2 * linux/drivers/mmc/core/mmc.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
32 #define DEFAULT_CMD6_TIMEOUT_MS 500
34 static const unsigned int tran_exp[] = {
35 10000, 100000, 1000000, 10000000,
39 static const unsigned char tran_mant[] = {
40 0, 10, 12, 13, 15, 20, 25, 30,
41 35, 40, 45, 50, 55, 60, 70, 80,
44 static const unsigned int taac_exp[] = {
45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
48 static const unsigned int taac_mant[] = {
49 0, 10, 12, 13, 15, 20, 25, 30,
50 35, 40, 45, 50, 55, 60, 70, 80,
53 #define UNSTUFF_BITS(resp,start,size) \
55 const int __size = size; \
56 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
57 const int __off = 3 - ((start) / 32); \
58 const int __shft = (start) & 31; \
61 __res = resp[__off] >> __shft; \
62 if (__size + __shft > 32) \
63 __res |= resp[__off-1] << ((32 - __shft) % 32); \
68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
70 static int mmc_decode_cid(struct mmc_card *card)
72 u32 *resp = card->raw_cid;
75 * The selection of the format here is based upon published
76 * specs from sandisk and from what people have reported.
78 switch (card->csd.mmca_vsn) {
79 case 0: /* MMC v1.0 - v1.2 */
80 case 1: /* MMC v1.4 */
81 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
82 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
83 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
84 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
85 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
86 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
87 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
88 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
89 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
90 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
91 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
92 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
93 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
96 case 2: /* MMC v2.0 - v2.2 */
97 case 3: /* MMC v3.1 - v3.3 */
99 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
100 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
101 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
102 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
103 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
104 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
105 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
106 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
107 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
108 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
109 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
110 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
114 pr_err("%s: card has unknown MMCA version %d\n",
115 mmc_hostname(card->host), card->csd.mmca_vsn);
122 static void mmc_set_erase_size(struct mmc_card *card)
124 if (card->ext_csd.erase_group_def & 1)
125 card->erase_size = card->ext_csd.hc_erase_size;
127 card->erase_size = card->csd.erase_size;
129 mmc_init_erase(card);
133 * Given a 128-bit response, decode to our card CSD structure.
135 static int mmc_decode_csd(struct mmc_card *card)
137 struct mmc_csd *csd = &card->csd;
138 unsigned int e, m, a, b;
139 u32 *resp = card->raw_csd;
142 * We only understand CSD structure v1.1 and v1.2.
143 * v1.2 has extra information in bits 15, 11 and 10.
144 * We also support eMMC v4.4 & v4.41.
146 csd->structure = UNSTUFF_BITS(resp, 126, 2);
147 if (csd->structure == 0) {
148 pr_err("%s: unrecognised CSD structure version %d\n",
149 mmc_hostname(card->host), csd->structure);
153 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
154 m = UNSTUFF_BITS(resp, 115, 4);
155 e = UNSTUFF_BITS(resp, 112, 3);
156 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
157 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
159 m = UNSTUFF_BITS(resp, 99, 4);
160 e = UNSTUFF_BITS(resp, 96, 3);
161 csd->max_dtr = tran_exp[e] * tran_mant[m];
162 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
164 e = UNSTUFF_BITS(resp, 47, 3);
165 m = UNSTUFF_BITS(resp, 62, 12);
166 csd->capacity = (1 + m) << (e + 2);
168 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
169 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
170 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
171 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
172 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
173 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
174 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
175 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
177 if (csd->write_blkbits >= 9) {
178 a = UNSTUFF_BITS(resp, 42, 5);
179 b = UNSTUFF_BITS(resp, 37, 5);
180 csd->erase_size = (a + 1) * (b + 1);
181 csd->erase_size <<= csd->write_blkbits - 9;
187 static void mmc_select_card_type(struct mmc_card *card)
189 struct mmc_host *host = card->host;
190 u8 card_type = card->ext_csd.raw_card_type;
191 u32 caps = host->caps, caps2 = host->caps2;
192 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
193 unsigned int avail_type = 0;
195 if (caps & MMC_CAP_MMC_HIGHSPEED &&
196 card_type & EXT_CSD_CARD_TYPE_HS_26) {
197 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
198 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
201 if (caps & MMC_CAP_MMC_HIGHSPEED &&
202 card_type & EXT_CSD_CARD_TYPE_HS_52) {
203 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
204 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
207 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
208 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
209 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
210 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
213 if (caps & MMC_CAP_1_2V_DDR &&
214 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
215 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
216 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
219 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
220 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
221 hs200_max_dtr = MMC_HS200_MAX_DTR;
222 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
225 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
226 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
227 hs200_max_dtr = MMC_HS200_MAX_DTR;
228 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
231 if (caps2 & MMC_CAP2_HS400_1_8V &&
232 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
233 hs200_max_dtr = MMC_HS200_MAX_DTR;
234 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
237 if (caps2 & MMC_CAP2_HS400_1_2V &&
238 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
239 hs200_max_dtr = MMC_HS200_MAX_DTR;
240 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
243 if ((caps2 & MMC_CAP2_HS400_ES) &&
244 card->ext_csd.strobe_support &&
245 (avail_type & EXT_CSD_CARD_TYPE_HS400))
246 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
248 card->ext_csd.hs_max_dtr = hs_max_dtr;
249 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
250 card->mmc_avail_type = avail_type;
253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
255 u8 hc_erase_grp_sz, hc_wp_grp_sz;
258 * Disable these attributes by default
260 card->ext_csd.enhanced_area_offset = -EINVAL;
261 card->ext_csd.enhanced_area_size = -EINVAL;
264 * Enhanced area feature support -- check whether the eMMC
265 * card has the Enhanced area enabled. If so, export enhanced
266 * area offset and size to user by adding sysfs interface.
268 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
269 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
270 if (card->ext_csd.partition_setting_completed) {
272 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
274 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
277 * calculate the enhanced data area offset, in bytes
279 card->ext_csd.enhanced_area_offset =
280 (((unsigned long long)ext_csd[139]) << 24) +
281 (((unsigned long long)ext_csd[138]) << 16) +
282 (((unsigned long long)ext_csd[137]) << 8) +
283 (((unsigned long long)ext_csd[136]));
284 if (mmc_card_blockaddr(card))
285 card->ext_csd.enhanced_area_offset <<= 9;
287 * calculate the enhanced data area size, in kilobytes
289 card->ext_csd.enhanced_area_size =
290 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
292 card->ext_csd.enhanced_area_size *=
293 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
294 card->ext_csd.enhanced_area_size <<= 9;
296 pr_warn("%s: defines enhanced area without partition setting complete\n",
297 mmc_hostname(card->host));
302 static void mmc_part_add(struct mmc_card *card, unsigned int size,
303 unsigned int part_cfg, char *name, int idx, bool ro,
306 card->part[card->nr_parts].size = size;
307 card->part[card->nr_parts].part_cfg = part_cfg;
308 sprintf(card->part[card->nr_parts].name, name, idx);
309 card->part[card->nr_parts].force_ro = ro;
310 card->part[card->nr_parts].area_type = area_type;
314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
317 u8 hc_erase_grp_sz, hc_wp_grp_sz;
318 unsigned int part_size;
321 * General purpose partition feature support --
322 * If ext_csd has the size of general purpose partitions,
323 * set size, part_cfg, partition name in mmc_part.
325 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
326 EXT_CSD_PART_SUPPORT_PART_EN) {
328 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
330 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
332 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
333 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
335 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
337 if (card->ext_csd.partition_setting_completed == 0) {
338 pr_warn("%s: has partition size defined without partition complete\n",
339 mmc_hostname(card->host));
343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
345 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
347 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
348 part_size *= (size_t)(hc_erase_grp_sz *
350 mmc_part_add(card, part_size << 19,
351 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
353 MMC_BLK_DATA_AREA_GP);
358 /* Minimum partition switch timeout in milliseconds */
359 #define MMC_MIN_PART_SWITCH_TIME 300
362 * Decode extended CSD.
364 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
367 unsigned int part_size;
368 struct device_node *np;
369 bool broken_hpi = false;
371 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
372 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
373 if (card->csd.structure == 3) {
374 if (card->ext_csd.raw_ext_csd_structure > 2) {
375 pr_err("%s: unrecognised EXT_CSD structure "
376 "version %d\n", mmc_hostname(card->host),
377 card->ext_csd.raw_ext_csd_structure);
383 np = mmc_of_find_child_device(card->host, 0);
384 if (np && of_device_is_compatible(np, "mmc-card"))
385 broken_hpi = of_property_read_bool(np, "broken-hpi");
389 * The EXT_CSD format is meant to be forward compatible. As long
390 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
391 * are authorized, see JEDEC JESD84-B50 section B.8.
393 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
395 /* fixup device after ext_csd revision field is updated */
396 mmc_fixup_device(card, mmc_ext_csd_fixups);
398 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
399 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
400 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
401 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
402 if (card->ext_csd.rev >= 2) {
403 card->ext_csd.sectors =
404 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
405 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
406 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
407 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
409 /* Cards with density > 2GiB are sector addressed */
410 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
411 mmc_card_set_blockaddr(card);
414 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
415 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
416 mmc_select_card_type(card);
418 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
419 card->ext_csd.raw_erase_timeout_mult =
420 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
421 card->ext_csd.raw_hc_erase_grp_size =
422 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
423 if (card->ext_csd.rev >= 3) {
424 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
427 /* EXT_CSD value is in units of 10ms, but we store in ms */
428 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
429 /* Some eMMC set the value too low so set a minimum */
430 if (card->ext_csd.part_time &&
431 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
432 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
434 /* Sleep / awake timeout in 100ns units */
435 if (sa_shift > 0 && sa_shift <= 0x17)
436 card->ext_csd.sa_timeout =
437 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
438 card->ext_csd.erase_group_def =
439 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
440 card->ext_csd.hc_erase_timeout = 300 *
441 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
442 card->ext_csd.hc_erase_size =
443 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
445 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
448 * There are two boot regions of equal size, defined in
451 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
452 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
453 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
454 mmc_part_add(card, part_size,
455 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
457 MMC_BLK_DATA_AREA_BOOT);
462 card->ext_csd.raw_hc_erase_gap_size =
463 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
464 card->ext_csd.raw_sec_trim_mult =
465 ext_csd[EXT_CSD_SEC_TRIM_MULT];
466 card->ext_csd.raw_sec_erase_mult =
467 ext_csd[EXT_CSD_SEC_ERASE_MULT];
468 card->ext_csd.raw_sec_feature_support =
469 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
470 card->ext_csd.raw_trim_mult =
471 ext_csd[EXT_CSD_TRIM_MULT];
472 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
473 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
474 if (card->ext_csd.rev >= 4) {
475 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
476 EXT_CSD_PART_SETTING_COMPLETED)
477 card->ext_csd.partition_setting_completed = 1;
479 card->ext_csd.partition_setting_completed = 0;
481 mmc_manage_enhanced_area(card, ext_csd);
483 mmc_manage_gp_partitions(card, ext_csd);
485 card->ext_csd.sec_trim_mult =
486 ext_csd[EXT_CSD_SEC_TRIM_MULT];
487 card->ext_csd.sec_erase_mult =
488 ext_csd[EXT_CSD_SEC_ERASE_MULT];
489 card->ext_csd.sec_feature_support =
490 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
491 card->ext_csd.trim_timeout = 300 *
492 ext_csd[EXT_CSD_TRIM_MULT];
495 * Note that the call to mmc_part_add above defaults to read
496 * only. If this default assumption is changed, the call must
497 * take into account the value of boot_locked below.
499 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
500 card->ext_csd.boot_ro_lockable = true;
502 /* Save power class values */
503 card->ext_csd.raw_pwr_cl_52_195 =
504 ext_csd[EXT_CSD_PWR_CL_52_195];
505 card->ext_csd.raw_pwr_cl_26_195 =
506 ext_csd[EXT_CSD_PWR_CL_26_195];
507 card->ext_csd.raw_pwr_cl_52_360 =
508 ext_csd[EXT_CSD_PWR_CL_52_360];
509 card->ext_csd.raw_pwr_cl_26_360 =
510 ext_csd[EXT_CSD_PWR_CL_26_360];
511 card->ext_csd.raw_pwr_cl_200_195 =
512 ext_csd[EXT_CSD_PWR_CL_200_195];
513 card->ext_csd.raw_pwr_cl_200_360 =
514 ext_csd[EXT_CSD_PWR_CL_200_360];
515 card->ext_csd.raw_pwr_cl_ddr_52_195 =
516 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
517 card->ext_csd.raw_pwr_cl_ddr_52_360 =
518 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
519 card->ext_csd.raw_pwr_cl_ddr_200_360 =
520 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
523 if (card->ext_csd.rev >= 5) {
524 /* Adjust production date as per JEDEC JESD84-B451 */
525 if (card->cid.year < 2010)
526 card->cid.year += 16;
528 /* check whether the eMMC card supports BKOPS */
529 if (!mmc_card_broken_hpi(card) &&
530 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 card->ext_csd.bkops = 1;
532 card->ext_csd.man_bkops_en =
533 (ext_csd[EXT_CSD_BKOPS_EN] &
534 EXT_CSD_MANUAL_BKOPS_MASK);
535 card->ext_csd.raw_bkops_status =
536 ext_csd[EXT_CSD_BKOPS_STATUS];
537 if (card->ext_csd.man_bkops_en)
538 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 mmc_hostname(card->host));
540 card->ext_csd.auto_bkops_en =
541 (ext_csd[EXT_CSD_BKOPS_EN] &
542 EXT_CSD_AUTO_BKOPS_MASK);
543 if (card->ext_csd.auto_bkops_en)
544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 mmc_hostname(card->host));
548 /* check whether the eMMC card supports HPI */
549 if (!mmc_card_broken_hpi(card) &&
550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 card->ext_csd.hpi = 1;
552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
557 * Indicate the maximum timeout to close
558 * a command interrupted by HPI
560 card->ext_csd.out_of_int_time =
561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
568 * RPMB regions are defined in multiples of 128K.
570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 EXT_CSD_PART_CONFIG_ACC_RPMB,
575 MMC_BLK_DATA_AREA_RPMB);
579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 card->erased_byte = 0xFF;
583 card->erased_byte = 0x0;
585 /* eMMC v4.5 or later */
586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 if (card->ext_csd.rev >= 6) {
588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
590 card->ext_csd.generic_cmd6_time = 10 *
591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 card->ext_csd.power_off_longtime = 10 *
593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
595 card->ext_csd.cache_size =
596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 card->ext_csd.data_sector_size = 4096;
604 card->ext_csd.data_sector_size = 512;
606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 card->ext_csd.data_tag_unit_size =
609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 (card->ext_csd.data_sector_size);
612 card->ext_csd.data_tag_unit_size = 0;
615 card->ext_csd.max_packed_writes =
616 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
617 card->ext_csd.max_packed_reads =
618 ext_csd[EXT_CSD_MAX_PACKED_READS];
620 card->ext_csd.data_sector_size = 512;
623 /* eMMC v5 or later */
624 if (card->ext_csd.rev >= 7) {
625 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
627 card->ext_csd.ffu_capable =
628 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
629 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
631 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
632 card->ext_csd.device_life_time_est_typ_a =
633 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
634 card->ext_csd.device_life_time_est_typ_b =
635 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
638 /* eMMC v5.1 or later */
639 if (card->ext_csd.rev >= 8) {
640 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
641 EXT_CSD_CMDQ_SUPPORTED;
642 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
643 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
644 /* Exclude inefficiently small queue depths */
645 if (card->ext_csd.cmdq_depth <= 2) {
646 card->ext_csd.cmdq_support = false;
647 card->ext_csd.cmdq_depth = 0;
649 if (card->ext_csd.cmdq_support) {
650 pr_debug("%s: Command Queue supported depth %u\n",
651 mmc_hostname(card->host),
652 card->ext_csd.cmdq_depth);
659 static int mmc_read_ext_csd(struct mmc_card *card)
664 if (!mmc_can_ext_csd(card))
667 err = mmc_get_ext_csd(card, &ext_csd);
669 /* If the host or the card can't do the switch,
670 * fail more gracefully. */
677 * High capacity cards should have this "magic" size
678 * stored in their CSD.
680 if (card->csd.capacity == (4096 * 512)) {
681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 mmc_hostname(card->host));
684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 mmc_hostname(card->host));
692 err = mmc_decode_ext_csd(card, ext_csd);
697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
702 if (bus_width == MMC_BUS_WIDTH_1)
705 err = mmc_get_ext_csd(card, &bw_ext_csd);
709 /* only compare read only fields */
710 err = !((card->ext_csd.raw_partition_support ==
711 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
712 (card->ext_csd.raw_erased_mem_count ==
713 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
714 (card->ext_csd.rev ==
715 bw_ext_csd[EXT_CSD_REV]) &&
716 (card->ext_csd.raw_ext_csd_structure ==
717 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
718 (card->ext_csd.raw_card_type ==
719 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
720 (card->ext_csd.raw_s_a_timeout ==
721 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
722 (card->ext_csd.raw_hc_erase_gap_size ==
723 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
724 (card->ext_csd.raw_erase_timeout_mult ==
725 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
726 (card->ext_csd.raw_hc_erase_grp_size ==
727 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
728 (card->ext_csd.raw_sec_trim_mult ==
729 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
730 (card->ext_csd.raw_sec_erase_mult ==
731 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
732 (card->ext_csd.raw_sec_feature_support ==
733 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
734 (card->ext_csd.raw_trim_mult ==
735 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
736 (card->ext_csd.raw_sectors[0] ==
737 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
738 (card->ext_csd.raw_sectors[1] ==
739 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
740 (card->ext_csd.raw_sectors[2] ==
741 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
742 (card->ext_csd.raw_sectors[3] ==
743 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
744 (card->ext_csd.raw_pwr_cl_52_195 ==
745 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
746 (card->ext_csd.raw_pwr_cl_26_195 ==
747 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
748 (card->ext_csd.raw_pwr_cl_52_360 ==
749 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
750 (card->ext_csd.raw_pwr_cl_26_360 ==
751 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
752 (card->ext_csd.raw_pwr_cl_200_195 ==
753 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
754 (card->ext_csd.raw_pwr_cl_200_360 ==
755 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
756 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
758 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
759 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
760 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
761 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
771 card->raw_cid[2], card->raw_cid[3]);
772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
773 card->raw_csd[2], card->raw_csd[3]);
774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
783 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
784 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
785 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
786 card->ext_csd.device_life_time_est_typ_a,
787 card->ext_csd.device_life_time_est_typ_b);
788 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
789 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
790 card->ext_csd.enhanced_area_offset);
791 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
792 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
793 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
794 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
795 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
796 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
798 static ssize_t mmc_fwrev_show(struct device *dev,
799 struct device_attribute *attr,
802 struct mmc_card *card = mmc_dev_to_card(dev);
804 if (card->ext_csd.rev < 7) {
805 return sprintf(buf, "0x%x\n", card->cid.fwrev);
807 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
808 card->ext_csd.fwrev);
812 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
814 static ssize_t mmc_dsr_show(struct device *dev,
815 struct device_attribute *attr,
818 struct mmc_card *card = mmc_dev_to_card(dev);
819 struct mmc_host *host = card->host;
821 if (card->csd.dsr_imp && host->dsr_req)
822 return sprintf(buf, "0x%x\n", host->dsr);
824 /* return default DSR value */
825 return sprintf(buf, "0x%x\n", 0x404);
828 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
830 static struct attribute *mmc_std_attrs[] = {
834 &dev_attr_erase_size.attr,
835 &dev_attr_preferred_erase_size.attr,
836 &dev_attr_fwrev.attr,
837 &dev_attr_ffu_capable.attr,
838 &dev_attr_hwrev.attr,
839 &dev_attr_manfid.attr,
841 &dev_attr_oemid.attr,
844 &dev_attr_pre_eol_info.attr,
845 &dev_attr_life_time.attr,
846 &dev_attr_serial.attr,
847 &dev_attr_enhanced_area_offset.attr,
848 &dev_attr_enhanced_area_size.attr,
849 &dev_attr_raw_rpmb_size_mult.attr,
850 &dev_attr_rel_sectors.attr,
854 &dev_attr_cmdq_en.attr,
857 ATTRIBUTE_GROUPS(mmc_std);
859 static struct device_type mmc_type = {
860 .groups = mmc_std_groups,
864 * Select the PowerClass for the current bus width
865 * If power class is defined for 4/8 bit bus in the
866 * extended CSD register, select it by executing the
867 * mmc_switch command.
869 static int __mmc_select_powerclass(struct mmc_card *card,
870 unsigned int bus_width)
872 struct mmc_host *host = card->host;
873 struct mmc_ext_csd *ext_csd = &card->ext_csd;
874 unsigned int pwrclass_val = 0;
877 switch (1 << host->ios.vdd) {
878 case MMC_VDD_165_195:
879 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
880 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
881 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
882 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
883 ext_csd->raw_pwr_cl_52_195 :
884 ext_csd->raw_pwr_cl_ddr_52_195;
885 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
886 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
897 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
898 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
899 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
900 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
901 ext_csd->raw_pwr_cl_52_360 :
902 ext_csd->raw_pwr_cl_ddr_52_360;
903 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
904 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
905 ext_csd->raw_pwr_cl_ddr_200_360 :
906 ext_csd->raw_pwr_cl_200_360;
909 pr_warn("%s: Voltage range not supported for power class\n",
914 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
915 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
916 EXT_CSD_PWR_CL_8BIT_SHIFT;
918 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
919 EXT_CSD_PWR_CL_4BIT_SHIFT;
921 /* If the power class is different from the default value */
922 if (pwrclass_val > 0) {
923 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
926 card->ext_csd.generic_cmd6_time);
932 static int mmc_select_powerclass(struct mmc_card *card)
934 struct mmc_host *host = card->host;
935 u32 bus_width, ext_csd_bits;
938 /* Power class selection is supported for versions >= 4.0 */
939 if (!mmc_can_ext_csd(card))
942 bus_width = host->ios.bus_width;
943 /* Power class values are defined only for 4/8 bit bus */
944 if (bus_width == MMC_BUS_WIDTH_1)
947 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
949 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
950 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
952 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
953 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
955 err = __mmc_select_powerclass(card, ext_csd_bits);
957 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
958 mmc_hostname(host), 1 << bus_width, ddr);
964 * Set the bus speed for the selected speed mode.
966 static void mmc_set_bus_speed(struct mmc_card *card)
968 unsigned int max_dtr = (unsigned int)-1;
970 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
971 max_dtr > card->ext_csd.hs200_max_dtr)
972 max_dtr = card->ext_csd.hs200_max_dtr;
973 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
974 max_dtr = card->ext_csd.hs_max_dtr;
975 else if (max_dtr > card->csd.max_dtr)
976 max_dtr = card->csd.max_dtr;
978 mmc_set_clock(card->host, max_dtr);
982 * Select the bus width amoung 4-bit and 8-bit(SDR).
983 * If the bus width is changed successfully, return the selected width value.
984 * Zero is returned instead of error value if the wide width is not supported.
986 static int mmc_select_bus_width(struct mmc_card *card)
988 static unsigned ext_csd_bits[] = {
992 static unsigned bus_widths[] = {
996 struct mmc_host *host = card->host;
997 unsigned idx, bus_width = 0;
1000 if (!mmc_can_ext_csd(card) ||
1001 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1004 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1007 * Unlike SD, MMC cards dont have a configuration register to notify
1008 * supported bus width. So bus test command should be run to identify
1009 * the supported bus width or compare the ext csd values of current
1010 * bus width and ext csd values of 1 bit mode read earlier.
1012 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1014 * Host is capable of 8bit transfer, then switch
1015 * the device to work in 8bit transfer mode. If the
1016 * mmc switch command returns error then switch to
1017 * 4bit transfer mode. On success set the corresponding
1018 * bus width on the host.
1020 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1023 card->ext_csd.generic_cmd6_time);
1027 bus_width = bus_widths[idx];
1028 mmc_set_bus_width(host, bus_width);
1031 * If controller can't handle bus width test,
1032 * compare ext_csd previously read in 1 bit mode
1033 * against ext_csd at new bus width
1035 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1036 err = mmc_compare_ext_csds(card, bus_width);
1038 err = mmc_bus_test(card, bus_width);
1044 pr_warn("%s: switch to bus width %d failed\n",
1045 mmc_hostname(host), 1 << bus_width);
1053 * Switch to the high-speed mode
1055 static int mmc_select_hs(struct mmc_card *card)
1059 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1060 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1061 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1064 pr_warn("%s: switch to high-speed failed, err:%d\n",
1065 mmc_hostname(card->host), err);
1071 * Activate wide bus and DDR if supported.
1073 static int mmc_select_hs_ddr(struct mmc_card *card)
1075 struct mmc_host *host = card->host;
1076 u32 bus_width, ext_csd_bits;
1079 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1082 bus_width = host->ios.bus_width;
1083 if (bus_width == MMC_BUS_WIDTH_1)
1086 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1087 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1089 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1092 card->ext_csd.generic_cmd6_time,
1093 MMC_TIMING_MMC_DDR52,
1096 pr_err("%s: switch to bus width %d ddr failed\n",
1097 mmc_hostname(host), 1 << bus_width);
1102 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1105 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1107 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1108 * in the JEDEC spec for DDR.
1110 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1111 * host controller can support this, like some of the SDHCI
1112 * controller which connect to an eMMC device. Some of these
1113 * host controller still needs to use 1.8v vccq for supporting
1116 * So the sequence will be:
1117 * if (host and device can both support 1.2v IO)
1119 * else if (host and device can both support 1.8v IO)
1121 * so if host and device can only support 3.3v IO, this is the
1124 * WARNING: eMMC rules are NOT the same as SD DDR
1126 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1127 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1132 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1133 host->caps & MMC_CAP_1_8V_DDR)
1134 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1136 /* make sure vccq is 3.3v after switching disaster */
1138 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1143 static int mmc_select_hs400(struct mmc_card *card)
1145 struct mmc_host *host = card->host;
1146 unsigned int max_dtr;
1151 * HS400 mode requires 8-bit bus width
1153 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1154 host->ios.bus_width == MMC_BUS_WIDTH_8))
1157 /* Switch card to HS mode */
1158 val = EXT_CSD_TIMING_HS;
1159 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1160 EXT_CSD_HS_TIMING, val,
1161 card->ext_csd.generic_cmd6_time, 0,
1164 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1165 mmc_hostname(host), err);
1169 /* Set host controller to HS timing */
1170 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1172 /* Reduce frequency to HS frequency */
1173 max_dtr = card->ext_csd.hs_max_dtr;
1174 mmc_set_clock(host, max_dtr);
1176 err = mmc_switch_status(card);
1180 /* Switch card to DDR */
1181 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1183 EXT_CSD_DDR_BUS_WIDTH_8,
1184 card->ext_csd.generic_cmd6_time);
1186 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1187 mmc_hostname(host), err);
1191 /* Switch card to HS400 */
1192 val = EXT_CSD_TIMING_HS400 |
1193 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1194 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1195 EXT_CSD_HS_TIMING, val,
1196 card->ext_csd.generic_cmd6_time, 0,
1199 pr_err("%s: switch to hs400 failed, err:%d\n",
1200 mmc_hostname(host), err);
1204 /* Set host controller to HS400 timing and frequency */
1205 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1206 mmc_set_bus_speed(card);
1208 err = mmc_switch_status(card);
1215 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1220 int mmc_hs200_to_hs400(struct mmc_card *card)
1222 return mmc_select_hs400(card);
1225 int mmc_hs400_to_hs200(struct mmc_card *card)
1227 struct mmc_host *host = card->host;
1228 unsigned int max_dtr;
1232 /* Reduce frequency to HS */
1233 max_dtr = card->ext_csd.hs_max_dtr;
1234 mmc_set_clock(host, max_dtr);
1236 /* Switch HS400 to HS DDR */
1237 val = EXT_CSD_TIMING_HS;
1238 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1239 val, card->ext_csd.generic_cmd6_time, 0,
1244 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1246 err = mmc_switch_status(card);
1250 /* Switch HS DDR to HS */
1251 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1252 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1253 0, true, false, true);
1257 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1259 err = mmc_switch_status(card);
1263 /* Switch HS to HS200 */
1264 val = EXT_CSD_TIMING_HS200 |
1265 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1266 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1267 val, card->ext_csd.generic_cmd6_time, 0,
1272 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1275 * For HS200, CRC errors are not a reliable way to know the switch
1276 * failed. If there really is a problem, we would expect tuning will
1277 * fail and the result ends up the same.
1279 err = __mmc_switch_status(card, false);
1283 mmc_set_bus_speed(card);
1288 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1293 static void mmc_select_driver_type(struct mmc_card *card)
1295 int card_drv_type, drive_strength, drv_type = 0;
1296 int fixed_drv_type = card->host->fixed_drv_type;
1298 card_drv_type = card->ext_csd.raw_driver_strength |
1299 mmc_driver_type_mask(0);
1301 if (fixed_drv_type >= 0)
1302 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1303 ? fixed_drv_type : 0;
1305 drive_strength = mmc_select_drive_strength(card,
1306 card->ext_csd.hs200_max_dtr,
1307 card_drv_type, &drv_type);
1309 card->drive_strength = drive_strength;
1312 mmc_set_driver_type(card->host, drv_type);
1315 static int mmc_select_hs400es(struct mmc_card *card)
1317 struct mmc_host *host = card->host;
1321 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1326 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1327 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1329 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1330 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1332 /* If fails try again during next card power cycle */
1336 err = mmc_select_bus_width(card);
1340 /* Switch card to HS mode */
1341 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1342 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1343 card->ext_csd.generic_cmd6_time, 0,
1346 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1347 mmc_hostname(host), err);
1351 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1352 err = mmc_switch_status(card);
1356 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1358 /* Switch card to DDR with strobe bit */
1359 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1360 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1363 card->ext_csd.generic_cmd6_time);
1365 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1366 mmc_hostname(host), err);
1370 mmc_select_driver_type(card);
1372 /* Switch card to HS400 */
1373 val = EXT_CSD_TIMING_HS400 |
1374 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1375 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1376 EXT_CSD_HS_TIMING, val,
1377 card->ext_csd.generic_cmd6_time, 0,
1380 pr_err("%s: switch to hs400es failed, err:%d\n",
1381 mmc_hostname(host), err);
1385 /* Set host controller to HS400 timing and frequency */
1386 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1388 /* Controller enable enhanced strobe function */
1389 host->ios.enhanced_strobe = true;
1390 if (host->ops->hs400_enhanced_strobe)
1391 host->ops->hs400_enhanced_strobe(host, &host->ios);
1393 err = mmc_switch_status(card);
1400 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1406 * For device supporting HS200 mode, the following sequence
1407 * should be done before executing the tuning process.
1408 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1409 * 2. switch to HS200 mode
1410 * 3. set the clock to > 52Mhz and <=200MHz
1412 static int mmc_select_hs200(struct mmc_card *card)
1414 struct mmc_host *host = card->host;
1415 unsigned int old_timing, old_signal_voltage;
1419 old_signal_voltage = host->ios.signal_voltage;
1420 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1421 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1423 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1424 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1426 /* If fails try again during next card power cycle */
1430 mmc_select_driver_type(card);
1433 * Set the bus width(4 or 8) with host's support and
1434 * switch to HS200 mode if bus width is set successfully.
1436 err = mmc_select_bus_width(card);
1438 val = EXT_CSD_TIMING_HS200 |
1439 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1440 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1441 EXT_CSD_HS_TIMING, val,
1442 card->ext_csd.generic_cmd6_time, 0,
1446 old_timing = host->ios.timing;
1447 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1450 * For HS200, CRC errors are not a reliable way to know the
1451 * switch failed. If there really is a problem, we would expect
1452 * tuning will fail and the result ends up the same.
1454 err = __mmc_switch_status(card, false);
1457 * mmc_select_timing() assumes timing has not changed if
1458 * it is a switch error.
1460 if (err == -EBADMSG)
1461 mmc_set_timing(host, old_timing);
1465 /* fall back to the old signal voltage, if fails report error */
1466 if (mmc_set_signal_voltage(host, old_signal_voltage))
1469 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1476 * Activate High Speed, HS200 or HS400ES mode if supported.
1478 static int mmc_select_timing(struct mmc_card *card)
1482 if (!mmc_can_ext_csd(card))
1485 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1486 err = mmc_select_hs400es(card);
1487 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1488 err = mmc_select_hs200(card);
1489 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1490 err = mmc_select_hs(card);
1492 if (err && err != -EBADMSG)
1497 * Set the bus speed to the selected bus timing.
1498 * If timing is not selected, backward compatible is the default.
1500 mmc_set_bus_speed(card);
1505 * Execute tuning sequence to seek the proper bus operating
1506 * conditions for HS200 and HS400, which sends CMD21 to the device.
1508 static int mmc_hs200_tuning(struct mmc_card *card)
1510 struct mmc_host *host = card->host;
1513 * Timing should be adjusted to the HS400 target
1514 * operation frequency for tuning process
1516 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1517 host->ios.bus_width == MMC_BUS_WIDTH_8)
1518 if (host->ops->prepare_hs400_tuning)
1519 host->ops->prepare_hs400_tuning(host, &host->ios);
1521 return mmc_execute_tuning(card);
1525 * Handle the detection and initialisation of a card.
1527 * In the case of a resume, "oldcard" will contain the card
1528 * we're trying to reinitialise.
1530 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1531 struct mmc_card *oldcard)
1533 struct mmc_card *card;
1538 WARN_ON(!host->claimed);
1540 /* Set correct bus mode for MMC before attempting init */
1541 if (!mmc_host_is_spi(host))
1542 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1545 * Since we're changing the OCR value, we seem to
1546 * need to tell some cards to go back to the idle
1547 * state. We wait 1ms to give cards time to
1549 * mmc_go_idle is needed for eMMC that are asleep
1553 /* The extra bit indicates that we support high capacity */
1554 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1559 * For SPI, enable CRC as appropriate.
1561 if (mmc_host_is_spi(host)) {
1562 err = mmc_spi_set_crc(host, use_spi_crc);
1568 * Fetch CID from card.
1570 err = mmc_send_cid(host, cid);
1575 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1583 * Allocate card structure.
1585 card = mmc_alloc_card(host, &mmc_type);
1587 err = PTR_ERR(card);
1592 card->type = MMC_TYPE_MMC;
1594 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1598 * Call the optional HC's init_card function to handle quirks.
1600 if (host->ops->init_card)
1601 host->ops->init_card(host, card);
1604 * For native busses: set card RCA and quit open drain mode.
1606 if (!mmc_host_is_spi(host)) {
1607 err = mmc_set_relative_addr(card);
1611 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1616 * Fetch CSD from card.
1618 err = mmc_send_csd(card, card->raw_csd);
1622 err = mmc_decode_csd(card);
1625 err = mmc_decode_cid(card);
1631 * handling only for cards supporting DSR and hosts requesting
1634 if (card->csd.dsr_imp && host->dsr_req)
1638 * Select card, as all following commands rely on that.
1640 if (!mmc_host_is_spi(host)) {
1641 err = mmc_select_card(card);
1647 /* Read extended CSD. */
1648 err = mmc_read_ext_csd(card);
1653 * If doing byte addressing, check if required to do sector
1654 * addressing. Handle the case of <2GB cards needing sector
1655 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1656 * ocr register has bit 30 set for sector addressing.
1659 mmc_card_set_blockaddr(card);
1661 /* Erase size depends on CSD and Extended CSD */
1662 mmc_set_erase_size(card);
1665 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1666 if (card->ext_csd.rev >= 3) {
1667 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1668 EXT_CSD_ERASE_GROUP_DEF, 1,
1669 card->ext_csd.generic_cmd6_time);
1671 if (err && err != -EBADMSG)
1677 * Just disable enhanced area off & sz
1678 * will try to enable ERASE_GROUP_DEF
1679 * during next time reinit
1681 card->ext_csd.enhanced_area_offset = -EINVAL;
1682 card->ext_csd.enhanced_area_size = -EINVAL;
1684 card->ext_csd.erase_group_def = 1;
1686 * enable ERASE_GRP_DEF successfully.
1687 * This will affect the erase size, so
1688 * here need to reset erase size
1690 mmc_set_erase_size(card);
1695 * Ensure eMMC user default partition is enabled
1697 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1698 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1699 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1700 card->ext_csd.part_config,
1701 card->ext_csd.part_time);
1702 if (err && err != -EBADMSG)
1707 * Enable power_off_notification byte in the ext_csd register
1709 if (card->ext_csd.rev >= 6) {
1710 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1711 EXT_CSD_POWER_OFF_NOTIFICATION,
1713 card->ext_csd.generic_cmd6_time);
1714 if (err && err != -EBADMSG)
1718 * The err can be -EBADMSG or 0,
1719 * so check for success and update the flag
1722 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1726 * Select timing interface
1728 err = mmc_select_timing(card);
1732 if (mmc_card_hs200(card)) {
1733 err = mmc_hs200_tuning(card);
1737 err = mmc_select_hs400(card);
1740 } else if (!mmc_card_hs400es(card)) {
1741 /* Select the desired bus width optionally */
1742 err = mmc_select_bus_width(card);
1743 if (err > 0 && mmc_card_hs(card)) {
1744 err = mmc_select_hs_ddr(card);
1751 * Choose the power class with selected bus interface
1753 mmc_select_powerclass(card);
1756 * Enable HPI feature (if supported)
1758 if (card->ext_csd.hpi) {
1759 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1760 EXT_CSD_HPI_MGMT, 1,
1761 card->ext_csd.generic_cmd6_time);
1762 if (err && err != -EBADMSG)
1765 pr_warn("%s: Enabling HPI failed\n",
1766 mmc_hostname(card->host));
1769 card->ext_csd.hpi_en = 1;
1773 * If cache size is higher than 0, this indicates
1774 * the existence of cache and it can be turned on.
1776 if (!mmc_card_broken_hpi(card) &&
1777 card->ext_csd.cache_size > 0) {
1778 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1779 EXT_CSD_CACHE_CTRL, 1,
1780 card->ext_csd.generic_cmd6_time);
1781 if (err && err != -EBADMSG)
1785 * Only if no error, cache is turned on successfully.
1788 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1789 mmc_hostname(card->host), err);
1790 card->ext_csd.cache_ctrl = 0;
1793 card->ext_csd.cache_ctrl = 1;
1798 * Enable Command Queue if supported. Note that Packed Commands cannot
1799 * be used with Command Queue.
1801 card->ext_csd.cmdq_en = false;
1802 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1803 err = mmc_cmdq_enable(card);
1804 if (err && err != -EBADMSG)
1807 pr_warn("%s: Enabling CMDQ failed\n",
1808 mmc_hostname(card->host));
1809 card->ext_csd.cmdq_support = false;
1810 card->ext_csd.cmdq_depth = 0;
1815 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1816 * disabled for a time, so a flag is needed to indicate to re-enable the
1819 card->reenable_cmdq = card->ext_csd.cmdq_en;
1821 if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1822 err = host->cqe_ops->cqe_enable(host, card);
1824 pr_err("%s: Failed to enable CQE, error %d\n",
1825 mmc_hostname(host), err);
1827 host->cqe_enabled = true;
1828 pr_info("%s: Command Queue Engine enabled\n",
1829 mmc_hostname(host));
1840 mmc_remove_card(card);
1845 static int mmc_can_sleep(struct mmc_card *card)
1847 return (card && card->ext_csd.rev >= 3);
1850 static int mmc_sleep(struct mmc_host *host)
1852 struct mmc_command cmd = {};
1853 struct mmc_card *card = host->card;
1854 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1857 /* Re-tuning can't be done once the card is deselected */
1858 mmc_retune_hold(host);
1860 err = mmc_deselect_cards(host);
1864 cmd.opcode = MMC_SLEEP_AWAKE;
1865 cmd.arg = card->rca << 16;
1869 * If the max_busy_timeout of the host is specified, validate it against
1870 * the sleep cmd timeout. A failure means we need to prevent the host
1871 * from doing hw busy detection, which is done by converting to a R1
1872 * response instead of a R1B.
1874 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1875 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1877 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1878 cmd.busy_timeout = timeout_ms;
1881 err = mmc_wait_for_cmd(host, &cmd, 0);
1886 * If the host does not wait while the card signals busy, then we will
1887 * will have to wait the sleep/awake timeout. Note, we cannot use the
1888 * SEND_STATUS command to poll the status because that command (and most
1889 * others) is invalid while the card sleeps.
1891 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1892 mmc_delay(timeout_ms);
1895 mmc_retune_release(host);
1899 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1902 mmc_card_mmc(card) &&
1903 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1906 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1908 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1911 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1912 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1913 timeout = card->ext_csd.power_off_longtime;
1915 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1916 EXT_CSD_POWER_OFF_NOTIFICATION,
1917 notify_type, timeout, 0, true, false, false);
1919 pr_err("%s: Power Off Notification timed out, %u\n",
1920 mmc_hostname(card->host), timeout);
1922 /* Disable the power off notification after the switch operation. */
1923 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1929 * Host is being removed. Free up the current card.
1931 static void mmc_remove(struct mmc_host *host)
1933 mmc_remove_card(host->card);
1938 * Card detection - card is alive.
1940 static int mmc_alive(struct mmc_host *host)
1942 return mmc_send_status(host->card, NULL);
1946 * Card detection callback from host.
1948 static void mmc_detect(struct mmc_host *host)
1952 mmc_get_card(host->card, NULL);
1955 * Just check if our card has been removed.
1957 err = _mmc_detect_card_removed(host);
1959 mmc_put_card(host->card, NULL);
1964 mmc_claim_host(host);
1965 mmc_detach_bus(host);
1966 mmc_power_off(host);
1967 mmc_release_host(host);
1971 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1974 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1975 EXT_CSD_POWER_OFF_LONG;
1977 mmc_claim_host(host);
1979 if (mmc_card_suspended(host->card))
1982 if (mmc_card_doing_bkops(host->card)) {
1983 err = mmc_stop_bkops(host->card);
1988 err = mmc_flush_cache(host->card);
1992 if (mmc_can_poweroff_notify(host->card) &&
1993 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1994 err = mmc_poweroff_notify(host->card, notify_type);
1995 else if (mmc_can_sleep(host->card))
1996 err = mmc_sleep(host);
1997 else if (!mmc_host_is_spi(host))
1998 err = mmc_deselect_cards(host);
2001 mmc_power_off(host);
2002 mmc_card_set_suspended(host->card);
2005 mmc_release_host(host);
2012 static int mmc_suspend(struct mmc_host *host)
2016 err = _mmc_suspend(host, true);
2018 pm_runtime_disable(&host->card->dev);
2019 pm_runtime_set_suspended(&host->card->dev);
2026 * This function tries to determine if the same card is still present
2027 * and, if so, restore all state to it.
2029 static int _mmc_resume(struct mmc_host *host)
2033 mmc_claim_host(host);
2035 if (!mmc_card_suspended(host->card))
2038 mmc_power_up(host, host->card->ocr);
2039 err = mmc_init_card(host, host->card->ocr, host->card);
2040 mmc_card_clr_suspended(host->card);
2043 mmc_release_host(host);
2050 static int mmc_shutdown(struct mmc_host *host)
2055 * In a specific case for poweroff notify, we need to resume the card
2056 * before we can shutdown it properly.
2058 if (mmc_can_poweroff_notify(host->card) &&
2059 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2060 err = _mmc_resume(host);
2063 err = _mmc_suspend(host, false);
2069 * Callback for resume.
2071 static int mmc_resume(struct mmc_host *host)
2073 pm_runtime_enable(&host->card->dev);
2078 * Callback for runtime_suspend.
2080 static int mmc_runtime_suspend(struct mmc_host *host)
2084 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2087 err = _mmc_suspend(host, true);
2089 pr_err("%s: error %d doing aggressive suspend\n",
2090 mmc_hostname(host), err);
2096 * Callback for runtime_resume.
2098 static int mmc_runtime_resume(struct mmc_host *host)
2102 err = _mmc_resume(host);
2103 if (err && err != -ENOMEDIUM)
2104 pr_err("%s: error %d doing runtime resume\n",
2105 mmc_hostname(host), err);
2110 static int mmc_can_reset(struct mmc_card *card)
2114 rst_n_function = card->ext_csd.rst_n_function;
2115 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2120 static int mmc_reset(struct mmc_host *host)
2122 struct mmc_card *card = host->card;
2125 * In the case of recovery, we can't expect flushing the cache to work
2126 * always, but we have a go and ignore errors.
2128 mmc_flush_cache(host->card);
2130 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2131 mmc_can_reset(card)) {
2132 /* If the card accept RST_n signal, send it. */
2133 mmc_set_clock(host, host->f_init);
2134 host->ops->hw_reset(host);
2135 /* Set initial state and call mmc_set_ios */
2136 mmc_set_initial_state(host);
2138 /* Do a brute force power cycle */
2139 mmc_power_cycle(host, card->ocr);
2140 mmc_pwrseq_reset(host);
2142 return mmc_init_card(host, card->ocr, card);
2145 static const struct mmc_bus_ops mmc_ops = {
2146 .remove = mmc_remove,
2147 .detect = mmc_detect,
2148 .suspend = mmc_suspend,
2149 .resume = mmc_resume,
2150 .runtime_suspend = mmc_runtime_suspend,
2151 .runtime_resume = mmc_runtime_resume,
2153 .shutdown = mmc_shutdown,
2158 * Starting point for MMC card init.
2160 int mmc_attach_mmc(struct mmc_host *host)
2165 WARN_ON(!host->claimed);
2167 /* Set correct bus mode for MMC before attempting attach */
2168 if (!mmc_host_is_spi(host))
2169 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2171 err = mmc_send_op_cond(host, 0, &ocr);
2175 mmc_attach_bus(host, &mmc_ops);
2176 if (host->ocr_avail_mmc)
2177 host->ocr_avail = host->ocr_avail_mmc;
2180 * We need to get OCR a different way for SPI.
2182 if (mmc_host_is_spi(host)) {
2183 err = mmc_spi_read_ocr(host, 1, &ocr);
2188 rocr = mmc_select_voltage(host, ocr);
2191 * Can we support the voltage of the card?
2199 * Detect and init the card.
2201 err = mmc_init_card(host, rocr, NULL);
2205 mmc_release_host(host);
2206 err = mmc_add_card(host->card);
2210 mmc_claim_host(host);
2214 mmc_remove_card(host->card);
2215 mmc_claim_host(host);
2218 mmc_detach_bus(host);
2220 pr_err("%s: error %d whilst initialising MMC card\n",
2221 mmc_hostname(host), err);