1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
9 * http://armlinux.simtec.co.uk/
11 * S3C USB2.0 High-speed / OtG driver
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
37 return container_of(req, struct dwc2_hsotg_req, req);
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
42 return container_of(ep, struct dwc2_hsotg_ep, ep);
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
47 return container_of(gadget, struct dwc2_hsotg, gadget);
50 static inline void dwc2_set_bit(void __iomem *ptr, u32 val)
52 dwc2_writel(dwc2_readl(ptr) | val, ptr);
55 static inline void dwc2_clear_bit(void __iomem *ptr, u32 val)
57 dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 u32 ep_index, u32 dir_in)
64 return hsotg->eps_in[ep_index];
66 return hsotg->eps_out[ep_index];
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 * using_dma - return the DMA status of the driver.
74 * @hsotg: The driver state.
76 * Return true if we're using DMA.
78 * Currently, we have the DMA support code worked into everywhere
79 * that needs it, but the AMBA DMA implementation in the hardware can
80 * only DMA from 32bit aligned addresses. This means that gadgets such
81 * as the CDC Ethernet cannot work as they often pass packets which are
84 * Unfortunately the choice to use DMA or not is global to the controller
85 * and seems to be only settable when the controller is being put through
86 * a core reset. This means we either need to fix the gadgets to take
87 * account of DMA alignment, or add bounce buffers (yuerk).
89 * g_using_dma is set depending on dts flag.
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
93 return hsotg->params.g_dma;
97 * using_desc_dma - return the descriptor DMA status of the driver.
98 * @hsotg: The driver state.
100 * Return true if we're using descriptor DMA.
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
104 return hsotg->params.g_dma_desc;
108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109 * @hs_ep: The endpoint
110 * @increment: The value to increment by
112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 hs_ep->target_frame += hs_ep->interval;
118 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
119 hs_ep->frame_overrun = true;
120 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 hs_ep->frame_overrun = false;
127 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128 * @hsotg: The device state
129 * @ints: A bitmask of the interrupts to enable
131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
133 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
136 new_gsintmsk = gsintmsk | ints;
138 if (new_gsintmsk != gsintmsk) {
139 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
145 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146 * @hsotg: The device state
147 * @ints: A bitmask of the interrupts to enable
149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
151 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
154 new_gsintmsk = gsintmsk & ~ints;
156 if (new_gsintmsk != gsintmsk)
157 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162 * @hsotg: The device state
163 * @ep: The endpoint index
164 * @dir_in: True if direction is in.
165 * @en: The enable value, true to enable
167 * Set or clear the mask for an individual endpoint's interrupt
170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171 unsigned int ep, unsigned int dir_in,
181 local_irq_save(flags);
182 daint = dwc2_readl(hsotg->regs + DAINTMSK);
187 dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 local_irq_restore(flags);
192 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
196 if (hsotg->hw_params.en_multiple_tx_fifo)
197 /* In dedicated FIFO mode we need count of IN EPs */
198 return hsotg->hw_params.num_dev_in_eps;
200 /* In shared FIFO mode we need count of Periodic IN EPs */
201 return hsotg->hw_params.num_dev_perio_in_ep;
205 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
206 * device mode TX FIFOs
208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
214 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
215 hsotg->params.g_np_tx_fifo_size);
217 /* Get Endpoint Info Control block size in DWORDs. */
218 tx_addr_max = hsotg->hw_params.total_fifo_size;
220 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
221 if (tx_addr_max <= addr)
224 return tx_addr_max - addr;
228 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
236 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
238 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
241 return tx_fifo_depth;
243 return tx_fifo_depth / tx_fifo_count;
247 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
248 * @hsotg: The device instance.
250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
257 u32 *txfsz = hsotg->params.g_tx_fifo_size;
259 /* Reset fifo map if not correctly cleared during previous session */
260 WARN_ON(hsotg->fifo_map);
263 /* set RX/NPTX FIFO sizes */
264 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
265 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
266 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
267 hsotg->regs + GNPTXFSIZ);
270 * arange all the rest of the TX FIFOs, as some versions of this
271 * block have overlapping default addresses. This also ensures
272 * that if the settings have been changed, then they are set to
276 /* start at the end of the GNPTXFSIZ, rounded up */
277 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
280 * Configure fifos sizes from provided configuration and assign
281 * them to endpoints dynamically according to maxpacket size value of
284 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
288 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
289 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
290 "insufficient fifo memory");
293 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
294 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
297 dwc2_writel(hsotg->hw_params.total_fifo_size |
298 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
299 hsotg->regs + GDFIFOCFG);
301 * according to p428 of the design guide, we need to ensure that
302 * all fifos are flushed before continuing
305 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
306 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
308 /* wait until the fifos are both flushed */
311 val = dwc2_readl(hsotg->regs + GRSTCTL);
313 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
316 if (--timeout == 0) {
318 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
326 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
330 * @ep: USB endpoint to allocate request for.
331 * @flags: Allocation flags
333 * Allocate a new USB request structure appropriate for the specified endpoint
335 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
338 struct dwc2_hsotg_req *req;
340 req = kzalloc(sizeof(*req), flags);
344 INIT_LIST_HEAD(&req->queue);
350 * is_ep_periodic - return true if the endpoint is in periodic mode.
351 * @hs_ep: The endpoint to query.
353 * Returns true if the endpoint is in periodic mode, meaning it is being
354 * used for an Interrupt or ISO transfer.
356 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
358 return hs_ep->periodic;
362 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
363 * @hsotg: The device state.
364 * @hs_ep: The endpoint for the request
365 * @hs_req: The request being processed.
367 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
368 * of a request to ensure the buffer is ready for access by the caller.
370 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
371 struct dwc2_hsotg_ep *hs_ep,
372 struct dwc2_hsotg_req *hs_req)
374 struct usb_request *req = &hs_req->req;
376 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
380 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
381 * for Control endpoint
382 * @hsotg: The device state.
384 * This function will allocate 4 descriptor chains for EP 0: 2 for
385 * Setup stage, per one for IN and OUT data/status transactions.
387 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
389 hsotg->setup_desc[0] =
390 dmam_alloc_coherent(hsotg->dev,
391 sizeof(struct dwc2_dma_desc),
392 &hsotg->setup_desc_dma[0],
394 if (!hsotg->setup_desc[0])
397 hsotg->setup_desc[1] =
398 dmam_alloc_coherent(hsotg->dev,
399 sizeof(struct dwc2_dma_desc),
400 &hsotg->setup_desc_dma[1],
402 if (!hsotg->setup_desc[1])
405 hsotg->ctrl_in_desc =
406 dmam_alloc_coherent(hsotg->dev,
407 sizeof(struct dwc2_dma_desc),
408 &hsotg->ctrl_in_desc_dma,
410 if (!hsotg->ctrl_in_desc)
413 hsotg->ctrl_out_desc =
414 dmam_alloc_coherent(hsotg->dev,
415 sizeof(struct dwc2_dma_desc),
416 &hsotg->ctrl_out_desc_dma,
418 if (!hsotg->ctrl_out_desc)
428 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
429 * @hsotg: The controller state.
430 * @hs_ep: The endpoint we're going to write for.
431 * @hs_req: The request to write data for.
433 * This is called when the TxFIFO has some space in it to hold a new
434 * transmission and we have something to give it. The actual setup of
435 * the data size is done elsewhere, so all we have to do is to actually
438 * The return value is zero if there is more space (or nothing was done)
439 * otherwise -ENOSPC is returned if the FIFO space was used up.
441 * This routine is only needed for PIO
443 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
444 struct dwc2_hsotg_ep *hs_ep,
445 struct dwc2_hsotg_req *hs_req)
447 bool periodic = is_ep_periodic(hs_ep);
448 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
449 int buf_pos = hs_req->req.actual;
450 int to_write = hs_ep->size_loaded;
456 to_write -= (buf_pos - hs_ep->last_load);
458 /* if there's nothing to write, get out early */
462 if (periodic && !hsotg->dedicated_fifos) {
463 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
468 * work out how much data was loaded so we can calculate
469 * how much data is left in the fifo.
472 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
475 * if shared fifo, we cannot write anything until the
476 * previous data has been completely sent.
478 if (hs_ep->fifo_load != 0) {
479 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
483 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
485 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
487 /* how much of the data has moved */
488 size_done = hs_ep->size_loaded - size_left;
490 /* how much data is left in the fifo */
491 can_write = hs_ep->fifo_load - size_done;
492 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
493 __func__, can_write);
495 can_write = hs_ep->fifo_size - can_write;
496 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
497 __func__, can_write);
499 if (can_write <= 0) {
500 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
503 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
504 can_write = dwc2_readl(hsotg->regs +
505 DTXFSTS(hs_ep->fifo_index));
510 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
512 "%s: no queue slots available (0x%08x)\n",
515 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
519 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
520 can_write *= 4; /* fifo size is in 32bit quantities. */
523 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
525 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
526 __func__, gnptxsts, can_write, to_write, max_transfer);
529 * limit to 512 bytes of data, it seems at least on the non-periodic
530 * FIFO, requests of >512 cause the endpoint to get stuck with a
531 * fragment of the end of the transfer in it.
533 if (can_write > 512 && !periodic)
537 * limit the write to one max-packet size worth of data, but allow
538 * the transfer to return that it did not run out of fifo space
541 if (to_write > max_transfer) {
542 to_write = max_transfer;
544 /* it's needed only when we do not use dedicated fifos */
545 if (!hsotg->dedicated_fifos)
546 dwc2_hsotg_en_gsint(hsotg,
547 periodic ? GINTSTS_PTXFEMP :
551 /* see if we can write data */
553 if (to_write > can_write) {
554 to_write = can_write;
555 pkt_round = to_write % max_transfer;
558 * Round the write down to an
559 * exact number of packets.
561 * Note, we do not currently check to see if we can ever
562 * write a full packet or not to the FIFO.
566 to_write -= pkt_round;
569 * enable correct FIFO interrupt to alert us when there
573 /* it's needed only when we do not use dedicated fifos */
574 if (!hsotg->dedicated_fifos)
575 dwc2_hsotg_en_gsint(hsotg,
576 periodic ? GINTSTS_PTXFEMP :
580 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
581 to_write, hs_req->req.length, can_write, buf_pos);
586 hs_req->req.actual = buf_pos + to_write;
587 hs_ep->total_data += to_write;
590 hs_ep->fifo_load += to_write;
592 to_write = DIV_ROUND_UP(to_write, 4);
593 data = hs_req->req.buf + buf_pos;
595 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
597 return (to_write >= can_write) ? -ENOSPC : 0;
601 * get_ep_limit - get the maximum data legnth for this endpoint
602 * @hs_ep: The endpoint
604 * Return the maximum data that can be queued in one go on a given endpoint
605 * so that transfers that are too long can be split.
607 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
609 int index = hs_ep->index;
610 unsigned int maxsize;
614 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
615 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
619 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
624 /* we made the constant loading easier above by using +1 */
629 * constrain by packet count if maxpkts*pktsize is greater
630 * than the length register size.
633 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
634 maxsize = maxpkt * hs_ep->ep.maxpacket;
640 * dwc2_hsotg_read_frameno - read current frame number
641 * @hsotg: The device instance
643 * Return the current frame number
645 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
649 dsts = dwc2_readl(hsotg->regs + DSTS);
650 dsts &= DSTS_SOFFN_MASK;
651 dsts >>= DSTS_SOFFN_SHIFT;
657 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
658 * DMA descriptor chain prepared for specific endpoint
659 * @hs_ep: The endpoint
661 * Return the maximum data that can be queued in one go on a given endpoint
662 * depending on its descriptor chain capacity so that transfers that
663 * are too long can be split.
665 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
667 int is_isoc = hs_ep->isochronous;
668 unsigned int maxsize;
671 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
672 DEV_DMA_ISOC_RX_NBYTES_LIMIT;
674 maxsize = DEV_DMA_NBYTES_LIMIT;
676 /* Above size of one descriptor was chosen, multiple it */
677 maxsize *= MAX_DMA_DESC_NUM_GENERIC;
683 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
684 * @hs_ep: The endpoint
685 * @mask: RX/TX bytes mask to be defined
687 * Returns maximum data payload for one descriptor after analyzing endpoint
689 * DMA descriptor transfer bytes limit depends on EP type:
691 * Isochronous - descriptor rx/tx bytes bitfield limit,
692 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
693 * have concatenations from various descriptors within one packet.
695 * Selects corresponding mask for RX/TX bytes as well.
697 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
699 u32 mps = hs_ep->ep.maxpacket;
700 int dir_in = hs_ep->dir_in;
703 if (!hs_ep->index && !dir_in) {
705 *mask = DEV_DMA_NBYTES_MASK;
706 } else if (hs_ep->isochronous) {
708 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
709 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
711 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
712 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
715 desc_size = DEV_DMA_NBYTES_LIMIT;
716 *mask = DEV_DMA_NBYTES_MASK;
718 /* Round down desc_size to be mps multiple */
719 desc_size -= desc_size % mps;
726 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
727 * @hs_ep: The endpoint
728 * @dma_buff: DMA address to use
729 * @len: Length of the transfer
731 * This function will iterate over descriptor chain and fill its entries
732 * with corresponding information based on transfer data.
734 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
738 struct dwc2_hsotg *hsotg = hs_ep->parent;
739 int dir_in = hs_ep->dir_in;
740 struct dwc2_dma_desc *desc = hs_ep->desc_list;
741 u32 mps = hs_ep->ep.maxpacket;
747 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
749 hs_ep->desc_count = (len / maxsize) +
750 ((len % maxsize) ? 1 : 0);
752 hs_ep->desc_count = 1;
754 for (i = 0; i < hs_ep->desc_count; ++i) {
756 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
757 << DEV_DMA_BUFF_STS_SHIFT);
760 if (!hs_ep->index && !dir_in)
761 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
763 desc->status |= (maxsize <<
764 DEV_DMA_NBYTES_SHIFT & mask);
765 desc->buf = dma_buff + offset;
770 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
773 desc->status |= (len % mps) ? DEV_DMA_SHORT :
774 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
776 dev_err(hsotg->dev, "wrong len %d\n", len);
779 len << DEV_DMA_NBYTES_SHIFT & mask;
780 desc->buf = dma_buff + offset;
783 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
784 desc->status |= (DEV_DMA_BUFF_STS_HREADY
785 << DEV_DMA_BUFF_STS_SHIFT);
791 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
792 * @hs_ep: The isochronous endpoint.
793 * @dma_buff: usb requests dma buffer.
794 * @len: usb request transfer length.
796 * Finds out index of first free entry either in the bottom or up half of
797 * descriptor chain depend on which is under SW control and not processed
798 * by HW. Then fills that descriptor with the data of the arrived usb request,
799 * frame info, sets Last and IOC bits increments next_desc. If filled
800 * descriptor is not the first one, removes L bit from the previous descriptor
803 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
804 dma_addr_t dma_buff, unsigned int len)
806 struct dwc2_dma_desc *desc;
807 struct dwc2_hsotg *hsotg = hs_ep->parent;
812 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
814 dev_err(hsotg->dev, "wrong len %d\n", len);
819 * If SW has already filled half of chain, then return and wait for
820 * the other chain to be processed by HW.
822 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
825 /* Increment frame number by interval for IN */
827 dwc2_gadget_incr_frame_num(hs_ep);
829 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
832 /* Sanity check of calculated index */
833 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
834 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
835 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
839 desc = &hs_ep->desc_list[index];
841 /* Clear L bit of previous desc if more than one entries in the chain */
842 if (hs_ep->next_desc)
843 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
845 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
846 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
849 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
851 desc->buf = dma_buff;
852 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
853 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
856 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
857 DEV_DMA_ISOC_PID_MASK) |
858 ((len % hs_ep->ep.maxpacket) ?
860 ((hs_ep->target_frame <<
861 DEV_DMA_ISOC_FRNUM_SHIFT) &
862 DEV_DMA_ISOC_FRNUM_MASK);
865 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
866 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
868 /* Update index of last configured entry in the chain */
875 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
876 * @hs_ep: The isochronous endpoint.
878 * Prepare first descriptor chain for isochronous endpoints. Afterwards
879 * write DMA address to HW and enable the endpoint.
881 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
882 * to prepare second descriptor chain while first one is being processed by HW.
884 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
886 struct dwc2_hsotg *hsotg = hs_ep->parent;
887 struct dwc2_hsotg_req *hs_req, *treq;
888 int index = hs_ep->index;
894 if (list_empty(&hs_ep->queue)) {
895 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
899 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
900 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
903 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
908 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
909 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
911 /* write descriptor chain address to control register */
912 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
914 ctrl = dwc2_readl(hsotg->regs + depctl);
915 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
916 dwc2_writel(ctrl, hsotg->regs + depctl);
918 /* Switch ISOC descriptor chain number being processed by SW*/
919 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
920 hs_ep->next_desc = 0;
924 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
925 * @hsotg: The controller state.
926 * @hs_ep: The endpoint to process a request for
927 * @hs_req: The request to start.
928 * @continuing: True if we are doing more for the current request.
930 * Start the given request running by setting the endpoint registers
931 * appropriately, and writing any data to the FIFOs.
933 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
934 struct dwc2_hsotg_ep *hs_ep,
935 struct dwc2_hsotg_req *hs_req,
938 struct usb_request *ureq = &hs_req->req;
939 int index = hs_ep->index;
940 int dir_in = hs_ep->dir_in;
946 unsigned int packets;
948 unsigned int dma_reg;
951 if (hs_ep->req && !continuing) {
952 dev_err(hsotg->dev, "%s: active request\n", __func__);
955 } else if (hs_ep->req != hs_req && continuing) {
957 "%s: continue different req\n", __func__);
963 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
964 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
965 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
967 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
968 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
969 hs_ep->dir_in ? "in" : "out");
971 /* If endpoint is stalled, we will restart request later */
972 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
974 if (index && ctrl & DXEPCTL_STALL) {
975 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
979 length = ureq->length - ureq->actual;
980 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
981 ureq->length, ureq->actual);
983 if (!using_desc_dma(hsotg))
984 maxreq = get_ep_limit(hs_ep);
986 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
988 if (length > maxreq) {
989 int round = maxreq % hs_ep->ep.maxpacket;
991 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
992 __func__, length, maxreq, round);
994 /* round down to multiple of packets */
1002 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1004 packets = 1; /* send one packet if length is zero. */
1006 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1007 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1011 if (dir_in && index != 0)
1012 if (hs_ep->isochronous)
1013 epsize = DXEPTSIZ_MC(packets);
1015 epsize = DXEPTSIZ_MC(1);
1020 * zero length packet should be programmed on its own and should not
1021 * be counted in DIEPTSIZ.PktCnt with other packets.
1023 if (dir_in && ureq->zero && !continuing) {
1024 /* Test if zlp is actually required. */
1025 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1026 !(ureq->length % hs_ep->ep.maxpacket))
1027 hs_ep->send_zlp = 1;
1030 epsize |= DXEPTSIZ_PKTCNT(packets);
1031 epsize |= DXEPTSIZ_XFERSIZE(length);
1033 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1034 __func__, packets, length, ureq->length, epsize, epsize_reg);
1036 /* store the request as the current one we're doing */
1037 hs_ep->req = hs_req;
1039 if (using_desc_dma(hsotg)) {
1041 u32 mps = hs_ep->ep.maxpacket;
1043 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1047 else if (length % mps)
1048 length += (mps - (length % mps));
1052 * If more data to send, adjust DMA for EP0 out data stage.
1053 * ureq->dma stays unchanged, hence increment it by already
1054 * passed passed data count before starting new transaction.
1056 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1058 offset = ureq->actual;
1060 /* Fill DDMA chain entries */
1061 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1064 /* write descriptor chain address to control register */
1065 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1067 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1068 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1070 /* write size / packets */
1071 dwc2_writel(epsize, hsotg->regs + epsize_reg);
1073 if (using_dma(hsotg) && !continuing && (length != 0)) {
1075 * write DMA address to control register, buffer
1076 * already synced by dwc2_hsotg_ep_queue().
1079 dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1081 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1082 __func__, &ureq->dma, dma_reg);
1086 if (hs_ep->isochronous && hs_ep->interval == 1) {
1087 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1088 dwc2_gadget_incr_frame_num(hs_ep);
1090 if (hs_ep->target_frame & 0x1)
1091 ctrl |= DXEPCTL_SETODDFR;
1093 ctrl |= DXEPCTL_SETEVENFR;
1096 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1098 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1100 /* For Setup request do not clear NAK */
1101 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1102 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1104 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1105 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1108 * set these, it seems that DMA support increments past the end
1109 * of the packet buffer so we need to calculate the length from
1112 hs_ep->size_loaded = length;
1113 hs_ep->last_load = ureq->actual;
1115 if (dir_in && !using_dma(hsotg)) {
1116 /* set these anyway, we may need them for non-periodic in */
1117 hs_ep->fifo_load = 0;
1119 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1123 * Note, trying to clear the NAK here causes problems with transmit
1124 * on the S3C6400 ending up with the TXFIFO becoming full.
1127 /* check ep is enabled */
1128 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1130 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1131 index, dwc2_readl(hsotg->regs + epctrl_reg));
1133 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1134 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
1136 /* enable ep interrupts */
1137 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1141 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1142 * @hsotg: The device state.
1143 * @hs_ep: The endpoint the request is on.
1144 * @req: The request being processed.
1146 * We've been asked to queue a request, so ensure that the memory buffer
1147 * is correctly setup for DMA. If we've been passed an extant DMA address
1148 * then ensure the buffer has been synced to memory. If our buffer has no
1149 * DMA memory, then we map the memory and mark our request to allow us to
1150 * cleanup on completion.
1152 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1153 struct dwc2_hsotg_ep *hs_ep,
1154 struct usb_request *req)
1158 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1165 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1166 __func__, req->buf, req->length);
1171 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1172 struct dwc2_hsotg_ep *hs_ep,
1173 struct dwc2_hsotg_req *hs_req)
1175 void *req_buf = hs_req->req.buf;
1177 /* If dma is not being used or buffer is aligned */
1178 if (!using_dma(hsotg) || !((long)req_buf & 3))
1181 WARN_ON(hs_req->saved_req_buf);
1183 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1184 hs_ep->ep.name, req_buf, hs_req->req.length);
1186 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1187 if (!hs_req->req.buf) {
1188 hs_req->req.buf = req_buf;
1190 "%s: unable to allocate memory for bounce buffer\n",
1195 /* Save actual buffer */
1196 hs_req->saved_req_buf = req_buf;
1199 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1204 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1205 struct dwc2_hsotg_ep *hs_ep,
1206 struct dwc2_hsotg_req *hs_req)
1208 /* If dma is not being used or buffer was aligned */
1209 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1212 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1213 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1215 /* Copy data from bounce buffer on successful out transfer */
1216 if (!hs_ep->dir_in && !hs_req->req.status)
1217 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1218 hs_req->req.actual);
1220 /* Free bounce buffer */
1221 kfree(hs_req->req.buf);
1223 hs_req->req.buf = hs_req->saved_req_buf;
1224 hs_req->saved_req_buf = NULL;
1228 * dwc2_gadget_target_frame_elapsed - Checks target frame
1229 * @hs_ep: The driver endpoint to check
1231 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1232 * corresponding transfer.
1234 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1236 struct dwc2_hsotg *hsotg = hs_ep->parent;
1237 u32 target_frame = hs_ep->target_frame;
1238 u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1239 bool frame_overrun = hs_ep->frame_overrun;
1241 if (!frame_overrun && current_frame >= target_frame)
1244 if (frame_overrun && current_frame >= target_frame &&
1245 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1252 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1253 * @hsotg: The driver state
1254 * @hs_ep: the ep descriptor chain is for
1256 * Called to update EP0 structure's pointers depend on stage of
1259 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1260 struct dwc2_hsotg_ep *hs_ep)
1262 switch (hsotg->ep0_state) {
1263 case DWC2_EP0_SETUP:
1264 case DWC2_EP0_STATUS_OUT:
1265 hs_ep->desc_list = hsotg->setup_desc[0];
1266 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1268 case DWC2_EP0_DATA_IN:
1269 case DWC2_EP0_STATUS_IN:
1270 hs_ep->desc_list = hsotg->ctrl_in_desc;
1271 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1273 case DWC2_EP0_DATA_OUT:
1274 hs_ep->desc_list = hsotg->ctrl_out_desc;
1275 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1278 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1286 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1289 struct dwc2_hsotg_req *hs_req = our_req(req);
1290 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1291 struct dwc2_hsotg *hs = hs_ep->parent;
1295 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1296 ep->name, req, req->length, req->buf, req->no_interrupt,
1297 req->zero, req->short_not_ok);
1299 /* Prevent new request submission when controller is suspended */
1300 if (hs->lx_state != DWC2_L0) {
1301 dev_dbg(hs->dev, "%s: submit request only in active state\n",
1306 /* initialise status of the request */
1307 INIT_LIST_HEAD(&hs_req->queue);
1309 req->status = -EINPROGRESS;
1311 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1315 /* if we're using DMA, sync the buffers as necessary */
1316 if (using_dma(hs)) {
1317 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1321 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1322 if (using_desc_dma(hs) && !hs_ep->index) {
1323 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1328 first = list_empty(&hs_ep->queue);
1329 list_add_tail(&hs_req->queue, &hs_ep->queue);
1332 * Handle DDMA isochronous transfers separately - just add new entry
1333 * to the half of descriptor chain that is not processed by HW.
1334 * Transfer will be started once SW gets either one of NAK or
1335 * OutTknEpDis interrupts.
1337 if (using_desc_dma(hs) && hs_ep->isochronous &&
1338 hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1339 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1340 hs_req->req.length);
1342 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1348 if (!hs_ep->isochronous) {
1349 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1353 while (dwc2_gadget_target_frame_elapsed(hs_ep))
1354 dwc2_gadget_incr_frame_num(hs_ep);
1356 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1357 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1362 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1365 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1366 struct dwc2_hsotg *hs = hs_ep->parent;
1367 unsigned long flags = 0;
1370 spin_lock_irqsave(&hs->lock, flags);
1371 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1372 spin_unlock_irqrestore(&hs->lock, flags);
1377 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1378 struct usb_request *req)
1380 struct dwc2_hsotg_req *hs_req = our_req(req);
1386 * dwc2_hsotg_complete_oursetup - setup completion callback
1387 * @ep: The endpoint the request was on.
1388 * @req: The request completed.
1390 * Called on completion of any requests the driver itself
1391 * submitted that need cleaning up.
1393 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1394 struct usb_request *req)
1396 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1397 struct dwc2_hsotg *hsotg = hs_ep->parent;
1399 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1401 dwc2_hsotg_ep_free_request(ep, req);
1405 * ep_from_windex - convert control wIndex value to endpoint
1406 * @hsotg: The driver state.
1407 * @windex: The control request wIndex field (in host order).
1409 * Convert the given wIndex into a pointer to an driver endpoint
1410 * structure, or return NULL if it is not a valid endpoint.
1412 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1415 struct dwc2_hsotg_ep *ep;
1416 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1417 int idx = windex & 0x7F;
1419 if (windex >= 0x100)
1422 if (idx > hsotg->num_of_eps)
1425 ep = index_to_ep(hsotg, idx, dir);
1427 if (idx && ep->dir_in != dir)
1434 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1435 * @hsotg: The driver state.
1436 * @testmode: requested usb test mode
1437 * Enable usb Test Mode requested by the Host.
1439 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1441 int dctl = dwc2_readl(hsotg->regs + DCTL);
1443 dctl &= ~DCTL_TSTCTL_MASK;
1450 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1455 dwc2_writel(dctl, hsotg->regs + DCTL);
1460 * dwc2_hsotg_send_reply - send reply to control request
1461 * @hsotg: The device state
1463 * @buff: Buffer for request
1464 * @length: Length of reply.
1466 * Create a request and queue it on the given endpoint. This is useful as
1467 * an internal method of sending replies to certain control requests, etc.
1469 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1470 struct dwc2_hsotg_ep *ep,
1474 struct usb_request *req;
1477 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1479 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1480 hsotg->ep0_reply = req;
1482 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1486 req->buf = hsotg->ep0_buff;
1487 req->length = length;
1489 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1493 req->complete = dwc2_hsotg_complete_oursetup;
1496 memcpy(req->buf, buff, length);
1498 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1500 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1508 * dwc2_hsotg_process_req_status - process request GET_STATUS
1509 * @hsotg: The device state
1510 * @ctrl: USB control request
1512 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1513 struct usb_ctrlrequest *ctrl)
1515 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1516 struct dwc2_hsotg_ep *ep;
1520 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1523 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1527 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1528 case USB_RECIP_DEVICE:
1530 * bit 0 => self powered
1531 * bit 1 => remote wakeup
1533 reply = cpu_to_le16(0);
1536 case USB_RECIP_INTERFACE:
1537 /* currently, the data result should be zero */
1538 reply = cpu_to_le16(0);
1541 case USB_RECIP_ENDPOINT:
1542 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1546 reply = cpu_to_le16(ep->halted ? 1 : 0);
1553 if (le16_to_cpu(ctrl->wLength) != 2)
1556 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1558 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1565 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1568 * get_ep_head - return the first request on the endpoint
1569 * @hs_ep: The controller endpoint to get
1571 * Get the first request on the endpoint.
1573 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1575 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1580 * dwc2_gadget_start_next_request - Starts next request from ep queue
1581 * @hs_ep: Endpoint structure
1583 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1584 * in its handler. Hence we need to unmask it here to be able to do
1585 * resynchronization.
1587 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1590 struct dwc2_hsotg *hsotg = hs_ep->parent;
1591 int dir_in = hs_ep->dir_in;
1592 struct dwc2_hsotg_req *hs_req;
1593 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1595 if (!list_empty(&hs_ep->queue)) {
1596 hs_req = get_ep_head(hs_ep);
1597 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1600 if (!hs_ep->isochronous)
1604 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1607 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1609 mask = dwc2_readl(hsotg->regs + epmsk_reg);
1610 mask |= DOEPMSK_OUTTKNEPDISMSK;
1611 dwc2_writel(mask, hsotg->regs + epmsk_reg);
1616 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1617 * @hsotg: The device state
1618 * @ctrl: USB control request
1620 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1621 struct usb_ctrlrequest *ctrl)
1623 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1624 struct dwc2_hsotg_req *hs_req;
1625 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1626 struct dwc2_hsotg_ep *ep;
1633 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1634 __func__, set ? "SET" : "CLEAR");
1636 wValue = le16_to_cpu(ctrl->wValue);
1637 wIndex = le16_to_cpu(ctrl->wIndex);
1638 recip = ctrl->bRequestType & USB_RECIP_MASK;
1641 case USB_RECIP_DEVICE:
1643 case USB_DEVICE_REMOTE_WAKEUP:
1644 hsotg->remote_wakeup_allowed = 1;
1647 case USB_DEVICE_TEST_MODE:
1648 if ((wIndex & 0xff) != 0)
1653 hsotg->test_mode = wIndex >> 8;
1654 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1657 "%s: failed to send reply\n", __func__);
1666 case USB_RECIP_ENDPOINT:
1667 ep = ep_from_windex(hsotg, wIndex);
1669 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1675 case USB_ENDPOINT_HALT:
1676 halted = ep->halted;
1678 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1680 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1683 "%s: failed to send reply\n", __func__);
1688 * we have to complete all requests for ep if it was
1689 * halted, and the halt was cleared by CLEAR_FEATURE
1692 if (!set && halted) {
1694 * If we have request in progress,
1700 list_del_init(&hs_req->queue);
1701 if (hs_req->req.complete) {
1702 spin_unlock(&hsotg->lock);
1703 usb_gadget_giveback_request(
1704 &ep->ep, &hs_req->req);
1705 spin_lock(&hsotg->lock);
1709 /* If we have pending request, then start it */
1711 dwc2_gadget_start_next_request(ep);
1726 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1729 * dwc2_hsotg_stall_ep0 - stall ep0
1730 * @hsotg: The device state
1732 * Set stall for ep0 as response for setup request.
1734 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1736 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1740 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1741 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1744 * DxEPCTL_Stall will be cleared by EP once it has
1745 * taken effect, so no need to clear later.
1748 ctrl = dwc2_readl(hsotg->regs + reg);
1749 ctrl |= DXEPCTL_STALL;
1750 ctrl |= DXEPCTL_CNAK;
1751 dwc2_writel(ctrl, hsotg->regs + reg);
1754 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1755 ctrl, reg, dwc2_readl(hsotg->regs + reg));
1758 * complete won't be called, so we enqueue
1759 * setup request here
1761 dwc2_hsotg_enqueue_setup(hsotg);
1765 * dwc2_hsotg_process_control - process a control request
1766 * @hsotg: The device state
1767 * @ctrl: The control request received
1769 * The controller has received the SETUP phase of a control request, and
1770 * needs to work out what to do next (and whether to pass it on to the
1773 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1774 struct usb_ctrlrequest *ctrl)
1776 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1781 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1782 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1783 ctrl->wIndex, ctrl->wLength);
1785 if (ctrl->wLength == 0) {
1787 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1788 } else if (ctrl->bRequestType & USB_DIR_IN) {
1790 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1793 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1796 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1797 switch (ctrl->bRequest) {
1798 case USB_REQ_SET_ADDRESS:
1799 hsotg->connected = 1;
1800 dcfg = dwc2_readl(hsotg->regs + DCFG);
1801 dcfg &= ~DCFG_DEVADDR_MASK;
1802 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1803 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1804 dwc2_writel(dcfg, hsotg->regs + DCFG);
1806 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1808 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1811 case USB_REQ_GET_STATUS:
1812 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1815 case USB_REQ_CLEAR_FEATURE:
1816 case USB_REQ_SET_FEATURE:
1817 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1822 /* as a fallback, try delivering it to the driver to deal with */
1824 if (ret == 0 && hsotg->driver) {
1825 spin_unlock(&hsotg->lock);
1826 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1827 spin_lock(&hsotg->lock);
1829 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1833 * the request is either unhandlable, or is not formatted correctly
1834 * so respond with a STALL for the status stage to indicate failure.
1838 dwc2_hsotg_stall_ep0(hsotg);
1842 * dwc2_hsotg_complete_setup - completion of a setup transfer
1843 * @ep: The endpoint the request was on.
1844 * @req: The request completed.
1846 * Called on completion of any requests the driver itself submitted for
1849 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1850 struct usb_request *req)
1852 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1853 struct dwc2_hsotg *hsotg = hs_ep->parent;
1855 if (req->status < 0) {
1856 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1860 spin_lock(&hsotg->lock);
1861 if (req->actual == 0)
1862 dwc2_hsotg_enqueue_setup(hsotg);
1864 dwc2_hsotg_process_control(hsotg, req->buf);
1865 spin_unlock(&hsotg->lock);
1869 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1870 * @hsotg: The device state.
1872 * Enqueue a request on EP0 if necessary to received any SETUP packets
1873 * received from the host.
1875 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1877 struct usb_request *req = hsotg->ctrl_req;
1878 struct dwc2_hsotg_req *hs_req = our_req(req);
1881 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1885 req->buf = hsotg->ctrl_buff;
1886 req->complete = dwc2_hsotg_complete_setup;
1888 if (!list_empty(&hs_req->queue)) {
1889 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1893 hsotg->eps_out[0]->dir_in = 0;
1894 hsotg->eps_out[0]->send_zlp = 0;
1895 hsotg->ep0_state = DWC2_EP0_SETUP;
1897 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1899 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1901 * Don't think there's much we can do other than watch the
1907 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1908 struct dwc2_hsotg_ep *hs_ep)
1911 u8 index = hs_ep->index;
1912 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1913 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1916 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1919 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1921 if (using_desc_dma(hsotg)) {
1922 /* Not specific buffer needed for ep0 ZLP */
1923 dma_addr_t dma = hs_ep->desc_list_dma;
1926 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1928 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1930 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1931 DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1935 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1936 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1937 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1938 ctrl |= DXEPCTL_USBACTEP;
1939 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1943 * dwc2_hsotg_complete_request - complete a request given to us
1944 * @hsotg: The device state.
1945 * @hs_ep: The endpoint the request was on.
1946 * @hs_req: The request to complete.
1947 * @result: The result code (0 => Ok, otherwise errno)
1949 * The given request has finished, so call the necessary completion
1950 * if it has one and then look to see if we can start a new request
1953 * Note, expects the ep to already be locked as appropriate.
1955 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1956 struct dwc2_hsotg_ep *hs_ep,
1957 struct dwc2_hsotg_req *hs_req,
1961 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1965 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1966 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1969 * only replace the status if we've not already set an error
1970 * from a previous transaction
1973 if (hs_req->req.status == -EINPROGRESS)
1974 hs_req->req.status = result;
1976 if (using_dma(hsotg))
1977 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1979 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1982 list_del_init(&hs_req->queue);
1985 * call the complete request with the locks off, just in case the
1986 * request tries to queue more work for this endpoint.
1989 if (hs_req->req.complete) {
1990 spin_unlock(&hsotg->lock);
1991 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1992 spin_lock(&hsotg->lock);
1995 /* In DDMA don't need to proceed to starting of next ISOC request */
1996 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2000 * Look to see if there is anything else to do. Note, the completion
2001 * of the previous request may have caused a new request to be started
2002 * so be careful when doing this.
2005 if (!hs_ep->req && result >= 0)
2006 dwc2_gadget_start_next_request(hs_ep);
2010 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2011 * @hs_ep: The endpoint the request was on.
2013 * Get first request from the ep queue, determine descriptor on which complete
2014 * happened. SW based on isoc_chain_num discovers which half of the descriptor
2015 * chain is currently in use by HW, adjusts dma_address and calculates index
2016 * of completed descriptor based on the value of DEPDMA register. Update actual
2017 * length of request, giveback to gadget.
2019 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2021 struct dwc2_hsotg *hsotg = hs_ep->parent;
2022 struct dwc2_hsotg_req *hs_req;
2023 struct usb_request *ureq;
2025 dma_addr_t dma_addr;
2031 hs_req = get_ep_head(hs_ep);
2033 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2036 ureq = &hs_req->req;
2038 dma_addr = hs_ep->desc_list_dma;
2041 * If lower half of descriptor chain is currently use by SW,
2042 * that means higher half is being processed by HW, so shift
2043 * DMA address to higher half of descriptor chain.
2045 if (!hs_ep->isoc_chain_num)
2046 dma_addr += sizeof(struct dwc2_dma_desc) *
2047 (MAX_DMA_DESC_NUM_GENERIC / 2);
2049 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2050 depdma = dwc2_readl(hsotg->regs + dma_reg);
2052 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2053 desc_sts = hs_ep->desc_list[index].status;
2055 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2056 DEV_DMA_ISOC_RX_NBYTES_MASK;
2057 ureq->actual = ureq->length -
2058 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2060 /* Adjust actual length for ISOC Out if length is not align of 4 */
2061 if (!hs_ep->dir_in && ureq->length & 0x3)
2062 ureq->actual += 4 - (ureq->length & 0x3);
2064 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2068 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2069 * @hs_ep: The isochronous endpoint to be re-enabled.
2071 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2072 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2073 * was under SW control till HW was busy and restart the endpoint if needed.
2075 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2077 struct dwc2_hsotg *hsotg = hs_ep->parent;
2081 u32 dma_addr = hs_ep->desc_list_dma;
2082 unsigned char index = hs_ep->index;
2084 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2085 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2087 ctrl = dwc2_readl(hsotg->regs + depctl);
2090 * EP was disabled if HW has processed last descriptor or BNA was set.
2091 * So restart ep if SW has prepared new descriptor chain in ep_queue
2092 * routine while HW was busy.
2094 if (!(ctrl & DXEPCTL_EPENA)) {
2095 if (!hs_ep->next_desc) {
2096 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2101 dma_addr += sizeof(struct dwc2_dma_desc) *
2102 (MAX_DMA_DESC_NUM_GENERIC / 2) *
2103 hs_ep->isoc_chain_num;
2104 dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2106 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2107 dwc2_writel(ctrl, hsotg->regs + depctl);
2109 /* Switch ISOC descriptor chain number being processed by SW*/
2110 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2111 hs_ep->next_desc = 0;
2113 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2119 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2120 * @hsotg: The device state.
2121 * @ep_idx: The endpoint index for the data
2122 * @size: The size of data in the fifo, in bytes
2124 * The FIFO status shows there is data to read from the FIFO for a given
2125 * endpoint, so sort out whether we need to read the data into a request
2126 * that has been made for that endpoint.
2128 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2130 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2131 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2132 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2138 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2142 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2143 __func__, size, ep_idx, epctl);
2145 /* dump the data from the FIFO, we've nothing we can do */
2146 for (ptr = 0; ptr < size; ptr += 4)
2147 (void)dwc2_readl(fifo);
2153 read_ptr = hs_req->req.actual;
2154 max_req = hs_req->req.length - read_ptr;
2156 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2157 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2159 if (to_read > max_req) {
2161 * more data appeared than we where willing
2162 * to deal with in this request.
2165 /* currently we don't deal this */
2169 hs_ep->total_data += to_read;
2170 hs_req->req.actual += to_read;
2171 to_read = DIV_ROUND_UP(to_read, 4);
2174 * note, we might over-write the buffer end by 3 bytes depending on
2175 * alignment of the data.
2177 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2181 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2182 * @hsotg: The device instance
2183 * @dir_in: If IN zlp
2185 * Generate a zero-length IN packet request for terminating a SETUP
2188 * Note, since we don't write any data to the TxFIFO, then it is
2189 * currently believed that we do not need to wait for any space in
2192 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2194 /* eps_out[0] is used in both directions */
2195 hsotg->eps_out[0]->dir_in = dir_in;
2196 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2198 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2201 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2206 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2207 if (ctrl & DXEPCTL_EOFRNUM)
2208 ctrl |= DXEPCTL_SETEVENFR;
2210 ctrl |= DXEPCTL_SETODDFR;
2211 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2215 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2216 * @hs_ep - The endpoint on which transfer went
2218 * Iterate over endpoints descriptor chain and get info on bytes remained
2219 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2221 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2223 struct dwc2_hsotg *hsotg = hs_ep->parent;
2224 unsigned int bytes_rem = 0;
2225 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2232 for (i = 0; i < hs_ep->desc_count; ++i) {
2233 status = desc->status;
2234 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2236 if (status & DEV_DMA_STS_MASK)
2237 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2238 i, status & DEV_DMA_STS_MASK);
2245 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2246 * @hsotg: The device instance
2247 * @epnum: The endpoint received from
2249 * The RXFIFO has delivered an OutDone event, which means that the data
2250 * transfer for an OUT endpoint has been completed, either by a short
2251 * packet or by the finish of a transfer.
2253 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2255 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2256 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2257 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2258 struct usb_request *req = &hs_req->req;
2259 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2263 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2267 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2268 dev_dbg(hsotg->dev, "zlp packet received\n");
2269 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2270 dwc2_hsotg_enqueue_setup(hsotg);
2274 if (using_desc_dma(hsotg))
2275 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2277 if (using_dma(hsotg)) {
2278 unsigned int size_done;
2281 * Calculate the size of the transfer by checking how much
2282 * is left in the endpoint size register and then working it
2283 * out from the amount we loaded for the transfer.
2285 * We need to do this as DMA pointers are always 32bit aligned
2286 * so may overshoot/undershoot the transfer.
2289 size_done = hs_ep->size_loaded - size_left;
2290 size_done += hs_ep->last_load;
2292 req->actual = size_done;
2295 /* if there is more request to do, schedule new transfer */
2296 if (req->actual < req->length && size_left == 0) {
2297 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2301 if (req->actual < req->length && req->short_not_ok) {
2302 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2303 __func__, req->actual, req->length);
2306 * todo - what should we return here? there's no one else
2307 * even bothering to check the status.
2311 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2312 if (!using_desc_dma(hsotg) && epnum == 0 &&
2313 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2314 /* Move to STATUS IN */
2315 dwc2_hsotg_ep0_zlp(hsotg, true);
2320 * Slave mode OUT transfers do not go through XferComplete so
2321 * adjust the ISOC parity here.
2323 if (!using_dma(hsotg)) {
2324 if (hs_ep->isochronous && hs_ep->interval == 1)
2325 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2326 else if (hs_ep->isochronous && hs_ep->interval > 1)
2327 dwc2_gadget_incr_frame_num(hs_ep);
2330 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2334 * dwc2_hsotg_handle_rx - RX FIFO has data
2335 * @hsotg: The device instance
2337 * The IRQ handler has detected that the RX FIFO has some data in it
2338 * that requires processing, so find out what is in there and do the
2341 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2342 * chunks, so if you have x packets received on an endpoint you'll get x
2343 * FIFO events delivered, each with a packet's worth of data in it.
2345 * When using DMA, we should not be processing events from the RXFIFO
2346 * as the actual data should be sent to the memory directly and we turn
2347 * on the completion interrupts to get notifications of transfer completion.
2349 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2351 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2352 u32 epnum, status, size;
2354 WARN_ON(using_dma(hsotg));
2356 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2357 status = grxstsr & GRXSTS_PKTSTS_MASK;
2359 size = grxstsr & GRXSTS_BYTECNT_MASK;
2360 size >>= GRXSTS_BYTECNT_SHIFT;
2362 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2363 __func__, grxstsr, size, epnum);
2365 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2366 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2367 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2370 case GRXSTS_PKTSTS_OUTDONE:
2371 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2372 dwc2_hsotg_read_frameno(hsotg));
2374 if (!using_dma(hsotg))
2375 dwc2_hsotg_handle_outdone(hsotg, epnum);
2378 case GRXSTS_PKTSTS_SETUPDONE:
2380 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2381 dwc2_hsotg_read_frameno(hsotg),
2382 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2384 * Call dwc2_hsotg_handle_outdone here if it was not called from
2385 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2386 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2388 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2389 dwc2_hsotg_handle_outdone(hsotg, epnum);
2392 case GRXSTS_PKTSTS_OUTRX:
2393 dwc2_hsotg_rx_data(hsotg, epnum, size);
2396 case GRXSTS_PKTSTS_SETUPRX:
2398 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2399 dwc2_hsotg_read_frameno(hsotg),
2400 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2402 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2404 dwc2_hsotg_rx_data(hsotg, epnum, size);
2408 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2411 dwc2_hsotg_dump(hsotg);
2417 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2418 * @mps: The maximum packet size in bytes.
2420 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2424 return D0EPCTL_MPS_64;
2426 return D0EPCTL_MPS_32;
2428 return D0EPCTL_MPS_16;
2430 return D0EPCTL_MPS_8;
2433 /* bad max packet size, warn and return invalid result */
2439 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2440 * @hsotg: The driver state.
2441 * @ep: The index number of the endpoint
2442 * @mps: The maximum packet size in bytes
2443 * @mc: The multicount value
2445 * Configure the maximum packet size for the given endpoint, updating
2446 * the hardware control registers to reflect this.
2448 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2449 unsigned int ep, unsigned int mps,
2450 unsigned int mc, unsigned int dir_in)
2452 struct dwc2_hsotg_ep *hs_ep;
2453 void __iomem *regs = hsotg->regs;
2456 hs_ep = index_to_ep(hsotg, ep, dir_in);
2461 u32 mps_bytes = mps;
2463 /* EP0 is a special case */
2464 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2467 hs_ep->ep.maxpacket = mps_bytes;
2475 hs_ep->ep.maxpacket = mps;
2479 reg = dwc2_readl(regs + DIEPCTL(ep));
2480 reg &= ~DXEPCTL_MPS_MASK;
2482 dwc2_writel(reg, regs + DIEPCTL(ep));
2484 reg = dwc2_readl(regs + DOEPCTL(ep));
2485 reg &= ~DXEPCTL_MPS_MASK;
2487 dwc2_writel(reg, regs + DOEPCTL(ep));
2493 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2497 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2498 * @hsotg: The driver state
2499 * @idx: The index for the endpoint (0..15)
2501 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2503 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2504 hsotg->regs + GRSTCTL);
2506 /* wait until the fifo is flushed */
2507 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2508 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2513 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2514 * @hsotg: The driver state
2515 * @hs_ep: The driver endpoint to check.
2517 * Check to see if there is a request that has data to send, and if so
2518 * make an attempt to write data into the FIFO.
2520 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2521 struct dwc2_hsotg_ep *hs_ep)
2523 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2525 if (!hs_ep->dir_in || !hs_req) {
2527 * if request is not enqueued, we disable interrupts
2528 * for endpoints, excepting ep0
2530 if (hs_ep->index != 0)
2531 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2536 if (hs_req->req.actual < hs_req->req.length) {
2537 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2539 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2546 * dwc2_hsotg_complete_in - complete IN transfer
2547 * @hsotg: The device state.
2548 * @hs_ep: The endpoint that has just completed.
2550 * An IN transfer has been completed, update the transfer's state and then
2551 * call the relevant completion routines.
2553 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2554 struct dwc2_hsotg_ep *hs_ep)
2556 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2557 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2558 int size_left, size_done;
2561 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2565 /* Finish ZLP handling for IN EP0 transactions */
2566 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2567 dev_dbg(hsotg->dev, "zlp packet sent\n");
2570 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2571 * changed to IN. Change back to complete OUT transfer request
2575 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2576 if (hsotg->test_mode) {
2579 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2581 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2583 dwc2_hsotg_stall_ep0(hsotg);
2587 dwc2_hsotg_enqueue_setup(hsotg);
2592 * Calculate the size of the transfer by checking how much is left
2593 * in the endpoint size register and then working it out from
2594 * the amount we loaded for the transfer.
2596 * We do this even for DMA, as the transfer may have incremented
2597 * past the end of the buffer (DMA transfers are always 32bit
2600 if (using_desc_dma(hsotg)) {
2601 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2603 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2606 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2609 size_done = hs_ep->size_loaded - size_left;
2610 size_done += hs_ep->last_load;
2612 if (hs_req->req.actual != size_done)
2613 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2614 __func__, hs_req->req.actual, size_done);
2616 hs_req->req.actual = size_done;
2617 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2618 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2620 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2621 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2622 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2626 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2627 if (hs_ep->send_zlp) {
2628 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2629 hs_ep->send_zlp = 0;
2630 /* transfer will be completed on next complete interrupt */
2634 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2635 /* Move to STATUS OUT */
2636 dwc2_hsotg_ep0_zlp(hsotg, false);
2640 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2644 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2645 * @hsotg: The device state.
2646 * @idx: Index of ep.
2647 * @dir_in: Endpoint direction 1-in 0-out.
2649 * Reads for endpoint with given index and direction, by masking
2650 * epint_reg with coresponding mask.
2652 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2653 unsigned int idx, int dir_in)
2655 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2656 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2661 mask = dwc2_readl(hsotg->regs + epmsk_reg);
2662 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2663 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2664 mask |= DXEPINT_SETUP_RCVD;
2666 ints = dwc2_readl(hsotg->regs + epint_reg);
2672 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2673 * @hs_ep: The endpoint on which interrupt is asserted.
2675 * This interrupt indicates that the endpoint has been disabled per the
2676 * application's request.
2678 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2679 * in case of ISOC completes current request.
2681 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2682 * request starts it.
2684 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2686 struct dwc2_hsotg *hsotg = hs_ep->parent;
2687 struct dwc2_hsotg_req *hs_req;
2688 unsigned char idx = hs_ep->index;
2689 int dir_in = hs_ep->dir_in;
2690 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2691 int dctl = dwc2_readl(hsotg->regs + DCTL);
2693 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2696 int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2698 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2700 if (hs_ep->isochronous) {
2701 dwc2_hsotg_complete_in(hsotg, hs_ep);
2705 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2706 int dctl = dwc2_readl(hsotg->regs + DCTL);
2708 dctl |= DCTL_CGNPINNAK;
2709 dwc2_writel(dctl, hsotg->regs + DCTL);
2714 if (dctl & DCTL_GOUTNAKSTS) {
2715 dctl |= DCTL_CGOUTNAK;
2716 dwc2_writel(dctl, hsotg->regs + DCTL);
2719 if (!hs_ep->isochronous)
2722 if (list_empty(&hs_ep->queue)) {
2723 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2729 hs_req = get_ep_head(hs_ep);
2731 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2733 dwc2_gadget_incr_frame_num(hs_ep);
2734 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2736 dwc2_gadget_start_next_request(hs_ep);
2740 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2741 * @hs_ep: The endpoint on which interrupt is asserted.
2743 * This is starting point for ISOC-OUT transfer, synchronization done with
2744 * first out token received from host while corresponding EP is disabled.
2746 * Device does not know initial frame in which out token will come. For this
2747 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2748 * getting this interrupt SW starts calculation for next transfer frame.
2750 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2752 struct dwc2_hsotg *hsotg = ep->parent;
2753 int dir_in = ep->dir_in;
2757 if (dir_in || !ep->isochronous)
2761 * Store frame in which irq was asserted here, as
2762 * it can change while completing request below.
2764 tmp = dwc2_hsotg_read_frameno(hsotg);
2766 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2768 if (using_desc_dma(hsotg)) {
2769 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2770 /* Start first ISO Out */
2771 ep->target_frame = tmp;
2772 dwc2_gadget_start_isoc_ddma(ep);
2777 if (ep->interval > 1 &&
2778 ep->target_frame == TARGET_FRAME_INITIAL) {
2782 dsts = dwc2_readl(hsotg->regs + DSTS);
2783 ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2784 dwc2_gadget_incr_frame_num(ep);
2786 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2787 if (ep->target_frame & 0x1)
2788 ctrl |= DXEPCTL_SETODDFR;
2790 ctrl |= DXEPCTL_SETEVENFR;
2792 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2795 dwc2_gadget_start_next_request(ep);
2796 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2797 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2798 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2802 * dwc2_gadget_handle_nak - handle NAK interrupt
2803 * @hs_ep: The endpoint on which interrupt is asserted.
2805 * This is starting point for ISOC-IN transfer, synchronization done with
2806 * first IN token received from host while corresponding EP is disabled.
2808 * Device does not know when first one token will arrive from host. On first
2809 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2810 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2811 * sent in response to that as there was no data in FIFO. SW is basing on this
2812 * interrupt to obtain frame in which token has come and then based on the
2813 * interval calculates next frame for transfer.
2815 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2817 struct dwc2_hsotg *hsotg = hs_ep->parent;
2818 int dir_in = hs_ep->dir_in;
2820 if (!dir_in || !hs_ep->isochronous)
2823 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2824 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2826 if (using_desc_dma(hsotg)) {
2827 dwc2_gadget_start_isoc_ddma(hs_ep);
2831 if (hs_ep->interval > 1) {
2832 u32 ctrl = dwc2_readl(hsotg->regs +
2833 DIEPCTL(hs_ep->index));
2834 if (hs_ep->target_frame & 0x1)
2835 ctrl |= DXEPCTL_SETODDFR;
2837 ctrl |= DXEPCTL_SETEVENFR;
2839 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2842 dwc2_hsotg_complete_request(hsotg, hs_ep,
2843 get_ep_head(hs_ep), 0);
2846 dwc2_gadget_incr_frame_num(hs_ep);
2850 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2851 * @hsotg: The driver state
2852 * @idx: The index for the endpoint (0..15)
2853 * @dir_in: Set if this is an IN endpoint
2855 * Process and clear any interrupt pending for an individual endpoint
2857 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2860 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2861 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2862 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2863 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2867 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2868 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2870 /* Clear endpoint interrupts */
2871 dwc2_writel(ints, hsotg->regs + epint_reg);
2874 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2875 __func__, idx, dir_in ? "in" : "out");
2879 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2880 __func__, idx, dir_in ? "in" : "out", ints);
2882 /* Don't process XferCompl interrupt if it is a setup packet */
2883 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2884 ints &= ~DXEPINT_XFERCOMPL;
2887 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2888 * stage and xfercomplete was generated without SETUP phase done
2889 * interrupt. SW should parse received setup packet only after host's
2890 * exit from setup phase of control transfer.
2892 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2893 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2894 ints &= ~DXEPINT_XFERCOMPL;
2896 if (ints & DXEPINT_XFERCOMPL) {
2898 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2899 __func__, dwc2_readl(hsotg->regs + epctl_reg),
2900 dwc2_readl(hsotg->regs + epsiz_reg));
2902 /* In DDMA handle isochronous requests separately */
2903 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2904 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2905 /* Try to start next isoc request */
2906 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2907 } else if (dir_in) {
2909 * We get OutDone from the FIFO, so we only
2910 * need to look at completing IN requests here
2911 * if operating slave mode
2913 if (hs_ep->isochronous && hs_ep->interval > 1)
2914 dwc2_gadget_incr_frame_num(hs_ep);
2916 dwc2_hsotg_complete_in(hsotg, hs_ep);
2917 if (ints & DXEPINT_NAKINTRPT)
2918 ints &= ~DXEPINT_NAKINTRPT;
2920 if (idx == 0 && !hs_ep->req)
2921 dwc2_hsotg_enqueue_setup(hsotg);
2922 } else if (using_dma(hsotg)) {
2924 * We're using DMA, we need to fire an OutDone here
2925 * as we ignore the RXFIFO.
2927 if (hs_ep->isochronous && hs_ep->interval > 1)
2928 dwc2_gadget_incr_frame_num(hs_ep);
2930 dwc2_hsotg_handle_outdone(hsotg, idx);
2934 if (ints & DXEPINT_EPDISBLD)
2935 dwc2_gadget_handle_ep_disabled(hs_ep);
2937 if (ints & DXEPINT_OUTTKNEPDIS)
2938 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2940 if (ints & DXEPINT_NAKINTRPT)
2941 dwc2_gadget_handle_nak(hs_ep);
2943 if (ints & DXEPINT_AHBERR)
2944 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2946 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
2947 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2949 if (using_dma(hsotg) && idx == 0) {
2951 * this is the notification we've received a
2952 * setup packet. In non-DMA mode we'd get this
2953 * from the RXFIFO, instead we need to process
2960 dwc2_hsotg_handle_outdone(hsotg, 0);
2964 if (ints & DXEPINT_STSPHSERCVD) {
2965 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2967 /* Safety check EP0 state when STSPHSERCVD asserted */
2968 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2969 /* Move to STATUS IN for DDMA */
2970 if (using_desc_dma(hsotg))
2971 dwc2_hsotg_ep0_zlp(hsotg, true);
2976 if (ints & DXEPINT_BACK2BACKSETUP)
2977 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2979 if (ints & DXEPINT_BNAINTR) {
2980 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2983 * Try to start next isoc request, if any.
2984 * Sometimes the endpoint remains enabled after BNA interrupt
2985 * assertion, which is not expected, hence we can enter here
2988 if (hs_ep->isochronous)
2989 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2992 if (dir_in && !hs_ep->isochronous) {
2993 /* not sure if this is important, but we'll clear it anyway */
2994 if (ints & DXEPINT_INTKNTXFEMP) {
2995 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2999 /* this probably means something bad is happening */
3000 if (ints & DXEPINT_INTKNEPMIS) {
3001 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3005 /* FIFO has space or is empty (see GAHBCFG) */
3006 if (hsotg->dedicated_fifos &&
3007 ints & DXEPINT_TXFEMP) {
3008 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3010 if (!using_dma(hsotg))
3011 dwc2_hsotg_trytx(hsotg, hs_ep);
3017 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3018 * @hsotg: The device state.
3020 * Handle updating the device settings after the enumeration phase has
3023 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3025 u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3026 int ep0_mps = 0, ep_mps = 8;
3029 * This should signal the finish of the enumeration phase
3030 * of the USB handshaking, so we should now know what rate
3034 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3037 * note, since we're limited by the size of transfer on EP0, and
3038 * it seems IN transfers must be a even number of packets we do
3039 * not advertise a 64byte MPS on EP0.
3042 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3043 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3044 case DSTS_ENUMSPD_FS:
3045 case DSTS_ENUMSPD_FS48:
3046 hsotg->gadget.speed = USB_SPEED_FULL;
3047 ep0_mps = EP0_MPS_LIMIT;
3051 case DSTS_ENUMSPD_HS:
3052 hsotg->gadget.speed = USB_SPEED_HIGH;
3053 ep0_mps = EP0_MPS_LIMIT;
3057 case DSTS_ENUMSPD_LS:
3058 hsotg->gadget.speed = USB_SPEED_LOW;
3062 * note, we don't actually support LS in this driver at the
3063 * moment, and the documentation seems to imply that it isn't
3064 * supported by the PHYs on some of the devices.
3068 dev_info(hsotg->dev, "new device is %s\n",
3069 usb_speed_string(hsotg->gadget.speed));
3072 * we should now know the maximum packet size for an
3073 * endpoint, so set the endpoints to a default value.
3078 /* Initialize ep0 for both in and out directions */
3079 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3080 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3081 for (i = 1; i < hsotg->num_of_eps; i++) {
3082 if (hsotg->eps_in[i])
3083 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3085 if (hsotg->eps_out[i])
3086 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3091 /* ensure after enumeration our EP0 is active */
3093 dwc2_hsotg_enqueue_setup(hsotg);
3095 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3096 dwc2_readl(hsotg->regs + DIEPCTL0),
3097 dwc2_readl(hsotg->regs + DOEPCTL0));
3101 * kill_all_requests - remove all requests from the endpoint's queue
3102 * @hsotg: The device state.
3103 * @ep: The endpoint the requests may be on.
3104 * @result: The result code to use.
3106 * Go through the requests on the given endpoint and mark them
3107 * completed with the given result code.
3109 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3110 struct dwc2_hsotg_ep *ep,
3113 struct dwc2_hsotg_req *req, *treq;
3118 list_for_each_entry_safe(req, treq, &ep->queue, queue)
3119 dwc2_hsotg_complete_request(hsotg, ep, req,
3122 if (!hsotg->dedicated_fifos)
3124 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3125 if (size < ep->fifo_size)
3126 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3130 * dwc2_hsotg_disconnect - disconnect service
3131 * @hsotg: The device state.
3133 * The device has been disconnected. Remove all current
3134 * transactions and signal the gadget driver that this
3137 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3141 if (!hsotg->connected)
3144 hsotg->connected = 0;
3145 hsotg->test_mode = 0;
3147 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3148 if (hsotg->eps_in[ep])
3149 kill_all_requests(hsotg, hsotg->eps_in[ep],
3151 if (hsotg->eps_out[ep])
3152 kill_all_requests(hsotg, hsotg->eps_out[ep],
3156 call_gadget(hsotg, disconnect);
3157 hsotg->lx_state = DWC2_L3;
3159 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3163 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3164 * @hsotg: The device state:
3165 * @periodic: True if this is a periodic FIFO interrupt
3167 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3169 struct dwc2_hsotg_ep *ep;
3172 /* look through for any more data to transmit */
3173 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3174 ep = index_to_ep(hsotg, epno, 1);
3182 if ((periodic && !ep->periodic) ||
3183 (!periodic && ep->periodic))
3186 ret = dwc2_hsotg_trytx(hsotg, ep);
3192 /* IRQ flags which will trigger a retry around the IRQ loop */
3193 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3198 * dwc2_hsotg_core_init - issue softreset to the core
3199 * @hsotg: The device state
3201 * Issue a soft reset to the core, and await the core finishing it.
3203 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3211 /* Kill any ep0 requests as controller will be reinitialized */
3212 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3215 if (dwc2_core_reset(hsotg, true))
3219 * we must now enable ep0 ready for host detection and then
3220 * set configuration.
3223 /* keep other bits untouched (so e.g. forced modes are not lost) */
3224 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3225 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3226 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3228 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3229 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3230 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3231 /* FS/LS Dedicated Transceiver Interface */
3232 usbcfg |= GUSBCFG_PHYSEL;
3234 /* set the PLL on, remove the HNP/SRP and set the PHY */
3235 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3236 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3237 (val << GUSBCFG_USBTRDTIM_SHIFT);
3239 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3241 dwc2_hsotg_init_fifo(hsotg);
3244 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3246 dcfg |= DCFG_EPMISCNT(1);
3248 switch (hsotg->params.speed) {
3249 case DWC2_SPEED_PARAM_LOW:
3250 dcfg |= DCFG_DEVSPD_LS;
3252 case DWC2_SPEED_PARAM_FULL:
3253 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3254 dcfg |= DCFG_DEVSPD_FS48;
3256 dcfg |= DCFG_DEVSPD_FS;
3259 dcfg |= DCFG_DEVSPD_HS;
3262 dwc2_writel(dcfg, hsotg->regs + DCFG);
3264 /* Clear any pending OTG interrupts */
3265 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3267 /* Clear any pending interrupts */
3268 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3269 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3270 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3271 GINTSTS_USBRST | GINTSTS_RESETDET |
3272 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3273 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3274 GINTSTS_LPMTRANRCVD;
3276 if (!using_desc_dma(hsotg))
3277 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3279 if (!hsotg->params.external_id_pin_ctl)
3280 intmsk |= GINTSTS_CONIDSTSCHNG;
3282 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3284 if (using_dma(hsotg)) {
3285 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3286 hsotg->params.ahbcfg,
3287 hsotg->regs + GAHBCFG);
3289 /* Set DDMA mode support in the core if needed */
3290 if (using_desc_dma(hsotg))
3291 dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3294 dwc2_writel(((hsotg->dedicated_fifos) ?
3295 (GAHBCFG_NP_TXF_EMP_LVL |
3296 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3297 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3301 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3302 * when we have no data to transfer. Otherwise we get being flooded by
3306 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3307 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3308 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3309 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3310 hsotg->regs + DIEPMSK);
3313 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3314 * DMA mode we may need this and StsPhseRcvd.
3316 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3317 DOEPMSK_STSPHSERCVDMSK) : 0) |
3318 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3320 hsotg->regs + DOEPMSK);
3322 /* Enable BNA interrupt for DDMA */
3323 if (using_desc_dma(hsotg))
3324 dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3326 dwc2_writel(0, hsotg->regs + DAINTMSK);
3328 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3329 dwc2_readl(hsotg->regs + DIEPCTL0),
3330 dwc2_readl(hsotg->regs + DOEPCTL0));
3332 /* enable in and out endpoint interrupts */
3333 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3336 * Enable the RXFIFO when in slave mode, as this is how we collect
3337 * the data. In DMA mode, we get events from the FIFO but also
3338 * things we cannot process, so do not use it.
3340 if (!using_dma(hsotg))
3341 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3343 /* Enable interrupts for EP0 in and out */
3344 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3345 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3347 if (!is_usb_reset) {
3348 dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3349 udelay(10); /* see openiboot */
3350 dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3353 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3356 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3357 * writing to the EPCTL register..
3360 /* set to read 1 8byte packet */
3361 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3362 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3364 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3365 DXEPCTL_CNAK | DXEPCTL_EPENA |
3367 hsotg->regs + DOEPCTL0);
3369 /* enable, but don't activate EP0in */
3370 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3371 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3373 /* clear global NAKs */
3374 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3376 val |= DCTL_SFTDISCON;
3377 dwc2_set_bit(hsotg->regs + DCTL, val);
3379 /* configure the core to support LPM */
3380 dwc2_gadget_init_lpm(hsotg);
3382 /* must be at-least 3ms to allow bus to see disconnect */
3385 hsotg->lx_state = DWC2_L0;
3387 dwc2_hsotg_enqueue_setup(hsotg);
3389 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3390 dwc2_readl(hsotg->regs + DIEPCTL0),
3391 dwc2_readl(hsotg->regs + DOEPCTL0));
3394 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3396 /* set the soft-disconnect bit */
3397 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3400 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3402 /* remove the soft-disconnect and let's go */
3403 dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3407 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3408 * @hsotg: The device state:
3410 * This interrupt indicates one of the following conditions occurred while
3411 * transmitting an ISOC transaction.
3412 * - Corrupted IN Token for ISOC EP.
3413 * - Packet not complete in FIFO.
3415 * The following actions will be taken:
3416 * - Determine the EP
3417 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3419 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3421 struct dwc2_hsotg_ep *hs_ep;
3426 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3428 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3430 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3431 hs_ep = hsotg->eps_in[idx];
3432 /* Proceed only unmasked ISOC EPs */
3433 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3436 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3437 if ((epctrl & DXEPCTL_EPENA) &&
3438 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3439 epctrl |= DXEPCTL_SNAK;
3440 epctrl |= DXEPCTL_EPDIS;
3441 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3445 /* Clear interrupt */
3446 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3450 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3451 * @hsotg: The device state:
3453 * This interrupt indicates one of the following conditions occurred while
3454 * transmitting an ISOC transaction.
3455 * - Corrupted OUT Token for ISOC EP.
3456 * - Packet not complete in FIFO.
3458 * The following actions will be taken:
3459 * - Determine the EP
3460 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3462 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3468 struct dwc2_hsotg_ep *hs_ep;
3471 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3473 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3474 daintmsk >>= DAINT_OUTEP_SHIFT;
3476 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3477 hs_ep = hsotg->eps_out[idx];
3478 /* Proceed only unmasked ISOC EPs */
3479 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3482 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3483 if ((epctrl & DXEPCTL_EPENA) &&
3484 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3485 /* Unmask GOUTNAKEFF interrupt */
3486 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3487 gintmsk |= GINTSTS_GOUTNAKEFF;
3488 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3490 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3491 if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3492 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3498 /* Clear interrupt */
3499 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3503 * dwc2_hsotg_irq - handle device interrupt
3504 * @irq: The IRQ number triggered
3505 * @pw: The pw value when registered the handler.
3507 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3509 struct dwc2_hsotg *hsotg = pw;
3510 int retry_count = 8;
3514 if (!dwc2_is_device_mode(hsotg))
3517 spin_lock(&hsotg->lock);
3519 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3520 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3522 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3523 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3527 if (gintsts & GINTSTS_RESETDET) {
3528 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3530 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3532 /* This event must be used only if controller is suspended */
3533 if (hsotg->lx_state == DWC2_L2) {
3534 dwc2_exit_partial_power_down(hsotg, true);
3535 hsotg->lx_state = DWC2_L0;
3539 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3540 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3541 u32 connected = hsotg->connected;
3543 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3544 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3545 dwc2_readl(hsotg->regs + GNPTXSTS));
3547 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3549 /* Report disconnection if it is not already done. */
3550 dwc2_hsotg_disconnect(hsotg);
3552 /* Reset device address to zero */
3553 dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3555 if (usb_status & GOTGCTL_BSESVLD && connected)
3556 dwc2_hsotg_core_init_disconnected(hsotg, true);
3559 if (gintsts & GINTSTS_ENUMDONE) {
3560 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3562 dwc2_hsotg_irq_enumdone(hsotg);
3565 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3566 u32 daint = dwc2_readl(hsotg->regs + DAINT);
3567 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3568 u32 daint_out, daint_in;
3572 daint_out = daint >> DAINT_OUTEP_SHIFT;
3573 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3575 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3577 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3578 ep++, daint_out >>= 1) {
3580 dwc2_hsotg_epint(hsotg, ep, 0);
3583 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3584 ep++, daint_in >>= 1) {
3586 dwc2_hsotg_epint(hsotg, ep, 1);
3590 /* check both FIFOs */
3592 if (gintsts & GINTSTS_NPTXFEMP) {
3593 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3596 * Disable the interrupt to stop it happening again
3597 * unless one of these endpoint routines decides that
3598 * it needs re-enabling
3601 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3602 dwc2_hsotg_irq_fifoempty(hsotg, false);
3605 if (gintsts & GINTSTS_PTXFEMP) {
3606 dev_dbg(hsotg->dev, "PTxFEmp\n");
3608 /* See note in GINTSTS_NPTxFEmp */
3610 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3611 dwc2_hsotg_irq_fifoempty(hsotg, true);
3614 if (gintsts & GINTSTS_RXFLVL) {
3616 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3617 * we need to retry dwc2_hsotg_handle_rx if this is still
3621 dwc2_hsotg_handle_rx(hsotg);
3624 if (gintsts & GINTSTS_ERLYSUSP) {
3625 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3626 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3630 * these next two seem to crop-up occasionally causing the core
3631 * to shutdown the USB transfer, so try clearing them and logging
3635 if (gintsts & GINTSTS_GOUTNAKEFF) {
3640 struct dwc2_hsotg_ep *hs_ep;
3642 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3643 daintmsk >>= DAINT_OUTEP_SHIFT;
3644 /* Mask this interrupt */
3645 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3646 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3647 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3649 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3650 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3651 hs_ep = hsotg->eps_out[idx];
3652 /* Proceed only unmasked ISOC EPs */
3653 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3656 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3658 if (epctrl & DXEPCTL_EPENA) {
3659 epctrl |= DXEPCTL_SNAK;
3660 epctrl |= DXEPCTL_EPDIS;
3661 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3665 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3668 if (gintsts & GINTSTS_GINNAKEFF) {
3669 dev_info(hsotg->dev, "GINNakEff triggered\n");
3671 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3673 dwc2_hsotg_dump(hsotg);
3676 if (gintsts & GINTSTS_INCOMPL_SOIN)
3677 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3679 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3680 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3683 * if we've had fifo events, we should try and go around the
3684 * loop again to see if there's any point in returning yet.
3687 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3690 spin_unlock(&hsotg->lock);
3695 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3696 struct dwc2_hsotg_ep *hs_ep)
3701 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3702 DOEPCTL(hs_ep->index);
3703 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3704 DOEPINT(hs_ep->index);
3706 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3709 if (hs_ep->dir_in) {
3710 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3711 dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3712 /* Wait for Nak effect */
3713 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3714 DXEPINT_INEPNAKEFF, 100))
3715 dev_warn(hsotg->dev,
3716 "%s: timeout DIEPINT.NAKEFF\n",
3719 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3720 /* Wait for Nak effect */
3721 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3722 GINTSTS_GINNAKEFF, 100))
3723 dev_warn(hsotg->dev,
3724 "%s: timeout GINTSTS.GINNAKEFF\n",
3728 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3729 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3731 /* Wait for global nak to take effect */
3732 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3733 GINTSTS_GOUTNAKEFF, 100))
3734 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3739 dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3741 /* Wait for ep to be disabled */
3742 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3743 dev_warn(hsotg->dev,
3744 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3746 /* Clear EPDISBLD interrupt */
3747 dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3749 if (hs_ep->dir_in) {
3750 unsigned short fifo_index;
3752 if (hsotg->dedicated_fifos || hs_ep->periodic)
3753 fifo_index = hs_ep->fifo_index;
3758 dwc2_flush_tx_fifo(hsotg, fifo_index);
3760 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3761 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3762 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3765 /* Remove global NAKs */
3766 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3771 * dwc2_hsotg_ep_enable - enable the given endpoint
3772 * @ep: The USB endpint to configure
3773 * @desc: The USB endpoint descriptor to configure with.
3775 * This is called from the USB gadget code's usb_ep_enable().
3777 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3778 const struct usb_endpoint_descriptor *desc)
3780 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3781 struct dwc2_hsotg *hsotg = hs_ep->parent;
3782 unsigned long flags;
3783 unsigned int index = hs_ep->index;
3789 unsigned int dir_in;
3790 unsigned int i, val, size;
3794 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3795 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3796 desc->wMaxPacketSize, desc->bInterval);
3798 /* not to be called for EP0 */
3800 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3804 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3805 if (dir_in != hs_ep->dir_in) {
3806 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3810 mps = usb_endpoint_maxp(desc);
3811 mc = usb_endpoint_maxp_mult(desc);
3813 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3815 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3816 epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3818 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3819 __func__, epctrl, epctrl_reg);
3821 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3822 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3823 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3824 MAX_DMA_DESC_NUM_GENERIC *
3825 sizeof(struct dwc2_dma_desc),
3826 &hs_ep->desc_list_dma, GFP_ATOMIC);
3827 if (!hs_ep->desc_list) {
3833 spin_lock_irqsave(&hsotg->lock, flags);
3835 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3836 epctrl |= DXEPCTL_MPS(mps);
3839 * mark the endpoint as active, otherwise the core may ignore
3840 * transactions entirely for this endpoint
3842 epctrl |= DXEPCTL_USBACTEP;
3844 /* update the endpoint state */
3845 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3847 /* default, set to non-periodic */
3848 hs_ep->isochronous = 0;
3849 hs_ep->periodic = 0;
3851 hs_ep->interval = desc->bInterval;
3853 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3854 case USB_ENDPOINT_XFER_ISOC:
3855 epctrl |= DXEPCTL_EPTYPE_ISO;
3856 epctrl |= DXEPCTL_SETEVENFR;
3857 hs_ep->isochronous = 1;
3858 hs_ep->interval = 1 << (desc->bInterval - 1);
3859 hs_ep->target_frame = TARGET_FRAME_INITIAL;
3860 hs_ep->isoc_chain_num = 0;
3861 hs_ep->next_desc = 0;
3863 hs_ep->periodic = 1;
3864 mask = dwc2_readl(hsotg->regs + DIEPMSK);
3865 mask |= DIEPMSK_NAKMSK;
3866 dwc2_writel(mask, hsotg->regs + DIEPMSK);
3868 mask = dwc2_readl(hsotg->regs + DOEPMSK);
3869 mask |= DOEPMSK_OUTTKNEPDISMSK;
3870 dwc2_writel(mask, hsotg->regs + DOEPMSK);
3874 case USB_ENDPOINT_XFER_BULK:
3875 epctrl |= DXEPCTL_EPTYPE_BULK;
3878 case USB_ENDPOINT_XFER_INT:
3880 hs_ep->periodic = 1;
3882 if (hsotg->gadget.speed == USB_SPEED_HIGH)
3883 hs_ep->interval = 1 << (desc->bInterval - 1);
3885 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3888 case USB_ENDPOINT_XFER_CONTROL:
3889 epctrl |= DXEPCTL_EPTYPE_CONTROL;
3894 * if the hardware has dedicated fifos, we must give each IN EP
3895 * a unique tx-fifo even if it is non-periodic.
3897 if (dir_in && hsotg->dedicated_fifos) {
3899 u32 fifo_size = UINT_MAX;
3901 size = hs_ep->ep.maxpacket * hs_ep->mc;
3902 for (i = 1; i < hsotg->num_of_eps; ++i) {
3903 if (hsotg->fifo_map & (1 << i))
3905 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3906 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3909 /* Search for smallest acceptable fifo */
3910 if (val < fifo_size) {
3917 "%s: No suitable fifo found\n", __func__);
3921 hsotg->fifo_map |= 1 << fifo_index;
3922 epctrl |= DXEPCTL_TXFNUM(fifo_index);
3923 hs_ep->fifo_index = fifo_index;
3924 hs_ep->fifo_size = fifo_size;
3927 /* for non control endpoints, set PID to D0 */
3928 if (index && !hs_ep->isochronous)
3929 epctrl |= DXEPCTL_SETD0PID;
3931 /* WA for Full speed ISOC IN in DDMA mode.
3932 * By Clear NAK status of EP, core will send ZLP
3933 * to IN token and assert NAK interrupt relying
3934 * on TxFIFO status only
3937 if (hsotg->gadget.speed == USB_SPEED_FULL &&
3938 hs_ep->isochronous && dir_in) {
3939 /* The WA applies only to core versions from 2.72a
3940 * to 4.00a (including both). Also for FS_IOT_1.00a
3943 u32 gsnpsid = dwc2_readl(hsotg->regs + GSNPSID);
3945 if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
3946 gsnpsid <= DWC2_CORE_REV_4_00a) ||
3947 gsnpsid == DWC2_FS_IOT_REV_1_00a ||
3948 gsnpsid == DWC2_HS_IOT_REV_1_00a)
3949 epctrl |= DXEPCTL_CNAK;
3952 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3955 dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3956 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3957 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
3959 /* enable the endpoint interrupt */
3960 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3963 spin_unlock_irqrestore(&hsotg->lock, flags);
3966 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3967 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3968 sizeof(struct dwc2_dma_desc),
3969 hs_ep->desc_list, hs_ep->desc_list_dma);
3970 hs_ep->desc_list = NULL;
3977 * dwc2_hsotg_ep_disable - disable given endpoint
3978 * @ep: The endpoint to disable.
3980 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3982 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3983 struct dwc2_hsotg *hsotg = hs_ep->parent;
3984 int dir_in = hs_ep->dir_in;
3985 int index = hs_ep->index;
3986 unsigned long flags;
3990 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3992 if (ep == &hsotg->eps_out[0]->ep) {
3993 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3997 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3998 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4002 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4004 spin_lock_irqsave(&hsotg->lock, flags);
4006 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4008 if (ctrl & DXEPCTL_EPENA)
4009 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4011 ctrl &= ~DXEPCTL_EPENA;
4012 ctrl &= ~DXEPCTL_USBACTEP;
4013 ctrl |= DXEPCTL_SNAK;
4015 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4016 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4018 /* disable endpoint interrupts */
4019 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4021 /* terminate all requests with shutdown */
4022 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4024 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4025 hs_ep->fifo_index = 0;
4026 hs_ep->fifo_size = 0;
4028 spin_unlock_irqrestore(&hsotg->lock, flags);
4033 * on_list - check request is on the given endpoint
4034 * @ep: The endpoint to check.
4035 * @test: The request to test if it is on the endpoint.
4037 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4039 struct dwc2_hsotg_req *req, *treq;
4041 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4050 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4051 * @ep: The endpoint to dequeue.
4052 * @req: The request to be removed from a queue.
4054 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4056 struct dwc2_hsotg_req *hs_req = our_req(req);
4057 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4058 struct dwc2_hsotg *hs = hs_ep->parent;
4059 unsigned long flags;
4061 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4063 spin_lock_irqsave(&hs->lock, flags);
4065 if (!on_list(hs_ep, hs_req)) {
4066 spin_unlock_irqrestore(&hs->lock, flags);
4070 /* Dequeue already started request */
4071 if (req == &hs_ep->req->req)
4072 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4074 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4075 spin_unlock_irqrestore(&hs->lock, flags);
4081 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4082 * @ep: The endpoint to set halt.
4083 * @value: Set or unset the halt.
4084 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4085 * the endpoint is busy processing requests.
4087 * We need to stall the endpoint immediately if request comes from set_feature
4088 * protocol command handler.
4090 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4092 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4093 struct dwc2_hsotg *hs = hs_ep->parent;
4094 int index = hs_ep->index;
4099 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4103 dwc2_hsotg_stall_ep0(hs);
4106 "%s: can't clear halt on ep0\n", __func__);
4110 if (hs_ep->isochronous) {
4111 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4115 if (!now && value && !list_empty(&hs_ep->queue)) {
4116 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4121 if (hs_ep->dir_in) {
4122 epreg = DIEPCTL(index);
4123 epctl = dwc2_readl(hs->regs + epreg);
4126 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4127 if (epctl & DXEPCTL_EPENA)
4128 epctl |= DXEPCTL_EPDIS;
4130 epctl &= ~DXEPCTL_STALL;
4131 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4132 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4133 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4134 epctl |= DXEPCTL_SETD0PID;
4136 dwc2_writel(epctl, hs->regs + epreg);
4138 epreg = DOEPCTL(index);
4139 epctl = dwc2_readl(hs->regs + epreg);
4142 epctl |= DXEPCTL_STALL;
4144 epctl &= ~DXEPCTL_STALL;
4145 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4146 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4147 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4148 epctl |= DXEPCTL_SETD0PID;
4150 dwc2_writel(epctl, hs->regs + epreg);
4153 hs_ep->halted = value;
4159 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4160 * @ep: The endpoint to set halt.
4161 * @value: Set or unset the halt.
4163 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4165 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4166 struct dwc2_hsotg *hs = hs_ep->parent;
4167 unsigned long flags = 0;
4170 spin_lock_irqsave(&hs->lock, flags);
4171 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4172 spin_unlock_irqrestore(&hs->lock, flags);
4177 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4178 .enable = dwc2_hsotg_ep_enable,
4179 .disable = dwc2_hsotg_ep_disable,
4180 .alloc_request = dwc2_hsotg_ep_alloc_request,
4181 .free_request = dwc2_hsotg_ep_free_request,
4182 .queue = dwc2_hsotg_ep_queue_lock,
4183 .dequeue = dwc2_hsotg_ep_dequeue,
4184 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4185 /* note, don't believe we have any call for the fifo routines */
4189 * dwc2_hsotg_init - initialize the usb core
4190 * @hsotg: The driver state
4192 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4196 /* unmask subset of endpoint interrupts */
4198 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4199 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4200 hsotg->regs + DIEPMSK);
4202 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4203 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4204 hsotg->regs + DOEPMSK);
4206 dwc2_writel(0, hsotg->regs + DAINTMSK);
4208 /* Be in disconnected state until gadget is registered */
4209 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
4213 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4214 dwc2_readl(hsotg->regs + GRXFSIZ),
4215 dwc2_readl(hsotg->regs + GNPTXFSIZ));
4217 dwc2_hsotg_init_fifo(hsotg);
4219 /* keep other bits untouched (so e.g. forced modes are not lost) */
4220 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4221 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4222 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4224 /* set the PLL on, remove the HNP/SRP and set the PHY */
4225 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4226 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4227 (trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4228 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4230 if (using_dma(hsotg))
4231 dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4235 * dwc2_hsotg_udc_start - prepare the udc for work
4236 * @gadget: The usb gadget state
4237 * @driver: The usb gadget driver
4239 * Perform initialization to prepare udc device and driver
4242 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4243 struct usb_gadget_driver *driver)
4245 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4246 unsigned long flags;
4250 pr_err("%s: called with no device\n", __func__);
4255 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4259 if (driver->max_speed < USB_SPEED_FULL)
4260 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4262 if (!driver->setup) {
4263 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4267 WARN_ON(hsotg->driver);
4269 driver->driver.bus = NULL;
4270 hsotg->driver = driver;
4271 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4272 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4274 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4275 ret = dwc2_lowlevel_hw_enable(hsotg);
4280 if (!IS_ERR_OR_NULL(hsotg->uphy))
4281 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4283 spin_lock_irqsave(&hsotg->lock, flags);
4284 if (dwc2_hw_is_device(hsotg)) {
4285 dwc2_hsotg_init(hsotg);
4286 dwc2_hsotg_core_init_disconnected(hsotg, false);
4290 spin_unlock_irqrestore(&hsotg->lock, flags);
4292 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4297 hsotg->driver = NULL;
4302 * dwc2_hsotg_udc_stop - stop the udc
4303 * @gadget: The usb gadget state
4304 * @driver: The usb gadget driver
4306 * Stop udc hw block and stay tunned for future transmissions
4308 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4310 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4311 unsigned long flags = 0;
4317 /* all endpoints should be shutdown */
4318 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4319 if (hsotg->eps_in[ep])
4320 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4321 if (hsotg->eps_out[ep])
4322 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4325 spin_lock_irqsave(&hsotg->lock, flags);
4327 hsotg->driver = NULL;
4328 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4331 spin_unlock_irqrestore(&hsotg->lock, flags);
4333 if (!IS_ERR_OR_NULL(hsotg->uphy))
4334 otg_set_peripheral(hsotg->uphy->otg, NULL);
4336 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4337 dwc2_lowlevel_hw_disable(hsotg);
4343 * dwc2_hsotg_gadget_getframe - read the frame number
4344 * @gadget: The usb gadget state
4346 * Read the {micro} frame number
4348 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4350 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4354 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4355 * @gadget: The usb gadget state
4356 * @is_on: Current state of the USB PHY
4358 * Connect/Disconnect the USB PHY pullup
4360 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4362 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4363 unsigned long flags = 0;
4365 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4368 /* Don't modify pullup state while in host mode */
4369 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4370 hsotg->enabled = is_on;
4374 spin_lock_irqsave(&hsotg->lock, flags);
4377 dwc2_hsotg_core_init_disconnected(hsotg, false);
4378 /* Enable ACG feature in device mode,if supported */
4379 dwc2_enable_acg(hsotg);
4380 dwc2_hsotg_core_connect(hsotg);
4382 dwc2_hsotg_core_disconnect(hsotg);
4383 dwc2_hsotg_disconnect(hsotg);
4387 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4388 spin_unlock_irqrestore(&hsotg->lock, flags);
4393 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4395 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4396 unsigned long flags;
4398 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4399 spin_lock_irqsave(&hsotg->lock, flags);
4402 * If controller is hibernated, it must exit from power_down
4403 * before being initialized / de-initialized
4405 if (hsotg->lx_state == DWC2_L2)
4406 dwc2_exit_partial_power_down(hsotg, false);
4409 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4411 dwc2_hsotg_core_init_disconnected(hsotg, false);
4412 if (hsotg->enabled) {
4413 /* Enable ACG feature in device mode,if supported */
4414 dwc2_enable_acg(hsotg);
4415 dwc2_hsotg_core_connect(hsotg);
4418 dwc2_hsotg_core_disconnect(hsotg);
4419 dwc2_hsotg_disconnect(hsotg);
4422 spin_unlock_irqrestore(&hsotg->lock, flags);
4427 * dwc2_hsotg_vbus_draw - report bMaxPower field
4428 * @gadget: The usb gadget state
4429 * @mA: Amount of current
4431 * Report how much power the device may consume to the phy.
4433 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4435 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4437 if (IS_ERR_OR_NULL(hsotg->uphy))
4439 return usb_phy_set_power(hsotg->uphy, mA);
4442 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4443 .get_frame = dwc2_hsotg_gadget_getframe,
4444 .udc_start = dwc2_hsotg_udc_start,
4445 .udc_stop = dwc2_hsotg_udc_stop,
4446 .pullup = dwc2_hsotg_pullup,
4447 .vbus_session = dwc2_hsotg_vbus_session,
4448 .vbus_draw = dwc2_hsotg_vbus_draw,
4452 * dwc2_hsotg_initep - initialise a single endpoint
4453 * @hsotg: The device state.
4454 * @hs_ep: The endpoint to be initialised.
4455 * @epnum: The endpoint number
4457 * Initialise the given endpoint (as part of the probe and device state
4458 * creation) to give to the gadget driver. Setup the endpoint name, any
4459 * direction information and other state that may be required.
4461 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4462 struct dwc2_hsotg_ep *hs_ep,
4475 hs_ep->dir_in = dir_in;
4476 hs_ep->index = epnum;
4478 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4480 INIT_LIST_HEAD(&hs_ep->queue);
4481 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4483 /* add to the list of endpoints known by the gadget driver */
4485 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4487 hs_ep->parent = hsotg;
4488 hs_ep->ep.name = hs_ep->name;
4490 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4491 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4493 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4494 epnum ? 1024 : EP0_MPS_LIMIT);
4495 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4498 hs_ep->ep.caps.type_control = true;
4500 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4501 hs_ep->ep.caps.type_iso = true;
4502 hs_ep->ep.caps.type_bulk = true;
4504 hs_ep->ep.caps.type_int = true;
4508 hs_ep->ep.caps.dir_in = true;
4510 hs_ep->ep.caps.dir_out = true;
4513 * if we're using dma, we need to set the next-endpoint pointer
4514 * to be something valid.
4517 if (using_dma(hsotg)) {
4518 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4521 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4523 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4528 * dwc2_hsotg_hw_cfg - read HW configuration registers
4529 * @param: The device state
4531 * Read the USB core HW configuration registers
4533 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4539 /* check hardware configuration */
4541 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4544 hsotg->num_of_eps++;
4546 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4547 sizeof(struct dwc2_hsotg_ep),
4549 if (!hsotg->eps_in[0])
4551 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4552 hsotg->eps_out[0] = hsotg->eps_in[0];
4554 cfg = hsotg->hw_params.dev_ep_dirs;
4555 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4557 /* Direction in or both */
4558 if (!(ep_type & 2)) {
4559 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4560 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4561 if (!hsotg->eps_in[i])
4564 /* Direction out or both */
4565 if (!(ep_type & 1)) {
4566 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4567 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4568 if (!hsotg->eps_out[i])
4573 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4574 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4576 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4578 hsotg->dedicated_fifos ? "dedicated" : "shared",
4584 * dwc2_hsotg_dump - dump state of the udc
4585 * @param: The device state
4587 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4590 struct device *dev = hsotg->dev;
4591 void __iomem *regs = hsotg->regs;
4595 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4596 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4597 dwc2_readl(regs + DIEPMSK));
4599 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4600 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4602 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4603 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4605 /* show periodic fifo settings */
4607 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4608 val = dwc2_readl(regs + DPTXFSIZN(idx));
4609 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4610 val >> FIFOSIZE_DEPTH_SHIFT,
4611 val & FIFOSIZE_STARTADDR_MASK);
4614 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4616 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4617 dwc2_readl(regs + DIEPCTL(idx)),
4618 dwc2_readl(regs + DIEPTSIZ(idx)),
4619 dwc2_readl(regs + DIEPDMA(idx)));
4621 val = dwc2_readl(regs + DOEPCTL(idx));
4623 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4624 idx, dwc2_readl(regs + DOEPCTL(idx)),
4625 dwc2_readl(regs + DOEPTSIZ(idx)),
4626 dwc2_readl(regs + DOEPDMA(idx)));
4629 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4630 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4635 * dwc2_gadget_init - init function for gadget
4636 * @dwc2: The data structure for the DWC2 driver.
4638 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4640 struct device *dev = hsotg->dev;
4644 /* Dump fifo information */
4645 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4646 hsotg->params.g_np_tx_fifo_size);
4647 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4649 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4650 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4651 hsotg->gadget.name = dev_name(dev);
4652 hsotg->remote_wakeup_allowed = 0;
4654 if (hsotg->params.lpm)
4655 hsotg->gadget.lpm_capable = true;
4657 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4658 hsotg->gadget.is_otg = 1;
4659 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4660 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4662 ret = dwc2_hsotg_hw_cfg(hsotg);
4664 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4668 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4669 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4670 if (!hsotg->ctrl_buff)
4673 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4674 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4675 if (!hsotg->ep0_buff)
4678 if (using_desc_dma(hsotg)) {
4679 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4684 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4685 IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4687 dev_err(dev, "cannot claim IRQ for gadget\n");
4691 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4693 if (hsotg->num_of_eps == 0) {
4694 dev_err(dev, "wrong number of EPs (zero)\n");
4698 /* setup endpoint information */
4700 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4701 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4703 /* allocate EP0 request */
4705 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4707 if (!hsotg->ctrl_req) {
4708 dev_err(dev, "failed to allocate ctrl req\n");
4712 /* initialise the endpoints now the core has been initialised */
4713 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4714 if (hsotg->eps_in[epnum])
4715 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4717 if (hsotg->eps_out[epnum])
4718 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4722 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4726 dwc2_hsotg_dump(hsotg);
4732 * dwc2_hsotg_remove - remove function for hsotg driver
4733 * @pdev: The platform information for the driver
4735 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4737 usb_del_gadget_udc(&hsotg->gadget);
4742 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4744 unsigned long flags;
4746 if (hsotg->lx_state != DWC2_L0)
4749 if (hsotg->driver) {
4752 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4753 hsotg->driver->driver.name);
4755 spin_lock_irqsave(&hsotg->lock, flags);
4757 dwc2_hsotg_core_disconnect(hsotg);
4758 dwc2_hsotg_disconnect(hsotg);
4759 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4760 spin_unlock_irqrestore(&hsotg->lock, flags);
4762 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4763 if (hsotg->eps_in[ep])
4764 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4765 if (hsotg->eps_out[ep])
4766 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4773 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4775 unsigned long flags;
4777 if (hsotg->lx_state == DWC2_L2)
4780 if (hsotg->driver) {
4781 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4782 hsotg->driver->driver.name);
4784 spin_lock_irqsave(&hsotg->lock, flags);
4785 dwc2_hsotg_core_init_disconnected(hsotg, false);
4786 if (hsotg->enabled) {
4787 /* Enable ACG feature in device mode,if supported */
4788 dwc2_enable_acg(hsotg);
4789 dwc2_hsotg_core_connect(hsotg);
4791 spin_unlock_irqrestore(&hsotg->lock, flags);
4798 * dwc2_backup_device_registers() - Backup controller device registers.
4799 * When suspending usb bus, registers needs to be backuped
4800 * if controller power is disabled once suspended.
4802 * @hsotg: Programming view of the DWC_otg controller
4804 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4806 struct dwc2_dregs_backup *dr;
4809 dev_dbg(hsotg->dev, "%s\n", __func__);
4811 /* Backup dev regs */
4812 dr = &hsotg->dr_backup;
4814 dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4815 dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4816 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4817 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4818 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4820 for (i = 0; i < hsotg->num_of_eps; i++) {
4822 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4824 /* Ensure DATA PID is correctly configured */
4825 if (dr->diepctl[i] & DXEPCTL_DPID)
4826 dr->diepctl[i] |= DXEPCTL_SETD1PID;
4828 dr->diepctl[i] |= DXEPCTL_SETD0PID;
4830 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4831 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4833 /* Backup OUT EPs */
4834 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4836 /* Ensure DATA PID is correctly configured */
4837 if (dr->doepctl[i] & DXEPCTL_DPID)
4838 dr->doepctl[i] |= DXEPCTL_SETD1PID;
4840 dr->doepctl[i] |= DXEPCTL_SETD0PID;
4842 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4843 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4844 dr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
4851 * dwc2_restore_device_registers() - Restore controller device registers.
4852 * When resuming usb bus, device registers needs to be restored
4853 * if controller power were disabled.
4855 * @hsotg: Programming view of the DWC_otg controller
4856 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
4858 * Return: 0 if successful, negative error code otherwise
4860 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
4862 struct dwc2_dregs_backup *dr;
4865 dev_dbg(hsotg->dev, "%s\n", __func__);
4867 /* Restore dev regs */
4868 dr = &hsotg->dr_backup;
4870 dev_err(hsotg->dev, "%s: no device registers to restore\n",
4877 dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4879 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4880 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4881 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4883 for (i = 0; i < hsotg->num_of_eps; i++) {
4884 /* Restore IN EPs */
4885 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4886 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4887 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4888 /** WA for enabled EPx's IN in DDMA mode. On entering to
4889 * hibernation wrong value read and saved from DIEPDMAx,
4890 * as result BNA interrupt asserted on hibernation exit
4891 * by restoring from saved area.
4893 if (hsotg->params.g_dma_desc &&
4894 (dr->diepctl[i] & DXEPCTL_EPENA))
4895 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
4896 dwc2_writel(dr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
4897 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4898 /* Restore OUT EPs */
4899 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4900 /* WA for enabled EPx's OUT in DDMA mode. On entering to
4901 * hibernation wrong value read and saved from DOEPDMAx,
4902 * as result BNA interrupt asserted on hibernation exit
4903 * by restoring from saved area.
4905 if (hsotg->params.g_dma_desc &&
4906 (dr->doepctl[i] & DXEPCTL_EPENA))
4907 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
4908 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4909 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4916 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
4918 * @hsotg: Programming view of DWC_otg controller
4921 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
4925 if (!hsotg->params.lpm)
4928 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
4929 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
4930 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
4931 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
4932 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
4933 dwc2_writel(val, hsotg->regs + GLPMCFG);
4934 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg->regs
4939 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
4941 * @hsotg: Programming view of the DWC_otg controller
4943 * Return non-zero if failed to enter to hibernation.
4945 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
4950 /* Change to L2(suspend) state */
4951 hsotg->lx_state = DWC2_L2;
4952 dev_dbg(hsotg->dev, "Start of hibernation completed\n");
4953 ret = dwc2_backup_global_registers(hsotg);
4955 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
4959 ret = dwc2_backup_device_registers(hsotg);
4961 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
4966 gpwrdn = GPWRDN_PWRDNRSTN;
4967 gpwrdn |= GPWRDN_PMUACTV;
4968 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4971 /* Set flag to indicate that we are in hibernation */
4972 hsotg->hibernated = 1;
4974 /* Enable interrupts from wake up logic */
4975 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4976 gpwrdn |= GPWRDN_PMUINTSEL;
4977 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4980 /* Unmask device mode interrupts in GPWRDN */
4981 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4982 gpwrdn |= GPWRDN_RST_DET_MSK;
4983 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
4984 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
4985 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4988 /* Enable Power Down Clamp */
4989 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4990 gpwrdn |= GPWRDN_PWRDNCLMP;
4991 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4994 /* Switch off VDD */
4995 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4996 gpwrdn |= GPWRDN_PWRDNSWTCH;
4997 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5000 /* Save gpwrdn register for further usage if stschng interrupt */
5001 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5002 dev_dbg(hsotg->dev, "Hibernation completed\n");
5008 * dwc2_gadget_exit_hibernation()
5009 * This function is for exiting from Device mode hibernation by host initiated
5010 * resume/reset and device initiated remote-wakeup.
5012 * @hsotg: Programming view of the DWC_otg controller
5013 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5014 * @param reset: indicates whether resume is initiated by Reset.
5016 * Return non-zero if failed to exit from hibernation.
5018 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5019 int rem_wakeup, int reset)
5025 struct dwc2_gregs_backup *gr;
5026 struct dwc2_dregs_backup *dr;
5028 gr = &hsotg->gr_backup;
5029 dr = &hsotg->dr_backup;
5031 if (!hsotg->hibernated) {
5032 dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5036 "%s: called with rem_wakeup = %d reset = %d\n",
5037 __func__, rem_wakeup, reset);
5039 dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5042 /* Clear all pending interupts */
5043 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5046 /* De-assert Restore */
5047 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5048 gpwrdn &= ~GPWRDN_RESTORE;
5049 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5053 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5054 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5055 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5058 /* Restore GUSBCFG, DCFG and DCTL */
5059 dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5060 dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
5061 dwc2_writel(dr->dctl, hsotg->regs + DCTL);
5063 /* De-assert Wakeup Logic */
5064 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5065 gpwrdn &= ~GPWRDN_PMUACTV;
5066 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5070 /* Start Remote Wakeup Signaling */
5071 dwc2_writel(dr->dctl | DCTL_RMTWKUPSIG, hsotg->regs + DCTL);
5074 /* Set Device programming done bit */
5075 dctl = dwc2_readl(hsotg->regs + DCTL);
5076 dctl |= DCTL_PWRONPRGDONE;
5077 dwc2_writel(dctl, hsotg->regs + DCTL);
5079 /* Wait for interrupts which must be cleared */
5081 /* Clear all pending interupts */
5082 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5084 /* Restore global registers */
5085 ret = dwc2_restore_global_registers(hsotg);
5087 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5092 /* Restore device registers */
5093 ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5095 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5102 dctl = dwc2_readl(hsotg->regs + DCTL);
5103 dctl &= ~DCTL_RMTWKUPSIG;
5104 dwc2_writel(dctl, hsotg->regs + DCTL);
5107 hsotg->hibernated = 0;
5108 hsotg->lx_state = DWC2_L0;
5109 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");