]> Git Repo - linux.git/blob - drivers/crypto/intel/ixp4xx/ixp4xx_crypto.c
Merge tag 'ti-k3-dt-for-v6.11-part2' into ti-k3-dts-next
[linux.git] / drivers / crypto / intel / ixp4xx / ixp4xx_crypto.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx NPE-C crypto driver
4  *
5  * Copyright (C) 2008 Christian Hohnstaedt <[email protected]>
6  */
7
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19
20 #include <crypto/ctr.h>
21 #include <crypto/internal/des.h>
22 #include <crypto/aes.h>
23 #include <crypto/hmac.h>
24 #include <crypto/sha1.h>
25 #include <crypto/algapi.h>
26 #include <crypto/internal/aead.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/authenc.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <linux/soc/ixp4xx/npe.h>
32 #include <linux/soc/ixp4xx/qmgr.h>
33
34 /* Intermittent includes, delete this after v5.14-rc1 */
35 #include <linux/soc/ixp4xx/cpu.h>
36
37 #define MAX_KEYLEN 32
38
39 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
40 #define NPE_CTX_LEN 80
41 #define AES_BLOCK128 16
42
43 #define NPE_OP_HASH_VERIFY   0x01
44 #define NPE_OP_CCM_ENABLE    0x04
45 #define NPE_OP_CRYPT_ENABLE  0x08
46 #define NPE_OP_HASH_ENABLE   0x10
47 #define NPE_OP_NOT_IN_PLACE  0x20
48 #define NPE_OP_HMAC_DISABLE  0x40
49 #define NPE_OP_CRYPT_ENCRYPT 0x80
50
51 #define NPE_OP_CCM_GEN_MIC   0xcc
52 #define NPE_OP_HASH_GEN_ICV  0x50
53 #define NPE_OP_ENC_GEN_KEY   0xc9
54
55 #define MOD_ECB     0x0000
56 #define MOD_CTR     0x1000
57 #define MOD_CBC_ENC 0x2000
58 #define MOD_CBC_DEC 0x3000
59 #define MOD_CCM_ENC 0x4000
60 #define MOD_CCM_DEC 0x5000
61
62 #define KEYLEN_128  4
63 #define KEYLEN_192  6
64 #define KEYLEN_256  8
65
66 #define CIPH_DECR   0x0000
67 #define CIPH_ENCR   0x0400
68
69 #define MOD_DES     0x0000
70 #define MOD_TDEA2   0x0100
71 #define MOD_3DES   0x0200
72 #define MOD_AES     0x0800
73 #define MOD_AES128  (0x0800 | KEYLEN_128)
74 #define MOD_AES192  (0x0900 | KEYLEN_192)
75 #define MOD_AES256  (0x0a00 | KEYLEN_256)
76
77 #define MAX_IVLEN   16
78 #define NPE_QLEN    16
79 /* Space for registering when the first
80  * NPE_QLEN crypt_ctl are busy */
81 #define NPE_QLEN_TOTAL 64
82
83 #define CTL_FLAG_UNUSED         0x0000
84 #define CTL_FLAG_USED           0x1000
85 #define CTL_FLAG_PERFORM_ABLK   0x0001
86 #define CTL_FLAG_GEN_ICV        0x0002
87 #define CTL_FLAG_GEN_REVAES     0x0004
88 #define CTL_FLAG_PERFORM_AEAD   0x0008
89 #define CTL_FLAG_MASK           0x000f
90
91 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
92
93 #define MD5_DIGEST_SIZE   16
94
95 struct buffer_desc {
96         u32 phys_next;
97 #ifdef __ARMEB__
98         u16 buf_len;
99         u16 pkt_len;
100 #else
101         u16 pkt_len;
102         u16 buf_len;
103 #endif
104         dma_addr_t phys_addr;
105         u32 __reserved[4];
106         struct buffer_desc *next;
107         enum dma_data_direction dir;
108 };
109
110 struct crypt_ctl {
111 #ifdef __ARMEB__
112         u8 mode;                /* NPE_OP_*  operation mode */
113         u8 init_len;
114         u16 reserved;
115 #else
116         u16 reserved;
117         u8 init_len;
118         u8 mode;                /* NPE_OP_*  operation mode */
119 #endif
120         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
121         u32 icv_rev_aes;        /* icv or rev aes */
122         u32 src_buf;
123         u32 dst_buf;
124 #ifdef __ARMEB__
125         u16 auth_offs;          /* Authentication start offset */
126         u16 auth_len;           /* Authentication data length */
127         u16 crypt_offs;         /* Cryption start offset */
128         u16 crypt_len;          /* Cryption data length */
129 #else
130         u16 auth_len;           /* Authentication data length */
131         u16 auth_offs;          /* Authentication start offset */
132         u16 crypt_len;          /* Cryption data length */
133         u16 crypt_offs;         /* Cryption start offset */
134 #endif
135         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
136         u32 crypto_ctx;         /* NPE Crypto Param structure address */
137
138         /* Used by Host: 4*4 bytes*/
139         unsigned int ctl_flags;
140         union {
141                 struct skcipher_request *ablk_req;
142                 struct aead_request *aead_req;
143                 struct crypto_tfm *tfm;
144         } data;
145         struct buffer_desc *regist_buf;
146         u8 *regist_ptr;
147 };
148
149 struct ablk_ctx {
150         struct buffer_desc *src;
151         struct buffer_desc *dst;
152         u8 iv[MAX_IVLEN];
153         bool encrypt;
154         struct skcipher_request fallback_req;   // keep at the end
155 };
156
157 struct aead_ctx {
158         struct buffer_desc *src;
159         struct buffer_desc *dst;
160         struct scatterlist ivlist;
161         /* used when the hmac is not on one sg entry */
162         u8 *hmac_virt;
163         int encrypt;
164 };
165
166 struct ix_hash_algo {
167         u32 cfgword;
168         unsigned char *icv;
169 };
170
171 struct ix_sa_dir {
172         unsigned char *npe_ctx;
173         dma_addr_t npe_ctx_phys;
174         int npe_ctx_idx;
175         u8 npe_mode;
176 };
177
178 struct ixp_ctx {
179         struct ix_sa_dir encrypt;
180         struct ix_sa_dir decrypt;
181         int authkey_len;
182         u8 authkey[MAX_KEYLEN];
183         int enckey_len;
184         u8 enckey[MAX_KEYLEN];
185         u8 salt[MAX_IVLEN];
186         u8 nonce[CTR_RFC3686_NONCE_SIZE];
187         unsigned int salted;
188         atomic_t configuring;
189         struct completion completion;
190         struct crypto_skcipher *fallback_tfm;
191 };
192
193 struct ixp_alg {
194         struct skcipher_alg crypto;
195         const struct ix_hash_algo *hash;
196         u32 cfg_enc;
197         u32 cfg_dec;
198
199         int registered;
200 };
201
202 struct ixp_aead_alg {
203         struct aead_alg crypto;
204         const struct ix_hash_algo *hash;
205         u32 cfg_enc;
206         u32 cfg_dec;
207
208         int registered;
209 };
210
211 static const struct ix_hash_algo hash_alg_md5 = {
212         .cfgword        = 0xAA010004,
213         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
214                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
215 };
216
217 static const struct ix_hash_algo hash_alg_sha1 = {
218         .cfgword        = 0x00000005,
219         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
220                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
221 };
222
223 static struct npe *npe_c;
224
225 static unsigned int send_qid;
226 static unsigned int recv_qid;
227 static struct dma_pool *buffer_pool;
228 static struct dma_pool *ctx_pool;
229
230 static struct crypt_ctl *crypt_virt;
231 static dma_addr_t crypt_phys;
232
233 static int support_aes = 1;
234
235 static struct platform_device *pdev;
236
237 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
238 {
239         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
240 }
241
242 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
243 {
244         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
245 }
246
247 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
248 {
249         return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_enc;
250 }
251
252 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
253 {
254         return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_dec;
255 }
256
257 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
258 {
259         return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
260 }
261
262 static int setup_crypt_desc(void)
263 {
264         struct device *dev = &pdev->dev;
265
266         BUILD_BUG_ON(!(IS_ENABLED(CONFIG_COMPILE_TEST) &&
267                        IS_ENABLED(CONFIG_64BIT)) &&
268                      sizeof(struct crypt_ctl) != 64);
269         crypt_virt = dma_alloc_coherent(dev,
270                                         NPE_QLEN * sizeof(struct crypt_ctl),
271                                         &crypt_phys, GFP_ATOMIC);
272         if (!crypt_virt)
273                 return -ENOMEM;
274         return 0;
275 }
276
277 static DEFINE_SPINLOCK(desc_lock);
278 static struct crypt_ctl *get_crypt_desc(void)
279 {
280         int i;
281         static int idx;
282         unsigned long flags;
283
284         spin_lock_irqsave(&desc_lock, flags);
285
286         if (unlikely(!crypt_virt))
287                 setup_crypt_desc();
288         if (unlikely(!crypt_virt)) {
289                 spin_unlock_irqrestore(&desc_lock, flags);
290                 return NULL;
291         }
292         i = idx;
293         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
294                 if (++idx >= NPE_QLEN)
295                         idx = 0;
296                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
297                 spin_unlock_irqrestore(&desc_lock, flags);
298                 return crypt_virt + i;
299         } else {
300                 spin_unlock_irqrestore(&desc_lock, flags);
301                 return NULL;
302         }
303 }
304
305 static DEFINE_SPINLOCK(emerg_lock);
306 static struct crypt_ctl *get_crypt_desc_emerg(void)
307 {
308         int i;
309         static int idx = NPE_QLEN;
310         struct crypt_ctl *desc;
311         unsigned long flags;
312
313         desc = get_crypt_desc();
314         if (desc)
315                 return desc;
316         if (unlikely(!crypt_virt))
317                 return NULL;
318
319         spin_lock_irqsave(&emerg_lock, flags);
320         i = idx;
321         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
322                 if (++idx >= NPE_QLEN_TOTAL)
323                         idx = NPE_QLEN;
324                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
325                 spin_unlock_irqrestore(&emerg_lock, flags);
326                 return crypt_virt + i;
327         } else {
328                 spin_unlock_irqrestore(&emerg_lock, flags);
329                 return NULL;
330         }
331 }
332
333 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
334                            dma_addr_t phys)
335 {
336         while (buf) {
337                 struct buffer_desc *buf1;
338                 u32 phys1;
339
340                 buf1 = buf->next;
341                 phys1 = buf->phys_next;
342                 dma_unmap_single(dev, buf->phys_addr, buf->buf_len, buf->dir);
343                 dma_pool_free(buffer_pool, buf, phys);
344                 buf = buf1;
345                 phys = phys1;
346         }
347 }
348
349 static struct tasklet_struct crypto_done_tasklet;
350
351 static void finish_scattered_hmac(struct crypt_ctl *crypt)
352 {
353         struct aead_request *req = crypt->data.aead_req;
354         struct aead_ctx *req_ctx = aead_request_ctx(req);
355         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
356         int authsize = crypto_aead_authsize(tfm);
357         int decryptlen = req->assoclen + req->cryptlen - authsize;
358
359         if (req_ctx->encrypt) {
360                 scatterwalk_map_and_copy(req_ctx->hmac_virt, req->dst,
361                                          decryptlen, authsize, 1);
362         }
363         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
364 }
365
366 static void one_packet(dma_addr_t phys)
367 {
368         struct device *dev = &pdev->dev;
369         struct crypt_ctl *crypt;
370         struct ixp_ctx *ctx;
371         int failed;
372
373         failed = phys & 0x1 ? -EBADMSG : 0;
374         phys &= ~0x3;
375         crypt = crypt_phys2virt(phys);
376
377         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
378         case CTL_FLAG_PERFORM_AEAD: {
379                 struct aead_request *req = crypt->data.aead_req;
380                 struct aead_ctx *req_ctx = aead_request_ctx(req);
381
382                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
383                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
384                 if (req_ctx->hmac_virt)
385                         finish_scattered_hmac(crypt);
386
387                 aead_request_complete(req, failed);
388                 break;
389         }
390         case CTL_FLAG_PERFORM_ABLK: {
391                 struct skcipher_request *req = crypt->data.ablk_req;
392                 struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
393                 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
394                 unsigned int ivsize = crypto_skcipher_ivsize(tfm);
395                 unsigned int offset;
396
397                 if (ivsize > 0) {
398                         offset = req->cryptlen - ivsize;
399                         if (req_ctx->encrypt) {
400                                 scatterwalk_map_and_copy(req->iv, req->dst,
401                                                          offset, ivsize, 0);
402                         } else {
403                                 memcpy(req->iv, req_ctx->iv, ivsize);
404                                 memzero_explicit(req_ctx->iv, ivsize);
405                         }
406                 }
407
408                 if (req_ctx->dst)
409                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
410
411                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
412                 skcipher_request_complete(req, failed);
413                 break;
414         }
415         case CTL_FLAG_GEN_ICV:
416                 ctx = crypto_tfm_ctx(crypt->data.tfm);
417                 dma_pool_free(ctx_pool, crypt->regist_ptr,
418                               crypt->regist_buf->phys_addr);
419                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
420                 if (atomic_dec_and_test(&ctx->configuring))
421                         complete(&ctx->completion);
422                 break;
423         case CTL_FLAG_GEN_REVAES:
424                 ctx = crypto_tfm_ctx(crypt->data.tfm);
425                 *(__be32 *)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
426                 if (atomic_dec_and_test(&ctx->configuring))
427                         complete(&ctx->completion);
428                 break;
429         default:
430                 BUG();
431         }
432         crypt->ctl_flags = CTL_FLAG_UNUSED;
433 }
434
435 static void irqhandler(void *_unused)
436 {
437         tasklet_schedule(&crypto_done_tasklet);
438 }
439
440 static void crypto_done_action(unsigned long arg)
441 {
442         int i;
443
444         for (i = 0; i < 4; i++) {
445                 dma_addr_t phys = qmgr_get_entry(recv_qid);
446                 if (!phys)
447                         return;
448                 one_packet(phys);
449         }
450         tasklet_schedule(&crypto_done_tasklet);
451 }
452
453 static int init_ixp_crypto(struct device *dev)
454 {
455         struct device_node *np = dev->of_node;
456         u32 msg[2] = { 0, 0 };
457         int ret = -ENODEV;
458         u32 npe_id;
459
460         dev_info(dev, "probing...\n");
461
462         /* Locate the NPE and queue manager to use from device tree */
463         if (IS_ENABLED(CONFIG_OF) && np) {
464                 struct of_phandle_args queue_spec;
465                 struct of_phandle_args npe_spec;
466
467                 ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle",
468                                                        1, 0, &npe_spec);
469                 if (ret) {
470                         dev_err(dev, "no NPE engine specified\n");
471                         return -ENODEV;
472                 }
473                 npe_id = npe_spec.args[0];
474
475                 ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
476                                                        &queue_spec);
477                 if (ret) {
478                         dev_err(dev, "no rx queue phandle\n");
479                         return -ENODEV;
480                 }
481                 recv_qid = queue_spec.args[0];
482
483                 ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
484                                                        &queue_spec);
485                 if (ret) {
486                         dev_err(dev, "no txready queue phandle\n");
487                         return -ENODEV;
488                 }
489                 send_qid = queue_spec.args[0];
490         } else {
491                 /*
492                  * Hardcoded engine when using platform data, this goes away
493                  * when we switch to using DT only.
494                  */
495                 npe_id = 2;
496                 send_qid = 29;
497                 recv_qid = 30;
498         }
499
500         npe_c = npe_request(npe_id);
501         if (!npe_c)
502                 return ret;
503
504         if (!npe_running(npe_c)) {
505                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
506                 if (ret)
507                         goto npe_release;
508                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
509                         goto npe_error;
510         } else {
511                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
512                         goto npe_error;
513
514                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
515                         goto npe_error;
516         }
517
518         switch ((msg[1] >> 16) & 0xff) {
519         case 3:
520                 dev_warn(dev, "Firmware of %s lacks AES support\n", npe_name(npe_c));
521                 support_aes = 0;
522                 break;
523         case 4:
524         case 5:
525                 support_aes = 1;
526                 break;
527         default:
528                 dev_err(dev, "Firmware of %s lacks crypto support\n", npe_name(npe_c));
529                 ret = -ENODEV;
530                 goto npe_release;
531         }
532         /* buffer_pool will also be used to sometimes store the hmac,
533          * so assure it is large enough
534          */
535         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
536         buffer_pool = dma_pool_create("buffer", dev, sizeof(struct buffer_desc),
537                                       32, 0);
538         ret = -ENOMEM;
539         if (!buffer_pool)
540                 goto err;
541
542         ctx_pool = dma_pool_create("context", dev, NPE_CTX_LEN, 16, 0);
543         if (!ctx_pool)
544                 goto err;
545
546         ret = qmgr_request_queue(send_qid, NPE_QLEN_TOTAL, 0, 0,
547                                  "ixp_crypto:out", NULL);
548         if (ret)
549                 goto err;
550         ret = qmgr_request_queue(recv_qid, NPE_QLEN, 0, 0,
551                                  "ixp_crypto:in", NULL);
552         if (ret) {
553                 qmgr_release_queue(send_qid);
554                 goto err;
555         }
556         qmgr_set_irq(recv_qid, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
557         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
558
559         qmgr_enable_irq(recv_qid);
560         return 0;
561
562 npe_error:
563         dev_err(dev, "%s not responding\n", npe_name(npe_c));
564         ret = -EIO;
565 err:
566         dma_pool_destroy(ctx_pool);
567         dma_pool_destroy(buffer_pool);
568 npe_release:
569         npe_release(npe_c);
570         return ret;
571 }
572
573 static void release_ixp_crypto(struct device *dev)
574 {
575         qmgr_disable_irq(recv_qid);
576         tasklet_kill(&crypto_done_tasklet);
577
578         qmgr_release_queue(send_qid);
579         qmgr_release_queue(recv_qid);
580
581         dma_pool_destroy(ctx_pool);
582         dma_pool_destroy(buffer_pool);
583
584         npe_release(npe_c);
585
586         if (crypt_virt)
587                 dma_free_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl),
588                                   crypt_virt, crypt_phys);
589 }
590
591 static void reset_sa_dir(struct ix_sa_dir *dir)
592 {
593         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
594         dir->npe_ctx_idx = 0;
595         dir->npe_mode = 0;
596 }
597
598 static int init_sa_dir(struct ix_sa_dir *dir)
599 {
600         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
601         if (!dir->npe_ctx)
602                 return -ENOMEM;
603
604         reset_sa_dir(dir);
605         return 0;
606 }
607
608 static void free_sa_dir(struct ix_sa_dir *dir)
609 {
610         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
611         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
612 }
613
614 static int init_tfm(struct crypto_tfm *tfm)
615 {
616         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
617         int ret;
618
619         atomic_set(&ctx->configuring, 0);
620         ret = init_sa_dir(&ctx->encrypt);
621         if (ret)
622                 return ret;
623         ret = init_sa_dir(&ctx->decrypt);
624         if (ret)
625                 free_sa_dir(&ctx->encrypt);
626
627         return ret;
628 }
629
630 static int init_tfm_ablk(struct crypto_skcipher *tfm)
631 {
632         struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
633         struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
634         const char *name = crypto_tfm_alg_name(ctfm);
635
636         ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
637         if (IS_ERR(ctx->fallback_tfm)) {
638                 pr_err("ERROR: Cannot allocate fallback for %s %ld\n",
639                         name, PTR_ERR(ctx->fallback_tfm));
640                 return PTR_ERR(ctx->fallback_tfm);
641         }
642
643         pr_info("Fallback for %s is %s\n",
644                  crypto_tfm_alg_driver_name(&tfm->base),
645                  crypto_tfm_alg_driver_name(crypto_skcipher_tfm(ctx->fallback_tfm))
646                  );
647
648         crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx) + crypto_skcipher_reqsize(ctx->fallback_tfm));
649         return init_tfm(crypto_skcipher_tfm(tfm));
650 }
651
652 static int init_tfm_aead(struct crypto_aead *tfm)
653 {
654         crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
655         return init_tfm(crypto_aead_tfm(tfm));
656 }
657
658 static void exit_tfm(struct crypto_tfm *tfm)
659 {
660         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
661
662         free_sa_dir(&ctx->encrypt);
663         free_sa_dir(&ctx->decrypt);
664 }
665
666 static void exit_tfm_ablk(struct crypto_skcipher *tfm)
667 {
668         struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
669         struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
670
671         crypto_free_skcipher(ctx->fallback_tfm);
672         exit_tfm(crypto_skcipher_tfm(tfm));
673 }
674
675 static void exit_tfm_aead(struct crypto_aead *tfm)
676 {
677         exit_tfm(crypto_aead_tfm(tfm));
678 }
679
680 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
681                               int init_len, u32 ctx_addr, const u8 *key,
682                               int key_len)
683 {
684         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
685         struct crypt_ctl *crypt;
686         struct buffer_desc *buf;
687         int i;
688         u8 *pad;
689         dma_addr_t pad_phys, buf_phys;
690
691         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
692         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
693         if (!pad)
694                 return -ENOMEM;
695         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
696         if (!buf) {
697                 dma_pool_free(ctx_pool, pad, pad_phys);
698                 return -ENOMEM;
699         }
700         crypt = get_crypt_desc_emerg();
701         if (!crypt) {
702                 dma_pool_free(ctx_pool, pad, pad_phys);
703                 dma_pool_free(buffer_pool, buf, buf_phys);
704                 return -EAGAIN;
705         }
706
707         memcpy(pad, key, key_len);
708         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
709         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++)
710                 pad[i] ^= xpad;
711
712         crypt->data.tfm = tfm;
713         crypt->regist_ptr = pad;
714         crypt->regist_buf = buf;
715
716         crypt->auth_offs = 0;
717         crypt->auth_len = HMAC_PAD_BLOCKLEN;
718         crypt->crypto_ctx = ctx_addr;
719         crypt->src_buf = buf_phys;
720         crypt->icv_rev_aes = target;
721         crypt->mode = NPE_OP_HASH_GEN_ICV;
722         crypt->init_len = init_len;
723         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
724
725         buf->next = NULL;
726         buf->buf_len = HMAC_PAD_BLOCKLEN;
727         buf->pkt_len = 0;
728         buf->phys_addr = pad_phys;
729
730         atomic_inc(&ctx->configuring);
731         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
732         BUG_ON(qmgr_stat_overflow(send_qid));
733         return 0;
734 }
735
736 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned int authsize,
737                       const u8 *key, int key_len, unsigned int digest_len)
738 {
739         u32 itarget, otarget, npe_ctx_addr;
740         unsigned char *cinfo;
741         int init_len, ret = 0;
742         u32 cfgword;
743         struct ix_sa_dir *dir;
744         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
745         const struct ix_hash_algo *algo;
746
747         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
748         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
749         algo = ix_hash(tfm);
750
751         /* write cfg word to cryptinfo */
752         cfgword = algo->cfgword | (authsize << 6); /* (authsize/4) << 8 */
753 #ifndef __ARMEB__
754         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
755 #endif
756         *(__be32 *)cinfo = cpu_to_be32(cfgword);
757         cinfo += sizeof(cfgword);
758
759         /* write ICV to cryptinfo */
760         memcpy(cinfo, algo->icv, digest_len);
761         cinfo += digest_len;
762
763         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
764                                 + sizeof(algo->cfgword);
765         otarget = itarget + digest_len;
766         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
767         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
768
769         dir->npe_ctx_idx += init_len;
770         dir->npe_mode |= NPE_OP_HASH_ENABLE;
771
772         if (!encrypt)
773                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
774
775         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
776                                  init_len, npe_ctx_addr, key, key_len);
777         if (ret)
778                 return ret;
779         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
780                                   init_len, npe_ctx_addr, key, key_len);
781 }
782
783 static int gen_rev_aes_key(struct crypto_tfm *tfm)
784 {
785         struct crypt_ctl *crypt;
786         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
787         struct ix_sa_dir *dir = &ctx->decrypt;
788
789         crypt = get_crypt_desc_emerg();
790         if (!crypt)
791                 return -EAGAIN;
792
793         *(__be32 *)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
794
795         crypt->data.tfm = tfm;
796         crypt->crypt_offs = 0;
797         crypt->crypt_len = AES_BLOCK128;
798         crypt->src_buf = 0;
799         crypt->crypto_ctx = dir->npe_ctx_phys;
800         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
801         crypt->mode = NPE_OP_ENC_GEN_KEY;
802         crypt->init_len = dir->npe_ctx_idx;
803         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
804
805         atomic_inc(&ctx->configuring);
806         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
807         BUG_ON(qmgr_stat_overflow(send_qid));
808         return 0;
809 }
810
811 static int setup_cipher(struct crypto_tfm *tfm, int encrypt, const u8 *key,
812                         int key_len)
813 {
814         u8 *cinfo;
815         u32 cipher_cfg;
816         u32 keylen_cfg = 0;
817         struct ix_sa_dir *dir;
818         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
819         int err;
820
821         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
822         cinfo = dir->npe_ctx;
823
824         if (encrypt) {
825                 cipher_cfg = cipher_cfg_enc(tfm);
826                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
827         } else {
828                 cipher_cfg = cipher_cfg_dec(tfm);
829         }
830         if (cipher_cfg & MOD_AES) {
831                 switch (key_len) {
832                 case 16:
833                         keylen_cfg = MOD_AES128;
834                         break;
835                 case 24:
836                         keylen_cfg = MOD_AES192;
837                         break;
838                 case 32:
839                         keylen_cfg = MOD_AES256;
840                         break;
841                 default:
842                         return -EINVAL;
843                 }
844                 cipher_cfg |= keylen_cfg;
845         } else {
846                 err = crypto_des_verify_key(tfm, key);
847                 if (err)
848                         return err;
849         }
850         /* write cfg word to cryptinfo */
851         *(__be32 *)cinfo = cpu_to_be32(cipher_cfg);
852         cinfo += sizeof(cipher_cfg);
853
854         /* write cipher key to cryptinfo */
855         memcpy(cinfo, key, key_len);
856         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
857         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
858                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE - key_len);
859                 key_len = DES3_EDE_KEY_SIZE;
860         }
861         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
862         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
863         if ((cipher_cfg & MOD_AES) && !encrypt)
864                 return gen_rev_aes_key(tfm);
865
866         return 0;
867 }
868
869 static struct buffer_desc *chainup_buffers(struct device *dev,
870                 struct scatterlist *sg, unsigned int nbytes,
871                 struct buffer_desc *buf, gfp_t flags,
872                 enum dma_data_direction dir)
873 {
874         for (; nbytes > 0; sg = sg_next(sg)) {
875                 unsigned int len = min(nbytes, sg->length);
876                 struct buffer_desc *next_buf;
877                 dma_addr_t next_buf_phys;
878                 void *ptr;
879
880                 nbytes -= len;
881                 ptr = sg_virt(sg);
882                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
883                 if (!next_buf) {
884                         buf = NULL;
885                         break;
886                 }
887                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
888                 buf->next = next_buf;
889                 buf->phys_next = next_buf_phys;
890                 buf = next_buf;
891
892                 buf->phys_addr = sg_dma_address(sg);
893                 buf->buf_len = len;
894                 buf->dir = dir;
895         }
896         buf->next = NULL;
897         buf->phys_next = 0;
898         return buf;
899 }
900
901 static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
902                        unsigned int key_len)
903 {
904         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
905         int ret;
906
907         init_completion(&ctx->completion);
908         atomic_inc(&ctx->configuring);
909
910         reset_sa_dir(&ctx->encrypt);
911         reset_sa_dir(&ctx->decrypt);
912
913         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
914         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
915
916         ret = setup_cipher(&tfm->base, 0, key, key_len);
917         if (ret)
918                 goto out;
919         ret = setup_cipher(&tfm->base, 1, key, key_len);
920 out:
921         if (!atomic_dec_and_test(&ctx->configuring))
922                 wait_for_completion(&ctx->completion);
923         if (ret)
924                 return ret;
925         crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
926         crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
927
928         return crypto_skcipher_setkey(ctx->fallback_tfm, key, key_len);
929 }
930
931 static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
932                             unsigned int key_len)
933 {
934         return verify_skcipher_des3_key(tfm, key) ?:
935                ablk_setkey(tfm, key, key_len);
936 }
937
938 static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
939                                unsigned int key_len)
940 {
941         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
942
943         /* the nonce is stored in bytes at end of key */
944         if (key_len < CTR_RFC3686_NONCE_SIZE)
945                 return -EINVAL;
946
947         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
948                CTR_RFC3686_NONCE_SIZE);
949
950         key_len -= CTR_RFC3686_NONCE_SIZE;
951         return ablk_setkey(tfm, key, key_len);
952 }
953
954 static int ixp4xx_cipher_fallback(struct skcipher_request *areq, int encrypt)
955 {
956         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
957         struct ixp_ctx *op = crypto_skcipher_ctx(tfm);
958         struct ablk_ctx *rctx = skcipher_request_ctx(areq);
959         int err;
960
961         skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm);
962         skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
963                                       areq->base.complete, areq->base.data);
964         skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
965                                    areq->cryptlen, areq->iv);
966         if (encrypt)
967                 err = crypto_skcipher_encrypt(&rctx->fallback_req);
968         else
969                 err = crypto_skcipher_decrypt(&rctx->fallback_req);
970         return err;
971 }
972
973 static int ablk_perform(struct skcipher_request *req, int encrypt)
974 {
975         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
976         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
977         unsigned int ivsize = crypto_skcipher_ivsize(tfm);
978         struct ix_sa_dir *dir;
979         struct crypt_ctl *crypt;
980         unsigned int nbytes = req->cryptlen;
981         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
982         struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
983         struct buffer_desc src_hook;
984         struct device *dev = &pdev->dev;
985         unsigned int offset;
986         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
987                                 GFP_KERNEL : GFP_ATOMIC;
988
989         if (sg_nents(req->src) > 1 || sg_nents(req->dst) > 1)
990                 return ixp4xx_cipher_fallback(req, encrypt);
991
992         if (qmgr_stat_full(send_qid))
993                 return -EAGAIN;
994         if (atomic_read(&ctx->configuring))
995                 return -EAGAIN;
996
997         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
998         req_ctx->encrypt = encrypt;
999
1000         crypt = get_crypt_desc();
1001         if (!crypt)
1002                 return -ENOMEM;
1003
1004         crypt->data.ablk_req = req;
1005         crypt->crypto_ctx = dir->npe_ctx_phys;
1006         crypt->mode = dir->npe_mode;
1007         crypt->init_len = dir->npe_ctx_idx;
1008
1009         crypt->crypt_offs = 0;
1010         crypt->crypt_len = nbytes;
1011
1012         BUG_ON(ivsize && !req->iv);
1013         memcpy(crypt->iv, req->iv, ivsize);
1014         if (ivsize > 0 && !encrypt) {
1015                 offset = req->cryptlen - ivsize;
1016                 scatterwalk_map_and_copy(req_ctx->iv, req->src, offset, ivsize, 0);
1017         }
1018         if (req->src != req->dst) {
1019                 struct buffer_desc dst_hook;
1020
1021                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1022                 /* This was never tested by Intel
1023                  * for more than one dst buffer, I think. */
1024                 req_ctx->dst = NULL;
1025                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
1026                                      flags, DMA_FROM_DEVICE))
1027                         goto free_buf_dest;
1028                 src_direction = DMA_TO_DEVICE;
1029                 req_ctx->dst = dst_hook.next;
1030                 crypt->dst_buf = dst_hook.phys_next;
1031         } else {
1032                 req_ctx->dst = NULL;
1033         }
1034         req_ctx->src = NULL;
1035         if (!chainup_buffers(dev, req->src, nbytes, &src_hook, flags,
1036                              src_direction))
1037                 goto free_buf_src;
1038
1039         req_ctx->src = src_hook.next;
1040         crypt->src_buf = src_hook.phys_next;
1041         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
1042         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1043         BUG_ON(qmgr_stat_overflow(send_qid));
1044         return -EINPROGRESS;
1045
1046 free_buf_src:
1047         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1048 free_buf_dest:
1049         if (req->src != req->dst)
1050                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1051
1052         crypt->ctl_flags = CTL_FLAG_UNUSED;
1053         return -ENOMEM;
1054 }
1055
1056 static int ablk_encrypt(struct skcipher_request *req)
1057 {
1058         return ablk_perform(req, 1);
1059 }
1060
1061 static int ablk_decrypt(struct skcipher_request *req)
1062 {
1063         return ablk_perform(req, 0);
1064 }
1065
1066 static int ablk_rfc3686_crypt(struct skcipher_request *req)
1067 {
1068         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1069         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
1070         u8 iv[CTR_RFC3686_BLOCK_SIZE];
1071         u8 *info = req->iv;
1072         int ret;
1073
1074         /* set up counter block */
1075         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
1076         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
1077
1078         /* initialize counter portion of counter block */
1079         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
1080                 cpu_to_be32(1);
1081
1082         req->iv = iv;
1083         ret = ablk_perform(req, 1);
1084         req->iv = info;
1085         return ret;
1086 }
1087
1088 static int aead_perform(struct aead_request *req, int encrypt,
1089                         int cryptoffset, int eff_cryptlen, u8 *iv)
1090 {
1091         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1092         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1093         unsigned int ivsize = crypto_aead_ivsize(tfm);
1094         unsigned int authsize = crypto_aead_authsize(tfm);
1095         struct ix_sa_dir *dir;
1096         struct crypt_ctl *crypt;
1097         unsigned int cryptlen;
1098         struct buffer_desc *buf, src_hook;
1099         struct aead_ctx *req_ctx = aead_request_ctx(req);
1100         struct device *dev = &pdev->dev;
1101         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1102                                 GFP_KERNEL : GFP_ATOMIC;
1103         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1104         unsigned int lastlen;
1105
1106         if (qmgr_stat_full(send_qid))
1107                 return -EAGAIN;
1108         if (atomic_read(&ctx->configuring))
1109                 return -EAGAIN;
1110
1111         if (encrypt) {
1112                 dir = &ctx->encrypt;
1113                 cryptlen = req->cryptlen;
1114         } else {
1115                 dir = &ctx->decrypt;
1116                 /* req->cryptlen includes the authsize when decrypting */
1117                 cryptlen = req->cryptlen - authsize;
1118                 eff_cryptlen -= authsize;
1119         }
1120         crypt = get_crypt_desc();
1121         if (!crypt)
1122                 return -ENOMEM;
1123
1124         crypt->data.aead_req = req;
1125         crypt->crypto_ctx = dir->npe_ctx_phys;
1126         crypt->mode = dir->npe_mode;
1127         crypt->init_len = dir->npe_ctx_idx;
1128
1129         crypt->crypt_offs = cryptoffset;
1130         crypt->crypt_len = eff_cryptlen;
1131
1132         crypt->auth_offs = 0;
1133         crypt->auth_len = req->assoclen + cryptlen;
1134         BUG_ON(ivsize && !req->iv);
1135         memcpy(crypt->iv, req->iv, ivsize);
1136
1137         buf = chainup_buffers(dev, req->src, crypt->auth_len,
1138                               &src_hook, flags, src_direction);
1139         req_ctx->src = src_hook.next;
1140         crypt->src_buf = src_hook.phys_next;
1141         if (!buf)
1142                 goto free_buf_src;
1143
1144         lastlen = buf->buf_len;
1145         if (lastlen >= authsize)
1146                 crypt->icv_rev_aes = buf->phys_addr +
1147                                      buf->buf_len - authsize;
1148
1149         req_ctx->dst = NULL;
1150
1151         if (req->src != req->dst) {
1152                 struct buffer_desc dst_hook;
1153
1154                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1155                 src_direction = DMA_TO_DEVICE;
1156
1157                 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1158                                       &dst_hook, flags, DMA_FROM_DEVICE);
1159                 req_ctx->dst = dst_hook.next;
1160                 crypt->dst_buf = dst_hook.phys_next;
1161
1162                 if (!buf)
1163                         goto free_buf_dst;
1164
1165                 if (encrypt) {
1166                         lastlen = buf->buf_len;
1167                         if (lastlen >= authsize)
1168                                 crypt->icv_rev_aes = buf->phys_addr +
1169                                                      buf->buf_len - authsize;
1170                 }
1171         }
1172
1173         if (unlikely(lastlen < authsize)) {
1174                 dma_addr_t dma;
1175                 /* The 12 hmac bytes are scattered,
1176                  * we need to copy them into a safe buffer */
1177                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags, &dma);
1178                 if (unlikely(!req_ctx->hmac_virt))
1179                         goto free_buf_dst;
1180                 crypt->icv_rev_aes = dma;
1181                 if (!encrypt) {
1182                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1183                                                  req->src, cryptlen, authsize, 0);
1184                 }
1185                 req_ctx->encrypt = encrypt;
1186         } else {
1187                 req_ctx->hmac_virt = NULL;
1188         }
1189
1190         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1191         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1192         BUG_ON(qmgr_stat_overflow(send_qid));
1193         return -EINPROGRESS;
1194
1195 free_buf_dst:
1196         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1197 free_buf_src:
1198         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1199         crypt->ctl_flags = CTL_FLAG_UNUSED;
1200         return -ENOMEM;
1201 }
1202
1203 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1204 {
1205         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1206         unsigned int digest_len = crypto_aead_maxauthsize(tfm);
1207         int ret;
1208
1209         if (!ctx->enckey_len && !ctx->authkey_len)
1210                 return 0;
1211         init_completion(&ctx->completion);
1212         atomic_inc(&ctx->configuring);
1213
1214         reset_sa_dir(&ctx->encrypt);
1215         reset_sa_dir(&ctx->decrypt);
1216
1217         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1218         if (ret)
1219                 goto out;
1220         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1221         if (ret)
1222                 goto out;
1223         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1224                          ctx->authkey_len, digest_len);
1225         if (ret)
1226                 goto out;
1227         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1228                          ctx->authkey_len, digest_len);
1229 out:
1230         if (!atomic_dec_and_test(&ctx->configuring))
1231                 wait_for_completion(&ctx->completion);
1232         return ret;
1233 }
1234
1235 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1236 {
1237         int max = crypto_aead_maxauthsize(tfm) >> 2;
1238
1239         if ((authsize >> 2) < 1 || (authsize >> 2) > max || (authsize & 3))
1240                 return -EINVAL;
1241         return aead_setup(tfm, authsize);
1242 }
1243
1244 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1245                        unsigned int keylen)
1246 {
1247         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1248         struct crypto_authenc_keys keys;
1249
1250         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1251                 goto badkey;
1252
1253         if (keys.authkeylen > sizeof(ctx->authkey))
1254                 goto badkey;
1255
1256         if (keys.enckeylen > sizeof(ctx->enckey))
1257                 goto badkey;
1258
1259         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1260         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1261         ctx->authkey_len = keys.authkeylen;
1262         ctx->enckey_len = keys.enckeylen;
1263
1264         memzero_explicit(&keys, sizeof(keys));
1265         return aead_setup(tfm, crypto_aead_authsize(tfm));
1266 badkey:
1267         memzero_explicit(&keys, sizeof(keys));
1268         return -EINVAL;
1269 }
1270
1271 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1272                             unsigned int keylen)
1273 {
1274         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1275         struct crypto_authenc_keys keys;
1276         int err;
1277
1278         err = crypto_authenc_extractkeys(&keys, key, keylen);
1279         if (unlikely(err))
1280                 goto badkey;
1281
1282         err = -EINVAL;
1283         if (keys.authkeylen > sizeof(ctx->authkey))
1284                 goto badkey;
1285
1286         err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1287         if (err)
1288                 goto badkey;
1289
1290         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1291         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1292         ctx->authkey_len = keys.authkeylen;
1293         ctx->enckey_len = keys.enckeylen;
1294
1295         memzero_explicit(&keys, sizeof(keys));
1296         return aead_setup(tfm, crypto_aead_authsize(tfm));
1297 badkey:
1298         memzero_explicit(&keys, sizeof(keys));
1299         return err;
1300 }
1301
1302 static int aead_encrypt(struct aead_request *req)
1303 {
1304         return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1305 }
1306
1307 static int aead_decrypt(struct aead_request *req)
1308 {
1309         return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1310 }
1311
1312 static struct ixp_alg ixp4xx_algos[] = {
1313 {
1314         .crypto = {
1315                 .base.cra_name          = "cbc(des)",
1316                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1317
1318                 .min_keysize            = DES_KEY_SIZE,
1319                 .max_keysize            = DES_KEY_SIZE,
1320                 .ivsize                 = DES_BLOCK_SIZE,
1321         },
1322         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1323         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1324
1325 }, {
1326         .crypto = {
1327                 .base.cra_name          = "ecb(des)",
1328                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1329                 .min_keysize            = DES_KEY_SIZE,
1330                 .max_keysize            = DES_KEY_SIZE,
1331         },
1332         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1333         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1334 }, {
1335         .crypto = {
1336                 .base.cra_name          = "cbc(des3_ede)",
1337                 .base.cra_blocksize     = DES3_EDE_BLOCK_SIZE,
1338
1339                 .min_keysize            = DES3_EDE_KEY_SIZE,
1340                 .max_keysize            = DES3_EDE_KEY_SIZE,
1341                 .ivsize                 = DES3_EDE_BLOCK_SIZE,
1342                 .setkey                 = ablk_des3_setkey,
1343         },
1344         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1345         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1346 }, {
1347         .crypto = {
1348                 .base.cra_name          = "ecb(des3_ede)",
1349                 .base.cra_blocksize     = DES3_EDE_BLOCK_SIZE,
1350
1351                 .min_keysize            = DES3_EDE_KEY_SIZE,
1352                 .max_keysize            = DES3_EDE_KEY_SIZE,
1353                 .setkey                 = ablk_des3_setkey,
1354         },
1355         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1356         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1357 }, {
1358         .crypto = {
1359                 .base.cra_name          = "cbc(aes)",
1360                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1361
1362                 .min_keysize            = AES_MIN_KEY_SIZE,
1363                 .max_keysize            = AES_MAX_KEY_SIZE,
1364                 .ivsize                 = AES_BLOCK_SIZE,
1365         },
1366         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1367         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1368 }, {
1369         .crypto = {
1370                 .base.cra_name          = "ecb(aes)",
1371                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1372
1373                 .min_keysize            = AES_MIN_KEY_SIZE,
1374                 .max_keysize            = AES_MAX_KEY_SIZE,
1375         },
1376         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1377         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1378 }, {
1379         .crypto = {
1380                 .base.cra_name          = "ctr(aes)",
1381                 .base.cra_blocksize     = 1,
1382
1383                 .min_keysize            = AES_MIN_KEY_SIZE,
1384                 .max_keysize            = AES_MAX_KEY_SIZE,
1385                 .ivsize                 = AES_BLOCK_SIZE,
1386         },
1387         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1388         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1389 }, {
1390         .crypto = {
1391                 .base.cra_name          = "rfc3686(ctr(aes))",
1392                 .base.cra_blocksize     = 1,
1393
1394                 .min_keysize            = AES_MIN_KEY_SIZE,
1395                 .max_keysize            = AES_MAX_KEY_SIZE,
1396                 .ivsize                 = AES_BLOCK_SIZE,
1397                 .setkey                 = ablk_rfc3686_setkey,
1398                 .encrypt                = ablk_rfc3686_crypt,
1399                 .decrypt                = ablk_rfc3686_crypt,
1400         },
1401         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1402         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1403 } };
1404
1405 static struct ixp_aead_alg ixp4xx_aeads[] = {
1406 {
1407         .crypto = {
1408                 .base = {
1409                         .cra_name       = "authenc(hmac(md5),cbc(des))",
1410                         .cra_blocksize  = DES_BLOCK_SIZE,
1411                 },
1412                 .ivsize         = DES_BLOCK_SIZE,
1413                 .maxauthsize    = MD5_DIGEST_SIZE,
1414         },
1415         .hash = &hash_alg_md5,
1416         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1417         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1418 }, {
1419         .crypto = {
1420                 .base = {
1421                         .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1422                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1423                 },
1424                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1425                 .maxauthsize    = MD5_DIGEST_SIZE,
1426                 .setkey         = des3_aead_setkey,
1427         },
1428         .hash = &hash_alg_md5,
1429         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1430         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1431 }, {
1432         .crypto = {
1433                 .base = {
1434                         .cra_name       = "authenc(hmac(sha1),cbc(des))",
1435                         .cra_blocksize  = DES_BLOCK_SIZE,
1436                 },
1437                         .ivsize         = DES_BLOCK_SIZE,
1438                         .maxauthsize    = SHA1_DIGEST_SIZE,
1439         },
1440         .hash = &hash_alg_sha1,
1441         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1442         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1443 }, {
1444         .crypto = {
1445                 .base = {
1446                         .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1447                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1448                 },
1449                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1450                 .maxauthsize    = SHA1_DIGEST_SIZE,
1451                 .setkey         = des3_aead_setkey,
1452         },
1453         .hash = &hash_alg_sha1,
1454         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1455         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1456 }, {
1457         .crypto = {
1458                 .base = {
1459                         .cra_name       = "authenc(hmac(md5),cbc(aes))",
1460                         .cra_blocksize  = AES_BLOCK_SIZE,
1461                 },
1462                 .ivsize         = AES_BLOCK_SIZE,
1463                 .maxauthsize    = MD5_DIGEST_SIZE,
1464         },
1465         .hash = &hash_alg_md5,
1466         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1467         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1468 }, {
1469         .crypto = {
1470                 .base = {
1471                         .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1472                         .cra_blocksize  = AES_BLOCK_SIZE,
1473                 },
1474                 .ivsize         = AES_BLOCK_SIZE,
1475                 .maxauthsize    = SHA1_DIGEST_SIZE,
1476         },
1477         .hash = &hash_alg_sha1,
1478         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1479         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1480 } };
1481
1482 #define IXP_POSTFIX "-ixp4xx"
1483
1484 static int ixp_crypto_probe(struct platform_device *_pdev)
1485 {
1486         struct device *dev = &_pdev->dev;
1487         int num = ARRAY_SIZE(ixp4xx_algos);
1488         int i, err;
1489
1490         pdev = _pdev;
1491
1492         err = init_ixp_crypto(dev);
1493         if (err)
1494                 return err;
1495
1496         for (i = 0; i < num; i++) {
1497                 struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1498
1499                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1500                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1501                              CRYPTO_MAX_ALG_NAME)
1502                         continue;
1503                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1504                         continue;
1505
1506                 /* block ciphers */
1507                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1508                                       CRYPTO_ALG_ASYNC |
1509                                       CRYPTO_ALG_ALLOCATES_MEMORY |
1510                                       CRYPTO_ALG_NEED_FALLBACK;
1511                 if (!cra->setkey)
1512                         cra->setkey = ablk_setkey;
1513                 if (!cra->encrypt)
1514                         cra->encrypt = ablk_encrypt;
1515                 if (!cra->decrypt)
1516                         cra->decrypt = ablk_decrypt;
1517                 cra->init = init_tfm_ablk;
1518                 cra->exit = exit_tfm_ablk;
1519
1520                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1521                 cra->base.cra_module = THIS_MODULE;
1522                 cra->base.cra_alignmask = 3;
1523                 cra->base.cra_priority = 300;
1524                 if (crypto_register_skcipher(cra))
1525                         dev_err(&pdev->dev, "Failed to register '%s'\n",
1526                                 cra->base.cra_name);
1527                 else
1528                         ixp4xx_algos[i].registered = 1;
1529         }
1530
1531         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1532                 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1533
1534                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1535                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1536                     CRYPTO_MAX_ALG_NAME)
1537                         continue;
1538                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1539                         continue;
1540
1541                 /* authenc */
1542                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1543                                       CRYPTO_ALG_ASYNC |
1544                                       CRYPTO_ALG_ALLOCATES_MEMORY;
1545                 cra->setkey = cra->setkey ?: aead_setkey;
1546                 cra->setauthsize = aead_setauthsize;
1547                 cra->encrypt = aead_encrypt;
1548                 cra->decrypt = aead_decrypt;
1549                 cra->init = init_tfm_aead;
1550                 cra->exit = exit_tfm_aead;
1551
1552                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1553                 cra->base.cra_module = THIS_MODULE;
1554                 cra->base.cra_alignmask = 3;
1555                 cra->base.cra_priority = 300;
1556
1557                 if (crypto_register_aead(cra))
1558                         dev_err(&pdev->dev, "Failed to register '%s'\n",
1559                                 cra->base.cra_driver_name);
1560                 else
1561                         ixp4xx_aeads[i].registered = 1;
1562         }
1563         return 0;
1564 }
1565
1566 static void ixp_crypto_remove(struct platform_device *pdev)
1567 {
1568         int num = ARRAY_SIZE(ixp4xx_algos);
1569         int i;
1570
1571         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1572                 if (ixp4xx_aeads[i].registered)
1573                         crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1574         }
1575
1576         for (i = 0; i < num; i++) {
1577                 if (ixp4xx_algos[i].registered)
1578                         crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1579         }
1580         release_ixp_crypto(&pdev->dev);
1581 }
1582 static const struct of_device_id ixp4xx_crypto_of_match[] = {
1583         {
1584                 .compatible = "intel,ixp4xx-crypto",
1585         },
1586         {},
1587 };
1588
1589 static struct platform_driver ixp_crypto_driver = {
1590         .probe = ixp_crypto_probe,
1591         .remove_new = ixp_crypto_remove,
1592         .driver = {
1593                 .name = "ixp4xx_crypto",
1594                 .of_match_table = ixp4xx_crypto_of_match,
1595         },
1596 };
1597 module_platform_driver(ixp_crypto_driver);
1598
1599 MODULE_LICENSE("GPL");
1600 MODULE_AUTHOR("Christian Hohnstaedt <[email protected]>");
1601 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1602
This page took 0.138789 seconds and 4 git commands to generate.