_saved = false;
1999 memcpy(dev->saved_config_space, state->config_space,
2000 sizeof(state->config_space));
2004 struct pci_cap_saved_state *tmp;
2006 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2007 if (!tmp || tmp->cap.size != cap->size)
2010 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2011 cap = (struct pci_cap_saved_data *)((u8 *)cap +
2012 sizeof(struct pci_cap_saved_data) + cap->size);
2015 dev->state_saved = true;
2018 EXPORT_SYMBOL_GPL(pci_load_saved_state);
2021 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2022 * and free the memory allocated for it.
2023 * @dev: PCI device that we're dealing with
2024 * @state: Pointer to saved state returned from pci_store_saved_state()
2026 int pci_load_and_free_saved_state(struct pci_dev *dev,
2027 struct pci_saved_state **state)
2029 int ret = pci_load_saved_state(dev, *state);
2034 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2036 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2038 return pci_enable_resources(dev, bars);
2041 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2044 struct pci_dev *bridge;
2048 err = pci_set_power_state(dev, PCI_D0);
2049 if (err < 0 && err != -EIO)
2052 bridge = pci_upstream_bridge(dev);
2054 pcie_aspm_powersave_config_link(bridge);
2056 err = pcibios_enable_device(dev, bars);
2059 pci_fixup_device(pci_fixup_enable, dev);
2061 if (dev->msi_enabled || dev->msix_enabled)
2064 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2066 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2067 if (cmd & PCI_COMMAND_INTX_DISABLE)
2068 pci_write_config_word(dev, PCI_COMMAND,
2069 cmd & ~PCI_COMMAND_INTX_DISABLE);
2076 * pci_reenable_device - Resume abandoned device
2077 * @dev: PCI device to be resumed
2079 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2080 * to be called by normal code, write proper resume handler and use it instead.
2082 int pci_reenable_device(struct pci_dev *dev)
2084 if (pci_is_enabled(dev))
2085 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2088 EXPORT_SYMBOL(pci_reenable_device);
2090 static void pci_enable_bridge(struct pci_dev *dev)
2092 struct pci_dev *bridge;
2095 bridge = pci_upstream_bridge(dev);
2097 pci_enable_bridge(bridge);
2099 if (pci_is_enabled(dev)) {
2100 if (!dev->is_busmaster)
2101 pci_set_master(dev);
2105 retval = pci_enable_device(dev);
2107 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2109 pci_set_master(dev);
2112 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2114 struct pci_dev *bridge;
2119 * Power state could be unknown at this point, either due to a fresh
2120 * boot or a device removal call. So get the current power state
2121 * so that things like MSI message writing will behave as expected
2122 * (e.g. if the device really is in D0 at enable time).
2124 pci_update_current_state(dev, dev->current_state);
2126 if (atomic_inc_return(&dev->enable_cnt) > 1)
2127 return 0; /* already enabled */
2129 bridge = pci_upstream_bridge(dev);
2131 pci_enable_bridge(bridge);
2133 /* only skip sriov related */
2134 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2135 if (dev->resource[i].flags & flags)
2137 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2138 if (dev->resource[i].flags & flags)
2141 err = do_pci_enable_device(dev, bars);
2143 atomic_dec(&dev->enable_cnt);
2148 * pci_enable_device_mem - Initialize a device for use with Memory space
2149 * @dev: PCI device to be initialized
2151 * Initialize device before it's used by a driver. Ask low-level code
2152 * to enable Memory resources. Wake up the device if it was suspended.
2153 * Beware, this function can fail.
2155 int pci_enable_device_mem(struct pci_dev *dev)
2157 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2159 EXPORT_SYMBOL(pci_enable_device_mem);
2162 * pci_enable_device - Initialize device before it's used by a driver.
2163 * @dev: PCI device to be initialized
2165 * Initialize device before it's used by a driver. Ask low-level code
2166 * to enable I/O and memory. Wake up the device if it was suspended.
2167 * Beware, this function can fail.
2169 * Note we don't actually enable the device many times if we call
2170 * this function repeatedly (we just increment the count).
2172 int pci_enable_device(struct pci_dev *dev)
2174 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2176 EXPORT_SYMBOL(pci_enable_device);
2179 * pcibios_device_add - provide arch specific hooks when adding device dev
2180 * @dev: the PCI device being added
2182 * Permits the platform to provide architecture specific functionality when
2183 * devices are added. This is the default implementation. Architecture
2184 * implementations can override this.
2186 int __weak pcibios_device_add(struct pci_dev *dev)
2192 * pcibios_release_device - provide arch specific hooks when releasing
2194 * @dev: the PCI device being released
2196 * Permits the platform to provide architecture specific functionality when
2197 * devices are released. This is the default implementation. Architecture
2198 * implementations can override this.
2200 void __weak pcibios_release_device(struct pci_dev *dev) {}
2203 * pcibios_disable_device - disable arch specific PCI resources for device dev
2204 * @dev: the PCI device to disable
2206 * Disables architecture specific PCI resources for the device. This
2207 * is the default implementation. Architecture implementations can
2210 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2212 static void do_pci_disable_device(struct pci_dev *dev)
2216 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2217 if (pci_command & PCI_COMMAND_MASTER) {
2218 pci_command &= ~PCI_COMMAND_MASTER;
2219 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2222 pcibios_disable_device(dev);
2226 * pci_disable_enabled_device - Disable device without updating enable_cnt
2227 * @dev: PCI device to disable
2229 * NOTE: This function is a backend of PCI power management routines and is
2230 * not supposed to be called drivers.
2232 void pci_disable_enabled_device(struct pci_dev *dev)
2234 if (pci_is_enabled(dev))
2235 do_pci_disable_device(dev);
2239 * pci_disable_device - Disable PCI device after use
2240 * @dev: PCI device to be disabled
2242 * Signal to the system that the PCI device is not in use by the system
2243 * anymore. This only involves disabling PCI bus-mastering, if active.
2245 * Note we don't actually disable the device until all callers of
2246 * pci_enable_device() have called pci_disable_device().
2248 void pci_disable_device(struct pci_dev *dev)
2250 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2251 "disabling already-disabled device");
2253 if (atomic_dec_return(&dev->enable_cnt) != 0)
2256 do_pci_disable_device(dev);
2258 dev->is_busmaster = 0;
2260 EXPORT_SYMBOL(pci_disable_device);
2263 * pcibios_set_pcie_reset_state - set reset state for device dev
2264 * @dev: the PCIe device reset
2265 * @state: Reset state to enter into
2267 * Set the PCIe reset state for the device. This is the default
2268 * implementation. Architecture implementations can override this.
2270 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2271 enum pcie_reset_state state)
2277 * pci_set_pcie_reset_state - set reset state for device dev
2278 * @dev: the PCIe device reset
2279 * @state: Reset state to enter into
2281 * Sets the PCI reset state for the device.
2283 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2285 return pcibios_set_pcie_reset_state(dev, state);
2287 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2289 #ifdef CONFIG_PCIEAER
2290 void pcie_clear_device_status(struct pci_dev *dev)
2294 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2295 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2300 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2301 * @dev: PCIe root port or event collector.
2303 void pcie_clear_root_pme_status(struct pci_dev *dev)
2305 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2309 * pci_check_pme_status - Check if given device has generated PME.
2310 * @dev: Device to check.
2312 * Check the PME status of the device and if set, clear it and clear PME enable
2313 * (if set). Return 'true' if PME status and PME enable were both set or
2314 * 'false' otherwise.
2316 bool pci_check_pme_status(struct pci_dev *dev)
2325 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2326 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2327 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2330 /* Clear PME status. */
2331 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2332 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2333 /* Disable PME to avoid interrupt flood. */
2334 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2338 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2344 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2345 * @dev: Device to handle.
2346 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2348 * Check if @dev has generated PME and queue a resume request for it in that
2351 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2353 if (pme_poll_reset && dev->pme_poll)
2354 dev->pme_poll = false;
2356 if (pci_check_pme_status(dev)) {
2357 pci_wakeup_event(dev);
2358 pm_request_resume(&dev->dev);
2364 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2365 * @bus: Top bus of the subtree to walk.
2367 void pci_pme_wakeup_bus(struct pci_bus *bus)
2370 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2375 * pci_pme_capable - check the capability of PCI device to generate PME#
2376 * @dev: PCI device to handle.
2377 * @state: PCI state from which device will issue PME#.
2379 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2384 return !!(dev->pme_support & (1 << state));
2386 EXPORT_SYMBOL(pci_pme_capable);
2388 static void pci_pme_list_scan(struct work_struct *work)
2390 struct pci_pme_device *pme_dev, *n;
2392 mutex_lock(&pci_pme_list_mutex);
2393 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2394 struct pci_dev *pdev = pme_dev->dev;
2396 if (pdev->pme_poll) {
2397 struct pci_dev *bridge = pdev->bus->self;
2398 struct device *dev = &pdev->dev;
2399 struct device *bdev = bridge ? &bridge->dev : NULL;
2403 * If we have a bridge, it should be in an active/D0
2404 * state or the configuration space of subordinate
2405 * devices may not be accessible or stable over the
2406 * course of the call.
2409 bref = pm_runtime_get_if_active(bdev);
2413 if (bridge->current_state != PCI_D0)
2418 * The device itself should be suspended but config
2419 * space must be accessible, therefore it cannot be in
2422 if (pm_runtime_suspended(dev) &&
2423 pdev->current_state != PCI_D3cold)
2424 pci_pme_wakeup(pdev, NULL);
2428 pm_runtime_put(bdev);
2430 list_del(&pme_dev->list);
2434 if (!list_empty(&pci_pme_list))
2435 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2436 msecs_to_jiffies(PME_TIMEOUT));
2437 mutex_unlock(&pci_pme_list_mutex);
2440 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2444 if (!dev->pme_support)
2447 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2448 /* Clear PME_Status by writing 1 to it and enable PME# */
2449 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2451 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2453 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2457 * pci_pme_restore - Restore PME configuration after config space restore.
2458 * @dev: PCI device to update.
2460 void pci_pme_restore(struct pci_dev *dev)
2464 if (!dev->pme_support)
2467 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2468 if (dev->wakeup_prepared) {
2469 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2470 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2472 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2473 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2475 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2479 * pci_pme_active - enable or disable PCI device's PME# function
2480 * @dev: PCI device to handle.
2481 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2483 * The caller must verify that the device is capable of generating PME# before
2484 * calling this function with @enable equal to 'true'.
2486 void pci_pme_active(struct pci_dev *dev, bool enable)
2488 __pci_pme_active(dev, enable);
2491 * PCI (as opposed to PCIe) PME requires that the device have
2492 * its PME# line hooked up correctly. Not all hardware vendors
2493 * do this, so the PME never gets delivered and the device
2494 * remains asleep. The easiest way around this is to
2495 * periodically walk the list of suspended devices and check
2496 * whether any have their PME flag set. The assumption is that
2497 * we'll wake up often enough anyway that this won't be a huge
2498 * hit, and the power savings from the devices will still be a
2501 * Although PCIe uses in-band PME message instead of PME# line
2502 * to report PME, PME does not work for some PCIe devices in
2503 * reality. For example, there are devices that set their PME
2504 * status bits, but don't really bother to send a PME message;
2505 * there are PCI Express Root Ports that don't bother to
2506 * trigger interrupts when they receive PME messages from the
2507 * devices below. So PME poll is used for PCIe devices too.
2510 if (dev->pme_poll) {
2511 struct pci_pme_device *pme_dev;
2513 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2516 pci_warn(dev, "can't enable PME#\n");
2520 mutex_lock(&pci_pme_list_mutex);
2521 list_add(&pme_dev->list, &pci_pme_list);
2522 if (list_is_singular(&pci_pme_list))
2523 queue_delayed_work(system_freezable_wq,
2525 msecs_to_jiffies(PME_TIMEOUT));
2526 mutex_unlock(&pci_pme_list_mutex);
2528 mutex_lock(&pci_pme_list_mutex);
2529 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2530 if (pme_dev->dev == dev) {
2531 list_del(&pme_dev->list);
2536 mutex_unlock(&pci_pme_list_mutex);
2540 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2542 EXPORT_SYMBOL(pci_pme_active);
2545 * __pci_enable_wake - enable PCI device as wakeup event source
2546 * @dev: PCI device affected
2547 * @state: PCI state from which device will issue wakeup events
2548 * @enable: True to enable event generation; false to disable
2550 * This enables the device as a wakeup event source, or disables it.
2551 * When such events involves platform-specific hooks, those hooks are
2552 * called automatically by this routine.
2554 * Devices with legacy power management (no standard PCI PM capabilities)
2555 * always require such platform hooks.
2558 * 0 is returned on success
2559 * -EINVAL is returned if device is not supposed to wake up the system
2560 * Error code depending on the platform is returned if both the platform and
2561 * the native mechanism fail to enable the generation of wake-up events
2563 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2568 * Bridges that are not power-manageable directly only signal
2569 * wakeup on behalf of subordinate devices which is set up
2570 * elsewhere, so skip them. However, bridges that are
2571 * power-manageable may signal wakeup for themselves (for example,
2572 * on a hotplug event) and they need to be covered here.
2574 if (!pci_power_manageable(dev))
2577 /* Don't do the same thing twice in a row for one device. */
2578 if (!!enable == !!dev->wakeup_prepared)
2582 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2583 * Anderson we should be doing PME# wake enable followed by ACPI wake
2584 * enable. To disable wake-up we call the platform first, for symmetry.
2591 * Enable PME signaling if the device can signal PME from
2592 * D3cold regardless of whether or not it can signal PME from
2593 * the current target state, because that will allow it to
2594 * signal PME when the hierarchy above it goes into D3cold and
2595 * the device itself ends up in D3cold as a result of that.
2597 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2598 pci_pme_active(dev, true);
2601 error = platform_pci_set_wakeup(dev, true);
2605 dev->wakeup_prepared = true;
2607 platform_pci_set_wakeup(dev, false);
2608 pci_pme_active(dev, false);
2609 dev->wakeup_prepared = false;
2616 * pci_enable_wake - change wakeup settings for a PCI device
2617 * @pci_dev: Target device
2618 * @state: PCI state from which device will issue wakeup events
2619 * @enable: Whether or not to enable event generation
2621 * If @enable is set, check device_may_wakeup() for the device before calling
2622 * __pci_enable_wake() for it.
2624 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2626 if (enable && !device_may_wakeup(&pci_dev->dev))
2629 return __pci_enable_wake(pci_dev, state, enable);
2631 EXPORT_SYMBOL(pci_enable_wake);
2634 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2635 * @dev: PCI device to prepare
2636 * @enable: True to enable wake-up event generation; false to disable
2638 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2639 * and this function allows them to set that up cleanly - pci_enable_wake()
2640 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2641 * ordering constraints.
2643 * This function only returns error code if the device is not allowed to wake
2644 * up the system from sleep or it is not capable of generating PME# from both
2645 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2647 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2649 return pci_pme_capable(dev, PCI_D3cold) ?
2650 pci_enable_wake(dev, PCI_D3cold, enable) :
2651 pci_enable_wake(dev, PCI_D3hot, enable);
2653 EXPORT_SYMBOL(pci_wake_from_d3);
2656 * pci_target_state - find an appropriate low power state for a given PCI dev
2658 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2660 * Use underlying platform code to find a supported low power state for @dev.
2661 * If the platform can't manage @dev, return the deepest state from which it
2662 * can generate wake events, based on any available PME info.
2664 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2666 if (platform_pci_power_manageable(dev)) {
2668 * Call the platform to find the target state for the device.
2670 pci_power_t state = platform_pci_choose_state(dev);
2673 case PCI_POWER_ERROR:
2679 if (pci_no_d1d2(dev))
2687 * If the device is in D3cold even though it's not power-manageable by
2688 * the platform, it may have been powered down by non-standard means.
2689 * Best to let it slumber.
2691 if (dev->current_state == PCI_D3cold)
2693 else if (!dev->pm_cap)
2696 if (wakeup && dev->pme_support) {
2697 pci_power_t state = PCI_D3hot;
2700 * Find the deepest state from which the device can generate
2703 while (state && !(dev->pme_support & (1 << state)))
2708 else if (dev->pme_support & 1)
2716 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2717 * into a sleep state
2718 * @dev: Device to handle.
2720 * Choose the power state appropriate for the device depending on whether
2721 * it can wake up the system and/or is power manageable by the platform
2722 * (PCI_D3hot is the default) and put the device into that state.
2724 int pci_prepare_to_sleep(struct pci_dev *dev)
2726 bool wakeup = device_may_wakeup(&dev->dev);
2727 pci_power_t target_state = pci_target_state(dev, wakeup);
2730 if (target_state == PCI_POWER_ERROR)
2733 pci_enable_wake(dev, target_state, wakeup);
2735 error = pci_set_power_state(dev, target_state);
2738 pci_enable_wake(dev, target_state, false);
2742 EXPORT_SYMBOL(pci_prepare_to_sleep);
2745 * pci_back_from_sleep - turn PCI device on during system-wide transition
2746 * into working state
2747 * @dev: Device to handle.
2749 * Disable device's system wake-up capability and put it into D0.
2751 int pci_back_from_sleep(struct pci_dev *dev)
2753 int ret = pci_set_power_state(dev, PCI_D0);
2758 pci_enable_wake(dev, PCI_D0, false);
2761 EXPORT_SYMBOL(pci_back_from_sleep);
2764 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2765 * @dev: PCI device being suspended.
2767 * Prepare @dev to generate wake-up events at run time and put it into a low
2770 int pci_finish_runtime_suspend(struct pci_dev *dev)
2772 pci_power_t target_state;
2775 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2776 if (target_state == PCI_POWER_ERROR)
2779 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2781 error = pci_set_power_state(dev, target_state);
2784 pci_enable_wake(dev, target_state, false);
2790 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2791 * @dev: Device to check.
2793 * Return true if the device itself is capable of generating wake-up events
2794 * (through the platform or using the native PCIe PME) or if the device supports
2795 * PME and one of its upstream bridges can generate wake-up events.
2797 bool pci_dev_run_wake(struct pci_dev *dev)
2799 struct pci_bus *bus = dev->bus;
2801 if (!dev->pme_support)
2804 /* PME-capable in principle, but not from the target power state */
2805 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2808 if (device_can_wakeup(&dev->dev))
2811 while (bus->parent) {
2812 struct pci_dev *bridge = bus->self;
2814 if (device_can_wakeup(&bridge->dev))
2820 /* We have reached the root bus. */
2822 return device_can_wakeup(bus->bridge);
2826 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2829 * pci_dev_need_resume - Check if it is necessary to resume the device.
2830 * @pci_dev: Device to check.
2832 * Return 'true' if the device is not runtime-suspended or it has to be
2833 * reconfigured due to wakeup settings difference between system and runtime
2834 * suspend, or the current power state of it is not suitable for the upcoming
2835 * (system-wide) transition.
2837 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2839 struct device *dev = &pci_dev->dev;
2840 pci_power_t target_state;
2842 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2845 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2848 * If the earlier platform check has not triggered, D3cold is just power
2849 * removal on top of D3hot, so no need to resume the device in that
2852 return target_state != pci_dev->current_state &&
2853 target_state != PCI_D3cold &&
2854 pci_dev->current_state != PCI_D3hot;
2858 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2859 * @pci_dev: Device to check.
2861 * If the device is suspended and it is not configured for system wakeup,
2862 * disable PME for it to prevent it from waking up the system unnecessarily.
2864 * Note that if the device's power state is D3cold and the platform check in
2865 * pci_dev_need_resume() has not triggered, the device's configuration need not
2868 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2870 struct device *dev = &pci_dev->dev;
2872 spin_lock_irq(&dev->power.lock);
2874 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2875 pci_dev->current_state < PCI_D3cold)
2876 __pci_pme_active(pci_dev, false);
2878 spin_unlock_irq(&dev->power.lock);
2882 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2883 * @pci_dev: Device to handle.
2885 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2886 * it might have been disabled during the prepare phase of system suspend if
2887 * the device was not configured for system wakeup.
2889 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2891 struct device *dev = &pci_dev->dev;
2893 if (!pci_dev_run_wake(pci_dev))
2896 spin_lock_irq(&dev->power.lock);
2898 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2899 __pci_pme_active(pci_dev, true);
2901 spin_unlock_irq(&dev->power.lock);
2905 * pci_choose_state - Choose the power state of a PCI device.
2906 * @dev: Target PCI device.
2907 * @state: Target state for the whole system.
2909 * Returns PCI power state suitable for @dev and @state.
2911 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2913 if (state.event == PM_EVENT_ON)
2916 return pci_target_state(dev, false);
2918 EXPORT_SYMBOL(pci_choose_state);
2920 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2922 struct device *dev = &pdev->dev;
2923 struct device *parent = dev->parent;
2926 pm_runtime_get_sync(parent);
2927 pm_runtime_get_noresume(dev);
2929 * pdev->current_state is set to PCI_D3cold during suspending,
2930 * so wait until suspending completes
2932 pm_runtime_barrier(dev);
2934 * Only need to resume devices in D3cold, because config
2935 * registers are still accessible for devices suspended but
2938 if (pdev->current_state == PCI_D3cold)
2939 pm_runtime_resume(dev);
2942 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2944 struct device *dev = &pdev->dev;
2945 struct device *parent = dev->parent;
2947 pm_runtime_put(dev);
2949 pm_runtime_put_sync(parent);
2952 static const struct dmi_system_id bridge_d3_blacklist[] = {
2956 * Gigabyte X299 root port is not marked as hotplug capable
2957 * which allows Linux to power manage it. However, this
2958 * confuses the BIOS SMI handler so don't power manage root
2959 * ports on that system.
2961 .ident = "X299 DESIGNARE EX-CF",
2963 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2964 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2969 * Downstream device is not accessible after putting a root port
2970 * into D3cold and back into D0 on Elo Continental Z2 board
2972 .ident = "Elo Continental Z2",
2974 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2975 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2976 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2981 * Changing power state of root port dGPU is connected fails
2982 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
2984 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
2986 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
2987 DMI_MATCH(DMI_BOARD_NAME, "1972"),
2988 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
2996 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2997 * @bridge: Bridge to check
2999 * This function checks if it is possible to move the bridge to D3.
3000 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3002 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3004 if (!pci_is_pcie(bridge))
3007 switch (pci_pcie_type(bridge)) {
3008 case PCI_EXP_TYPE_ROOT_PORT:
3009 case PCI_EXP_TYPE_UPSTREAM:
3010 case PCI_EXP_TYPE_DOWNSTREAM:
3011 if (pci_bridge_d3_disable)
3015 * Hotplug ports handled by firmware in System Management Mode
3016 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3018 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3021 if (pci_bridge_d3_force)
3024 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3025 if (bridge->is_thunderbolt)
3028 /* Platform might know better if the bridge supports D3 */
3029 if (platform_pci_bridge_d3(bridge))
3033 * Hotplug ports handled natively by the OS were not validated
3034 * by vendors for runtime D3 at least until 2018 because there
3035 * was no OS support.
3037 if (bridge->is_hotplug_bridge)
3040 if (dmi_check_system(bridge_d3_blacklist))
3044 * It should be safe to put PCIe ports from 2015 or newer
3047 if (dmi_get_bios_year() >= 2015)
3055 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3057 bool *d3cold_ok = data;
3059 if (/* The device needs to be allowed to go D3cold ... */
3060 dev->no_d3cold || !dev->d3cold_allowed ||
3062 /* ... and if it is wakeup capable to do so from D3cold. */
3063 (device_may_wakeup(&dev->dev) &&
3064 !pci_pme_capable(dev, PCI_D3cold)) ||
3066 /* If it is a bridge it must be allowed to go to D3. */
3067 !pci_power_manageable(dev))
3075 * pci_bridge_d3_update - Update bridge D3 capabilities
3076 * @dev: PCI device which is changed
3078 * Update upstream bridge PM capabilities accordingly depending on if the
3079 * device PM configuration was changed or the device is being removed. The
3080 * change is also propagated upstream.
3082 void pci_bridge_d3_update(struct pci_dev *dev)
3084 bool remove = !device_is_registered(&dev->dev);
3085 struct pci_dev *bridge;
3086 bool d3cold_ok = true;
3088 bridge = pci_upstream_bridge(dev);
3089 if (!bridge || !pci_bridge_d3_possible(bridge))
3093 * If D3 is currently allowed for the bridge, removing one of its
3094 * children won't change that.
3096 if (remove && bridge->bridge_d3)
3100 * If D3 is currently allowed for the bridge and a child is added or
3101 * changed, disallowance of D3 can only be caused by that child, so
3102 * we only need to check that single device, not any of its siblings.
3104 * If D3 is currently not allowed for the bridge, checking the device
3105 * first may allow us to skip checking its siblings.
3108 pci_dev_check_d3cold(dev, &d3cold_ok);
3111 * If D3 is currently not allowed for the bridge, this may be caused
3112 * either by the device being changed/removed or any of its siblings,
3113 * so we need to go through all children to find out if one of them
3114 * continues to block D3.
3116 if (d3cold_ok && !bridge->bridge_d3)
3117 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3120 if (bridge->bridge_d3 != d3cold_ok) {
3121 bridge->bridge_d3 = d3cold_ok;
3122 /* Propagate change to upstream bridges */
3123 pci_bridge_d3_update(bridge);
3128 * pci_d3cold_enable - Enable D3cold for device
3129 * @dev: PCI device to handle
3131 * This function can be used in drivers to enable D3cold from the device
3132 * they handle. It also updates upstream PCI bridge PM capabilities
3135 void pci_d3cold_enable(struct pci_dev *dev)
3137 if (dev->no_d3cold) {
3138 dev->no_d3cold = false;
3139 pci_bridge_d3_update(dev);
3142 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3145 * pci_d3cold_disable - Disable D3cold for device
3146 * @dev: PCI device to handle
3148 * This function can be used in drivers to disable D3cold from the device
3149 * they handle. It also updates upstream PCI bridge PM capabilities
3152 void pci_d3cold_disable(struct pci_dev *dev)
3154 if (!dev->no_d3cold) {
3155 dev->no_d3cold = true;
3156 pci_bridge_d3_update(dev);
3159 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3162 * pci_pm_init - Initialize PM functions of given PCI device
3163 * @dev: PCI device to handle.
3165 void pci_pm_init(struct pci_dev *dev)
3171 pm_runtime_forbid(&dev->dev);
3172 pm_runtime_set_active(&dev->dev);
3173 pm_runtime_enable(&dev->dev);
3174 device_enable_async_suspend(&dev->dev);
3175 dev->wakeup_prepared = false;
3178 dev->pme_support = 0;
3180 /* find PCI PM capability in list */
3181 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3184 /* Check device's ability to generate PME# */
3185 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3187 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3188 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3189 pmc & PCI_PM_CAP_VER_MASK);
3194 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3195 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3196 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3197 dev->d3cold_allowed = true;
3199 dev->d1_support = false;
3200 dev->d2_support = false;
3201 if (!pci_no_d1d2(dev)) {
3202 if (pmc & PCI_PM_CAP_D1)
3203 dev->d1_support = true;
3204 if (pmc & PCI_PM_CAP_D2)
3205 dev->d2_support = true;
3207 if (dev->d1_support || dev->d2_support)
3208 pci_info(dev, "supports%s%s\n",
3209 dev->d1_support ? " D1" : "",
3210 dev->d2_support ? " D2" : "");
3213 pmc &= PCI_PM_CAP_PME_MASK;
3215 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3216 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3217 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3218 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3219 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3220 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3221 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3222 dev->pme_poll = true;
3224 * Make device's PM flags reflect the wake-up capability, but
3225 * let the user space enable it to wake up the system as needed.
3227 device_set_wakeup_capable(&dev->dev, true);
3228 /* Disable the PME# generation functionality */
3229 pci_pme_active(dev, false);
3232 pci_read_config_word(dev, PCI_STATUS, &status);
3233 if (status & PCI_STATUS_IMM_READY)
3237 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3239 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3243 case PCI_EA_P_VF_MEM:
3244 flags |= IORESOURCE_MEM;
3246 case PCI_EA_P_MEM_PREFETCH:
3247 case PCI_EA_P_VF_MEM_PREFETCH:
3248 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3251 flags |= IORESOURCE_IO;
3260 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3263 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3264 return &dev->resource[bei];
3265 #ifdef CONFIG_PCI_IOV
3266 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3267 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3268 return &dev->resource[PCI_IOV_RESOURCES +
3269 bei - PCI_EA_BEI_VF_BAR0];
3271 else if (bei == PCI_EA_BEI_ROM)
3272 return &dev->resource[PCI_ROM_RESOURCE];
3277 /* Read an Enhanced Allocation (EA) entry */
3278 static int pci_ea_read(struct pci_dev *dev, int offset)
3280 struct resource *res;
3281 const char *res_name;
3282 int ent_size, ent_offset = offset;
3283 resource_size_t start, end;
3284 unsigned long flags;
3285 u32 dw0, bei, base, max_offset;
3287 bool support_64 = (sizeof(resource_size_t) >= 8);
3289 pci_read_config_dword(dev, ent_offset, &dw0);
3292 /* Entry size field indicates DWORDs after 1st */
3293 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3295 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3298 bei = FIELD_GET(PCI_EA_BEI, dw0);
3299 prop = FIELD_GET(PCI_EA_PP, dw0);
3302 * If the Property is in the reserved range, try the Secondary
3305 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3306 prop = FIELD_GET(PCI_EA_SP, dw0);
3307 if (prop > PCI_EA_P_BRIDGE_IO)
3310 res = pci_ea_get_resource(dev, bei, prop);
3311 res_name = pci_resource_name(dev, bei);
3313 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3317 flags = pci_ea_flags(dev, prop);
3319 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3324 pci_read_config_dword(dev, ent_offset, &base);
3325 start = (base & PCI_EA_FIELD_MASK);
3328 /* Read MaxOffset */
3329 pci_read_config_dword(dev, ent_offset, &max_offset);
3332 /* Read Base MSBs (if 64-bit entry) */
3333 if (base & PCI_EA_IS_64) {
3336 pci_read_config_dword(dev, ent_offset, &base_upper);
3339 flags |= IORESOURCE_MEM_64;
3341 /* entry starts above 32-bit boundary, can't use */
3342 if (!support_64 && base_upper)
3346 start |= ((u64)base_upper << 32);
3349 end = start + (max_offset | 0x03);
3351 /* Read MaxOffset MSBs (if 64-bit entry) */
3352 if (max_offset & PCI_EA_IS_64) {
3353 u32 max_offset_upper;
3355 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3358 flags |= IORESOURCE_MEM_64;
3360 /* entry too big, can't use */
3361 if (!support_64 && max_offset_upper)
3365 end += ((u64)max_offset_upper << 32);
3369 pci_err(dev, "EA Entry crosses address boundary\n");
3373 if (ent_size != ent_offset - offset) {
3374 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3375 ent_size, ent_offset - offset);
3379 res->name = pci_name(dev);
3384 if (bei <= PCI_EA_BEI_BAR5)
3385 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3386 res_name, res, prop);
3387 else if (bei == PCI_EA_BEI_ROM)
3388 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3389 res_name, res, prop);
3390 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3391 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3392 res_name, res, prop);
3394 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3398 return offset + ent_size;
3401 /* Enhanced Allocation Initialization */
3402 void pci_ea_init(struct pci_dev *dev)
3409 /* find PCI EA capability in list */
3410 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3414 /* determine the number of entries */
3415 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3417 num_ent &= PCI_EA_NUM_ENT_MASK;
3419 offset = ea + PCI_EA_FIRST_ENT;
3421 /* Skip DWORD 2 for type 1 functions */
3422 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3425 /* parse each EA entry */
3426 for (i = 0; i < num_ent; ++i)
3427 offset = pci_ea_read(dev, offset);
3430 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3431 struct pci_cap_saved_state *new_cap)
3433 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3437 * _pci_add_cap_save_buffer - allocate buffer for saving given
3438 * capability registers
3439 * @dev: the PCI device
3440 * @cap: the capability to allocate the buffer for
3441 * @extended: Standard or Extended capability ID
3442 * @size: requested size of the buffer
3444 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3445 bool extended, unsigned int size)
3448 struct pci_cap_saved_state *save_state;
3451 pos = pci_find_ext_capability(dev, cap);
3453 pos = pci_find_capability(dev, cap);
3458 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3462 save_state->cap.cap_nr = cap;
3463 save_state->cap.cap_extended = extended;
3464 save_state->cap.size = size;
3465 pci_add_saved_cap(dev, save_state);
3470 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3472 return _pci_add_cap_save_buffer(dev, cap, false, size);
3475 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3477 return _pci_add_cap_save_buffer(dev, cap, true, size);
3481 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3482 * @dev: the PCI device
3484 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3488 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3489 PCI_EXP_SAVE_REGS * sizeof(u16));
3491 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3493 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3495 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3497 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3500 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3502 pci_allocate_vc_save_buffers(dev);
3505 void pci_free_cap_save_buffers(struct pci_dev *dev)
3507 struct pci_cap_saved_state *tmp;
3508 struct hlist_node *n;
3510 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3515 * pci_configure_ari - enable or disable ARI forwarding
3516 * @dev: the PCI device
3518 * If @dev and its upstream bridge both support ARI, enable ARI in the
3519 * bridge. Otherwise, disable ARI in the bridge.
3521 void pci_configure_ari(struct pci_dev *dev)
3524 struct pci_dev *bridge;
3526 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3529 bridge = dev->bus->self;
3533 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3534 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3537 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3538 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3539 PCI_EXP_DEVCTL2_ARI);
3540 bridge->ari_enabled = 1;
3542 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3543 PCI_EXP_DEVCTL2_ARI);
3544 bridge->ari_enabled = 0;
3548 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3553 pos = pdev->acs_cap;
3558 * Except for egress control, capabilities are either required
3559 * or only required if controllable. Features missing from the
3560 * capability field can therefore be assumed as hard-wired enabled.
3562 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3563 acs_flags &= (cap | PCI_ACS_EC);
3565 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3566 return (ctrl & acs_flags) == acs_flags;
3570 * pci_acs_enabled - test ACS against required flags for a given device
3571 * @pdev: device to test
3572 * @acs_flags: required PCI ACS flags
3574 * Return true if the device supports the provided flags. Automatically
3575 * filters out flags that are not implemented on multifunction devices.
3577 * Note that this interface checks the effective ACS capabilities of the
3578 * device rather than the actual capabilities. For instance, most single
3579 * function endpoints are not required to support ACS because they have no
3580 * opportunity for peer-to-peer access. We therefore return 'true'
3581 * regardless of whether the device exposes an ACS capability. This makes
3582 * it much easier for callers of this function to ignore the actual type
3583 * or topology of the device when testing ACS support.
3585 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3589 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3594 * Conventional PCI and PCI-X devices never support ACS, either
3595 * effectively or actually. The shared bus topology implies that
3596 * any device on the bus can receive or snoop DMA.
3598 if (!pci_is_pcie(pdev))
3601 switch (pci_pcie_type(pdev)) {
3603 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3604 * but since their primary interface is PCI/X, we conservatively
3605 * handle them as we would a non-PCIe device.
3607 case PCI_EXP_TYPE_PCIE_BRIDGE:
3609 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3610 * applicable... must never implement an ACS Extended Capability...".
3611 * This seems arbitrary, but we take a conservative interpretation
3612 * of this statement.
3614 case PCI_EXP_TYPE_PCI_BRIDGE:
3615 case PCI_EXP_TYPE_RC_EC:
3618 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3619 * implement ACS in order to indicate their peer-to-peer capabilities,
3620 * regardless of whether they are single- or multi-function devices.
3622 case PCI_EXP_TYPE_DOWNSTREAM:
3623 case PCI_EXP_TYPE_ROOT_PORT:
3624 return pci_acs_flags_enabled(pdev, acs_flags);
3626 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3627 * implemented by the remaining PCIe types to indicate peer-to-peer
3628 * capabilities, but only when they are part of a multifunction
3629 * device. The footnote for section 6.12 indicates the specific
3630 * PCIe types included here.
3632 case PCI_EXP_TYPE_ENDPOINT:
3633 case PCI_EXP_TYPE_UPSTREAM:
3634 case PCI_EXP_TYPE_LEG_END:
3635 case PCI_EXP_TYPE_RC_END:
3636 if (!pdev->multifunction)
3639 return pci_acs_flags_enabled(pdev, acs_flags);
3643 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3644 * to single function devices with the exception of downstream ports.
3650 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3651 * @start: starting downstream device
3652 * @end: ending upstream device or NULL to search to the root bus
3653 * @acs_flags: required flags
3655 * Walk up a device tree from start to end testing PCI ACS support. If
3656 * any step along the way does not support the required flags, return false.
3658 bool pci_acs_path_enabled(struct pci_dev *start,
3659 struct pci_dev *end, u16 acs_flags)
3661 struct pci_dev *pdev, *parent = start;
3666 if (!pci_acs_enabled(pdev, acs_flags))
3669 if (pci_is_root_bus(pdev->bus))
3670 return (end == NULL);
3672 parent = pdev->bus->self;
3673 } while (pdev != end);
3679 * pci_acs_init - Initialize ACS if hardware supports it
3680 * @dev: the PCI device
3682 void pci_acs_init(struct pci_dev *dev)
3684 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3687 * Attempt to enable ACS regardless of capability because some Root
3688 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3689 * the standard ACS capability but still support ACS via those
3692 pci_enable_acs(dev);
3696 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3700 * Helper to find the position of the ctrl register for a BAR.
3701 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3702 * Returns -ENOENT if no ctrl register for the BAR could be found.
3704 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3706 unsigned int pos, nbars, i;
3709 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3713 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3714 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3716 for (i = 0; i < nbars; i++, pos += 8) {
3719 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3720 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3729 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3731 * @bar: BAR to query
3733 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3734 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3736 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3741 pos = pci_rebar_find_pos(pdev, bar);
3745 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3746 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3748 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3749 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3750 bar == 0 && cap == 0x700)
3755 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3758 * pci_rebar_get_current_size - get the current size of a BAR
3760 * @bar: BAR to set size to
3762 * Read the size of a BAR from the resizable BAR config.
3763 * Returns size if found or negative error code.
3765 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3770 pos = pci_rebar_find_pos(pdev, bar);
3774 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3775 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3779 * pci_rebar_set_size - set a new size for a BAR
3781 * @bar: BAR to set size to
3782 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3784 * Set the new size of a BAR as defined in the spec.
3785 * Returns zero if resizing was successful, error code otherwise.
3787 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3792 pos = pci_rebar_find_pos(pdev, bar);
3796 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3797 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3798 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3799 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3804 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3805 * @dev: the PCI device
3806 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3807 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3808 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3809 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3811 * Return 0 if all upstream bridges support AtomicOp routing, egress
3812 * blocking is disabled on all upstream ports, and the root port supports
3813 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3814 * AtomicOp completion), or negative otherwise.
3816 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3818 struct pci_bus *bus = dev->bus;
3819 struct pci_dev *bridge;
3823 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3824 * in Device Control 2 is reserved in VFs and the PF value applies
3825 * to all associated VFs.
3830 if (!pci_is_pcie(dev))
3834 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3835 * AtomicOp requesters. For now, we only support endpoints as
3836 * requesters and root ports as completers. No endpoints as
3837 * completers, and no peer-to-peer.
3840 switch (pci_pcie_type(dev)) {
3841 case PCI_EXP_TYPE_ENDPOINT:
3842 case PCI_EXP_TYPE_LEG_END:
3843 case PCI_EXP_TYPE_RC_END:
3849 while (bus->parent) {
3852 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3854 switch (pci_pcie_type(bridge)) {
3855 /* Ensure switch ports support AtomicOp routing */
3856 case PCI_EXP_TYPE_UPSTREAM:
3857 case PCI_EXP_TYPE_DOWNSTREAM:
3858 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3862 /* Ensure root port supports all the sizes we care about */
3863 case PCI_EXP_TYPE_ROOT_PORT:
3864 if ((cap & cap_mask) != cap_mask)
3869 /* Ensure upstream ports don't block AtomicOps on egress */
3870 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3871 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3873 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3880 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3881 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3884 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3887 * pci_release_region - Release a PCI bar
3888 * @pdev: PCI device whose resources were previously reserved by
3889 * pci_request_region()
3890 * @bar: BAR to release
3892 * Releases the PCI I/O and memory resources previously reserved by a
3893 * successful call to pci_request_region(). Call this function only
3894 * after all use of the PCI regions has ceased.
3896 void pci_release_region(struct pci_dev *pdev, int bar)
3899 * This is done for backwards compatibility, because the old PCI devres
3900 * API had a mode in which the function became managed if it had been
3901 * enabled with pcim_enable_device() instead of pci_enable_device().
3903 if (pci_is_managed(pdev)) {
3904 pcim_release_region(pdev, bar);
3908 if (pci_resource_len(pdev, bar) == 0)
3910 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3911 release_region(pci_resource_start(pdev, bar),
3912 pci_resource_len(pdev, bar));
3913 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3914 release_mem_region(pci_resource_start(pdev, bar),
3915 pci_resource_len(pdev, bar));
3917 EXPORT_SYMBOL(pci_release_region);
3920 * __pci_request_region - Reserved PCI I/O and memory resource
3921 * @pdev: PCI device whose resources are to be reserved
3922 * @bar: BAR to be reserved
3923 * @res_name: Name to be associated with resource.
3924 * @exclusive: whether the region access is exclusive or not
3926 * Returns: 0 on success, negative error code on failure.
3928 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3929 * being reserved by owner @res_name. Do not access any
3930 * address inside the PCI regions unless this call returns
3933 * If @exclusive is set, then the region is marked so that userspace
3934 * is explicitly not allowed to map the resource via /dev/mem or
3935 * sysfs MMIO access.
3937 * Returns 0 on success, or %EBUSY on error. A warning
3938 * message is also printed on failure.
3940 static int __pci_request_region(struct pci_dev *pdev, int bar,
3941 const char *res_name, int exclusive)
3943 if (pci_is_managed(pdev)) {
3944 if (exclusive == IORESOURCE_EXCLUSIVE)
3945 return pcim_request_region_exclusive(pdev, bar, res_name);
3947 return pcim_request_region(pdev, bar, res_name);
3950 if (pci_resource_len(pdev, bar) == 0)
3953 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3954 if (!request_region(pci_resource_start(pdev, bar),
3955 pci_resource_len(pdev, bar), res_name))
3957 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3958 if (!__request_mem_region(pci_resource_start(pdev, bar),
3959 pci_resource_len(pdev, bar), res_name,
3967 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3968 &pdev->resource[bar]);
3973 * pci_request_region - Reserve PCI I/O and memory resource
3974 * @pdev: PCI device whose resources are to be reserved
3975 * @bar: BAR to be reserved
3976 * @res_name: Name to be associated with resource
3978 * Returns: 0 on success, negative error code on failure.
3980 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3981 * being reserved by owner @res_name. Do not access any
3982 * address inside the PCI regions unless this call returns
3985 * Returns 0 on success, or %EBUSY on error. A warning
3986 * message is also printed on failure.
3989 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
3990 * when pcim_enable_device() has been called in advance. This hybrid feature is
3991 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
3993 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3995 return __pci_request_region(pdev, bar, res_name, 0);
3997 EXPORT_SYMBOL(pci_request_region);
4000 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4001 * @pdev: PCI device whose resources were previously reserved
4002 * @bars: Bitmask of BARs to be released
4004 * Release selected PCI I/O and memory resources previously reserved.
4005 * Call this function only after all use of the PCI regions has ceased.
4007 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4011 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4012 if (bars & (1 << i))
4013 pci_release_region(pdev, i);
4015 EXPORT_SYMBOL(pci_release_selected_regions);
4017 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4018 const char *res_name, int excl)
4022 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4023 if (bars & (1 << i))
4024 if (__pci_request_region(pdev, i, res_name, excl))
4030 if (bars & (1 << i))
4031 pci_release_region(pdev, i);
4038 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4039 * @pdev: PCI device whose resources are to be reserved
4040 * @bars: Bitmask of BARs to be requested
4041 * @res_name: Name to be associated with resource
4043 * Returns: 0 on success, negative error code on failure.
4046 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4047 * when pcim_enable_device() has been called in advance. This hybrid feature is
4048 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4050 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4051 const char *res_name)
4053 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4055 EXPORT_SYMBOL(pci_request_selected_regions);
4058 * pci_request_selected_regions_exclusive - Request regions exclusively
4059 * @pdev: PCI device to request regions from
4060 * @bars: bit mask of BARs to request
4061 * @res_name: name to be associated with the requests
4063 * Returns: 0 on success, negative error code on failure.
4066 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4067 * when pcim_enable_device() has been called in advance. This hybrid feature is
4068 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4070 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4071 const char *res_name)
4073 return __pci_request_selected_regions(pdev, bars, res_name,
4074 IORESOURCE_EXCLUSIVE);
4076 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4079 * pci_release_regions - Release reserved PCI I/O and memory resources
4080 * @pdev: PCI device whose resources were previously reserved by
4081 * pci_request_regions()
4083 * Releases all PCI I/O and memory resources previously reserved by a
4084 * successful call to pci_request_regions(). Call this function only
4085 * after all use of the PCI regions has ceased.
4087 void pci_release_regions(struct pci_dev *pdev)
4089 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4091 EXPORT_SYMBOL(pci_release_regions);
4094 * pci_request_regions - Reserve PCI I/O and memory resources
4095 * @pdev: PCI device whose resources are to be reserved
4096 * @res_name: Name to be associated with resource.
4098 * Mark all PCI regions associated with PCI device @pdev as
4099 * being reserved by owner @res_name. Do not access any
4100 * address inside the PCI regions unless this call returns
4103 * Returns 0 on success, or %EBUSY on error. A warning
4104 * message is also printed on failure.
4107 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4108 * when pcim_enable_device() has been called in advance. This hybrid feature is
4109 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4111 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4113 return pci_request_selected_regions(pdev,
4114 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4116 EXPORT_SYMBOL(pci_request_regions);
4119 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4120 * @pdev: PCI device whose resources are to be reserved
4121 * @res_name: Name to be associated with resource.
4123 * Returns: 0 on success, negative error code on failure.
4125 * Mark all PCI regions associated with PCI device @pdev as being reserved
4126 * by owner @res_name. Do not access any address inside the PCI regions
4127 * unless this call returns successfully.
4129 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4130 * and the sysfs MMIO access will not be allowed.
4132 * Returns 0 on success, or %EBUSY on error. A warning message is also
4133 * printed on failure.
4136 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4137 * when pcim_enable_device() has been called in advance. This hybrid feature is
4138 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4140 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4142 return pci_request_selected_regions_exclusive(pdev,
4143 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4145 EXPORT_SYMBOL(pci_request_regions_exclusive);
4148 * Record the PCI IO range (expressed as CPU physical address + size).
4149 * Return a negative value if an error has occurred, zero otherwise
4151 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4152 resource_size_t size)
4156 struct logic_pio_hwaddr *range;
4158 if (!size || addr + size < addr)
4161 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4165 range->fwnode = fwnode;
4167 range->hw_start = addr;
4168 range->flags = LOGIC_PIO_CPU_MMIO;
4170 ret = logic_pio_register_range(range);
4174 /* Ignore duplicates due to deferred probing */
4182 phys_addr_t pci_pio_to_address(unsigned long pio)
4185 if (pio < MMIO_UPPER_LIMIT)
4186 return logic_pio_to_hwaddr(pio);
4189 return (phys_addr_t) OF_BAD_ADDR;
4191 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4193 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4196 return logic_pio_trans_cpuaddr(address);
4198 if (address > IO_SPACE_LIMIT)
4199 return (unsigned long)-1;
4201 return (unsigned long) address;
4206 * pci_remap_iospace - Remap the memory mapped I/O space
4207 * @res: Resource describing the I/O space
4208 * @phys_addr: physical address of range to be mapped
4210 * Remap the memory mapped I/O space described by the @res and the CPU
4211 * physical address @phys_addr into virtual address space. Only
4212 * architectures that have memory mapped IO functions defined (and the
4213 * PCI_IOBASE value defined) should call this function.
4215 #ifndef pci_remap_iospace
4216 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4218 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4219 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4221 if (!(res->flags & IORESOURCE_IO))
4224 if (res->end > IO_SPACE_LIMIT)
4227 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4228 pgprot_device(PAGE_KERNEL));
4231 * This architecture does not have memory mapped I/O space,
4232 * so this function should never be called
4234 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4238 EXPORT_SYMBOL(pci_remap_iospace);
4242 * pci_unmap_iospace - Unmap the memory mapped I/O space
4243 * @res: resource to be unmapped
4245 * Unmap the CPU virtual address @res from virtual address space. Only
4246 * architectures that have memory mapped IO functions defined (and the
4247 * PCI_IOBASE value defined) should call this function.
4249 void pci_unmap_iospace(struct resource *res)
4251 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4252 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4254 vunmap_range(vaddr, vaddr + resource_size(res));
4257 EXPORT_SYMBOL(pci_unmap_iospace);
4259 static void __pci_set_master(struct pci_dev *dev, bool enable)
4263 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4265 cmd = old_cmd | PCI_COMMAND_MASTER;
4267 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4268 if (cmd != old_cmd) {
4269 pci_dbg(dev, "%s bus mastering\n",
4270 enable ? "enabling" : "disabling");
4271 pci_write_config_word(dev, PCI_COMMAND, cmd);
4273 dev->is_busmaster = enable;
4277 * pcibios_setup - process "pci=" kernel boot arguments
4278 * @str: string used to pass in "pci=" kernel boot arguments
4280 * Process kernel boot arguments. This is the default implementation.
4281 * Architecture specific implementations can override this as necessary.
4283 char * __weak __init pcibios_setup(char *str)
4289 * pcibios_set_master - enable PCI bus-mastering for device dev
4290 * @dev: the PCI device to enable
4292 * Enables PCI bus-mastering for the device. This is the default
4293 * implementation. Architecture specific implementations can override
4294 * this if necessary.
4296 void __weak pcibios_set_master(struct pci_dev *dev)
4300 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4301 if (pci_is_pcie(dev))
4304 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4306 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4307 else if (lat > pcibios_max_latency)
4308 lat = pcibios_max_latency;
4312 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4316 * pci_set_master - enables bus-mastering for device dev
4317 * @dev: the PCI device to enable
4319 * Enables bus-mastering on the device and calls pcibios_set_master()
4320 * to do the needed arch specific settings.
4322 void pci_set_master(struct pci_dev *dev)
4324 __pci_set_master(dev, true);
4325 pcibios_set_master(dev);
4327 EXPORT_SYMBOL(pci_set_master);
4330 * pci_clear_master - disables bus-mastering for device dev
4331 * @dev: the PCI device to disable
4333 void pci_clear_master(struct pci_dev *dev)
4335 __pci_set_master(dev, false);
4337 EXPORT_SYMBOL(pci_clear_master);
4340 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4341 * @dev: the PCI device for which MWI is to be enabled
4343 * Helper function for pci_set_mwi.
4344 * Originally copied from drivers/net/acenic.c.
4347 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4349 int pci_set_cacheline_size(struct pci_dev *dev)
4353 if (!pci_cache_line_size)
4356 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4357 equal to or multiple of the right value. */
4358 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4359 if (cacheline_size >= pci_cache_line_size &&
4360 (cacheline_size % pci_cache_line_size) == 0)
4363 /* Write the correct value. */
4364 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4366 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4367 if (cacheline_size == pci_cache_line_size)
4370 pci_dbg(dev, "cache line size of %d is not supported\n",
4371 pci_cache_line_size << 2);
4375 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4378 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4379 * @dev: the PCI device for which MWI is enabled
4381 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4383 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4385 int pci_set_mwi(struct pci_dev *dev)
4387 #ifdef PCI_DISABLE_MWI
4393 rc = pci_set_cacheline_size(dev);
4397 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4398 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4399 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4400 cmd |= PCI_COMMAND_INVALIDATE;
4401 pci_write_config_word(dev, PCI_COMMAND, cmd);
4406 EXPORT_SYMBOL(pci_set_mwi);
4409 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4410 * @dev: the PCI device for which MWI is enabled
4412 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4413 * Callers are not required to check the return value.
4415 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4417 int pci_try_set_mwi(struct pci_dev *dev)
4419 #ifdef PCI_DISABLE_MWI
4422 return pci_set_mwi(dev);
4425 EXPORT_SYMBOL(pci_try_set_mwi);
4428 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4429 * @dev: the PCI device to disable
4431 * Disables PCI Memory-Write-Invalidate transaction on the device
4433 void pci_clear_mwi(struct pci_dev *dev)
4435 #ifndef PCI_DISABLE_MWI
4438 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4439 if (cmd & PCI_COMMAND_INVALIDATE) {
4440 cmd &= ~PCI_COMMAND_INVALIDATE;
4441 pci_write_config_word(dev, PCI_COMMAND, cmd);
4445 EXPORT_SYMBOL(pci_clear_mwi);
4448 * pci_disable_parity - disable parity checking for device
4449 * @dev: the PCI device to operate on
4451 * Disable parity checking for device @dev
4453 void pci_disable_parity(struct pci_dev *dev)
4457 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4458 if (cmd & PCI_COMMAND_PARITY) {
4459 cmd &= ~PCI_COMMAND_PARITY;
4460 pci_write_config_word(dev, PCI_COMMAND, cmd);
4465 * pci_intx - enables/disables PCI INTx for device dev
4466 * @pdev: the PCI device to operate on
4467 * @enable: boolean: whether to enable or disable PCI INTx
4469 * Enables/disables PCI INTx for device @pdev
4472 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4473 * when pcim_enable_device() has been called in advance. This hybrid feature is
4474 * DEPRECATED! If you want managed cleanup, use pcim_intx() instead.
4476 void pci_intx(struct pci_dev *pdev, int enable)
4478 u16 pci_command, new;
4480 /* Preserve the "hybrid" behavior for backwards compatibility */
4481 if (pci_is_managed(pdev)) {
4482 WARN_ON_ONCE(pcim_intx(pdev, enable) != 0);
4486 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4489 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4491 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4493 if (new != pci_command)
4494 pci_write_config_word(pdev, PCI_COMMAND, new);
4496 EXPORT_SYMBOL_GPL(pci_intx);
4499 * pci_wait_for_pending_transaction - wait for pending transaction
4500 * @dev: the PCI device to operate on
4502 * Return 0 if transaction is pending 1 otherwise.
4504 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4506 if (!pci_is_pcie(dev))
4509 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4510 PCI_EXP_DEVSTA_TRPND);
4512 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4515 * pcie_flr - initiate a PCIe function level reset
4516 * @dev: device to reset
4518 * Initiate a function level reset unconditionally on @dev without
4519 * checking any flags and DEVCAP
4521 int pcie_flr(struct pci_dev *dev)
4523 if (!pci_wait_for_pending_transaction(dev))
4524 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4526 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4532 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4533 * 100ms, but may silently discard requests while the FLR is in
4534 * progress. Wait 100ms before trying to access the device.
4538 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4540 EXPORT_SYMBOL_GPL(pcie_flr);
4543 * pcie_reset_flr - initiate a PCIe function level reset
4544 * @dev: device to reset
4545 * @probe: if true, return 0 if device can be reset this way
4547 * Initiate a function level reset on @dev.
4549 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4551 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4554 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4560 return pcie_flr(dev);
4562 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4564 static int pci_af_flr(struct pci_dev *dev, bool probe)
4569 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4573 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4576 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4577 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4584 * Wait for Transaction Pending bit to clear. A word-aligned test
4585 * is used, so we use the control offset rather than status and shift
4586 * the test bit to match.
4588 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4589 PCI_AF_STATUS_TP << 8))
4590 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4592 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4598 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4599 * updated 27 July 2006; a device must complete an FLR within
4600 * 100ms, but may silently discard requests while the FLR is in
4601 * progress. Wait 100ms before trying to access the device.
4605 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4609 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4610 * @dev: Device to reset.
4611 * @probe: if true, return 0 if the device can be reset this way.
4613 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4614 * unset, it will be reinitialized internally when going from PCI_D3hot to
4615 * PCI_D0. If that's the case and the device is not in a low-power state
4616 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4618 * NOTE: This causes the caller to sleep for twice the device power transition
4619 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4620 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4621 * Moreover, only devices in D0 can be reset by this function.
4623 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4627 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4630 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4631 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4637 if (dev->current_state != PCI_D0)
4640 csr &= ~PCI_PM_CTRL_STATE_MASK;
4642 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4643 pci_dev_d3_sleep(dev);
4645 csr &= ~PCI_PM_CTRL_STATE_MASK;
4647 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4648 pci_dev_d3_sleep(dev);
4650 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4654 * pcie_wait_for_link_status - Wait for link status change
4655 * @pdev: Device whose link to wait for.
4656 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4657 * @active: Waiting for active or inactive?
4659 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4660 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4662 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4663 bool use_lt, bool active)
4665 u16 lnksta_mask, lnksta_match;
4666 unsigned long end_jiffies;
4669 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4670 lnksta_match = active ? lnksta_mask : 0;
4672 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4674 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4675 if ((lnksta & lnksta_mask) == lnksta_match)
4678 } while (time_before(jiffies, end_jiffies));
4684 * pcie_retrain_link - Request a link retrain and wait for it to complete
4685 * @pdev: Device whose link to retrain.
4686 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4688 * Retrain completion status is retrieved from the Link Status Register
4689 * according to @use_lt. It is not verified whether the use of the DLLLA
4692 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4693 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4695 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4700 * Ensure the updated LNKCTL parameters are used during link
4701 * training by checking that there is no ongoing link training that
4702 * may have started before link parameters were changed, so as to
4703 * avoid LTSSM race as recommended in Implementation Note at the end
4704 * of PCIe r6.1 sec 7.5.3.7.
4706 rc = pcie_wait_for_link_status(pdev, true, false);
4710 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4711 if (pdev->clear_retrain_link) {
4713 * Due to an erratum in some devices the Retrain Link bit
4714 * needs to be cleared again manually to allow the link
4715 * training to succeed.
4717 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4720 return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4724 * pcie_wait_for_link_delay - Wait until link is active or inactive
4725 * @pdev: Bridge device
4726 * @active: waiting for active or inactive?
4727 * @delay: Delay to wait after link has become active (in ms)
4729 * Use this to wait till link becomes active or inactive.
4731 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4737 * Some controllers might not implement link active reporting. In this
4738 * case, we wait for 1000 ms + any delay requested by the caller.
4740 if (!pdev->link_active_reporting) {
4741 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4746 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4747 * after which we should expect an link active if the reset was
4748 * successful. If so, software must wait a minimum 100ms before sending
4749 * configuration requests to devices downstream this port.
4751 * If the link fails to activate, either the device was physically
4752 * removed or the link is permanently failed.
4756 rc = pcie_wait_for_link_status(pdev, false, active);
4759 rc = pcie_failed_link_retrain(pdev);
4774 * pcie_wait_for_link - Wait until link is active or inactive
4775 * @pdev: Bridge device
4776 * @active: waiting for active or inactive?
4778 * Use this to wait till link becomes active or inactive.
4780 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4782 return pcie_wait_for_link_delay(pdev, active, 100);
4786 * Find maximum D3cold delay required by all the devices on the bus. The
4787 * spec says 100 ms, but firmware can lower it and we allow drivers to
4788 * increase it as well.
4790 * Called with @pci_bus_sem locked for reading.
4792 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4794 const struct pci_dev *pdev;
4795 int min_delay = 100;
4798 list_for_each_entry(pdev, &bus->devices, bus_list) {
4799 if (pdev->d3cold_delay < min_delay)
4800 min_delay = pdev->d3cold_delay;
4801 if (pdev->d3cold_delay > max_delay)
4802 max_delay = pdev->d3cold_delay;
4805 return max(min_delay, max_delay);
4809 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4811 * @reset_type: reset type in human-readable form
4813 * Handle necessary delays before access to the devices on the secondary
4814 * side of the bridge are permitted after D3cold to D0 transition
4815 * or Conventional Reset.
4817 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4818 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4821 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4822 * failed to become accessible.
4824 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4826 struct pci_dev *child __free(pci_dev_put) = NULL;
4829 if (pci_dev_is_disconnected(dev))
4832 if (!pci_is_bridge(dev))
4835 down_read(&pci_bus_sem);
4838 * We only deal with devices that are present currently on the bus.
4839 * For any hot-added devices the access delay is handled in pciehp
4840 * board_added(). In case of ACPI hotplug the firmware is expected
4841 * to configure the devices before OS is notified.
4843 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4844 up_read(&pci_bus_sem);
4848 /* Take d3cold_delay requirements into account */
4849 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4851 up_read(&pci_bus_sem);
4855 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4856 struct pci_dev, bus_list));
4857 up_read(&pci_bus_sem);
4860 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4861 * accessing the device after reset (that is 1000 ms + 100 ms).
4863 if (!pci_is_pcie(dev)) {
4864 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4865 msleep(1000 + delay);
4870 * For PCIe downstream and root ports that do not support speeds
4871 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4872 * speeds (gen3) we need to wait first for the data link layer to
4875 * However, 100 ms is the minimum and the PCIe spec says the
4876 * software must allow at least 1s before it can determine that the
4877 * device that did not respond is a broken device. Also device can
4878 * take longer than that to respond if it indicates so through Request
4879 * Retry Status completions.
4881 * Therefore we wait for 100 ms and check for the device presence
4882 * until the timeout expires.
4884 if (!pcie_downstream_port(dev))
4887 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4890 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4893 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4897 * If the port supports active link reporting we now check
4898 * whether the link is active and if not bail out early with
4899 * the assumption that the device is not present anymore.
4901 if (!dev->link_active_reporting)
4904 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4905 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4908 return pci_dev_wait(child, reset_type,
4909 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4912 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4914 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4915 /* Did not train, no need to wait any further */
4916 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4920 return pci_dev_wait(child, reset_type,
4921 PCIE_RESET_READY_POLL_MS - delay);
4924 void pci_reset_secondary_bus(struct pci_dev *dev)
4928 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4929 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4930 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4933 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4934 * this to 2ms to ensure that we meet the minimum requirement.
4938 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4939 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4942 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4944 pci_reset_secondary_bus(dev);
4948 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4949 * @dev: Bridge device
4951 * Use the bridge control register to assert reset on the secondary bus.
4952 * Devices on the secondary bus are left in power-on state.
4954 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4956 if (!dev->block_cfg_access)
4957 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4958 __builtin_return_address(0));
4959 pcibios_reset_secondary_bus(dev);
4961 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4963 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4965 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4967 struct pci_dev *pdev;
4969 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4970 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4973 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4980 return pci_bridge_secondary_bus_reset(dev->bus->self);
4983 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
4987 if (!hotplug || !try_module_get(hotplug->owner))
4990 if (hotplug->ops->reset_slot)
4991 rc = hotplug->ops->reset_slot(hotplug, probe);
4993 module_put(hotplug->owner);
4998 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5000 if (dev->multifunction || dev->subordinate || !dev->slot ||
5001 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5004 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5007 static u16 cxl_port_dvsec(struct pci_dev *dev)
5009 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5010 PCI_DVSEC_CXL_PORT);
5013 static bool cxl_sbr_masked(struct pci_dev *dev)
5018 dvsec = cxl_port_dvsec(dev);
5022 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5023 if (rc || PCI_POSSIBLE_ERROR(reg))
5027 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5028 * bit in Bridge Control has no effect. When 1, the Port generates
5029 * hot reset when the SBR bit is set to 1.
5031 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5037 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5039 struct pci_dev *bridge = pci_upstream_bridge(dev);
5043 * If "dev" is below a CXL port that has SBR control masked, SBR
5044 * won't do anything, so return error.
5046 if (bridge && cxl_sbr_masked(bridge)) {
5053 rc = pci_dev_reset_slot_function(dev, probe);
5056 return pci_parent_bus_reset(dev, probe);
5059 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5061 struct pci_dev *bridge;
5062 u16 dvsec, reg, val;
5065 bridge = pci_upstream_bridge(dev);
5069 dvsec = cxl_port_dvsec(bridge);
5076 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5080 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5083 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5084 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5088 rc = pci_reset_bus_function(dev, probe);
5091 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5097 void pci_dev_lock(struct pci_dev *dev)
5099 /* block PM suspend, driver probe, etc. */
5100 device_lock(&dev->dev);
5101 pci_cfg_access_lock(dev);
5103 EXPORT_SYMBOL_GPL(pci_dev_lock);
5105 /* Return 1 on successful lock, 0 on contention */
5106 int pci_dev_trylock(struct pci_dev *dev)
5108 if (device_trylock(&dev->dev)) {
5109 if (pci_cfg_access_trylock(dev))
5111 device_unlock(&dev->dev);
5116 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5118 void pci_dev_unlock(struct pci_dev *dev)
5120 pci_cfg_access_unlock(dev);
5121 device_unlock(&dev->dev);
5123 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5125 static void pci_dev_save_and_disable(struct pci_dev *dev)
5127 const struct pci_error_handlers *err_handler =
5128 dev->driver ? dev->driver->err_handler : NULL;
5131 * dev->driver->err_handler->reset_prepare() is protected against
5132 * races with ->remove() by the device lock, which must be held by
5135 if (err_handler && err_handler->reset_prepare)
5136 err_handler->reset_prepare(dev);
5139 * Wake-up device prior to save. PM registers default to D0 after
5140 * reset and a simple register restore doesn't reliably return
5141 * to a non-D0 state anyway.
5143 pci_set_power_state(dev, PCI_D0);
5145 pci_save_state(dev);
5147 * Disable the device by clearing the Command register, except for
5148 * INTx-disable which is set. This not only disables MMIO and I/O port
5149 * BARs, but also prevents the device from being Bus Master, preventing
5150 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5151 * compliant devices, INTx-disable prevents legacy interrupts.
5153 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5156 static void pci_dev_restore(struct pci_dev *dev)
5158 const struct pci_error_handlers *err_handler =
5159 dev->driver ? dev->driver->err_handler : NULL;
5161 pci_restore_state(dev);
5164 * dev->driver->err_handler->reset_done() is protected against
5165 * races with ->remove() by the device lock, which must be held by
5168 if (err_handler && err_handler->reset_done)
5169 err_handler->reset_done(dev);
5172 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5173 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5175 { pci_dev_specific_reset, .name = "device_specific" },
5176 { pci_dev_acpi_reset, .name = "acpi" },
5177 { pcie_reset_flr, .name = "flr" },
5178 { pci_af_flr, .name = "af_flr" },
5179 { pci_pm_reset, .name = "pm" },
5180 { pci_reset_bus_function, .name = "bus" },
5181 { cxl_reset_bus_function, .name = "cxl_bus" },
5184 static ssize_t reset_method_show(struct device *dev,
5185 struct device_attribute *attr, char *buf)
5187 struct pci_dev *pdev = to_pci_dev(dev);
5191 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5192 m = pdev->reset_methods[i];
5196 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5197 pci_reset_fn_methods[m].name);
5201 len += sysfs_emit_at(buf, len, "\n");
5206 static int reset_method_lookup(const char *name)
5210 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5211 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5215 return 0; /* not found */
5218 static ssize_t reset_method_store(struct device *dev,
5219 struct device_attribute *attr,
5220 const char *buf, size_t count)
5222 struct pci_dev *pdev = to_pci_dev(dev);
5223 char *options, *name;
5225 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5227 if (sysfs_streq(buf, "")) {
5228 pdev->reset_methods[0] = 0;
5229 pci_warn(pdev, "All device reset methods disabled by user");
5233 if (sysfs_streq(buf, "default")) {
5234 pci_init_reset_methods(pdev);
5238 options = kstrndup(buf, count, GFP_KERNEL);
5243 while ((name = strsep(&options, " ")) != NULL) {
5244 if (sysfs_streq(name, ""))
5249 m = reset_method_lookup(name);
5251 pci_err(pdev, "Invalid reset method '%s'", name);
5255 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5256 pci_err(pdev, "Unsupported reset method '%s'", name);
5260 if (n == PCI_NUM_RESET_METHODS - 1) {
5261 pci_err(pdev, "Too many reset methods\n");
5265 reset_methods[n++] = m;
5268 reset_methods[n] = 0;
5270 /* Warn if dev-specific supported but not highest priority */
5271 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5272 reset_methods[0] != 1)
5273 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5274 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5279 /* Leave previous methods unchanged */
5283 static DEVICE_ATTR_RW(reset_method);
5285 static struct attribute *pci_dev_reset_method_attrs[] = {
5286 &dev_attr_reset_method.attr,
5290 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5291 struct attribute *a, int n)
5293 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5295 if (!pci_reset_supported(pdev))
5301 const struct attribute_group pci_dev_reset_method_attr_group = {
5302 .attrs = pci_dev_reset_method_attrs,
5303 .is_visible = pci_dev_reset_method_attr_is_visible,
5307 * __pci_reset_function_locked - reset a PCI device function while holding
5308 * the @dev mutex lock.
5309 * @dev: PCI device to reset
5311 * Some devices allow an individual function to be reset without affecting
5312 * other functions in the same device. The PCI device must be responsive
5313 * to PCI config space in order to use this function.
5315 * The device function is presumed to be unused and the caller is holding
5316 * the device mutex lock when this function is called.
5318 * Resetting the device will make the contents of PCI configuration space
5319 * random, so any caller of this must be prepared to reinitialise the
5320 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5323 * Returns 0 if the device function was successfully reset or negative if the
5324 * device doesn't support resetting a single function.
5326 int __pci_reset_function_locked(struct pci_dev *dev)
5333 * A reset method returns -ENOTTY if it doesn't support this device and
5334 * we should try the next method.
5336 * If it returns 0 (success), we're finished. If it returns any other
5337 * error, we're also finished: this indicates that further reset
5338 * mechanisms might be broken on the device.
5340 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5341 m = dev->reset_methods[i];
5345 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5354 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5357 * pci_init_reset_methods - check whether device can be safely reset
5358 * and store supported reset mechanisms.
5359 * @dev: PCI device to check for reset mechanisms
5361 * Some devices allow an individual function to be reset without affecting
5362 * other functions in the same device. The PCI device must be in D0-D3hot
5365 * Stores reset mechanisms supported by device in reset_methods byte array
5366 * which is a member of struct pci_dev.
5368 void pci_init_reset_methods(struct pci_dev *dev)
5372 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5377 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5378 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5380 dev->reset_methods[i++] = m;
5381 else if (rc != -ENOTTY)
5385 dev->reset_methods[i] = 0;
5389 * pci_reset_function - quiesce and reset a PCI device function
5390 * @dev: PCI device to reset
5392 * Some devices allow an individual function to be reset without affecting
5393 * other functions in the same device. The PCI device must be responsive
5394 * to PCI config space in order to use this function.
5396 * This function does not just reset the PCI portion of a device, but
5397 * clears all the state associated with the device. This function differs
5398 * from __pci_reset_function_locked() in that it saves and restores device state
5399 * over the reset and takes the PCI device lock.
5401 * Returns 0 if the device function was successfully reset or negative if the
5402 * device doesn't support resetting a single function.
5404 int pci_reset_function(struct pci_dev *dev)
5406 struct pci_dev *bridge;
5409 if (!pci_reset_supported(dev))
5413 * If there's no upstream bridge, no locking is needed since there is
5414 * no upstream bridge configuration to hold consistent.
5416 bridge = pci_upstream_bridge(dev);
5418 pci_dev_lock(bridge);
5421 pci_dev_save_and_disable(dev);
5423 rc = __pci_reset_function_locked(dev);
5425 pci_dev_restore(dev);
5426 pci_dev_unlock(dev);
5429 pci_dev_unlock(bridge);
5433 EXPORT_SYMBOL_GPL(pci_reset_function);
5436 * pci_reset_function_locked - quiesce and reset a PCI device function
5437 * @dev: PCI device to reset
5439 * Some devices allow an individual function to be reset without affecting
5440 * other functions in the same device. The PCI device must be responsive
5441 * to PCI config space in order to use this function.
5443 * This function does not just reset the PCI portion of a device, but
5444 * clears all the state associated with the device. This function differs
5445 * from __pci_reset_function_locked() in that it saves and restores device state
5446 * over the reset. It also differs from pci_reset_function() in that it
5447 * requires the PCI device lock to be held.
5449 * Returns 0 if the device function was successfully reset or negative if the
5450 * device doesn't support resetting a single function.
5452 int pci_reset_function_locked(struct pci_dev *dev)
5456 if (!pci_reset_supported(dev))
5459 pci_dev_save_and_disable(dev);
5461 rc = __pci_reset_function_locked(dev);
5463 pci_dev_restore(dev);
5467 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5470 * pci_try_reset_function - quiesce and reset a PCI device function
5471 * @dev: PCI device to reset
5473 * Same as above, except return -EAGAIN if unable to lock device.
5475 int pci_try_reset_function(struct pci_dev *dev)
5479 if (!pci_reset_supported(dev))
5482 if (!pci_dev_trylock(dev))
5485 pci_dev_save_and_disable(dev);
5486 rc = __pci_reset_function_locked(dev);
5487 pci_dev_restore(dev);
5488 pci_dev_unlock(dev);
5492 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5494 /* Do any devices on or below this bus prevent a bus reset? */
5495 static bool pci_bus_resettable(struct pci_bus *bus)
5497 struct pci_dev *dev;
5500 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5503 list_for_each_entry(dev, &bus->devices, bus_list) {
5504 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5505 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5512 /* Lock devices from the top of the tree down */
5513 static void pci_bus_lock(struct pci_bus *bus)
5515 struct pci_dev *dev;
5517 pci_dev_lock(bus->self);
5518 list_for_each_entry(dev, &bus->devices, bus_list) {
5519 if (dev->subordinate)
5520 pci_bus_lock(dev->subordinate);
5526 /* Unlock devices from the bottom of the tree up */
5527 static void pci_bus_unlock(struct pci_bus *bus)
5529 struct pci_dev *dev;
5531 list_for_each_entry(dev, &bus->devices, bus_list) {
5532 if (dev->subordinate)
5533 pci_bus_unlock(dev->subordinate);
5535 pci_dev_unlock(dev);
5537 pci_dev_unlock(bus->self);
5540 /* Return 1 on successful lock, 0 on contention */
5541 static int pci_bus_trylock(struct pci_bus *bus)
5543 struct pci_dev *dev;
5545 if (!pci_dev_trylock(bus->self))
5548 list_for_each_entry(dev, &bus->devices, bus_list) {
5549 if (dev->subordinate) {
5550 if (!pci_bus_trylock(dev->subordinate))
5552 } else if (!pci_dev_trylock(dev))
5558 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5559 if (dev->subordinate)
5560 pci_bus_unlock(dev->subordinate);
5562 pci_dev_unlock(dev);
5564 pci_dev_unlock(bus->self);
5568 /* Do any devices on or below this slot prevent a bus reset? */
5569 static bool pci_slot_resettable(struct pci_slot *slot)
5571 struct pci_dev *dev;
5573 if (slot->bus->self &&
5574 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5577 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5578 if (!dev->slot || dev->slot != slot)
5580 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5581 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5588 /* Lock devices from the top of the tree down */
5589 static void pci_slot_lock(struct pci_slot *slot)
5591 struct pci_dev *dev;
5593 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5594 if (!dev->slot || dev->slot != slot)
5596 if (dev->subordinate)
5597 pci_bus_lock(dev->subordinate);
5603 /* Unlock devices from the bottom of the tree up */
5604 static void pci_slot_unlock(struct pci_slot *slot)
5606 struct pci_dev *dev;
5608 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5609 if (!dev->slot || dev->slot != slot)
5611 if (dev->subordinate)
5612 pci_bus_unlock(dev->subordinate);
5613 pci_dev_unlock(dev);
5617 /* Return 1 on successful lock, 0 on contention */
5618 static int pci_slot_trylock(struct pci_slot *slot)
5620 struct pci_dev *dev;
5622 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5623 if (!dev->slot || dev->slot != slot)
5625 if (dev->subordinate) {
5626 if (!pci_bus_trylock(dev->subordinate)) {
5627 pci_dev_unlock(dev);
5630 } else if (!pci_dev_trylock(dev))
5636 list_for_each_entry_continue_reverse(dev,
5637 &slot->bus->devices, bus_list) {
5638 if (!dev->slot || dev->slot != slot)
5640 if (dev->subordinate)
5641 pci_bus_unlock(dev->subordinate);
5643 pci_dev_unlock(dev);
5649 * Save and disable devices from the top of the tree down while holding
5650 * the @dev mutex lock for the entire tree.
5652 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5654 struct pci_dev *dev;
5656 list_for_each_entry(dev, &bus->devices, bus_list) {
5657 pci_dev_save_and_disable(dev);
5658 if (dev->subordinate)
5659 pci_bus_save_and_disable_locked(dev->subordinate);
5664 * Restore devices from top of the tree down while holding @dev mutex lock
5665 * for the entire tree. Parent bridges need to be restored before we can
5666 * get to subordinate devices.
5668 static void pci_bus_restore_locked(struct pci_bus *bus)
5670 struct pci_dev *dev;
5672 list_for_each_entry(dev, &bus->devices, bus_list) {
5673 pci_dev_restore(dev);
5674 if (dev->subordinate)
5675 pci_bus_restore_locked(dev->subordinate);
5680 * Save and disable devices from the top of the tree down while holding
5681 * the @dev mutex lock for the entire tree.
5683 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5685 struct pci_dev *dev;
5687 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5688 if (!dev->slot || dev->slot != slot)
5690 pci_dev_save_and_disable(dev);
5691 if (dev->subordinate)
5692 pci_bus_save_and_disable_locked(dev->subordinate);
5697 * Restore devices from top of the tree down while holding @dev mutex lock
5698 * for the entire tree. Parent bridges need to be restored before we can
5699 * get to subordinate devices.
5701 static void pci_slot_restore_locked(struct pci_slot *slot)
5703 struct pci_dev *dev;
5705 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5706 if (!dev->slot || dev->slot != slot)
5708 pci_dev_restore(dev);
5709 if (dev->subordinate)
5710 pci_bus_restore_locked(dev->subordinate);
5714 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5718 if (!slot || !pci_slot_resettable(slot))
5722 pci_slot_lock(slot);
5726 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5729 pci_slot_unlock(slot);
5735 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5736 * @slot: PCI slot to probe
5738 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5740 int pci_probe_reset_slot(struct pci_slot *slot)
5742 return pci_slot_reset(slot, PCI_RESET_PROBE);
5744 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5747 * __pci_reset_slot - Try to reset a PCI slot
5748 * @slot: PCI slot to reset
5750 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5751 * independent of other slots. For instance, some slots may support slot power
5752 * control. In the case of a 1:1 bus to slot architecture, this function may
5753 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5754 * Generally a slot reset should be attempted before a bus reset. All of the
5755 * function of the slot and any subordinate buses behind the slot are reset
5756 * through this function. PCI config space of all devices in the slot and
5757 * behind the slot is saved before and restored after reset.
5759 * Same as above except return -EAGAIN if the slot cannot be locked
5761 static int __pci_reset_slot(struct pci_slot *slot)
5765 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5769 if (pci_slot_trylock(slot)) {
5770 pci_slot_save_and_disable_locked(slot);
5772 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5773 pci_slot_restore_locked(slot);
5774 pci_slot_unlock(slot);
5781 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5785 if (!bus->self || !pci_bus_resettable(bus))
5795 ret = pci_bridge_secondary_bus_reset(bus->self);
5797 pci_bus_unlock(bus);
5803 * pci_bus_error_reset - reset the bridge's subordinate bus
5804 * @bridge: The parent device that connects to the bus to reset
5806 * This function will first try to reset the slots on this bus if the method is
5807 * available. If slot reset fails or is not available, this will fall back to a
5808 * secondary bus reset.
5810 int pci_bus_error_reset(struct pci_dev *bridge)
5812 struct pci_bus *bus = bridge->subordinate;
5813 struct pci_slot *slot;
5818 mutex_lock(&pci_slot_mutex);
5819 if (list_empty(&bus->slots))
5822 list_for_each_entry(slot, &bus->slots, list)
5823 if (pci_probe_reset_slot(slot))
5826 list_for_each_entry(slot, &bus->slots, list)
5827 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5830 mutex_unlock(&pci_slot_mutex);
5833 mutex_unlock(&pci_slot_mutex);
5834 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5838 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5839 * @bus: PCI bus to probe
5841 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5843 int pci_probe_reset_bus(struct pci_bus *bus)
5845 return pci_bus_reset(bus, PCI_RESET_PROBE);
5847 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5850 * __pci_reset_bus - Try to reset a PCI bus
5851 * @bus: top level PCI bus to reset
5853 * Same as above except return -EAGAIN if the bus cannot be locked
5855 static int __pci_reset_bus(struct pci_bus *bus)
5859 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5863 if (pci_bus_trylock(bus)) {
5864 pci_bus_save_and_disable_locked(bus);
5866 rc = pci_bridge_secondary_bus_reset(bus->self);
5867 pci_bus_restore_locked(bus);
5868 pci_bus_unlock(bus);
5876 * pci_reset_bus - Try to reset a PCI bus
5877 * @pdev: top level PCI device to reset via slot/bus
5879 * Same as above except return -EAGAIN if the bus cannot be locked
5881 int pci_reset_bus(struct pci_dev *pdev)
5883 return (!pci_probe_reset_slot(pdev->slot)) ?
5884 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5886 EXPORT_SYMBOL_GPL(pci_reset_bus);
5889 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5890 * @dev: PCI device to query
5892 * Returns mmrbc: maximum designed memory read count in bytes or
5893 * appropriate error value.
5895 int pcix_get_max_mmrbc(struct pci_dev *dev)
5900 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5904 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5907 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5909 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5912 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5913 * @dev: PCI device to query
5915 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5918 int pcix_get_mmrbc(struct pci_dev *dev)
5923 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5927 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5930 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5932 EXPORT_SYMBOL(pcix_get_mmrbc);
5935 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5936 * @dev: PCI device to query
5937 * @mmrbc: maximum memory read count in bytes
5938 * valid values are 512, 1024, 2048, 4096
5940 * If possible sets maximum memory read byte count, some bridges have errata
5941 * that prevent this.
5943 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5949 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5952 v = ffs(mmrbc) - 10;
5954 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5958 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5961 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5964 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5967 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5969 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5972 cmd &= ~PCI_X_CMD_MAX_READ;
5973 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
5974 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5979 EXPORT_SYMBOL(pcix_set_mmrbc);
5982 * pcie_get_readrq - get PCI Express read request size
5983 * @dev: PCI device to query
5985 * Returns maximum memory read request in bytes or appropriate error value.
5987 int pcie_get_readrq(struct pci_dev *dev)
5991 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5993 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
5995 EXPORT_SYMBOL(pcie_get_readrq);
5998 * pcie_set_readrq - set PCI Express maximum memory read request
5999 * @dev: PCI device to query
6000 * @rq: maximum memory read count in bytes
6001 * valid values are 128, 256, 512, 1024, 2048, 4096
6003 * If possible sets maximum memory read request in bytes
6005 int pcie_set_readrq(struct pci_dev *dev, int rq)
6009 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6011 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6015 * If using the "performance" PCIe config, we clamp the read rq
6016 * size to the max packet size to keep the host bridge from
6017 * generating requests larger than we can cope with.
6019 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6020 int mps = pcie_get_mps(dev);
6026 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6028 if (bridge->no_inc_mrrs) {
6029 int max_mrrs = pcie_get_readrq(dev);
6031 if (rq > max_mrrs) {
6032 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6037 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6038 PCI_EXP_DEVCTL_READRQ, v);
6040 return pcibios_err_to_errno(ret);
6042 EXPORT_SYMBOL(pcie_set_readrq);
6045 * pcie_get_mps - get PCI Express maximum payload size
6046 * @dev: PCI device to query
6048 * Returns maximum payload size in bytes
6050 int pcie_get_mps(struct pci_dev *dev)
6054 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6056 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6058 EXPORT_SYMBOL(pcie_get_mps);
6061 * pcie_set_mps - set PCI Express maximum payload size
6062 * @dev: PCI device to query
6063 * @mps: maximum payload size in bytes
6064 * valid values are 128, 256, 512, 1024, 2048, 4096
6066 * If possible sets maximum payload size
6068 int pcie_set_mps(struct pci_dev *dev, int mps)
6073 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6077 if (v > dev->pcie_mpss)
6079 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6081 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6082 PCI_EXP_DEVCTL_PAYLOAD, v);
6084 return pcibios_err_to_errno(ret);
6086 EXPORT_SYMBOL(pcie_set_mps);
6088 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6090 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6093 int pcie_link_speed_mbps(struct pci_dev *pdev)
6098 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6102 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6104 EXPORT_SYMBOL(pcie_link_speed_mbps);
6107 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6108 * device and its bandwidth limitation
6109 * @dev: PCI device to query
6110 * @limiting_dev: storage for device causing the bandwidth limitation
6111 * @speed: storage for speed of limiting device
6112 * @width: storage for width of limiting device
6114 * Walk up the PCI device chain and find the point where the minimum
6115 * bandwidth is available. Return the bandwidth available there and (if
6116 * limiting_dev, speed, and width pointers are supplied) information about
6117 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6120 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6121 enum pci_bus_speed *speed,
6122 enum pcie_link_width *width)
6125 enum pci_bus_speed next_speed;
6126 enum pcie_link_width next_width;
6130 *speed = PCI_SPEED_UNKNOWN;
6132 *width = PCIE_LNK_WIDTH_UNKNOWN;
6137 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6139 next_speed = to_pcie_link_speed(lnksta);
6140 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6142 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6144 /* Check if current device limits the total bandwidth */
6145 if (!bw || next_bw <= bw) {
6149 *limiting_dev = dev;
6151 *speed = next_speed;
6153 *width = next_width;
6156 dev = pci_upstream_bridge(dev);
6161 EXPORT_SYMBOL(pcie_bandwidth_available);
6164 * pcie_get_speed_cap - query for the PCI device's link speed capability
6165 * @dev: PCI device to query
6167 * Query the PCI device speed capability. Return the maximum link speed
6168 * supported by the device.
6170 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6172 u32 lnkcap2, lnkcap;
6175 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6176 * implementation note there recommends using the Supported Link
6177 * Speeds Vector in Link Capabilities 2 when supported.
6179 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6180 * should use the Supported Link Speeds field in Link Capabilities,
6181 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6183 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6185 /* PCIe r3.0-compliant */
6187 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6189 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6190 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6191 return PCIE_SPEED_5_0GT;
6192 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6193 return PCIE_SPEED_2_5GT;
6195 return PCI_SPEED_UNKNOWN;
6197 EXPORT_SYMBOL(pcie_get_speed_cap);
6200 * pcie_get_width_cap - query for the PCI device's link width capability
6201 * @dev: PCI device to query
6203 * Query the PCI device width capability. Return the maximum link width
6204 * supported by the device.
6206 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6210 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6212 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6214 return PCIE_LNK_WIDTH_UNKNOWN;
6216 EXPORT_SYMBOL(pcie_get_width_cap);
6219 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6221 * @speed: storage for link speed
6222 * @width: storage for link width
6224 * Calculate a PCI device's link bandwidth by querying for its link speed
6225 * and width, multiplying them, and applying encoding overhead. The result
6226 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6228 static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6229 enum pci_bus_speed *speed,
6230 enum pcie_link_width *width)
6232 *speed = pcie_get_speed_cap(dev);
6233 *width = pcie_get_width_cap(dev);
6235 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6238 return *width * PCIE_SPEED2MBS_ENC(*speed);
6242 * __pcie_print_link_status - Report the PCI device's link speed and width
6243 * @dev: PCI device to query
6244 * @verbose: Print info even when enough bandwidth is available
6246 * If the available bandwidth at the device is less than the device is
6247 * capable of, report the device's maximum possible bandwidth and the
6248 * upstream link that limits its performance. If @verbose, always print
6249 * the available bandwidth, even if the device isn't constrained.
6251 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6253 enum pcie_link_width width, width_cap;
6254 enum pci_bus_speed speed, speed_cap;
6255 struct pci_dev *limiting_dev = NULL;
6256 u32 bw_avail, bw_cap;
6258 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6259 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6261 if (bw_avail >= bw_cap && verbose)
6262 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6263 bw_cap / 1000, bw_cap % 1000,
6264 pci_speed_string(speed_cap), width_cap);
6265 else if (bw_avail < bw_cap)
6266 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6267 bw_avail / 1000, bw_avail % 1000,
6268 pci_speed_string(speed), width,
6269 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6270 bw_cap / 1000, bw_cap % 1000,
6271 pci_speed_string(speed_cap), width_cap);
6275 * pcie_print_link_status - Report the PCI device's link speed and width
6276 * @dev: PCI device to query
6278 * Report the available bandwidth at the device.
6280 void pcie_print_link_status(struct pci_dev *dev)
6282 __pcie_print_link_status(dev, true);
6284 EXPORT_SYMBOL(pcie_print_link_status);
6287 * pci_select_bars - Make BAR mask from the type of resource
6288 * @dev: the PCI device for which BAR mask is made
6289 * @flags: resource type mask to be selected
6291 * This helper routine makes bar mask from the type of resource.
6293 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6296 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6297 if (pci_resource_flags(dev, i) & flags)
6301 EXPORT_SYMBOL(pci_select_bars);
6303 /* Some architectures require additional programming to enable VGA */
6304 static arch_set_vga_state_t arch_set_vga_state;
6306 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6308 arch_set_vga_state = func; /* NULL disables */
6311 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6312 unsigned int command_bits, u32 flags)
6314 if (arch_set_vga_state)
6315 return arch_set_vga_state(dev, decode, command_bits,
6321 * pci_set_vga_state - set VGA decode state on device and parents if requested
6322 * @dev: the PCI device
6323 * @decode: true = enable decoding, false = disable decoding
6324 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6325 * @flags: traverse ancestors and change bridges
6326 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6328 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6329 unsigned int command_bits, u32 flags)
6331 struct pci_bus *bus;
6332 struct pci_dev *bridge;
6336 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6338 /* ARCH specific VGA enables */
6339 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6343 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6344 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6346 cmd |= command_bits;
6348 cmd &= ~command_bits;
6349 pci_write_config_word(dev, PCI_COMMAND, cmd);
6352 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6359 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6362 cmd |= PCI_BRIDGE_CTL_VGA;
6364 cmd &= ~PCI_BRIDGE_CTL_VGA;
6365 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6374 bool pci_pr3_present(struct pci_dev *pdev)
6376 struct acpi_device *adev;
6381 adev = ACPI_COMPANION(&pdev->dev);
6385 return adev->power.flags.power_resources &&
6386 acpi_has_method(adev->handle, "_PR3");
6388 EXPORT_SYMBOL_GPL(pci_pr3_present);
6392 * pci_add_dma_alias - Add a DMA devfn alias for a device
6393 * @dev: the PCI device for which alias is added
6394 * @devfn_from: alias slot and function
6395 * @nr_devfns: number of subsequent devfns to alias
6397 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6398 * which is used to program permissible bus-devfn source addresses for DMA
6399 * requests in an IOMMU. These aliases factor into IOMMU group creation
6400 * and are useful for devices generating DMA requests beyond or different
6401 * from their logical bus-devfn. Examples include device quirks where the
6402 * device simply uses the wrong devfn, as well as non-transparent bridges
6403 * where the alias may be a proxy for devices in another domain.
6405 * IOMMU group creation is performed during device discovery or addition,
6406 * prior to any potential DMA mapping and therefore prior to driver probing
6407 * (especially for userspace assigned devices where IOMMU group definition
6408 * cannot be left as a userspace activity). DMA aliases should therefore
6409 * be configured via quirks, such as the PCI fixup header quirk.
6411 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6412 unsigned int nr_devfns)
6416 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6417 devfn_to = devfn_from + nr_devfns - 1;
6419 if (!dev->dma_alias_mask)
6420 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6421 if (!dev->dma_alias_mask) {
6422 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6426 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6429 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6430 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6431 else if (nr_devfns > 1)
6432 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6433 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6434 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6437 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6439 return (dev1->dma_alias_mask &&
6440 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6441 (dev2->dma_alias_mask &&
6442 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6443 pci_real_dma_dev(dev1) == dev2 ||
6444 pci_real_dma_dev(dev2) == dev1;
6447 bool pci_device_is_present(struct pci_dev *pdev)
6451 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6452 pdev = pci_physfn(pdev);
6453 if (pci_dev_is_disconnected(pdev))
6455 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6457 EXPORT_SYMBOL_GPL(pci_device_is_present);
6459 void pci_ignore_hotplug(struct pci_dev *dev)
6461 struct pci_dev *bridge = dev->bus->self;
6463 dev->ignore_hotplug = 1;
6464 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6466 bridge->ignore_hotplug = 1;
6468 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6471 * pci_real_dma_dev - Get PCI DMA device for PCI device
6472 * @dev: the PCI device that may have a PCI DMA alias
6474 * Permits the platform to provide architecture-specific functionality to
6475 * devices needing to alias DMA to another PCI device on another PCI bus. If
6476 * the PCI device is on the same bus, it is recommended to use
6477 * pci_add_dma_alias(). This is the default implementation. Architecture
6478 * implementations can override this.
6480 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6485 resource_size_t __weak pcibios_default_alignment(void)
6491 * Arches that don't want to expose struct resource to userland as-is in
6492 * sysfs and /proc can implement their own pci_resource_to_user().
6494 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6495 const struct resource *rsrc,
6496 resource_size_t *start, resource_size_t *end)
6498 *start = rsrc->start;
6502 static char *resource_alignment_param;
6503 static DEFINE_SPINLOCK(resource_alignment_lock);
6506 * pci_specified_resource_alignment - get resource alignment specified by user.
6507 * @dev: the PCI device to get
6508 * @resize: whether or not to change resources' size when reassigning alignment
6510 * RETURNS: Resource alignment if it is specified.
6511 * Zero if it is not specified.
6513 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6516 int align_order, count;
6517 resource_size_t align = pcibios_default_alignment();
6521 spin_lock(&resource_alignment_lock);
6522 p = resource_alignment_param;
6525 if (pci_has_flag(PCI_PROBE_ONLY)) {
6527 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6533 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6536 if (align_order > 63) {
6537 pr_err("PCI: Invalid requested alignment (order %d)\n",
6539 align_order = PAGE_SHIFT;
6542 align_order = PAGE_SHIFT;
6545 ret = pci_dev_str_match(dev, p, &p);
6548 align = 1ULL << align_order;
6550 } else if (ret < 0) {
6551 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6556 if (*p != ';' && *p != ',') {
6557 /* End of param or invalid format */
6563 spin_unlock(&resource_alignment_lock);
6567 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6568 resource_size_t align, bool resize)
6570 struct resource *r = &dev->resource[bar];
6571 const char *r_name = pci_resource_name(dev, bar);
6572 resource_size_t size;
6574 if (!(r->flags & IORESOURCE_MEM))
6577 if (r->flags & IORESOURCE_PCI_FIXED) {
6578 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6579 r_name, r, (unsigned long long)align);
6583 size = resource_size(r);
6588 * Increase the alignment of the resource. There are two ways we
6591 * 1) Increase the size of the resource. BARs are aligned on their
6592 * size, so when we reallocate space for this resource, we'll
6593 * allocate it with the larger alignment. This also prevents
6594 * assignment of any other BARs inside the alignment region, so
6595 * if we're requesting page alignment, this means no other BARs
6596 * will share the page.
6598 * The disadvantage is that this makes the resource larger than
6599 * the hardware BAR, which may break drivers that compute things
6600 * based on the resource size, e.g., to find registers at a
6601 * fixed offset before the end of the BAR.
6603 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6604 * set r->start to the desired alignment. By itself this
6605 * doesn't prevent other BARs being put inside the alignment
6606 * region, but if we realign *every* resource of every device in
6607 * the system, none of them will share an alignment region.
6609 * When the user has requested alignment for only some devices via
6610 * the "pci=resource_alignment" argument, "resize" is true and we
6611 * use the first method. Otherwise we assume we're aligning all
6612 * devices and we use the second.
6615 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6616 r_name, r, (unsigned long long)align);
6622 r->flags &= ~IORESOURCE_SIZEALIGN;
6623 r->flags |= IORESOURCE_STARTALIGN;
6625 r->end = r->start + size - 1;
6627 r->flags |= IORESOURCE_UNSET;
6631 * This function disables memory decoding and releases memory resources
6632 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6633 * It also rounds up size to specified alignment.
6634 * Later on, the kernel will assign page-aligned memory resource back
6637 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6641 resource_size_t align;
6643 bool resize = false;
6646 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6647 * 3.4.1.11. Their resources are allocated from the space
6648 * described by the VF BARx register in the PF's SR-IOV capability.
6649 * We can't influence their alignment here.
6654 /* check if specified PCI is target device to reassign */
6655 align = pci_specified_resource_alignment(dev, &resize);
6659 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6660 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6661 pci_warn(dev, "Can't reassign resources to host bridge\n");
6665 pci_read_config_word(dev, PCI_COMMAND, &command);
6666 command &= ~PCI_COMMAND_MEMORY;
6667 pci_write_config_word(dev, PCI_COMMAND, command);
6669 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6670 pci_request_resource_alignment(dev, i, align, resize);
6673 * Need to disable bridge's resource window,
6674 * to enable the kernel to reassign new resource
6677 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6678 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6679 r = &dev->resource[i];
6680 if (!(r->flags & IORESOURCE_MEM))
6682 r->flags |= IORESOURCE_UNSET;
6683 r->end = resource_size(r) - 1;
6686 pci_disable_bridge_window(dev);
6690 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6694 spin_lock(&resource_alignment_lock);
6695 if (resource_alignment_param)
6696 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6697 spin_unlock(&resource_alignment_lock);
6702 static ssize_t resource_alignment_store(const struct bus_type *bus,
6703 const char *buf, size_t count)
6705 char *param, *old, *end;
6707 if (count >= (PAGE_SIZE - 1))
6710 param = kstrndup(buf, count, GFP_KERNEL);
6714 end = strchr(param, '\n');
6718 spin_lock(&resource_alignment_lock);
6719 old = resource_alignment_param;
6720 if (strlen(param)) {
6721 resource_alignment_param = param;
6724 resource_alignment_param = NULL;
6726 spin_unlock(&resource_alignment_lock);
6733 static BUS_ATTR_RW(resource_alignment);
6735 static int __init pci_resource_alignment_sysfs_init(void)
6737 return bus_create_file(&pci_bus_type,
6738 &bus_attr_resource_alignment);
6740 late_initcall(pci_resource_alignment_sysfs_init);
6742 static void pci_no_domains(void)
6744 #ifdef CONFIG_PCI_DOMAINS
6745 pci_domains_supported = 0;
6749 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6750 static DEFINE_IDA(pci_domain_nr_static_ida);
6751 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6753 static void of_pci_reserve_static_domain_nr(void)
6755 struct device_node *np;
6758 for_each_node_by_type(np, "pci") {
6759 domain_nr = of_get_pci_domain_nr(np);
6763 * Permanently allocate domain_nr in dynamic_ida
6764 * to prevent it from dynamic allocation.
6766 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6767 domain_nr, domain_nr, GFP_KERNEL);
6771 static int of_pci_bus_find_domain_nr(struct device *parent)
6773 static bool static_domains_reserved = false;
6776 /* On the first call scan device tree for static allocations. */
6777 if (!static_domains_reserved) {
6778 of_pci_reserve_static_domain_nr();
6779 static_domains_reserved = true;
6784 * If domain is in DT, allocate it in static IDA. This
6785 * prevents duplicate static allocations in case of errors
6788 domain_nr = of_get_pci_domain_nr(parent->of_node);
6790 return ida_alloc_range(&pci_domain_nr_static_ida,
6791 domain_nr, domain_nr,
6796 * If domain was not specified in DT, choose a free ID from dynamic
6797 * allocations. All domain numbers from DT are permanently in
6798 * dynamic allocations to prevent assigning them to other DT nodes
6799 * without static domain.
6801 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6804 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6806 if (bus->domain_nr < 0)
6809 /* Release domain from IDA where it was allocated. */
6810 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6811 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6813 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6816 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6818 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6819 acpi_pci_bus_find_domain_nr(bus);
6822 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6826 of_pci_bus_release_domain_nr(bus, parent);
6831 * pci_ext_cfg_avail - can we access extended PCI config space?
6833 * Returns 1 if we can access PCI extended config space (offsets
6834 * greater than 0xff). This is the default implementation. Architecture
6835 * implementations can override this.
6837 int __weak pci_ext_cfg_avail(void)
6842 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6845 EXPORT_SYMBOL(pci_fixup_cardbus);
6847 static int __init pci_setup(char *str)
6850 char *k = strchr(str, ',');
6853 if (*str && (str = pcibios_setup(str)) && *str) {
6854 if (!strcmp(str, "nomsi")) {
6856 } else if (!strncmp(str, "noats", 5)) {
6857 pr_info("PCIe: ATS is disabled\n");
6858 pcie_ats_disabled = true;
6859 } else if (!strcmp(str, "noaer")) {
6861 } else if (!strcmp(str, "earlydump")) {
6862 pci_early_dump = true;
6863 } else if (!strncmp(str, "realloc=", 8)) {
6864 pci_realloc_get_opt(str + 8);
6865 } else if (!strncmp(str, "realloc", 7)) {
6866 pci_realloc_get_opt("on");
6867 } else if (!strcmp(str, "nodomains")) {
6869 } else if (!strncmp(str, "noari", 5)) {
6870 pcie_ari_disabled = true;
6871 } else if (!strncmp(str, "cbiosize=", 9)) {
6872 pci_cardbus_io_size = memparse(str + 9, &str);
6873 } else if (!strncmp(str, "cbmemsize=", 10)) {
6874 pci_cardbus_mem_size = memparse(str + 10, &str);
6875 } else if (!strncmp(str, "resource_alignment=", 19)) {
6876 resource_alignment_param = str + 19;
6877 } else if (!strncmp(str, "ecrc=", 5)) {
6878 pcie_ecrc_get_policy(str + 5);
6879 } else if (!strncmp(str, "hpiosize=", 9)) {
6880 pci_hotplug_io_size = memparse(str + 9, &str);
6881 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6882 pci_hotplug_mmio_size = memparse(str + 11, &str);
6883 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6884 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6885 } else if (!strncmp(str, "hpmemsize=", 10)) {
6886 pci_hotplug_mmio_size = memparse(str + 10, &str);
6887 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6888 } else if (!strncmp(str, "hpbussize=", 10)) {
6889 pci_hotplug_bus_size =
6890 simple_strtoul(str + 10, &str, 0);
6891 if (pci_hotplug_bus_size > 0xff)
6892 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6893 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6894 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6895 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6896 pcie_bus_config = PCIE_BUS_SAFE;
6897 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6898 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6899 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6900 pcie_bus_config = PCIE_BUS_PEER2PEER;
6901 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6902 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6903 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6904 disable_acs_redir_param = str + 18;
6905 } else if (!strncmp(str, "config_acs=", 11)) {
6906 config_acs_param = str + 11;
6908 pr_err("PCI: Unknown option `%s'\n", str);
6915 early_param("pci", pci_setup);
6918 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6919 * in pci_setup(), above, to point to data in the __initdata section which
6920 * will be freed after the init sequence is complete. We can't allocate memory
6921 * in pci_setup() because some architectures do not have any memory allocation
6922 * service available during an early_param() call. So we allocate memory and
6923 * copy the variable here before the init section is freed.
6926 static int __init pci_realloc_setup_params(void)
6928 resource_alignment_param = kstrdup(resource_alignment_param,
6930 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6931 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6935 pure_initcall(pci_realloc_setup_params);