1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2022 Schneider-Electric
9 #include <linux/etherdevice.h>
10 #include <linux/if_bridge.h>
11 #include <linux/if_ether.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
15 #include <linux/of_mdio.h>
18 #include "rzn1_a5psw.h"
22 const char name[ETH_GSTRING_LEN];
25 #define STAT_DESC(_offset) { \
26 .offset = A5PSW_##_offset, \
27 .name = __stringify(_offset), \
30 static const struct a5psw_stats a5psw_stats[] = {
31 STAT_DESC(aFramesTransmittedOK),
32 STAT_DESC(aFramesReceivedOK),
33 STAT_DESC(aFrameCheckSequenceErrors),
34 STAT_DESC(aAlignmentErrors),
35 STAT_DESC(aOctetsTransmittedOK),
36 STAT_DESC(aOctetsReceivedOK),
37 STAT_DESC(aTxPAUSEMACCtrlFrames),
38 STAT_DESC(aRxPAUSEMACCtrlFrames),
39 STAT_DESC(ifInErrors),
40 STAT_DESC(ifOutErrors),
41 STAT_DESC(ifInUcastPkts),
42 STAT_DESC(ifInMulticastPkts),
43 STAT_DESC(ifInBroadcastPkts),
44 STAT_DESC(ifOutDiscards),
45 STAT_DESC(ifOutUcastPkts),
46 STAT_DESC(ifOutMulticastPkts),
47 STAT_DESC(ifOutBroadcastPkts),
48 STAT_DESC(etherStatsDropEvents),
49 STAT_DESC(etherStatsOctets),
50 STAT_DESC(etherStatsPkts),
51 STAT_DESC(etherStatsUndersizePkts),
52 STAT_DESC(etherStatsOversizePkts),
53 STAT_DESC(etherStatsPkts64Octets),
54 STAT_DESC(etherStatsPkts65to127Octets),
55 STAT_DESC(etherStatsPkts128to255Octets),
56 STAT_DESC(etherStatsPkts256to511Octets),
57 STAT_DESC(etherStatsPkts1024to1518Octets),
58 STAT_DESC(etherStatsPkts1519toXOctets),
59 STAT_DESC(etherStatsJabbers),
60 STAT_DESC(etherStatsFragments),
61 STAT_DESC(VLANReceived),
62 STAT_DESC(VLANTransmitted),
64 STAT_DESC(aMultipleCollisions),
65 STAT_DESC(aSingleCollisions),
66 STAT_DESC(aLateCollisions),
67 STAT_DESC(aExcessiveCollisions),
68 STAT_DESC(aCarrierSenseErrors),
71 static void a5psw_reg_writel(struct a5psw *a5psw, int offset, u32 value)
73 writel(value, a5psw->base + offset);
76 static u32 a5psw_reg_readl(struct a5psw *a5psw, int offset)
78 return readl(a5psw->base + offset);
81 static void a5psw_reg_rmw(struct a5psw *a5psw, int offset, u32 mask, u32 val)
85 spin_lock(&a5psw->reg_lock);
87 reg = a5psw_reg_readl(a5psw, offset);
90 a5psw_reg_writel(a5psw, offset, reg);
92 spin_unlock(&a5psw->reg_lock);
95 static enum dsa_tag_protocol a5psw_get_tag_protocol(struct dsa_switch *ds,
97 enum dsa_tag_protocol mp)
99 return DSA_TAG_PROTO_RZN1_A5PSW;
102 static void a5psw_port_pattern_set(struct a5psw *a5psw, int port, int pattern,
108 rx_match |= A5PSW_RXMATCH_CONFIG_PATTERN(pattern);
110 a5psw_reg_rmw(a5psw, A5PSW_RXMATCH_CONFIG(port),
111 A5PSW_RXMATCH_CONFIG_PATTERN(pattern), rx_match);
114 static void a5psw_port_mgmtfwd_set(struct a5psw *a5psw, int port, bool enable)
116 /* Enable "management forward" pattern matching, this will forward
117 * packets from this port only towards the management port and thus
120 a5psw_port_pattern_set(a5psw, port, A5PSW_PATTERN_MGMTFWD, enable);
123 static void a5psw_port_tx_enable(struct a5psw *a5psw, int port, bool enable)
125 u32 mask = A5PSW_PORT_ENA_TX(port);
126 u32 reg = enable ? mask : 0;
128 /* Even though the port TX is disabled through TXENA bit in the
129 * PORT_ENA register, it can still send BPDUs. This depends on the tag
130 * configuration added when sending packets from the CPU port to the
131 * switch port. Indeed, when using forced forwarding without filtering,
132 * even disabled ports will be able to send packets that are tagged.
133 * This allows to implement STP support when ports are in a state where
134 * forwarding traffic should be stopped but BPDUs should still be sent.
136 a5psw_reg_rmw(a5psw, A5PSW_PORT_ENA, mask, reg);
139 static void a5psw_port_enable_set(struct a5psw *a5psw, int port, bool enable)
144 port_ena |= A5PSW_PORT_ENA_TX_RX(port);
146 a5psw_reg_rmw(a5psw, A5PSW_PORT_ENA, A5PSW_PORT_ENA_TX_RX(port),
150 static int a5psw_lk_execute_ctrl(struct a5psw *a5psw, u32 *ctrl)
154 a5psw_reg_writel(a5psw, A5PSW_LK_ADDR_CTRL, *ctrl);
156 ret = readl_poll_timeout(a5psw->base + A5PSW_LK_ADDR_CTRL, *ctrl,
157 !(*ctrl & A5PSW_LK_ADDR_CTRL_BUSY),
158 A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
160 dev_err(a5psw->dev, "LK_CTRL timeout waiting for BUSY bit\n");
165 static void a5psw_port_fdb_flush(struct a5psw *a5psw, int port)
167 u32 ctrl = A5PSW_LK_ADDR_CTRL_DELETE_PORT | BIT(port);
169 mutex_lock(&a5psw->lk_lock);
170 a5psw_lk_execute_ctrl(a5psw, &ctrl);
171 mutex_unlock(&a5psw->lk_lock);
174 static void a5psw_port_authorize_set(struct a5psw *a5psw, int port,
177 u32 reg = a5psw_reg_readl(a5psw, A5PSW_AUTH_PORT(port));
180 reg |= A5PSW_AUTH_PORT_AUTHORIZED;
182 reg &= ~A5PSW_AUTH_PORT_AUTHORIZED;
184 a5psw_reg_writel(a5psw, A5PSW_AUTH_PORT(port), reg);
187 static void a5psw_port_disable(struct dsa_switch *ds, int port)
189 struct a5psw *a5psw = ds->priv;
191 a5psw_port_authorize_set(a5psw, port, false);
192 a5psw_port_enable_set(a5psw, port, false);
195 static int a5psw_port_enable(struct dsa_switch *ds, int port,
196 struct phy_device *phy)
198 struct a5psw *a5psw = ds->priv;
200 a5psw_port_authorize_set(a5psw, port, true);
201 a5psw_port_enable_set(a5psw, port, true);
206 static int a5psw_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
208 struct a5psw *a5psw = ds->priv;
210 new_mtu += ETH_HLEN + A5PSW_EXTRA_MTU_LEN + ETH_FCS_LEN;
211 a5psw_reg_writel(a5psw, A5PSW_FRM_LENGTH(port), new_mtu);
216 static int a5psw_port_max_mtu(struct dsa_switch *ds, int port)
218 return A5PSW_MAX_MTU;
221 static void a5psw_phylink_get_caps(struct dsa_switch *ds, int port,
222 struct phylink_config *config)
224 unsigned long *intf = config->supported_interfaces;
226 config->mac_capabilities = MAC_1000FD;
228 if (dsa_is_cpu_port(ds, port)) {
229 /* GMII is used internally and GMAC2 is connected to the switch
230 * using 1000Mbps Full-Duplex mode only (cf ethernet manual)
232 __set_bit(PHY_INTERFACE_MODE_GMII, intf);
234 config->mac_capabilities |= MAC_100 | MAC_10;
235 phy_interface_set_rgmii(intf);
236 __set_bit(PHY_INTERFACE_MODE_RMII, intf);
237 __set_bit(PHY_INTERFACE_MODE_MII, intf);
241 static struct phylink_pcs *
242 a5psw_phylink_mac_select_pcs(struct phylink_config *config,
243 phy_interface_t interface)
245 struct dsa_port *dp = dsa_phylink_to_port(config);
246 struct a5psw *a5psw = dp->ds->priv;
248 if (dsa_port_is_cpu(dp))
251 return a5psw->pcs[dp->index];
254 static void a5psw_phylink_mac_config(struct phylink_config *config,
256 const struct phylink_link_state *state)
260 static void a5psw_phylink_mac_link_down(struct phylink_config *config,
262 phy_interface_t interface)
264 struct dsa_port *dp = dsa_phylink_to_port(config);
265 struct a5psw *a5psw = dp->ds->priv;
266 int port = dp->index;
269 cmd_cfg = a5psw_reg_readl(a5psw, A5PSW_CMD_CFG(port));
270 cmd_cfg &= ~(A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA);
271 a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port), cmd_cfg);
274 static void a5psw_phylink_mac_link_up(struct phylink_config *config,
275 struct phy_device *phydev,
277 phy_interface_t interface,
278 int speed, int duplex, bool tx_pause,
281 u32 cmd_cfg = A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA |
282 A5PSW_CMD_CFG_TX_CRC_APPEND;
283 struct dsa_port *dp = dsa_phylink_to_port(config);
284 struct a5psw *a5psw = dp->ds->priv;
286 if (speed == SPEED_1000)
287 cmd_cfg |= A5PSW_CMD_CFG_ETH_SPEED;
289 if (duplex == DUPLEX_HALF)
290 cmd_cfg |= A5PSW_CMD_CFG_HD_ENA;
292 cmd_cfg |= A5PSW_CMD_CFG_CNTL_FRM_ENA;
295 cmd_cfg &= ~A5PSW_CMD_CFG_PAUSE_IGNORE;
297 a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(dp->index), cmd_cfg);
300 static int a5psw_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
302 struct a5psw *a5psw = ds->priv;
307 rate = clk_get_rate(a5psw->clk);
308 max = div64_ul(((u64)A5PSW_LK_AGETIME_MASK * A5PSW_TABLE_ENTRIES * 1024),
313 tmp = div_u64(rate, MSEC_PER_SEC);
314 agetime = div_u64(msecs * tmp, 1024 * A5PSW_TABLE_ENTRIES);
316 a5psw_reg_writel(a5psw, A5PSW_LK_AGETIME, agetime);
321 static void a5psw_port_learning_set(struct a5psw *a5psw, int port, bool learn)
323 u32 mask = A5PSW_INPUT_LEARN_DIS(port);
324 u32 reg = !learn ? mask : 0;
326 a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN, mask, reg);
329 static void a5psw_port_rx_block_set(struct a5psw *a5psw, int port, bool block)
331 u32 mask = A5PSW_INPUT_LEARN_BLOCK(port);
332 u32 reg = block ? mask : 0;
334 a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN, mask, reg);
337 static void a5psw_flooding_set_resolution(struct a5psw *a5psw, int port,
340 u8 offsets[] = {A5PSW_UCAST_DEF_MASK, A5PSW_BCAST_DEF_MASK,
341 A5PSW_MCAST_DEF_MASK};
344 for (i = 0; i < ARRAY_SIZE(offsets); i++)
345 a5psw_reg_rmw(a5psw, offsets[i], BIT(port),
346 set ? BIT(port) : 0);
349 static void a5psw_port_set_standalone(struct a5psw *a5psw, int port,
352 a5psw_port_learning_set(a5psw, port, !standalone);
353 a5psw_flooding_set_resolution(a5psw, port, !standalone);
354 a5psw_port_mgmtfwd_set(a5psw, port, standalone);
357 static int a5psw_port_bridge_join(struct dsa_switch *ds, int port,
358 struct dsa_bridge bridge,
359 bool *tx_fwd_offload,
360 struct netlink_ext_ack *extack)
362 struct a5psw *a5psw = ds->priv;
364 /* We only support 1 bridge device */
365 if (a5psw->br_dev && bridge.dev != a5psw->br_dev) {
366 NL_SET_ERR_MSG_MOD(extack,
367 "Forwarding offload supported for a single bridge");
371 a5psw->br_dev = bridge.dev;
372 a5psw_port_set_standalone(a5psw, port, false);
374 a5psw->bridged_ports |= BIT(port);
379 static void a5psw_port_bridge_leave(struct dsa_switch *ds, int port,
380 struct dsa_bridge bridge)
382 struct a5psw *a5psw = ds->priv;
384 a5psw->bridged_ports &= ~BIT(port);
386 a5psw_port_set_standalone(a5psw, port, true);
388 /* No more ports bridged */
389 if (a5psw->bridged_ports == BIT(A5PSW_CPU_PORT))
390 a5psw->br_dev = NULL;
393 static int a5psw_port_pre_bridge_flags(struct dsa_switch *ds, int port,
394 struct switchdev_brport_flags flags,
395 struct netlink_ext_ack *extack)
397 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
405 a5psw_port_bridge_flags(struct dsa_switch *ds, int port,
406 struct switchdev_brport_flags flags,
407 struct netlink_ext_ack *extack)
409 struct a5psw *a5psw = ds->priv;
412 /* If a port is set as standalone, we do not want to be able to
413 * configure flooding nor learning which would result in joining the
414 * unique bridge. This can happen when a port leaves the bridge, in
415 * which case the DSA core will try to "clear" all flags for the
416 * standalone port (ie enable flooding, disable learning). In that case
417 * do not fail but do not apply the flags.
419 if (!(a5psw->bridged_ports & BIT(port)))
422 if (flags.mask & BR_LEARNING) {
423 val = flags.val & BR_LEARNING ? 0 : A5PSW_INPUT_LEARN_DIS(port);
424 a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN,
425 A5PSW_INPUT_LEARN_DIS(port), val);
428 if (flags.mask & BR_FLOOD) {
429 val = flags.val & BR_FLOOD ? BIT(port) : 0;
430 a5psw_reg_rmw(a5psw, A5PSW_UCAST_DEF_MASK, BIT(port), val);
433 if (flags.mask & BR_MCAST_FLOOD) {
434 val = flags.val & BR_MCAST_FLOOD ? BIT(port) : 0;
435 a5psw_reg_rmw(a5psw, A5PSW_MCAST_DEF_MASK, BIT(port), val);
438 if (flags.mask & BR_BCAST_FLOOD) {
439 val = flags.val & BR_BCAST_FLOOD ? BIT(port) : 0;
440 a5psw_reg_rmw(a5psw, A5PSW_BCAST_DEF_MASK, BIT(port), val);
446 static void a5psw_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
448 bool learning_enabled, rx_enabled, tx_enabled;
449 struct dsa_port *dp = dsa_to_port(ds, port);
450 struct a5psw *a5psw = ds->priv;
453 case BR_STATE_DISABLED:
454 case BR_STATE_BLOCKING:
455 case BR_STATE_LISTENING:
458 learning_enabled = false;
460 case BR_STATE_LEARNING:
463 learning_enabled = dp->learning;
465 case BR_STATE_FORWARDING:
468 learning_enabled = dp->learning;
471 dev_err(ds->dev, "invalid STP state: %d\n", state);
475 a5psw_port_learning_set(a5psw, port, learning_enabled);
476 a5psw_port_rx_block_set(a5psw, port, !rx_enabled);
477 a5psw_port_tx_enable(a5psw, port, tx_enabled);
480 static void a5psw_port_fast_age(struct dsa_switch *ds, int port)
482 struct a5psw *a5psw = ds->priv;
484 a5psw_port_fdb_flush(a5psw, port);
487 static int a5psw_lk_execute_lookup(struct a5psw *a5psw, union lk_data *lk_data,
493 a5psw_reg_writel(a5psw, A5PSW_LK_DATA_LO, lk_data->lo);
494 a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data->hi);
496 ctrl = A5PSW_LK_ADDR_CTRL_LOOKUP;
497 ret = a5psw_lk_execute_ctrl(a5psw, &ctrl);
501 *entry = ctrl & A5PSW_LK_ADDR_CTRL_ADDRESS;
506 static int a5psw_port_fdb_add(struct dsa_switch *ds, int port,
507 const unsigned char *addr, u16 vid,
510 struct a5psw *a5psw = ds->priv;
511 union lk_data lk_data = {0};
512 bool inc_learncount = false;
517 ether_addr_copy(lk_data.entry.mac, addr);
518 lk_data.entry.port_mask = BIT(port);
520 mutex_lock(&a5psw->lk_lock);
522 /* Set the value to be written in the lookup table */
523 ret = a5psw_lk_execute_lookup(a5psw, &lk_data, &entry);
527 lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
528 if (!lk_data.entry.valid) {
529 inc_learncount = true;
530 /* port_mask set to 0x1f when entry is not valid, clear it */
531 lk_data.entry.port_mask = 0;
532 lk_data.entry.prio = 0;
535 lk_data.entry.port_mask |= BIT(port);
536 lk_data.entry.is_static = 1;
537 lk_data.entry.valid = 1;
539 a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data.hi);
541 reg = A5PSW_LK_ADDR_CTRL_WRITE | entry;
542 ret = a5psw_lk_execute_ctrl(a5psw, ®);
546 if (inc_learncount) {
547 reg = A5PSW_LK_LEARNCOUNT_MODE_INC;
548 a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
552 mutex_unlock(&a5psw->lk_lock);
557 static int a5psw_port_fdb_del(struct dsa_switch *ds, int port,
558 const unsigned char *addr, u16 vid,
561 struct a5psw *a5psw = ds->priv;
562 union lk_data lk_data = {0};
568 ether_addr_copy(lk_data.entry.mac, addr);
570 mutex_lock(&a5psw->lk_lock);
572 ret = a5psw_lk_execute_lookup(a5psw, &lk_data, &entry);
576 lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
578 /* Our hardware does not associate any VID to the FDB entries so this
579 * means that if two entries were added for the same mac but for
580 * different VID, then, on the deletion of the first one, we would also
581 * delete the second one. Since there is unfortunately nothing we can do
582 * about that, do not return an error...
584 if (!lk_data.entry.valid)
587 lk_data.entry.port_mask &= ~BIT(port);
588 /* If there is no more port in the mask, clear the entry */
589 if (lk_data.entry.port_mask == 0)
592 a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data.hi);
596 reg |= A5PSW_LK_ADDR_CTRL_CLEAR;
598 reg |= A5PSW_LK_ADDR_CTRL_WRITE;
600 ret = a5psw_lk_execute_ctrl(a5psw, ®);
604 /* Decrement LEARNCOUNT */
606 reg = A5PSW_LK_LEARNCOUNT_MODE_DEC;
607 a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
611 mutex_unlock(&a5psw->lk_lock);
616 static int a5psw_port_fdb_dump(struct dsa_switch *ds, int port,
617 dsa_fdb_dump_cb_t *cb, void *data)
619 struct a5psw *a5psw = ds->priv;
620 union lk_data lk_data;
624 mutex_lock(&a5psw->lk_lock);
626 for (i = 0; i < A5PSW_TABLE_ENTRIES; i++) {
627 reg = A5PSW_LK_ADDR_CTRL_READ | A5PSW_LK_ADDR_CTRL_WAIT | i;
629 ret = a5psw_lk_execute_ctrl(a5psw, ®);
633 lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
634 /* If entry is not valid or does not contain the port, skip */
635 if (!lk_data.entry.valid ||
636 !(lk_data.entry.port_mask & BIT(port)))
639 lk_data.lo = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_LO);
641 ret = cb(lk_data.entry.mac, 0, lk_data.entry.is_static, data);
647 mutex_unlock(&a5psw->lk_lock);
652 static int a5psw_port_vlan_filtering(struct dsa_switch *ds, int port,
654 struct netlink_ext_ack *extack)
656 u32 mask = BIT(port + A5PSW_VLAN_VERI_SHIFT) |
657 BIT(port + A5PSW_VLAN_DISC_SHIFT);
658 u32 val = vlan_filtering ? mask : 0;
659 struct a5psw *a5psw = ds->priv;
661 /* Disable/enable vlan tagging */
662 a5psw_reg_rmw(a5psw, A5PSW_VLAN_IN_MODE_ENA, BIT(port),
663 vlan_filtering ? BIT(port) : 0);
665 /* Disable/enable vlan input filtering */
666 a5psw_reg_rmw(a5psw, A5PSW_VLAN_VERIFY, mask, val);
671 static int a5psw_find_vlan_entry(struct a5psw *a5psw, u16 vid)
676 /* Find vlan for this port */
677 for (i = 0; i < A5PSW_VLAN_COUNT; i++) {
678 vlan_res = a5psw_reg_readl(a5psw, A5PSW_VLAN_RES(i));
679 if (FIELD_GET(A5PSW_VLAN_RES_VLANID, vlan_res) == vid)
686 static int a5psw_new_vlan_res_entry(struct a5psw *a5psw, u16 newvid)
691 /* Find a free VLAN entry */
692 for (i = 0; i < A5PSW_VLAN_COUNT; i++) {
693 vlan_res = a5psw_reg_readl(a5psw, A5PSW_VLAN_RES(i));
694 if (!(FIELD_GET(A5PSW_VLAN_RES_PORTMASK, vlan_res))) {
695 vlan_res = FIELD_PREP(A5PSW_VLAN_RES_VLANID, newvid);
696 a5psw_reg_writel(a5psw, A5PSW_VLAN_RES(i), vlan_res);
704 static void a5psw_port_vlan_tagged_cfg(struct a5psw *a5psw,
705 unsigned int vlan_res_id, int port,
708 u32 mask = A5PSW_VLAN_RES_WR_PORTMASK | A5PSW_VLAN_RES_RD_TAGMASK |
710 u32 vlan_res_off = A5PSW_VLAN_RES(vlan_res_id);
711 u32 val = A5PSW_VLAN_RES_WR_TAGMASK, reg;
716 /* Toggle tag mask read */
717 a5psw_reg_writel(a5psw, vlan_res_off, A5PSW_VLAN_RES_RD_TAGMASK);
718 reg = a5psw_reg_readl(a5psw, vlan_res_off);
719 a5psw_reg_writel(a5psw, vlan_res_off, A5PSW_VLAN_RES_RD_TAGMASK);
723 a5psw_reg_writel(a5psw, vlan_res_off, reg);
726 static void a5psw_port_vlan_cfg(struct a5psw *a5psw, unsigned int vlan_res_id,
729 u32 mask = A5PSW_VLAN_RES_WR_TAGMASK | BIT(port);
730 u32 reg = A5PSW_VLAN_RES_WR_PORTMASK;
735 a5psw_reg_rmw(a5psw, A5PSW_VLAN_RES(vlan_res_id), mask, reg);
738 static int a5psw_port_vlan_add(struct dsa_switch *ds, int port,
739 const struct switchdev_obj_port_vlan *vlan,
740 struct netlink_ext_ack *extack)
742 bool tagged = !(vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED);
743 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
744 struct a5psw *a5psw = ds->priv;
748 vlan_res_id = a5psw_find_vlan_entry(a5psw, vid);
749 if (vlan_res_id < 0) {
750 vlan_res_id = a5psw_new_vlan_res_entry(a5psw, vid);
755 a5psw_port_vlan_cfg(a5psw, vlan_res_id, port, true);
757 a5psw_port_vlan_tagged_cfg(a5psw, vlan_res_id, port, true);
759 /* Configure port to tag with corresponding VID, but do not enable it
760 * yet: wait for vlan filtering to be enabled to enable vlan port
764 a5psw_reg_writel(a5psw, A5PSW_SYSTEM_TAGINFO(port), vid);
769 static int a5psw_port_vlan_del(struct dsa_switch *ds, int port,
770 const struct switchdev_obj_port_vlan *vlan)
772 struct a5psw *a5psw = ds->priv;
776 vlan_res_id = a5psw_find_vlan_entry(a5psw, vid);
780 a5psw_port_vlan_cfg(a5psw, vlan_res_id, port, false);
781 a5psw_port_vlan_tagged_cfg(a5psw, vlan_res_id, port, false);
786 static u64 a5psw_read_stat(struct a5psw *a5psw, u32 offset, int port)
790 reg_lo = a5psw_reg_readl(a5psw, offset + A5PSW_PORT_OFFSET(port));
791 /* A5PSW_STATS_HIWORD is latched on stat read */
792 reg_hi = a5psw_reg_readl(a5psw, A5PSW_STATS_HIWORD);
794 return ((u64)reg_hi << 32) | reg_lo;
797 static void a5psw_get_strings(struct dsa_switch *ds, int port, u32 stringset,
802 if (stringset != ETH_SS_STATS)
805 for (u = 0; u < ARRAY_SIZE(a5psw_stats); u++) {
806 memcpy(data + u * ETH_GSTRING_LEN, a5psw_stats[u].name,
811 static void a5psw_get_ethtool_stats(struct dsa_switch *ds, int port,
814 struct a5psw *a5psw = ds->priv;
817 for (u = 0; u < ARRAY_SIZE(a5psw_stats); u++)
818 data[u] = a5psw_read_stat(a5psw, a5psw_stats[u].offset, port);
821 static int a5psw_get_sset_count(struct dsa_switch *ds, int port, int sset)
823 if (sset != ETH_SS_STATS)
826 return ARRAY_SIZE(a5psw_stats);
829 static void a5psw_get_eth_mac_stats(struct dsa_switch *ds, int port,
830 struct ethtool_eth_mac_stats *mac_stats)
832 struct a5psw *a5psw = ds->priv;
834 #define RD(name) a5psw_read_stat(a5psw, A5PSW_##name, port)
835 mac_stats->FramesTransmittedOK = RD(aFramesTransmittedOK);
836 mac_stats->SingleCollisionFrames = RD(aSingleCollisions);
837 mac_stats->MultipleCollisionFrames = RD(aMultipleCollisions);
838 mac_stats->FramesReceivedOK = RD(aFramesReceivedOK);
839 mac_stats->FrameCheckSequenceErrors = RD(aFrameCheckSequenceErrors);
840 mac_stats->AlignmentErrors = RD(aAlignmentErrors);
841 mac_stats->OctetsTransmittedOK = RD(aOctetsTransmittedOK);
842 mac_stats->FramesWithDeferredXmissions = RD(aDeferred);
843 mac_stats->LateCollisions = RD(aLateCollisions);
844 mac_stats->FramesAbortedDueToXSColls = RD(aExcessiveCollisions);
845 mac_stats->FramesLostDueToIntMACXmitError = RD(ifOutErrors);
846 mac_stats->CarrierSenseErrors = RD(aCarrierSenseErrors);
847 mac_stats->OctetsReceivedOK = RD(aOctetsReceivedOK);
848 mac_stats->FramesLostDueToIntMACRcvError = RD(ifInErrors);
849 mac_stats->MulticastFramesXmittedOK = RD(ifOutMulticastPkts);
850 mac_stats->BroadcastFramesXmittedOK = RD(ifOutBroadcastPkts);
851 mac_stats->FramesWithExcessiveDeferral = RD(aDeferred);
852 mac_stats->MulticastFramesReceivedOK = RD(ifInMulticastPkts);
853 mac_stats->BroadcastFramesReceivedOK = RD(ifInBroadcastPkts);
857 static const struct ethtool_rmon_hist_range a5psw_rmon_ranges[] = {
864 { 1519, A5PSW_MAX_MTU },
868 static void a5psw_get_rmon_stats(struct dsa_switch *ds, int port,
869 struct ethtool_rmon_stats *rmon_stats,
870 const struct ethtool_rmon_hist_range **ranges)
872 struct a5psw *a5psw = ds->priv;
874 #define RD(name) a5psw_read_stat(a5psw, A5PSW_##name, port)
875 rmon_stats->undersize_pkts = RD(etherStatsUndersizePkts);
876 rmon_stats->oversize_pkts = RD(etherStatsOversizePkts);
877 rmon_stats->fragments = RD(etherStatsFragments);
878 rmon_stats->jabbers = RD(etherStatsJabbers);
879 rmon_stats->hist[0] = RD(etherStatsPkts64Octets);
880 rmon_stats->hist[1] = RD(etherStatsPkts65to127Octets);
881 rmon_stats->hist[2] = RD(etherStatsPkts128to255Octets);
882 rmon_stats->hist[3] = RD(etherStatsPkts256to511Octets);
883 rmon_stats->hist[4] = RD(etherStatsPkts512to1023Octets);
884 rmon_stats->hist[5] = RD(etherStatsPkts1024to1518Octets);
885 rmon_stats->hist[6] = RD(etherStatsPkts1519toXOctets);
888 *ranges = a5psw_rmon_ranges;
891 static void a5psw_get_eth_ctrl_stats(struct dsa_switch *ds, int port,
892 struct ethtool_eth_ctrl_stats *ctrl_stats)
894 struct a5psw *a5psw = ds->priv;
897 stat = a5psw_read_stat(a5psw, A5PSW_aTxPAUSEMACCtrlFrames, port);
898 ctrl_stats->MACControlFramesTransmitted = stat;
899 stat = a5psw_read_stat(a5psw, A5PSW_aRxPAUSEMACCtrlFrames, port);
900 ctrl_stats->MACControlFramesReceived = stat;
903 static void a5psw_vlan_setup(struct a5psw *a5psw, int port)
907 /* Enable TAG always mode for the port, this is actually controlled
908 * by VLAN_IN_MODE_ENA field which will be used for PVID insertion
910 reg = A5PSW_VLAN_IN_MODE_TAG_ALWAYS;
911 reg <<= A5PSW_VLAN_IN_MODE_PORT_SHIFT(port);
912 a5psw_reg_rmw(a5psw, A5PSW_VLAN_IN_MODE, A5PSW_VLAN_IN_MODE_PORT(port),
915 /* Set transparent mode for output frame manipulation, this will depend
916 * on the VLAN_RES configuration mode
918 reg = A5PSW_VLAN_OUT_MODE_TRANSPARENT;
919 reg <<= A5PSW_VLAN_OUT_MODE_PORT_SHIFT(port);
920 a5psw_reg_rmw(a5psw, A5PSW_VLAN_OUT_MODE,
921 A5PSW_VLAN_OUT_MODE_PORT(port), reg);
924 static int a5psw_setup(struct dsa_switch *ds)
926 struct a5psw *a5psw = ds->priv;
931 /* Validate that there is only 1 CPU port with index A5PSW_CPU_PORT */
932 dsa_switch_for_each_cpu_port(dp, ds) {
933 if (dp->index != A5PSW_CPU_PORT) {
934 dev_err(a5psw->dev, "Invalid CPU port\n");
939 /* Configure management port */
940 reg = A5PSW_CPU_PORT | A5PSW_MGMT_CFG_ENABLE;
941 a5psw_reg_writel(a5psw, A5PSW_MGMT_CFG, reg);
943 /* Set pattern 0 to forward all frame to mgmt port */
944 a5psw_reg_writel(a5psw, A5PSW_PATTERN_CTRL(A5PSW_PATTERN_MGMTFWD),
945 A5PSW_PATTERN_CTRL_MGMTFWD);
947 /* Enable port tagging */
948 reg = FIELD_PREP(A5PSW_MGMT_TAG_CFG_TAGFIELD, ETH_P_DSA_A5PSW);
949 reg |= A5PSW_MGMT_TAG_CFG_ENABLE | A5PSW_MGMT_TAG_CFG_ALL_FRAMES;
950 a5psw_reg_writel(a5psw, A5PSW_MGMT_TAG_CFG, reg);
952 /* Enable normal switch operation */
953 reg = A5PSW_LK_ADDR_CTRL_BLOCKING | A5PSW_LK_ADDR_CTRL_LEARNING |
954 A5PSW_LK_ADDR_CTRL_AGEING | A5PSW_LK_ADDR_CTRL_ALLOW_MIGR |
955 A5PSW_LK_ADDR_CTRL_CLEAR_TABLE;
956 a5psw_reg_writel(a5psw, A5PSW_LK_CTRL, reg);
958 ret = readl_poll_timeout(a5psw->base + A5PSW_LK_CTRL, reg,
959 !(reg & A5PSW_LK_ADDR_CTRL_CLEAR_TABLE),
960 A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
962 dev_err(a5psw->dev, "Failed to clear lookup table\n");
966 /* Reset learn count to 0 */
967 reg = A5PSW_LK_LEARNCOUNT_MODE_SET;
968 a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
970 /* Clear VLAN resource table */
971 reg = A5PSW_VLAN_RES_WR_PORTMASK | A5PSW_VLAN_RES_WR_TAGMASK;
972 for (vlan = 0; vlan < A5PSW_VLAN_COUNT; vlan++)
973 a5psw_reg_writel(a5psw, A5PSW_VLAN_RES(vlan), reg);
975 /* Reset all ports */
976 dsa_switch_for_each_port(dp, ds) {
980 a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port),
981 A5PSW_CMD_CFG_SW_RESET);
983 /* Enable only CPU port */
984 a5psw_port_enable_set(a5psw, port, dsa_port_is_cpu(dp));
986 if (dsa_port_is_unused(dp))
989 /* Enable egress flooding and learning for CPU port */
990 if (dsa_port_is_cpu(dp)) {
991 a5psw_flooding_set_resolution(a5psw, port, true);
992 a5psw_port_learning_set(a5psw, port, true);
995 /* Enable standalone mode for user ports */
996 if (dsa_port_is_user(dp))
997 a5psw_port_set_standalone(a5psw, port, true);
999 a5psw_vlan_setup(a5psw, port);
1005 static const struct phylink_mac_ops a5psw_phylink_mac_ops = {
1006 .mac_select_pcs = a5psw_phylink_mac_select_pcs,
1007 .mac_config = a5psw_phylink_mac_config,
1008 .mac_link_down = a5psw_phylink_mac_link_down,
1009 .mac_link_up = a5psw_phylink_mac_link_up,
1012 static const struct dsa_switch_ops a5psw_switch_ops = {
1013 .get_tag_protocol = a5psw_get_tag_protocol,
1014 .setup = a5psw_setup,
1015 .port_disable = a5psw_port_disable,
1016 .port_enable = a5psw_port_enable,
1017 .phylink_get_caps = a5psw_phylink_get_caps,
1018 .port_change_mtu = a5psw_port_change_mtu,
1019 .port_max_mtu = a5psw_port_max_mtu,
1020 .get_sset_count = a5psw_get_sset_count,
1021 .get_strings = a5psw_get_strings,
1022 .get_ethtool_stats = a5psw_get_ethtool_stats,
1023 .get_eth_mac_stats = a5psw_get_eth_mac_stats,
1024 .get_eth_ctrl_stats = a5psw_get_eth_ctrl_stats,
1025 .get_rmon_stats = a5psw_get_rmon_stats,
1026 .set_ageing_time = a5psw_set_ageing_time,
1027 .port_bridge_join = a5psw_port_bridge_join,
1028 .port_bridge_leave = a5psw_port_bridge_leave,
1029 .port_pre_bridge_flags = a5psw_port_pre_bridge_flags,
1030 .port_bridge_flags = a5psw_port_bridge_flags,
1031 .port_stp_state_set = a5psw_port_stp_state_set,
1032 .port_fast_age = a5psw_port_fast_age,
1033 .port_vlan_filtering = a5psw_port_vlan_filtering,
1034 .port_vlan_add = a5psw_port_vlan_add,
1035 .port_vlan_del = a5psw_port_vlan_del,
1036 .port_fdb_add = a5psw_port_fdb_add,
1037 .port_fdb_del = a5psw_port_fdb_del,
1038 .port_fdb_dump = a5psw_port_fdb_dump,
1041 static int a5psw_mdio_wait_busy(struct a5psw *a5psw)
1046 err = readl_poll_timeout(a5psw->base + A5PSW_MDIO_CFG_STATUS, status,
1047 !(status & A5PSW_MDIO_CFG_STATUS_BUSY), 10,
1048 1000 * USEC_PER_MSEC);
1050 dev_err(a5psw->dev, "MDIO command timeout\n");
1055 static int a5psw_mdio_read(struct mii_bus *bus, int phy_id, int phy_reg)
1057 struct a5psw *a5psw = bus->priv;
1061 cmd = A5PSW_MDIO_COMMAND_READ;
1062 cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
1063 cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
1065 a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
1067 ret = a5psw_mdio_wait_busy(a5psw);
1071 ret = a5psw_reg_readl(a5psw, A5PSW_MDIO_DATA) & A5PSW_MDIO_DATA_MASK;
1073 status = a5psw_reg_readl(a5psw, A5PSW_MDIO_CFG_STATUS);
1074 if (status & A5PSW_MDIO_CFG_STATUS_READERR)
1080 static int a5psw_mdio_write(struct mii_bus *bus, int phy_id, int phy_reg,
1083 struct a5psw *a5psw = bus->priv;
1086 cmd = FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
1087 cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
1089 a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
1090 a5psw_reg_writel(a5psw, A5PSW_MDIO_DATA, phy_data);
1092 return a5psw_mdio_wait_busy(a5psw);
1095 static int a5psw_mdio_config(struct a5psw *a5psw, u32 mdio_freq)
1101 rate = clk_get_rate(a5psw->hclk);
1102 div = ((rate / mdio_freq) / 2);
1103 if (div > FIELD_MAX(A5PSW_MDIO_CFG_STATUS_CLKDIV) ||
1104 div < A5PSW_MDIO_CLK_DIV_MIN) {
1105 dev_err(a5psw->dev, "MDIO clock div %ld out of range\n", div);
1109 cfgstatus = FIELD_PREP(A5PSW_MDIO_CFG_STATUS_CLKDIV, div);
1111 a5psw_reg_writel(a5psw, A5PSW_MDIO_CFG_STATUS, cfgstatus);
1116 static int a5psw_probe_mdio(struct a5psw *a5psw, struct device_node *node)
1118 struct device *dev = a5psw->dev;
1119 struct mii_bus *bus;
1123 if (of_property_read_u32(node, "clock-frequency", &mdio_freq))
1124 mdio_freq = A5PSW_MDIO_DEF_FREQ;
1126 ret = a5psw_mdio_config(a5psw, mdio_freq);
1130 bus = devm_mdiobus_alloc(dev);
1134 bus->name = "a5psw_mdio";
1135 bus->read = a5psw_mdio_read;
1136 bus->write = a5psw_mdio_write;
1139 snprintf(bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
1141 a5psw->mii_bus = bus;
1143 return devm_of_mdiobus_register(dev, bus, node);
1146 static void a5psw_pcs_free(struct a5psw *a5psw)
1150 for (i = 0; i < ARRAY_SIZE(a5psw->pcs); i++) {
1152 miic_destroy(a5psw->pcs[i]);
1156 static int a5psw_pcs_get(struct a5psw *a5psw)
1158 struct device_node *ports, *port, *pcs_node;
1159 struct phylink_pcs *pcs;
1163 ports = of_get_child_by_name(a5psw->dev->of_node, "ethernet-ports");
1167 for_each_available_child_of_node(ports, port) {
1168 pcs_node = of_parse_phandle(port, "pcs-handle", 0);
1172 if (of_property_read_u32(port, "reg", ®)) {
1177 if (reg >= ARRAY_SIZE(a5psw->pcs)) {
1182 pcs = miic_create(a5psw->dev, pcs_node);
1184 dev_err(a5psw->dev, "Failed to create PCS for port %d\n",
1190 a5psw->pcs[reg] = pcs;
1191 of_node_put(pcs_node);
1198 of_node_put(pcs_node);
1201 a5psw_pcs_free(a5psw);
1206 static int a5psw_probe(struct platform_device *pdev)
1208 struct device *dev = &pdev->dev;
1209 struct device_node *mdio;
1210 struct dsa_switch *ds;
1211 struct a5psw *a5psw;
1214 a5psw = devm_kzalloc(dev, sizeof(*a5psw), GFP_KERNEL);
1219 mutex_init(&a5psw->lk_lock);
1220 spin_lock_init(&a5psw->reg_lock);
1221 a5psw->base = devm_platform_ioremap_resource(pdev, 0);
1222 if (IS_ERR(a5psw->base))
1223 return PTR_ERR(a5psw->base);
1225 a5psw->bridged_ports = BIT(A5PSW_CPU_PORT);
1227 ret = a5psw_pcs_get(a5psw);
1231 a5psw->hclk = devm_clk_get(dev, "hclk");
1232 if (IS_ERR(a5psw->hclk)) {
1233 dev_err(dev, "failed get hclk clock\n");
1234 ret = PTR_ERR(a5psw->hclk);
1238 a5psw->clk = devm_clk_get(dev, "clk");
1239 if (IS_ERR(a5psw->clk)) {
1240 dev_err(dev, "failed get clk_switch clock\n");
1241 ret = PTR_ERR(a5psw->clk);
1245 ret = clk_prepare_enable(a5psw->clk);
1249 ret = clk_prepare_enable(a5psw->hclk);
1253 mdio = of_get_child_by_name(dev->of_node, "mdio");
1254 if (of_device_is_available(mdio)) {
1255 ret = a5psw_probe_mdio(a5psw, mdio);
1258 dev_err(dev, "Failed to register MDIO: %d\n", ret);
1267 ds->num_ports = A5PSW_PORTS_NUM;
1268 ds->ops = &a5psw_switch_ops;
1269 ds->phylink_mac_ops = &a5psw_phylink_mac_ops;
1272 ret = dsa_register_switch(ds);
1274 dev_err(dev, "Failed to register DSA switch: %d\n", ret);
1281 clk_disable_unprepare(a5psw->hclk);
1283 clk_disable_unprepare(a5psw->clk);
1285 a5psw_pcs_free(a5psw);
1290 static void a5psw_remove(struct platform_device *pdev)
1292 struct a5psw *a5psw = platform_get_drvdata(pdev);
1297 dsa_unregister_switch(&a5psw->ds);
1298 a5psw_pcs_free(a5psw);
1299 clk_disable_unprepare(a5psw->hclk);
1300 clk_disable_unprepare(a5psw->clk);
1303 static void a5psw_shutdown(struct platform_device *pdev)
1305 struct a5psw *a5psw = platform_get_drvdata(pdev);
1310 dsa_switch_shutdown(&a5psw->ds);
1312 platform_set_drvdata(pdev, NULL);
1315 static const struct of_device_id a5psw_of_mtable[] = {
1316 { .compatible = "renesas,rzn1-a5psw", },
1319 MODULE_DEVICE_TABLE(of, a5psw_of_mtable);
1321 static struct platform_driver a5psw_driver = {
1323 .name = "rzn1_a5psw",
1324 .of_match_table = a5psw_of_mtable,
1326 .probe = a5psw_probe,
1327 .remove_new = a5psw_remove,
1328 .shutdown = a5psw_shutdown,
1330 module_platform_driver(a5psw_driver);
1332 MODULE_LICENSE("GPL");
1333 MODULE_DESCRIPTION("Renesas RZ/N1 Advanced 5-port Switch driver");