]> Git Repo - linux.git/blob - drivers/acpi/cppc_acpi.c
Merge tag 'ti-k3-dt-for-v6.11-part2' into ti-k3-dts-next
[linux.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <[email protected]>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33
34 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
35
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42 #include <linux/dmi.h>
43 #include <linux/units.h>
44 #include <asm/unaligned.h>
45
46 #include <acpi/cppc_acpi.h>
47
48 struct cppc_pcc_data {
49         struct pcc_mbox_chan *pcc_channel;
50         void __iomem *pcc_comm_addr;
51         bool pcc_channel_acquired;
52         unsigned int deadline_us;
53         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54
55         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
56         bool platform_owns_pcc;         /* Ownership of PCC subspace */
57         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
58
59         /*
60          * Lock to provide controlled access to the PCC channel.
61          *
62          * For performance critical usecases(currently cppc_set_perf)
63          *      We need to take read_lock and check if channel belongs to OSPM
64          * before reading or writing to PCC subspace
65          *      We need to take write_lock before transferring the channel
66          * ownership to the platform via a Doorbell
67          *      This allows us to batch a number of CPPC requests if they happen
68          * to originate in about the same time
69          *
70          * For non-performance critical usecases(init)
71          *      Take write_lock for all purposes which gives exclusive access
72          */
73         struct rw_semaphore pcc_lock;
74
75         /* Wait queue for CPUs whose requests were batched */
76         wait_queue_head_t pcc_write_wait_q;
77         ktime_t last_cmd_cmpl_time;
78         ktime_t last_mpar_reset;
79         int mpar_count;
80         int refcount;
81 };
82
83 /* Array to represent the PCC channel per subspace ID */
84 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87
88 /*
89  * The cpc_desc structure contains the ACPI register details
90  * as described in the per CPU _CPC tables. The details
91  * include the type of register (e.g. PCC, System IO, FFH etc.)
92  * and destination addresses which lets us READ/WRITE CPU performance
93  * information using the appropriate I/O methods.
94  */
95 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96
97 /* pcc mapped address + header size + offset within PCC subspace */
98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99                                                 0x8 + (offs))
100
101 /* Check if a CPC register is in PCC */
102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
103                                 (cpc)->cpc_entry.reg.space_id ==        \
104                                 ACPI_ADR_SPACE_PLATFORM_COMM)
105
106 /* Check if a CPC register is in SystemMemory */
107 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&   \
108                                 (cpc)->cpc_entry.reg.space_id ==        \
109                                 ACPI_ADR_SPACE_SYSTEM_MEMORY)
110
111 /* Check if a CPC register is in SystemIo */
112 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&       \
113                                 (cpc)->cpc_entry.reg.space_id ==        \
114                                 ACPI_ADR_SPACE_SYSTEM_IO)
115
116 /* Evaluates to True if reg is a NULL register descriptor */
117 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
118                                 (reg)->address == 0 &&                  \
119                                 (reg)->bit_width == 0 &&                \
120                                 (reg)->bit_offset == 0 &&               \
121                                 (reg)->access_width == 0)
122
123 /* Evaluates to True if an optional cpc field is supported */
124 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
125                                 !!(cpc)->cpc_entry.int_value :          \
126                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
127 /*
128  * Arbitrary Retries in case the remote processor is slow to respond
129  * to PCC commands. Keeping it high enough to cover emulators where
130  * the processors run painfully slow.
131  */
132 #define NUM_RETRIES 500ULL
133
134 #define OVER_16BTS_MASK ~0xFFFFULL
135
136 #define define_one_cppc_ro(_name)               \
137 static struct kobj_attribute _name =            \
138 __ATTR(_name, 0444, show_##_name, NULL)
139
140 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
141
142 #define show_cppc_data(access_fn, struct_name, member_name)             \
143         static ssize_t show_##member_name(struct kobject *kobj,         \
144                                 struct kobj_attribute *attr, char *buf) \
145         {                                                               \
146                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
147                 struct struct_name st_name = {0};                       \
148                 int ret;                                                \
149                                                                         \
150                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
151                 if (ret)                                                \
152                         return ret;                                     \
153                                                                         \
154                 return sysfs_emit(buf, "%llu\n",                \
155                                 (u64)st_name.member_name);              \
156         }                                                               \
157         define_one_cppc_ro(member_name)
158
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
162 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
163 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, guaranteed_perf);
164 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
165 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
166
167 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
168 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
169
170 /* Check for valid access_width, otherwise, fallback to using bit_width */
171 #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
172
173 /* Shift and apply the mask for CPC reads/writes */
174 #define MASK_VAL(reg, val) (((val) >> (reg)->bit_offset) &                      \
175                                         GENMASK(((reg)->bit_width) - 1, 0))
176
177 static ssize_t show_feedback_ctrs(struct kobject *kobj,
178                 struct kobj_attribute *attr, char *buf)
179 {
180         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
181         struct cppc_perf_fb_ctrs fb_ctrs = {0};
182         int ret;
183
184         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
185         if (ret)
186                 return ret;
187
188         return sysfs_emit(buf, "ref:%llu del:%llu\n",
189                         fb_ctrs.reference, fb_ctrs.delivered);
190 }
191 define_one_cppc_ro(feedback_ctrs);
192
193 static struct attribute *cppc_attrs[] = {
194         &feedback_ctrs.attr,
195         &reference_perf.attr,
196         &wraparound_time.attr,
197         &highest_perf.attr,
198         &lowest_perf.attr,
199         &lowest_nonlinear_perf.attr,
200         &guaranteed_perf.attr,
201         &nominal_perf.attr,
202         &nominal_freq.attr,
203         &lowest_freq.attr,
204         NULL
205 };
206 ATTRIBUTE_GROUPS(cppc);
207
208 static const struct kobj_type cppc_ktype = {
209         .sysfs_ops = &kobj_sysfs_ops,
210         .default_groups = cppc_groups,
211 };
212
213 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
214 {
215         int ret, status;
216         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
217         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
218                 pcc_ss_data->pcc_comm_addr;
219
220         if (!pcc_ss_data->platform_owns_pcc)
221                 return 0;
222
223         /*
224          * Poll PCC status register every 3us(delay_us) for maximum of
225          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
226          */
227         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
228                                         status & PCC_CMD_COMPLETE_MASK, 3,
229                                         pcc_ss_data->deadline_us);
230
231         if (likely(!ret)) {
232                 pcc_ss_data->platform_owns_pcc = false;
233                 if (chk_err_bit && (status & PCC_ERROR_MASK))
234                         ret = -EIO;
235         }
236
237         if (unlikely(ret))
238                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
239                        pcc_ss_id, ret);
240
241         return ret;
242 }
243
244 /*
245  * This function transfers the ownership of the PCC to the platform
246  * So it must be called while holding write_lock(pcc_lock)
247  */
248 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
249 {
250         int ret = -EIO, i;
251         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
252         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
253                 pcc_ss_data->pcc_comm_addr;
254         unsigned int time_delta;
255
256         /*
257          * For CMD_WRITE we know for a fact the caller should have checked
258          * the channel before writing to PCC space
259          */
260         if (cmd == CMD_READ) {
261                 /*
262                  * If there are pending cpc_writes, then we stole the channel
263                  * before write completion, so first send a WRITE command to
264                  * platform
265                  */
266                 if (pcc_ss_data->pending_pcc_write_cmd)
267                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
268
269                 ret = check_pcc_chan(pcc_ss_id, false);
270                 if (ret)
271                         goto end;
272         } else /* CMD_WRITE */
273                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
274
275         /*
276          * Handle the Minimum Request Turnaround Time(MRTT)
277          * "The minimum amount of time that OSPM must wait after the completion
278          * of a command before issuing the next command, in microseconds"
279          */
280         if (pcc_ss_data->pcc_mrtt) {
281                 time_delta = ktime_us_delta(ktime_get(),
282                                             pcc_ss_data->last_cmd_cmpl_time);
283                 if (pcc_ss_data->pcc_mrtt > time_delta)
284                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
285         }
286
287         /*
288          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
289          * "The maximum number of periodic requests that the subspace channel can
290          * support, reported in commands per minute. 0 indicates no limitation."
291          *
292          * This parameter should be ideally zero or large enough so that it can
293          * handle maximum number of requests that all the cores in the system can
294          * collectively generate. If it is not, we will follow the spec and just
295          * not send the request to the platform after hitting the MPAR limit in
296          * any 60s window
297          */
298         if (pcc_ss_data->pcc_mpar) {
299                 if (pcc_ss_data->mpar_count == 0) {
300                         time_delta = ktime_ms_delta(ktime_get(),
301                                                     pcc_ss_data->last_mpar_reset);
302                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
303                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
304                                          pcc_ss_id);
305                                 ret = -EIO;
306                                 goto end;
307                         }
308                         pcc_ss_data->last_mpar_reset = ktime_get();
309                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
310                 }
311                 pcc_ss_data->mpar_count--;
312         }
313
314         /* Write to the shared comm region. */
315         writew_relaxed(cmd, &generic_comm_base->command);
316
317         /* Flip CMD COMPLETE bit */
318         writew_relaxed(0, &generic_comm_base->status);
319
320         pcc_ss_data->platform_owns_pcc = true;
321
322         /* Ring doorbell */
323         ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
324         if (ret < 0) {
325                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
326                        pcc_ss_id, cmd, ret);
327                 goto end;
328         }
329
330         /* wait for completion and check for PCC error bit */
331         ret = check_pcc_chan(pcc_ss_id, true);
332
333         if (pcc_ss_data->pcc_mrtt)
334                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
335
336         if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
337                 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
338         else
339                 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
340
341 end:
342         if (cmd == CMD_WRITE) {
343                 if (unlikely(ret)) {
344                         for_each_possible_cpu(i) {
345                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
346
347                                 if (!desc)
348                                         continue;
349
350                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
351                                         desc->write_cmd_status = ret;
352                         }
353                 }
354                 pcc_ss_data->pcc_write_cnt++;
355                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
356         }
357
358         return ret;
359 }
360
361 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
362 {
363         if (ret < 0)
364                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
365                                 *(u16 *)msg, ret);
366         else
367                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
368                                 *(u16 *)msg, ret);
369 }
370
371 static struct mbox_client cppc_mbox_cl = {
372         .tx_done = cppc_chan_tx_done,
373         .knows_txdone = true,
374 };
375
376 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
377 {
378         int result = -EFAULT;
379         acpi_status status = AE_OK;
380         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
381         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
382         struct acpi_buffer state = {0, NULL};
383         union acpi_object  *psd = NULL;
384         struct acpi_psd_package *pdomain;
385
386         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
387                                             &buffer, ACPI_TYPE_PACKAGE);
388         if (status == AE_NOT_FOUND)     /* _PSD is optional */
389                 return 0;
390         if (ACPI_FAILURE(status))
391                 return -ENODEV;
392
393         psd = buffer.pointer;
394         if (!psd || psd->package.count != 1) {
395                 pr_debug("Invalid _PSD data\n");
396                 goto end;
397         }
398
399         pdomain = &(cpc_ptr->domain_info);
400
401         state.length = sizeof(struct acpi_psd_package);
402         state.pointer = pdomain;
403
404         status = acpi_extract_package(&(psd->package.elements[0]),
405                 &format, &state);
406         if (ACPI_FAILURE(status)) {
407                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
408                 goto end;
409         }
410
411         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
412                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
413                 goto end;
414         }
415
416         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
417                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
418                 goto end;
419         }
420
421         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
422             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
423             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
424                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
425                 goto end;
426         }
427
428         result = 0;
429 end:
430         kfree(buffer.pointer);
431         return result;
432 }
433
434 bool acpi_cpc_valid(void)
435 {
436         struct cpc_desc *cpc_ptr;
437         int cpu;
438
439         if (acpi_disabled)
440                 return false;
441
442         for_each_present_cpu(cpu) {
443                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
444                 if (!cpc_ptr)
445                         return false;
446         }
447
448         return true;
449 }
450 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
451
452 bool cppc_allow_fast_switch(void)
453 {
454         struct cpc_register_resource *desired_reg;
455         struct cpc_desc *cpc_ptr;
456         int cpu;
457
458         for_each_possible_cpu(cpu) {
459                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
460                 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
461                 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
462                                 !CPC_IN_SYSTEM_IO(desired_reg))
463                         return false;
464         }
465
466         return true;
467 }
468 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
469
470 /**
471  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
472  * @cpu: Find all CPUs that share a domain with cpu.
473  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
474  *
475  *      Return: 0 for success or negative value for err.
476  */
477 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
478 {
479         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
480         struct acpi_psd_package *match_pdomain;
481         struct acpi_psd_package *pdomain;
482         int count_target, i;
483
484         /*
485          * Now that we have _PSD data from all CPUs, let's setup P-state
486          * domain info.
487          */
488         cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
489         if (!cpc_ptr)
490                 return -EFAULT;
491
492         pdomain = &(cpc_ptr->domain_info);
493         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
494         if (pdomain->num_processors <= 1)
495                 return 0;
496
497         /* Validate the Domain info */
498         count_target = pdomain->num_processors;
499         if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
500                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
501         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
502                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
503         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
504                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
505
506         for_each_possible_cpu(i) {
507                 if (i == cpu)
508                         continue;
509
510                 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
511                 if (!match_cpc_ptr)
512                         goto err_fault;
513
514                 match_pdomain = &(match_cpc_ptr->domain_info);
515                 if (match_pdomain->domain != pdomain->domain)
516                         continue;
517
518                 /* Here i and cpu are in the same domain */
519                 if (match_pdomain->num_processors != count_target)
520                         goto err_fault;
521
522                 if (pdomain->coord_type != match_pdomain->coord_type)
523                         goto err_fault;
524
525                 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
526         }
527
528         return 0;
529
530 err_fault:
531         /* Assume no coordination on any error parsing domain info */
532         cpumask_clear(cpu_data->shared_cpu_map);
533         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
534         cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
535
536         return -EFAULT;
537 }
538 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
539
540 static int register_pcc_channel(int pcc_ss_idx)
541 {
542         struct pcc_mbox_chan *pcc_chan;
543         u64 usecs_lat;
544
545         if (pcc_ss_idx >= 0) {
546                 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
547
548                 if (IS_ERR(pcc_chan)) {
549                         pr_err("Failed to find PCC channel for subspace %d\n",
550                                pcc_ss_idx);
551                         return -ENODEV;
552                 }
553
554                 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
555                 /*
556                  * cppc_ss->latency is just a Nominal value. In reality
557                  * the remote processor could be much slower to reply.
558                  * So add an arbitrary amount of wait on top of Nominal.
559                  */
560                 usecs_lat = NUM_RETRIES * pcc_chan->latency;
561                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
562                 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
563                 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
564                 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
565
566                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
567                         acpi_os_ioremap(pcc_chan->shmem_base_addr,
568                                         pcc_chan->shmem_size);
569                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
570                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
571                                pcc_ss_idx);
572                         return -ENOMEM;
573                 }
574
575                 /* Set flag so that we don't come here for each CPU. */
576                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
577         }
578
579         return 0;
580 }
581
582 /**
583  * cpc_ffh_supported() - check if FFH reading supported
584  *
585  * Check if the architecture has support for functional fixed hardware
586  * read/write capability.
587  *
588  * Return: true for supported, false for not supported
589  */
590 bool __weak cpc_ffh_supported(void)
591 {
592         return false;
593 }
594
595 /**
596  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
597  *
598  * Check if the architectural support for CPPC is present even
599  * if the _OSC hasn't prescribed it
600  *
601  * Return: true for supported, false for not supported
602  */
603 bool __weak cpc_supported_by_cpu(void)
604 {
605         return false;
606 }
607
608 /**
609  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
610  * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
611  *
612  * Check and allocate the cppc_pcc_data memory.
613  * In some processor configurations it is possible that same subspace
614  * is shared between multiple CPUs. This is seen especially in CPUs
615  * with hardware multi-threading support.
616  *
617  * Return: 0 for success, errno for failure
618  */
619 static int pcc_data_alloc(int pcc_ss_id)
620 {
621         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
622                 return -EINVAL;
623
624         if (pcc_data[pcc_ss_id]) {
625                 pcc_data[pcc_ss_id]->refcount++;
626         } else {
627                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
628                                               GFP_KERNEL);
629                 if (!pcc_data[pcc_ss_id])
630                         return -ENOMEM;
631                 pcc_data[pcc_ss_id]->refcount++;
632         }
633
634         return 0;
635 }
636
637 /*
638  * An example CPC table looks like the following.
639  *
640  *  Name (_CPC, Package() {
641  *      17,                                                     // NumEntries
642  *      1,                                                      // Revision
643  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},    // Highest Performance
644  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},    // Nominal Performance
645  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},    // Lowest Nonlinear Performance
646  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},    // Lowest Performance
647  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},    // Guaranteed Performance Register
648  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},    // Desired Performance Register
649  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
650  *      ...
651  *      ...
652  *      ...
653  *  }
654  * Each Register() encodes how to access that specific register.
655  * e.g. a sample PCC entry has the following encoding:
656  *
657  *  Register (
658  *      PCC,    // AddressSpaceKeyword
659  *      8,      // RegisterBitWidth
660  *      8,      // RegisterBitOffset
661  *      0x30,   // RegisterAddress
662  *      9,      // AccessSize (subspace ID)
663  *  )
664  */
665
666 #ifndef arch_init_invariance_cppc
667 static inline void arch_init_invariance_cppc(void) { }
668 #endif
669
670 /**
671  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
672  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
673  *
674  *      Return: 0 for success or negative value for err.
675  */
676 int acpi_cppc_processor_probe(struct acpi_processor *pr)
677 {
678         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
679         union acpi_object *out_obj, *cpc_obj;
680         struct cpc_desc *cpc_ptr;
681         struct cpc_reg *gas_t;
682         struct device *cpu_dev;
683         acpi_handle handle = pr->handle;
684         unsigned int num_ent, i, cpc_rev;
685         int pcc_subspace_id = -1;
686         acpi_status status;
687         int ret = -ENODATA;
688
689         if (!osc_sb_cppc2_support_acked) {
690                 pr_debug("CPPC v2 _OSC not acked\n");
691                 if (!cpc_supported_by_cpu()) {
692                         pr_debug("CPPC is not supported by the CPU\n");
693                         return -ENODEV;
694                 }
695         }
696
697         /* Parse the ACPI _CPC table for this CPU. */
698         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
699                         ACPI_TYPE_PACKAGE);
700         if (ACPI_FAILURE(status)) {
701                 ret = -ENODEV;
702                 goto out_buf_free;
703         }
704
705         out_obj = (union acpi_object *) output.pointer;
706
707         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
708         if (!cpc_ptr) {
709                 ret = -ENOMEM;
710                 goto out_buf_free;
711         }
712
713         /* First entry is NumEntries. */
714         cpc_obj = &out_obj->package.elements[0];
715         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
716                 num_ent = cpc_obj->integer.value;
717                 if (num_ent <= 1) {
718                         pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
719                                  num_ent, pr->id);
720                         goto out_free;
721                 }
722         } else {
723                 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
724                          cpc_obj->type, pr->id);
725                 goto out_free;
726         }
727
728         /* Second entry should be revision. */
729         cpc_obj = &out_obj->package.elements[1];
730         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
731                 cpc_rev = cpc_obj->integer.value;
732         } else {
733                 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
734                          cpc_obj->type, pr->id);
735                 goto out_free;
736         }
737
738         if (cpc_rev < CPPC_V2_REV) {
739                 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
740                          pr->id);
741                 goto out_free;
742         }
743
744         /*
745          * Disregard _CPC if the number of entries in the return pachage is not
746          * as expected, but support future revisions being proper supersets of
747          * the v3 and only causing more entries to be returned by _CPC.
748          */
749         if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
750             (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
751             (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
752                 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
753                          num_ent, pr->id);
754                 goto out_free;
755         }
756         if (cpc_rev > CPPC_V3_REV) {
757                 num_ent = CPPC_V3_NUM_ENT;
758                 cpc_rev = CPPC_V3_REV;
759         }
760
761         cpc_ptr->num_entries = num_ent;
762         cpc_ptr->version = cpc_rev;
763
764         /* Iterate through remaining entries in _CPC */
765         for (i = 2; i < num_ent; i++) {
766                 cpc_obj = &out_obj->package.elements[i];
767
768                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
769                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
770                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
771                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
772                         gas_t = (struct cpc_reg *)
773                                 cpc_obj->buffer.pointer;
774
775                         /*
776                          * The PCC Subspace index is encoded inside
777                          * the CPC table entries. The same PCC index
778                          * will be used for all the PCC entries,
779                          * so extract it only once.
780                          */
781                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
782                                 if (pcc_subspace_id < 0) {
783                                         pcc_subspace_id = gas_t->access_width;
784                                         if (pcc_data_alloc(pcc_subspace_id))
785                                                 goto out_free;
786                                 } else if (pcc_subspace_id != gas_t->access_width) {
787                                         pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
788                                                  pr->id);
789                                         goto out_free;
790                                 }
791                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
792                                 if (gas_t->address) {
793                                         void __iomem *addr;
794                                         size_t access_width;
795
796                                         if (!osc_cpc_flexible_adr_space_confirmed) {
797                                                 pr_debug("Flexible address space capability not supported\n");
798                                                 if (!cpc_supported_by_cpu())
799                                                         goto out_free;
800                                         }
801
802                                         access_width = GET_BIT_WIDTH(gas_t) / 8;
803                                         addr = ioremap(gas_t->address, access_width);
804                                         if (!addr)
805                                                 goto out_free;
806                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
807                                 }
808                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
809                                 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
810                                         /*
811                                          * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
812                                          * SystemIO doesn't implement 64-bit
813                                          * registers.
814                                          */
815                                         pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
816                                                  gas_t->access_width);
817                                         goto out_free;
818                                 }
819                                 if (gas_t->address & OVER_16BTS_MASK) {
820                                         /* SystemIO registers use 16-bit integer addresses */
821                                         pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
822                                                  gas_t->address);
823                                         goto out_free;
824                                 }
825                                 if (!osc_cpc_flexible_adr_space_confirmed) {
826                                         pr_debug("Flexible address space capability not supported\n");
827                                         if (!cpc_supported_by_cpu())
828                                                 goto out_free;
829                                 }
830                         } else {
831                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
832                                         /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
833                                         pr_debug("Unsupported register type (%d) in _CPC\n",
834                                                  gas_t->space_id);
835                                         goto out_free;
836                                 }
837                         }
838
839                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
840                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
841                 } else {
842                         pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
843                                  i, pr->id);
844                         goto out_free;
845                 }
846         }
847         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
848
849         /*
850          * Initialize the remaining cpc_regs as unsupported.
851          * Example: In case FW exposes CPPC v2, the below loop will initialize
852          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
853          */
854         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
855                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
856                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
857         }
858
859
860         /* Store CPU Logical ID */
861         cpc_ptr->cpu_id = pr->id;
862
863         /* Parse PSD data for this CPU */
864         ret = acpi_get_psd(cpc_ptr, handle);
865         if (ret)
866                 goto out_free;
867
868         /* Register PCC channel once for all PCC subspace ID. */
869         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
870                 ret = register_pcc_channel(pcc_subspace_id);
871                 if (ret)
872                         goto out_free;
873
874                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
875                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
876         }
877
878         /* Everything looks okay */
879         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
880
881         /* Add per logical CPU nodes for reading its feedback counters. */
882         cpu_dev = get_cpu_device(pr->id);
883         if (!cpu_dev) {
884                 ret = -EINVAL;
885                 goto out_free;
886         }
887
888         /* Plug PSD data into this CPU's CPC descriptor. */
889         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
890
891         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
892                         "acpi_cppc");
893         if (ret) {
894                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
895                 kobject_put(&cpc_ptr->kobj);
896                 goto out_free;
897         }
898
899         arch_init_invariance_cppc();
900
901         kfree(output.pointer);
902         return 0;
903
904 out_free:
905         /* Free all the mapped sys mem areas for this CPU */
906         for (i = 2; i < cpc_ptr->num_entries; i++) {
907                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
908
909                 if (addr)
910                         iounmap(addr);
911         }
912         kfree(cpc_ptr);
913
914 out_buf_free:
915         kfree(output.pointer);
916         return ret;
917 }
918 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
919
920 /**
921  * acpi_cppc_processor_exit - Cleanup CPC structs.
922  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
923  *
924  * Return: Void
925  */
926 void acpi_cppc_processor_exit(struct acpi_processor *pr)
927 {
928         struct cpc_desc *cpc_ptr;
929         unsigned int i;
930         void __iomem *addr;
931         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
932
933         if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
934                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
935                         pcc_data[pcc_ss_id]->refcount--;
936                         if (!pcc_data[pcc_ss_id]->refcount) {
937                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
938                                 kfree(pcc_data[pcc_ss_id]);
939                                 pcc_data[pcc_ss_id] = NULL;
940                         }
941                 }
942         }
943
944         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
945         if (!cpc_ptr)
946                 return;
947
948         /* Free all the mapped sys mem areas for this CPU */
949         for (i = 2; i < cpc_ptr->num_entries; i++) {
950                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
951                 if (addr)
952                         iounmap(addr);
953         }
954
955         kobject_put(&cpc_ptr->kobj);
956         kfree(cpc_ptr);
957 }
958 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
959
960 /**
961  * cpc_read_ffh() - Read FFH register
962  * @cpunum:     CPU number to read
963  * @reg:        cppc register information
964  * @val:        place holder for return value
965  *
966  * Read bit_width bits from a specified address and bit_offset
967  *
968  * Return: 0 for success and error code
969  */
970 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
971 {
972         return -ENOTSUPP;
973 }
974
975 /**
976  * cpc_write_ffh() - Write FFH register
977  * @cpunum:     CPU number to write
978  * @reg:        cppc register information
979  * @val:        value to write
980  *
981  * Write value of bit_width bits to a specified address and bit_offset
982  *
983  * Return: 0 for success and error code
984  */
985 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
986 {
987         return -ENOTSUPP;
988 }
989
990 /*
991  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
992  * as fast as possible. We have already mapped the PCC subspace during init, so
993  * we can directly write to it.
994  */
995
996 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
997 {
998         void __iomem *vaddr = NULL;
999         int size;
1000         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1001         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1002
1003         if (reg_res->type == ACPI_TYPE_INTEGER) {
1004                 *val = reg_res->cpc_entry.int_value;
1005                 return 0;
1006         }
1007
1008         *val = 0;
1009         size = GET_BIT_WIDTH(reg);
1010
1011         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1012                 u32 val_u32;
1013                 acpi_status status;
1014
1015                 status = acpi_os_read_port((acpi_io_address)reg->address,
1016                                            &val_u32, size);
1017                 if (ACPI_FAILURE(status)) {
1018                         pr_debug("Error: Failed to read SystemIO port %llx\n",
1019                                  reg->address);
1020                         return -EFAULT;
1021                 }
1022
1023                 *val = val_u32;
1024                 return 0;
1025         } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1026                 /*
1027                  * For registers in PCC space, the register size is determined
1028                  * by the bit width field; the access size is used to indicate
1029                  * the PCC subspace id.
1030                  */
1031                 size = reg->bit_width;
1032                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1033         }
1034         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1035                 vaddr = reg_res->sys_mem_vaddr;
1036         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1037                 return cpc_read_ffh(cpu, reg, val);
1038         else
1039                 return acpi_os_read_memory((acpi_physical_address)reg->address,
1040                                 val, size);
1041
1042         switch (size) {
1043         case 8:
1044                 *val = readb_relaxed(vaddr);
1045                 break;
1046         case 16:
1047                 *val = readw_relaxed(vaddr);
1048                 break;
1049         case 32:
1050                 *val = readl_relaxed(vaddr);
1051                 break;
1052         case 64:
1053                 *val = readq_relaxed(vaddr);
1054                 break;
1055         default:
1056                 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1057                         pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1058                                 size, reg->address);
1059                 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1060                         pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1061                                 size, pcc_ss_id);
1062                 }
1063                 return -EFAULT;
1064         }
1065
1066         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1067                 *val = MASK_VAL(reg, *val);
1068
1069         return 0;
1070 }
1071
1072 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1073 {
1074         int ret_val = 0;
1075         int size;
1076         void __iomem *vaddr = NULL;
1077         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1078         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1079
1080         size = GET_BIT_WIDTH(reg);
1081
1082         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1083                 acpi_status status;
1084
1085                 status = acpi_os_write_port((acpi_io_address)reg->address,
1086                                             (u32)val, size);
1087                 if (ACPI_FAILURE(status)) {
1088                         pr_debug("Error: Failed to write SystemIO port %llx\n",
1089                                  reg->address);
1090                         return -EFAULT;
1091                 }
1092
1093                 return 0;
1094         } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1095                 /*
1096                  * For registers in PCC space, the register size is determined
1097                  * by the bit width field; the access size is used to indicate
1098                  * the PCC subspace id.
1099                  */
1100                 size = reg->bit_width;
1101                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1102         }
1103         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1104                 vaddr = reg_res->sys_mem_vaddr;
1105         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1106                 return cpc_write_ffh(cpu, reg, val);
1107         else
1108                 return acpi_os_write_memory((acpi_physical_address)reg->address,
1109                                 val, size);
1110
1111         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1112                 val = MASK_VAL(reg, val);
1113
1114         switch (size) {
1115         case 8:
1116                 writeb_relaxed(val, vaddr);
1117                 break;
1118         case 16:
1119                 writew_relaxed(val, vaddr);
1120                 break;
1121         case 32:
1122                 writel_relaxed(val, vaddr);
1123                 break;
1124         case 64:
1125                 writeq_relaxed(val, vaddr);
1126                 break;
1127         default:
1128                 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1129                         pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1130                                 size, reg->address);
1131                 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1132                         pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1133                                 size, pcc_ss_id);
1134                 }
1135                 ret_val = -EFAULT;
1136                 break;
1137         }
1138
1139         return ret_val;
1140 }
1141
1142 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1143 {
1144         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1145         struct cpc_register_resource *reg;
1146
1147         if (!cpc_desc) {
1148                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1149                 return -ENODEV;
1150         }
1151
1152         reg = &cpc_desc->cpc_regs[reg_idx];
1153
1154         if (CPC_IN_PCC(reg)) {
1155                 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1156                 struct cppc_pcc_data *pcc_ss_data = NULL;
1157                 int ret = 0;
1158
1159                 if (pcc_ss_id < 0)
1160                         return -EIO;
1161
1162                 pcc_ss_data = pcc_data[pcc_ss_id];
1163
1164                 down_write(&pcc_ss_data->pcc_lock);
1165
1166                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1167                         cpc_read(cpunum, reg, perf);
1168                 else
1169                         ret = -EIO;
1170
1171                 up_write(&pcc_ss_data->pcc_lock);
1172
1173                 return ret;
1174         }
1175
1176         cpc_read(cpunum, reg, perf);
1177
1178         return 0;
1179 }
1180
1181 /**
1182  * cppc_get_desired_perf - Get the desired performance register value.
1183  * @cpunum: CPU from which to get desired performance.
1184  * @desired_perf: Return address.
1185  *
1186  * Return: 0 for success, -EIO otherwise.
1187  */
1188 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1189 {
1190         return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1191 }
1192 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1193
1194 /**
1195  * cppc_get_nominal_perf - Get the nominal performance register value.
1196  * @cpunum: CPU from which to get nominal performance.
1197  * @nominal_perf: Return address.
1198  *
1199  * Return: 0 for success, -EIO otherwise.
1200  */
1201 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1202 {
1203         return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1204 }
1205
1206 /**
1207  * cppc_get_highest_perf - Get the highest performance register value.
1208  * @cpunum: CPU from which to get highest performance.
1209  * @highest_perf: Return address.
1210  *
1211  * Return: 0 for success, -EIO otherwise.
1212  */
1213 int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1214 {
1215         return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf);
1216 }
1217 EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1218
1219 /**
1220  * cppc_get_epp_perf - Get the epp register value.
1221  * @cpunum: CPU from which to get epp preference value.
1222  * @epp_perf: Return address.
1223  *
1224  * Return: 0 for success, -EIO otherwise.
1225  */
1226 int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1227 {
1228         return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1229 }
1230 EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1231
1232 /**
1233  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1234  * @cpunum: CPU from which to get capabilities info.
1235  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1236  *
1237  * Return: 0 for success with perf_caps populated else -ERRNO.
1238  */
1239 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1240 {
1241         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1242         struct cpc_register_resource *highest_reg, *lowest_reg,
1243                 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1244                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1245         u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1246         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1247         struct cppc_pcc_data *pcc_ss_data = NULL;
1248         int ret = 0, regs_in_pcc = 0;
1249
1250         if (!cpc_desc) {
1251                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1252                 return -ENODEV;
1253         }
1254
1255         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1256         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1257         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1258         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1259         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1260         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1261         guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1262
1263         /* Are any of the regs PCC ?*/
1264         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1265                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1266                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1267                 if (pcc_ss_id < 0) {
1268                         pr_debug("Invalid pcc_ss_id\n");
1269                         return -ENODEV;
1270                 }
1271                 pcc_ss_data = pcc_data[pcc_ss_id];
1272                 regs_in_pcc = 1;
1273                 down_write(&pcc_ss_data->pcc_lock);
1274                 /* Ring doorbell once to update PCC subspace */
1275                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1276                         ret = -EIO;
1277                         goto out_err;
1278                 }
1279         }
1280
1281         cpc_read(cpunum, highest_reg, &high);
1282         perf_caps->highest_perf = high;
1283
1284         cpc_read(cpunum, lowest_reg, &low);
1285         perf_caps->lowest_perf = low;
1286
1287         cpc_read(cpunum, nominal_reg, &nom);
1288         perf_caps->nominal_perf = nom;
1289
1290         if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1291             IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1292                 perf_caps->guaranteed_perf = 0;
1293         } else {
1294                 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1295                 perf_caps->guaranteed_perf = guaranteed;
1296         }
1297
1298         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1299         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1300
1301         if (!high || !low || !nom || !min_nonlinear)
1302                 ret = -EFAULT;
1303
1304         /* Read optional lowest and nominal frequencies if present */
1305         if (CPC_SUPPORTED(low_freq_reg))
1306                 cpc_read(cpunum, low_freq_reg, &low_f);
1307
1308         if (CPC_SUPPORTED(nom_freq_reg))
1309                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1310
1311         perf_caps->lowest_freq = low_f;
1312         perf_caps->nominal_freq = nom_f;
1313
1314
1315 out_err:
1316         if (regs_in_pcc)
1317                 up_write(&pcc_ss_data->pcc_lock);
1318         return ret;
1319 }
1320 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1321
1322 /**
1323  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1324  *
1325  * CPPC has flexibility about how CPU performance counters are accessed.
1326  * One of the choices is PCC regions, which can have a high access latency. This
1327  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1328  *
1329  * Return: true if any of the counters are in PCC regions, false otherwise
1330  */
1331 bool cppc_perf_ctrs_in_pcc(void)
1332 {
1333         int cpu;
1334
1335         for_each_present_cpu(cpu) {
1336                 struct cpc_register_resource *ref_perf_reg;
1337                 struct cpc_desc *cpc_desc;
1338
1339                 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1340
1341                 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1342                     CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1343                     CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1344                         return true;
1345
1346
1347                 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1348
1349                 /*
1350                  * If reference perf register is not supported then we should
1351                  * use the nominal perf value
1352                  */
1353                 if (!CPC_SUPPORTED(ref_perf_reg))
1354                         ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1355
1356                 if (CPC_IN_PCC(ref_perf_reg))
1357                         return true;
1358         }
1359
1360         return false;
1361 }
1362 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1363
1364 /**
1365  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1366  * @cpunum: CPU from which to read counters.
1367  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1368  *
1369  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1370  */
1371 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1372 {
1373         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1374         struct cpc_register_resource *delivered_reg, *reference_reg,
1375                 *ref_perf_reg, *ctr_wrap_reg;
1376         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1377         struct cppc_pcc_data *pcc_ss_data = NULL;
1378         u64 delivered, reference, ref_perf, ctr_wrap_time;
1379         int ret = 0, regs_in_pcc = 0;
1380
1381         if (!cpc_desc) {
1382                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1383                 return -ENODEV;
1384         }
1385
1386         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1387         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1388         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1389         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1390
1391         /*
1392          * If reference perf register is not supported then we should
1393          * use the nominal perf value
1394          */
1395         if (!CPC_SUPPORTED(ref_perf_reg))
1396                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1397
1398         /* Are any of the regs PCC ?*/
1399         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1400                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1401                 if (pcc_ss_id < 0) {
1402                         pr_debug("Invalid pcc_ss_id\n");
1403                         return -ENODEV;
1404                 }
1405                 pcc_ss_data = pcc_data[pcc_ss_id];
1406                 down_write(&pcc_ss_data->pcc_lock);
1407                 regs_in_pcc = 1;
1408                 /* Ring doorbell once to update PCC subspace */
1409                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1410                         ret = -EIO;
1411                         goto out_err;
1412                 }
1413         }
1414
1415         cpc_read(cpunum, delivered_reg, &delivered);
1416         cpc_read(cpunum, reference_reg, &reference);
1417         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1418
1419         /*
1420          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1421          * performance counters are assumed to never wrap during the lifetime of
1422          * platform
1423          */
1424         ctr_wrap_time = (u64)(~((u64)0));
1425         if (CPC_SUPPORTED(ctr_wrap_reg))
1426                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1427
1428         if (!delivered || !reference || !ref_perf) {
1429                 ret = -EFAULT;
1430                 goto out_err;
1431         }
1432
1433         perf_fb_ctrs->delivered = delivered;
1434         perf_fb_ctrs->reference = reference;
1435         perf_fb_ctrs->reference_perf = ref_perf;
1436         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1437 out_err:
1438         if (regs_in_pcc)
1439                 up_write(&pcc_ss_data->pcc_lock);
1440         return ret;
1441 }
1442 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1443
1444 /*
1445  * Set Energy Performance Preference Register value through
1446  * Performance Controls Interface
1447  */
1448 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1449 {
1450         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1451         struct cpc_register_resource *epp_set_reg;
1452         struct cpc_register_resource *auto_sel_reg;
1453         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1454         struct cppc_pcc_data *pcc_ss_data = NULL;
1455         int ret;
1456
1457         if (!cpc_desc) {
1458                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1459                 return -ENODEV;
1460         }
1461
1462         auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1463         epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1464
1465         if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1466                 if (pcc_ss_id < 0) {
1467                         pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1468                         return -ENODEV;
1469                 }
1470
1471                 if (CPC_SUPPORTED(auto_sel_reg)) {
1472                         ret = cpc_write(cpu, auto_sel_reg, enable);
1473                         if (ret)
1474                                 return ret;
1475                 }
1476
1477                 if (CPC_SUPPORTED(epp_set_reg)) {
1478                         ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1479                         if (ret)
1480                                 return ret;
1481                 }
1482
1483                 pcc_ss_data = pcc_data[pcc_ss_id];
1484
1485                 down_write(&pcc_ss_data->pcc_lock);
1486                 /* after writing CPC, transfer the ownership of PCC to platform */
1487                 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1488                 up_write(&pcc_ss_data->pcc_lock);
1489         } else {
1490                 ret = -ENOTSUPP;
1491                 pr_debug("_CPC in PCC is not supported\n");
1492         }
1493
1494         return ret;
1495 }
1496 EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1497
1498 /**
1499  * cppc_get_auto_sel_caps - Read autonomous selection register.
1500  * @cpunum : CPU from which to read register.
1501  * @perf_caps : struct where autonomous selection register value is updated.
1502  */
1503 int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1504 {
1505         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1506         struct cpc_register_resource *auto_sel_reg;
1507         u64  auto_sel;
1508
1509         if (!cpc_desc) {
1510                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1511                 return -ENODEV;
1512         }
1513
1514         auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1515
1516         if (!CPC_SUPPORTED(auto_sel_reg))
1517                 pr_warn_once("Autonomous mode is not unsupported!\n");
1518
1519         if (CPC_IN_PCC(auto_sel_reg)) {
1520                 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1521                 struct cppc_pcc_data *pcc_ss_data = NULL;
1522                 int ret = 0;
1523
1524                 if (pcc_ss_id < 0)
1525                         return -ENODEV;
1526
1527                 pcc_ss_data = pcc_data[pcc_ss_id];
1528
1529                 down_write(&pcc_ss_data->pcc_lock);
1530
1531                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1532                         cpc_read(cpunum, auto_sel_reg, &auto_sel);
1533                         perf_caps->auto_sel = (bool)auto_sel;
1534                 } else {
1535                         ret = -EIO;
1536                 }
1537
1538                 up_write(&pcc_ss_data->pcc_lock);
1539
1540                 return ret;
1541         }
1542
1543         return 0;
1544 }
1545 EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1546
1547 /**
1548  * cppc_set_auto_sel - Write autonomous selection register.
1549  * @cpu    : CPU to which to write register.
1550  * @enable : the desired value of autonomous selection resiter to be updated.
1551  */
1552 int cppc_set_auto_sel(int cpu, bool enable)
1553 {
1554         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1555         struct cpc_register_resource *auto_sel_reg;
1556         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1557         struct cppc_pcc_data *pcc_ss_data = NULL;
1558         int ret = -EINVAL;
1559
1560         if (!cpc_desc) {
1561                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1562                 return -ENODEV;
1563         }
1564
1565         auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1566
1567         if (CPC_IN_PCC(auto_sel_reg)) {
1568                 if (pcc_ss_id < 0) {
1569                         pr_debug("Invalid pcc_ss_id\n");
1570                         return -ENODEV;
1571                 }
1572
1573                 if (CPC_SUPPORTED(auto_sel_reg)) {
1574                         ret = cpc_write(cpu, auto_sel_reg, enable);
1575                         if (ret)
1576                                 return ret;
1577                 }
1578
1579                 pcc_ss_data = pcc_data[pcc_ss_id];
1580
1581                 down_write(&pcc_ss_data->pcc_lock);
1582                 /* after writing CPC, transfer the ownership of PCC to platform */
1583                 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1584                 up_write(&pcc_ss_data->pcc_lock);
1585         } else {
1586                 ret = -ENOTSUPP;
1587                 pr_debug("_CPC in PCC is not supported\n");
1588         }
1589
1590         return ret;
1591 }
1592 EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1593
1594 /**
1595  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1596  * Continuous Performance Control package EnableRegister field.
1597  * @cpu: CPU for which to enable CPPC register.
1598  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1599  *
1600  * Return: 0 for success, -ERRNO or -EIO otherwise.
1601  */
1602 int cppc_set_enable(int cpu, bool enable)
1603 {
1604         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1605         struct cpc_register_resource *enable_reg;
1606         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1607         struct cppc_pcc_data *pcc_ss_data = NULL;
1608         int ret = -EINVAL;
1609
1610         if (!cpc_desc) {
1611                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1612                 return -EINVAL;
1613         }
1614
1615         enable_reg = &cpc_desc->cpc_regs[ENABLE];
1616
1617         if (CPC_IN_PCC(enable_reg)) {
1618
1619                 if (pcc_ss_id < 0)
1620                         return -EIO;
1621
1622                 ret = cpc_write(cpu, enable_reg, enable);
1623                 if (ret)
1624                         return ret;
1625
1626                 pcc_ss_data = pcc_data[pcc_ss_id];
1627
1628                 down_write(&pcc_ss_data->pcc_lock);
1629                 /* after writing CPC, transfer the ownership of PCC to platfrom */
1630                 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1631                 up_write(&pcc_ss_data->pcc_lock);
1632                 return ret;
1633         }
1634
1635         return cpc_write(cpu, enable_reg, enable);
1636 }
1637 EXPORT_SYMBOL_GPL(cppc_set_enable);
1638
1639 /**
1640  * cppc_set_perf - Set a CPU's performance controls.
1641  * @cpu: CPU for which to set performance controls.
1642  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1643  *
1644  * Return: 0 for success, -ERRNO otherwise.
1645  */
1646 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1647 {
1648         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1649         struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1650         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1651         struct cppc_pcc_data *pcc_ss_data = NULL;
1652         int ret = 0;
1653
1654         if (!cpc_desc) {
1655                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1656                 return -ENODEV;
1657         }
1658
1659         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1660         min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1661         max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1662
1663         /*
1664          * This is Phase-I where we want to write to CPC registers
1665          * -> We want all CPUs to be able to execute this phase in parallel
1666          *
1667          * Since read_lock can be acquired by multiple CPUs simultaneously we
1668          * achieve that goal here
1669          */
1670         if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1671                 if (pcc_ss_id < 0) {
1672                         pr_debug("Invalid pcc_ss_id\n");
1673                         return -ENODEV;
1674                 }
1675                 pcc_ss_data = pcc_data[pcc_ss_id];
1676                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1677                 if (pcc_ss_data->platform_owns_pcc) {
1678                         ret = check_pcc_chan(pcc_ss_id, false);
1679                         if (ret) {
1680                                 up_read(&pcc_ss_data->pcc_lock);
1681                                 return ret;
1682                         }
1683                 }
1684                 /*
1685                  * Update the pending_write to make sure a PCC CMD_READ will not
1686                  * arrive and steal the channel during the switch to write lock
1687                  */
1688                 pcc_ss_data->pending_pcc_write_cmd = true;
1689                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1690                 cpc_desc->write_cmd_status = 0;
1691         }
1692
1693         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1694
1695         /*
1696          * Only write if min_perf and max_perf not zero. Some drivers pass zero
1697          * value to min and max perf, but they don't mean to set the zero value,
1698          * they just don't want to write to those registers.
1699          */
1700         if (perf_ctrls->min_perf)
1701                 cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1702         if (perf_ctrls->max_perf)
1703                 cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1704
1705         if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1706                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1707         /*
1708          * This is Phase-II where we transfer the ownership of PCC to Platform
1709          *
1710          * Short Summary: Basically if we think of a group of cppc_set_perf
1711          * requests that happened in short overlapping interval. The last CPU to
1712          * come out of Phase-I will enter Phase-II and ring the doorbell.
1713          *
1714          * We have the following requirements for Phase-II:
1715          *     1. We want to execute Phase-II only when there are no CPUs
1716          * currently executing in Phase-I
1717          *     2. Once we start Phase-II we want to avoid all other CPUs from
1718          * entering Phase-I.
1719          *     3. We want only one CPU among all those who went through Phase-I
1720          * to run phase-II
1721          *
1722          * If write_trylock fails to get the lock and doesn't transfer the
1723          * PCC ownership to the platform, then one of the following will be TRUE
1724          *     1. There is at-least one CPU in Phase-I which will later execute
1725          * write_trylock, so the CPUs in Phase-I will be responsible for
1726          * executing the Phase-II.
1727          *     2. Some other CPU has beaten this CPU to successfully execute the
1728          * write_trylock and has already acquired the write_lock. We know for a
1729          * fact it (other CPU acquiring the write_lock) couldn't have happened
1730          * before this CPU's Phase-I as we held the read_lock.
1731          *     3. Some other CPU executing pcc CMD_READ has stolen the
1732          * down_write, in which case, send_pcc_cmd will check for pending
1733          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1734          * So this CPU can be certain that its request will be delivered
1735          *    So in all cases, this CPU knows that its request will be delivered
1736          * by another CPU and can return
1737          *
1738          * After getting the down_write we still need to check for
1739          * pending_pcc_write_cmd to take care of the following scenario
1740          *    The thread running this code could be scheduled out between
1741          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1742          * could have delivered the request to Platform by triggering the
1743          * doorbell and transferred the ownership of PCC to platform. So this
1744          * avoids triggering an unnecessary doorbell and more importantly before
1745          * triggering the doorbell it makes sure that the PCC channel ownership
1746          * is still with OSPM.
1747          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1748          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1749          * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1750          * case during a CMD_READ and if there are pending writes it delivers
1751          * the write command before servicing the read command
1752          */
1753         if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1754                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1755                         /* Update only if there are pending write commands */
1756                         if (pcc_ss_data->pending_pcc_write_cmd)
1757                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1758                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1759                 } else
1760                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1761                         wait_event(pcc_ss_data->pcc_write_wait_q,
1762                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1763
1764                 /* send_pcc_cmd updates the status in case of failure */
1765                 ret = cpc_desc->write_cmd_status;
1766         }
1767         return ret;
1768 }
1769 EXPORT_SYMBOL_GPL(cppc_set_perf);
1770
1771 /**
1772  * cppc_get_transition_latency - returns frequency transition latency in ns
1773  * @cpu_num: CPU number for per_cpu().
1774  *
1775  * ACPI CPPC does not explicitly specify how a platform can specify the
1776  * transition latency for performance change requests. The closest we have
1777  * is the timing information from the PCCT tables which provides the info
1778  * on the number and frequency of PCC commands the platform can handle.
1779  *
1780  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1781  * then assume there is no latency.
1782  */
1783 unsigned int cppc_get_transition_latency(int cpu_num)
1784 {
1785         /*
1786          * Expected transition latency is based on the PCCT timing values
1787          * Below are definition from ACPI spec:
1788          * pcc_nominal- Expected latency to process a command, in microseconds
1789          * pcc_mpar   - The maximum number of periodic requests that the subspace
1790          *              channel can support, reported in commands per minute. 0
1791          *              indicates no limitation.
1792          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1793          *              completion of a command before issuing the next command,
1794          *              in microseconds.
1795          */
1796         unsigned int latency_ns = 0;
1797         struct cpc_desc *cpc_desc;
1798         struct cpc_register_resource *desired_reg;
1799         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1800         struct cppc_pcc_data *pcc_ss_data;
1801
1802         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1803         if (!cpc_desc)
1804                 return CPUFREQ_ETERNAL;
1805
1806         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1807         if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1808                 return 0;
1809         else if (!CPC_IN_PCC(desired_reg))
1810                 return CPUFREQ_ETERNAL;
1811
1812         if (pcc_ss_id < 0)
1813                 return CPUFREQ_ETERNAL;
1814
1815         pcc_ss_data = pcc_data[pcc_ss_id];
1816         if (pcc_ss_data->pcc_mpar)
1817                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1818
1819         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1820         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1821
1822         return latency_ns;
1823 }
1824 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1825
1826 /* Minimum struct length needed for the DMI processor entry we want */
1827 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
1828
1829 /* Offset in the DMI processor structure for the max frequency */
1830 #define DMI_PROCESSOR_MAX_SPEED         0x14
1831
1832 /* Callback function used to retrieve the max frequency from DMI */
1833 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1834 {
1835         const u8 *dmi_data = (const u8 *)dm;
1836         u16 *mhz = (u16 *)private;
1837
1838         if (dm->type == DMI_ENTRY_PROCESSOR &&
1839             dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1840                 u16 val = (u16)get_unaligned((const u16 *)
1841                                 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
1842                 *mhz = umax(val, *mhz);
1843         }
1844 }
1845
1846 /* Look up the max frequency in DMI */
1847 static u64 cppc_get_dmi_max_khz(void)
1848 {
1849         u16 mhz = 0;
1850
1851         dmi_walk(cppc_find_dmi_mhz, &mhz);
1852
1853         /*
1854          * Real stupid fallback value, just in case there is no
1855          * actual value set.
1856          */
1857         mhz = mhz ? mhz : 1;
1858
1859         return KHZ_PER_MHZ * mhz;
1860 }
1861
1862 /*
1863  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1864  * use them to convert perf to freq and vice versa. The conversion is
1865  * extrapolated as an affine function passing by the 2 points:
1866  *  - (Low perf, Low freq)
1867  *  - (Nominal perf, Nominal freq)
1868  */
1869 unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1870 {
1871         s64 retval, offset = 0;
1872         static u64 max_khz;
1873         u64 mul, div;
1874
1875         if (caps->lowest_freq && caps->nominal_freq) {
1876                 mul = caps->nominal_freq - caps->lowest_freq;
1877                 mul *= KHZ_PER_MHZ;
1878                 div = caps->nominal_perf - caps->lowest_perf;
1879                 offset = caps->nominal_freq * KHZ_PER_MHZ -
1880                          div64_u64(caps->nominal_perf * mul, div);
1881         } else {
1882                 if (!max_khz)
1883                         max_khz = cppc_get_dmi_max_khz();
1884                 mul = max_khz;
1885                 div = caps->highest_perf;
1886         }
1887
1888         retval = offset + div64_u64(perf * mul, div);
1889         if (retval >= 0)
1890                 return retval;
1891         return 0;
1892 }
1893 EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1894
1895 unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1896 {
1897         s64 retval, offset = 0;
1898         static u64 max_khz;
1899         u64  mul, div;
1900
1901         if (caps->lowest_freq && caps->nominal_freq) {
1902                 mul = caps->nominal_perf - caps->lowest_perf;
1903                 div = caps->nominal_freq - caps->lowest_freq;
1904                 /*
1905                  * We don't need to convert to kHz for computing offset and can
1906                  * directly use nominal_freq and lowest_freq as the div64_u64
1907                  * will remove the frequency unit.
1908                  */
1909                 offset = caps->nominal_perf -
1910                          div64_u64(caps->nominal_freq * mul, div);
1911                 /* But we need it for computing the perf level. */
1912                 div *= KHZ_PER_MHZ;
1913         } else {
1914                 if (!max_khz)
1915                         max_khz = cppc_get_dmi_max_khz();
1916                 mul = caps->highest_perf;
1917                 div = max_khz;
1918         }
1919
1920         retval = offset + div64_u64(freq * mul, div);
1921         if (retval >= 0)
1922                 return retval;
1923         return 0;
1924 }
1925 EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
This page took 0.15353 seconds and 4 git commands to generate.