2 * Copyright 2019 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include "amdgpu_amdkfd.h"
24 #include "amdgpu_amdkfd_gfx_v10.h"
25 #include "gc/gc_10_1_0_offset.h"
26 #include "gc/gc_10_1_0_sh_mask.h"
27 #include "athub/athub_2_0_0_offset.h"
28 #include "athub/athub_2_0_0_sh_mask.h"
29 #include "oss/osssys_5_0_0_offset.h"
30 #include "oss/osssys_5_0_0_sh_mask.h"
31 #include "soc15_common.h"
32 #include "v10_structs.h"
35 #include <uapi/linux/kfd_ioctl.h>
37 enum hqd_dequeue_request_type {
44 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
45 uint32_t queue, uint32_t vmid)
47 mutex_lock(&adev->srbm_mutex);
48 nv_grbm_select(adev, mec, pipe, queue, vmid);
51 static void unlock_srbm(struct amdgpu_device *adev)
53 nv_grbm_select(adev, 0, 0, 0, 0);
54 mutex_unlock(&adev->srbm_mutex);
57 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
60 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
61 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
63 lock_srbm(adev, mec, pipe, queue_id, 0);
66 static uint64_t get_queue_mask(struct amdgpu_device *adev,
67 uint32_t pipe_id, uint32_t queue_id)
69 unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
75 static void release_queue(struct amdgpu_device *adev)
80 static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
81 uint32_t sh_mem_config,
82 uint32_t sh_mem_ape1_base,
83 uint32_t sh_mem_ape1_limit,
84 uint32_t sh_mem_bases, uint32_t inst)
86 lock_srbm(adev, 0, 0, 0, vmid);
88 WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, sh_mem_config);
89 WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases);
90 /* APE1 no longer exists on GFX9 */
95 static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
96 unsigned int vmid, uint32_t inst)
99 * We have to assume that there is no outstanding mapping.
100 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
101 * a mapping is in progress or because a mapping finished
102 * and the SW cleared it.
103 * So the protocol is to always wait & clear.
105 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
106 ATC_VMID0_PASID_MAPPING__VALID_MASK;
108 pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping);
110 pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid);
111 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
115 /* TODO: uncomment this code when the hardware support is ready. */
116 while (!(RREG32(SOC15_REG_OFFSET(
118 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
122 pr_debug("ATHUB mapping update finished\n");
123 WREG32(SOC15_REG_OFFSET(ATHUB, 0,
124 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
128 /* Mapping vmid to pasid also for IH block */
129 pr_debug("update mapping for IH block and mmhub");
130 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
136 /* TODO - RING0 form of field is obsolete, seems to date back to SI
140 static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
146 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
147 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
149 lock_srbm(adev, mec, pipe, 0, 0);
151 WREG32_SOC15(GC, 0, mmCPC_INT_CNTL,
152 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
153 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
160 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
161 unsigned int engine_id,
162 unsigned int queue_id)
164 uint32_t sdma_engine_reg_base[2] = {
165 SOC15_REG_OFFSET(SDMA0, 0,
166 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL,
167 /* On gfx10, mmSDMA1_xxx registers are defined NOT based
168 * on SDMA1 base address (dw 0x1860) but based on SDMA0
169 * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL
170 * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc
173 SOC15_REG_OFFSET(SDMA1, 0,
174 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL
177 uint32_t retval = sdma_engine_reg_base[engine_id]
178 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
180 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
187 static uint32_t get_watch_base_addr(struct amdgpu_device *adev)
189 uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) -
192 pr_debug("kfd: reg watch base address: 0x%x\n", retval);
198 static inline struct v10_compute_mqd *get_mqd(void *mqd)
200 return (struct v10_compute_mqd *)mqd;
203 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
205 return (struct v10_sdma_mqd *)mqd;
208 static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd,
209 uint32_t pipe_id, uint32_t queue_id,
210 uint32_t __user *wptr, uint32_t wptr_shift,
211 uint32_t wptr_mask, struct mm_struct *mm, uint32_t inst)
213 struct v10_compute_mqd *m;
215 uint32_t reg, hqd_base, data;
219 pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
220 acquire_queue(adev, pipe_id, queue_id);
222 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
223 mqd_hqd = &m->cp_mqd_base_addr_lo;
224 hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
227 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
228 WREG32_SOC15_IP(GC, reg, mqd_hqd[reg - hqd_base]);
231 /* Activate doorbell logic before triggering WPTR poll. */
232 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
233 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
234 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, data);
237 /* Don't read wptr with get_user because the user
238 * context may not be accessible (if this function
239 * runs in a work queue). Instead trigger a one-shot
240 * polling read from memory in the CP. This assumes
241 * that wptr is GPU-accessible in the queue's VMID via
242 * ATC or SVM. WPTR==RPTR before starting the poll so
243 * the CP starts fetching new commands from the right
246 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
247 * tricky. Assume that the queue didn't overflow. The
248 * number of valid bits in the 32-bit RPTR depends on
249 * the queue size. The remaining bits are taken from
250 * the saved 64-bit WPTR. If the WPTR wrapped, add the
253 uint32_t queue_size =
254 2 << REG_GET_FIELD(m->cp_hqd_pq_control,
255 CP_HQD_PQ_CONTROL, QUEUE_SIZE);
256 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
258 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
259 guessed_wptr += queue_size;
260 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
261 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
263 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO,
264 lower_32_bits(guessed_wptr));
265 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI,
266 upper_32_bits(guessed_wptr));
267 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR,
268 lower_32_bits((uint64_t)wptr));
269 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI,
270 upper_32_bits((uint64_t)wptr));
271 pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
272 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
273 WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1,
274 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
277 /* Start the EOP fetcher */
278 WREG32_SOC15(GC, 0, mmCP_HQD_EOP_RPTR,
279 REG_SET_FIELD(m->cp_hqd_eop_rptr,
280 CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
282 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
283 WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE, data);
290 static int kgd_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
291 uint32_t pipe_id, uint32_t queue_id,
292 uint32_t doorbell_off, uint32_t inst)
294 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[0].ring;
295 struct v10_compute_mqd *m;
301 acquire_queue(adev, pipe_id, queue_id);
303 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
304 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
306 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
307 mec, pipe, queue_id);
309 spin_lock(&adev->gfx.kiq[0].ring_lock);
310 r = amdgpu_ring_alloc(kiq_ring, 7);
312 pr_err("Failed to alloc KIQ (%d).\n", r);
316 amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
317 amdgpu_ring_write(kiq_ring,
318 PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
319 PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
320 PACKET3_MAP_QUEUES_QUEUE(queue_id) |
321 PACKET3_MAP_QUEUES_PIPE(pipe) |
322 PACKET3_MAP_QUEUES_ME((mec - 1)) |
323 PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
324 PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
325 PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
326 PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
327 amdgpu_ring_write(kiq_ring,
328 PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
329 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
330 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
331 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
332 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
333 amdgpu_ring_commit(kiq_ring);
336 spin_unlock(&adev->gfx.kiq[0].ring_lock);
342 static int kgd_hqd_dump(struct amdgpu_device *adev,
343 uint32_t pipe_id, uint32_t queue_id,
344 uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
347 #define HQD_N_REGS 56
348 #define DUMP_REG(addr) do { \
349 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
351 (*dump)[i][0] = (addr) << 2; \
352 (*dump)[i++][1] = RREG32_SOC15_IP(GC, addr); \
355 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
359 acquire_queue(adev, pipe_id, queue_id);
361 for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
362 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
367 WARN_ON_ONCE(i != HQD_N_REGS);
373 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
374 uint32_t __user *wptr, struct mm_struct *mm)
376 struct v10_sdma_mqd *m;
377 uint32_t sdma_rlc_reg_offset;
378 unsigned long end_jiffies;
381 uint64_t __user *wptr64 = (uint64_t __user *)wptr;
383 m = get_sdma_mqd(mqd);
384 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
387 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
388 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
390 end_jiffies = msecs_to_jiffies(2000) + jiffies;
392 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
393 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
395 if (time_after(jiffies, end_jiffies)) {
396 pr_err("SDMA RLC not idle in %s\n", __func__);
399 usleep_range(500, 1000);
402 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
403 m->sdmax_rlcx_doorbell_offset);
405 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
407 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
408 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
409 m->sdmax_rlcx_rb_rptr);
410 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
411 m->sdmax_rlcx_rb_rptr_hi);
413 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
414 if (read_user_wptr(mm, wptr64, data64)) {
415 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
416 lower_32_bits(data64));
417 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
418 upper_32_bits(data64));
420 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
421 m->sdmax_rlcx_rb_rptr);
422 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
423 m->sdmax_rlcx_rb_rptr_hi);
425 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
427 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
428 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
429 m->sdmax_rlcx_rb_base_hi);
430 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
431 m->sdmax_rlcx_rb_rptr_addr_lo);
432 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
433 m->sdmax_rlcx_rb_rptr_addr_hi);
435 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
437 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
442 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
443 uint32_t engine_id, uint32_t queue_id,
444 uint32_t (**dump)[2], uint32_t *n_regs)
446 uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
447 engine_id, queue_id);
450 #define HQD_N_REGS (19+6+7+10)
452 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
456 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
457 DUMP_REG(sdma_rlc_reg_offset + reg);
458 for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
459 DUMP_REG(sdma_rlc_reg_offset + reg);
460 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
461 reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
462 DUMP_REG(sdma_rlc_reg_offset + reg);
463 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
464 reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
465 DUMP_REG(sdma_rlc_reg_offset + reg);
467 WARN_ON_ONCE(i != HQD_N_REGS);
473 static bool kgd_hqd_is_occupied(struct amdgpu_device *adev,
474 uint64_t queue_address, uint32_t pipe_id,
475 uint32_t queue_id, uint32_t inst)
481 acquire_queue(adev, pipe_id, queue_id);
482 act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
484 low = lower_32_bits(queue_address >> 8);
485 high = upper_32_bits(queue_address >> 8);
487 if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) &&
488 high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI))
495 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
497 struct v10_sdma_mqd *m;
498 uint32_t sdma_rlc_reg_offset;
499 uint32_t sdma_rlc_rb_cntl;
501 m = get_sdma_mqd(mqd);
502 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
505 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
507 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
513 static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd,
514 enum kfd_preempt_type reset_type,
515 unsigned int utimeout, uint32_t pipe_id,
516 uint32_t queue_id, uint32_t inst)
518 enum hqd_dequeue_request_type type;
519 unsigned long end_jiffies;
521 struct v10_compute_mqd *m = get_mqd(mqd);
523 if (amdgpu_in_reset(adev))
531 acquire_queue(adev, pipe_id, queue_id);
533 if (m->cp_hqd_vmid == 0)
534 WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
536 switch (reset_type) {
537 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
540 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
543 case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
551 #if 0 /* Is this still needed? */
552 /* Workaround: If IQ timer is active and the wait time is close to or
553 * equal to 0, dequeueing is not safe. Wait until either the wait time
554 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
555 * cleared before continuing. Also, ensure wait times are set to at
558 local_irq_save(flags);
560 retry = 5000; /* wait for 500 usecs at maximum */
562 temp = RREG32(mmCP_HQD_IQ_TIMER);
563 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
564 pr_debug("HW is processing IQ\n");
567 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
568 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
569 == 3) /* SEM-rearm is safe */
571 /* Wait time 3 is safe for CP, but our MMIO read/write
572 * time is close to 1 microsecond, so check for 10 to
573 * leave more buffer room
575 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
578 pr_debug("IQ timer is active\n");
583 pr_err("CP HQD IQ timer status time out\n");
591 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
592 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
594 pr_debug("Dequeue request is pending\n");
597 pr_err("CP HQD dequeue request time out\n");
603 local_irq_restore(flags);
607 WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, type);
609 end_jiffies = (utimeout * HZ / 1000) + jiffies;
611 temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
612 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
614 if (time_after(jiffies, end_jiffies)) {
615 pr_err("cp queue preemption time out.\n");
619 usleep_range(500, 1000);
626 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
627 unsigned int utimeout)
629 struct v10_sdma_mqd *m;
630 uint32_t sdma_rlc_reg_offset;
632 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
634 m = get_sdma_mqd(mqd);
635 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
638 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
639 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
640 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
643 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
644 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
646 if (time_after(jiffies, end_jiffies)) {
647 pr_err("SDMA RLC not idle in %s\n", __func__);
650 usleep_range(500, 1000);
653 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
654 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
655 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
656 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
658 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
659 m->sdmax_rlcx_rb_rptr_hi =
660 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
665 static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
666 uint8_t vmid, uint16_t *p_pasid)
670 value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
672 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
674 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
677 static int kgd_wave_control_execute(struct amdgpu_device *adev,
678 uint32_t gfx_index_val,
679 uint32_t sq_cmd, uint32_t inst)
683 mutex_lock(&adev->grbm_idx_mutex);
685 WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
686 WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd);
688 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
689 INSTANCE_BROADCAST_WRITES, 1);
690 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
691 SA_BROADCAST_WRITES, 1);
692 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
693 SE_BROADCAST_WRITES, 1);
695 WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data);
696 mutex_unlock(&adev->grbm_idx_mutex);
701 static void set_vm_context_page_table_base(struct amdgpu_device *adev,
702 uint32_t vmid, uint64_t page_table_base)
704 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
705 pr_err("trying to set page table base for wrong VMID %u\n",
710 /* SDMA is on gfxhub as well for Navi1* series */
711 adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
715 * GFX10 helper for wave launch stall requirements on debug trap setting.
718 * Target VMID to stall/unstall.
721 * 0-unstall wave launch (enable), 1-stall wave launch (disable).
722 * After wavefront launch has been stalled, allocated waves must drain from
723 * SPI in order for debug trap settings to take effect on those waves.
724 * This is roughly a ~3500 clock cycle wait on SPI where a read on
725 * SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles.
726 * KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required.
728 * NOTE: We can afford to clear the entire STALL_VMID field on unstall
729 * because current GFX10 chips cannot support multi-process debugging due to
730 * trap configuration and masking being limited to global scope. Always
731 * assume single process conditions.
735 #define KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY 110
736 static void kgd_gfx_v10_set_wave_launch_stall(struct amdgpu_device *adev, uint32_t vmid, bool stall)
738 uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
741 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID,
742 stall ? 1 << vmid : 0);
744 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
749 for (i = 0; i < KGD_GFX_V10_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++)
750 RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
753 uint32_t kgd_gfx_v10_enable_debug_trap(struct amdgpu_device *adev,
754 bool restore_dbg_registers,
758 mutex_lock(&adev->grbm_idx_mutex);
760 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
762 /* assume gfx off is disabled for the debug session if rlc restore not supported. */
763 if (restore_dbg_registers) {
766 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_CONFIG,
767 VMID_SEL, 1 << vmid);
768 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_CONFIG,
770 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_CONFIG), data);
771 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_DATA0), 0);
772 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_DATA1), 0);
774 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
776 mutex_unlock(&adev->grbm_idx_mutex);
781 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
783 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
785 mutex_unlock(&adev->grbm_idx_mutex);
790 uint32_t kgd_gfx_v10_disable_debug_trap(struct amdgpu_device *adev,
791 bool keep_trap_enabled,
794 mutex_lock(&adev->grbm_idx_mutex);
796 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
798 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
800 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
802 mutex_unlock(&adev->grbm_idx_mutex);
807 int kgd_gfx_v10_validate_trap_override_request(struct amdgpu_device *adev,
808 uint32_t trap_override,
809 uint32_t *trap_mask_supported)
811 *trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH;
813 /* The SPI_GDBG_TRAP_MASK register is global and affects all
814 * processes. Only allow OR-ing the address-watch bit, since
815 * this only affects processes under the debugger. Other bits
816 * should stay 0 to avoid the debugger interfering with other
819 if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR)
825 uint32_t kgd_gfx_v10_set_wave_launch_trap_override(struct amdgpu_device *adev,
827 uint32_t trap_override,
828 uint32_t trap_mask_bits,
829 uint32_t trap_mask_request,
830 uint32_t *trap_mask_prev,
831 uint32_t kfd_dbg_trap_cntl_prev)
833 uint32_t data, wave_cntl_prev;
835 mutex_lock(&adev->grbm_idx_mutex);
837 wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
839 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
841 data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK));
842 *trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN);
844 trap_mask_bits = (trap_mask_bits & trap_mask_request) |
845 (*trap_mask_prev & ~trap_mask_request);
847 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits);
848 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override);
849 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
851 /* We need to preserve wave launch mode stall settings. */
852 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev);
854 mutex_unlock(&adev->grbm_idx_mutex);
859 uint32_t kgd_gfx_v10_set_wave_launch_mode(struct amdgpu_device *adev,
860 uint8_t wave_launch_mode,
864 bool is_mode_set = !!wave_launch_mode;
866 mutex_lock(&adev->grbm_idx_mutex);
868 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, true);
870 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
871 VMID_MASK, is_mode_set ? 1 << vmid : 0);
872 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
873 MODE, is_mode_set ? wave_launch_mode : 0);
874 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
876 kgd_gfx_v10_set_wave_launch_stall(adev, vmid, false);
878 mutex_unlock(&adev->grbm_idx_mutex);
883 #define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H)
884 #define SQ_WATCH_STRIDE (mmSQ_WATCH1_ADDR_H - mmSQ_WATCH0_ADDR_H)
885 uint32_t kgd_gfx_v10_set_address_watch(struct amdgpu_device *adev,
886 uint64_t watch_address,
887 uint32_t watch_address_mask,
893 /* SQ_WATCH?_ADDR_* and TCP_WATCH?_ADDR_* are programmed with the
896 uint32_t watch_address_high;
897 uint32_t watch_address_low;
898 uint32_t tcp_watch_address_cntl;
899 uint32_t sq_watch_address_cntl;
901 watch_address_low = lower_32_bits(watch_address);
902 watch_address_high = upper_32_bits(watch_address) & 0xffff;
904 tcp_watch_address_cntl = 0;
905 tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl,
909 tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl,
913 tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl,
916 watch_address_mask >> 7);
918 sq_watch_address_cntl = 0;
919 sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl,
923 sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl,
927 sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl,
930 watch_address_mask >> 6);
932 /* Turning off this watch point until we set all the registers */
933 tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl,
937 WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
938 (watch_id * TCP_WATCH_STRIDE)),
939 tcp_watch_address_cntl);
941 sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl,
945 WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_CNTL) +
946 (watch_id * SQ_WATCH_STRIDE)),
947 sq_watch_address_cntl);
949 /* Program {TCP,SQ}_WATCH?_ADDR* */
950 WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) +
951 (watch_id * TCP_WATCH_STRIDE)),
953 WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) +
954 (watch_id * TCP_WATCH_STRIDE)),
957 WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_ADDR_H) +
958 (watch_id * SQ_WATCH_STRIDE)),
960 WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_ADDR_L) +
961 (watch_id * SQ_WATCH_STRIDE)),
964 /* Enable the watch point */
965 tcp_watch_address_cntl = REG_SET_FIELD(tcp_watch_address_cntl,
969 WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
970 (watch_id * TCP_WATCH_STRIDE)),
971 tcp_watch_address_cntl);
973 sq_watch_address_cntl = REG_SET_FIELD(sq_watch_address_cntl,
977 WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_CNTL) +
978 (watch_id * SQ_WATCH_STRIDE)),
979 sq_watch_address_cntl);
984 uint32_t kgd_gfx_v10_clear_address_watch(struct amdgpu_device *adev,
987 uint32_t watch_address_cntl;
989 watch_address_cntl = 0;
991 WREG32((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
992 (watch_id * TCP_WATCH_STRIDE)),
995 WREG32((SOC15_REG_OFFSET(GC, 0, mmSQ_WATCH0_CNTL) +
996 (watch_id * SQ_WATCH_STRIDE)),
1001 #undef TCP_WATCH_STRIDE
1002 #undef SQ_WATCH_STRIDE
1005 /* kgd_gfx_v10_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
1006 * The values read are:
1007 * ib_offload_wait_time -- Wait Count for Indirect Buffer Offloads.
1008 * atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
1009 * wrm_offload_wait_time -- Wait Count for WAIT_REG_MEM Offloads.
1010 * gws_wait_time -- Wait Count for Global Wave Syncs.
1011 * que_sleep_wait_time -- Wait Count for Dequeue Retry.
1012 * sch_wave_wait_time -- Wait Count for Scheduling Wave Message.
1013 * sem_rearm_wait_time -- Wait Count for Semaphore re-arm.
1014 * deq_retry_wait_time -- Wait Count for Global Wave Syncs.
1016 void kgd_gfx_v10_get_iq_wait_times(struct amdgpu_device *adev,
1017 uint32_t *wait_times,
1021 *wait_times = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2));
1024 void kgd_gfx_v10_build_grace_period_packet_info(struct amdgpu_device *adev,
1025 uint32_t wait_times,
1026 uint32_t grace_period,
1027 uint32_t *reg_offset,
1030 *reg_data = wait_times;
1033 * The CP cannont handle a 0 grace period input and will result in
1034 * an infinite grace period being set so set to 1 to prevent this.
1036 if (grace_period == 0)
1039 *reg_data = REG_SET_FIELD(*reg_data,
1044 *reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2);
1047 static void program_trap_handler_settings(struct amdgpu_device *adev,
1048 uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr,
1051 lock_srbm(adev, 0, 0, 0, vmid);
1054 * Program TBA registers
1056 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_LO),
1057 lower_32_bits(tba_addr >> 8));
1058 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_HI),
1059 upper_32_bits(tba_addr >> 8) |
1060 (1 << SQ_SHADER_TBA_HI__TRAP_EN__SHIFT));
1063 * Program TMA registers
1065 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_LO),
1066 lower_32_bits(tma_addr >> 8));
1067 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_HI),
1068 upper_32_bits(tma_addr >> 8));
1073 const struct kfd2kgd_calls gfx_v10_kfd2kgd = {
1074 .program_sh_mem_settings = kgd_program_sh_mem_settings,
1075 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
1076 .init_interrupts = kgd_init_interrupts,
1077 .hqd_load = kgd_hqd_load,
1078 .hiq_mqd_load = kgd_hiq_mqd_load,
1079 .hqd_sdma_load = kgd_hqd_sdma_load,
1080 .hqd_dump = kgd_hqd_dump,
1081 .hqd_sdma_dump = kgd_hqd_sdma_dump,
1082 .hqd_is_occupied = kgd_hqd_is_occupied,
1083 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
1084 .hqd_destroy = kgd_hqd_destroy,
1085 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
1086 .wave_control_execute = kgd_wave_control_execute,
1087 .get_atc_vmid_pasid_mapping_info =
1088 get_atc_vmid_pasid_mapping_info,
1089 .set_vm_context_page_table_base = set_vm_context_page_table_base,
1090 .enable_debug_trap = kgd_gfx_v10_enable_debug_trap,
1091 .disable_debug_trap = kgd_gfx_v10_disable_debug_trap,
1092 .validate_trap_override_request = kgd_gfx_v10_validate_trap_override_request,
1093 .set_wave_launch_trap_override = kgd_gfx_v10_set_wave_launch_trap_override,
1094 .set_wave_launch_mode = kgd_gfx_v10_set_wave_launch_mode,
1095 .set_address_watch = kgd_gfx_v10_set_address_watch,
1096 .clear_address_watch = kgd_gfx_v10_clear_address_watch,
1097 .get_iq_wait_times = kgd_gfx_v10_get_iq_wait_times,
1098 .build_grace_period_packet_info = kgd_gfx_v10_build_grace_period_packet_info,
1099 .program_trap_handler_settings = program_trap_handler_settings,