2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
42 #include <net/strparser.h>
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46 unsigned int recursion_level)
48 int start = skb_headlen(skb);
49 int i, chunk = start - offset;
50 struct sk_buff *frag_iter;
53 if (unlikely(recursion_level >= 24))
66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69 WARN_ON(start > offset + len);
71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
85 if (unlikely(skb_has_frag_list(skb))) {
86 skb_walk_frags(skb, frag_iter) {
89 WARN_ON(start > offset + len);
91 end = start + frag_iter->len;
96 ret = __skb_nsg(frag_iter, offset - start, chunk,
98 if (unlikely(ret < 0))
113 /* Return the number of scatterlist elements required to completely map the
114 * skb, or -EMSGSIZE if the recursion depth is exceeded.
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
118 return __skb_nsg(skb, offset, len, 0);
121 static int padding_length(struct tls_sw_context_rx *ctx,
122 struct tls_prot_info *prot, struct sk_buff *skb)
124 struct strp_msg *rxm = strp_msg(skb);
127 /* Determine zero-padding length */
128 if (prot->version == TLS_1_3_VERSION) {
129 char content_type = 0;
133 while (content_type == 0) {
134 if (back > rxm->full_len - prot->prepend_size)
136 err = skb_copy_bits(skb,
137 rxm->offset + rxm->full_len - back,
146 ctx->control = content_type;
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
153 struct aead_request *aead_req = (struct aead_request *)req;
154 struct scatterlist *sgout = aead_req->dst;
155 struct scatterlist *sgin = aead_req->src;
156 struct tls_sw_context_rx *ctx;
157 struct tls_context *tls_ctx;
158 struct tls_prot_info *prot;
159 struct scatterlist *sg;
164 skb = (struct sk_buff *)req->data;
165 tls_ctx = tls_get_ctx(skb->sk);
166 ctx = tls_sw_ctx_rx(tls_ctx);
167 prot = &tls_ctx->prot_info;
169 /* Propagate if there was an err */
171 ctx->async_wait.err = err;
172 tls_err_abort(skb->sk, err);
174 struct strp_msg *rxm = strp_msg(skb);
177 pad = padding_length(ctx, prot, skb);
179 ctx->async_wait.err = pad;
180 tls_err_abort(skb->sk, pad);
182 rxm->full_len -= pad;
183 rxm->offset += prot->prepend_size;
184 rxm->full_len -= prot->overhead_size;
188 /* After using skb->sk to propagate sk through crypto async callback
189 * we need to NULL it again.
194 /* Free the destination pages if skb was not decrypted inplace */
196 /* Skip the first S/G entry as it points to AAD */
197 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
200 put_page(sg_page(sg));
206 pending = atomic_dec_return(&ctx->decrypt_pending);
208 if (!pending && READ_ONCE(ctx->async_notify))
209 complete(&ctx->async_wait.completion);
212 static int tls_do_decryption(struct sock *sk,
214 struct scatterlist *sgin,
215 struct scatterlist *sgout,
218 struct aead_request *aead_req,
221 struct tls_context *tls_ctx = tls_get_ctx(sk);
222 struct tls_prot_info *prot = &tls_ctx->prot_info;
223 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
226 aead_request_set_tfm(aead_req, ctx->aead_recv);
227 aead_request_set_ad(aead_req, prot->aad_size);
228 aead_request_set_crypt(aead_req, sgin, sgout,
229 data_len + prot->tag_size,
233 /* Using skb->sk to push sk through to crypto async callback
234 * handler. This allows propagating errors up to the socket
235 * if needed. It _must_ be cleared in the async handler
236 * before consume_skb is called. We _know_ skb->sk is NULL
237 * because it is a clone from strparser.
240 aead_request_set_callback(aead_req,
241 CRYPTO_TFM_REQ_MAY_BACKLOG,
242 tls_decrypt_done, skb);
243 atomic_inc(&ctx->decrypt_pending);
245 aead_request_set_callback(aead_req,
246 CRYPTO_TFM_REQ_MAY_BACKLOG,
247 crypto_req_done, &ctx->async_wait);
250 ret = crypto_aead_decrypt(aead_req);
251 if (ret == -EINPROGRESS) {
255 ret = crypto_wait_req(ret, &ctx->async_wait);
259 atomic_dec(&ctx->decrypt_pending);
264 static void tls_trim_both_msgs(struct sock *sk, int target_size)
266 struct tls_context *tls_ctx = tls_get_ctx(sk);
267 struct tls_prot_info *prot = &tls_ctx->prot_info;
268 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
269 struct tls_rec *rec = ctx->open_rec;
271 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
273 target_size += prot->overhead_size;
274 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
277 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
279 struct tls_context *tls_ctx = tls_get_ctx(sk);
280 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
281 struct tls_rec *rec = ctx->open_rec;
282 struct sk_msg *msg_en = &rec->msg_encrypted;
284 return sk_msg_alloc(sk, msg_en, len, 0);
287 static int tls_clone_plaintext_msg(struct sock *sk, int required)
289 struct tls_context *tls_ctx = tls_get_ctx(sk);
290 struct tls_prot_info *prot = &tls_ctx->prot_info;
291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 struct tls_rec *rec = ctx->open_rec;
293 struct sk_msg *msg_pl = &rec->msg_plaintext;
294 struct sk_msg *msg_en = &rec->msg_encrypted;
297 /* We add page references worth len bytes from encrypted sg
298 * at the end of plaintext sg. It is guaranteed that msg_en
299 * has enough required room (ensured by caller).
301 len = required - msg_pl->sg.size;
303 /* Skip initial bytes in msg_en's data to be able to use
304 * same offset of both plain and encrypted data.
306 skip = prot->prepend_size + msg_pl->sg.size;
308 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
311 static struct tls_rec *tls_get_rec(struct sock *sk)
313 struct tls_context *tls_ctx = tls_get_ctx(sk);
314 struct tls_prot_info *prot = &tls_ctx->prot_info;
315 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
316 struct sk_msg *msg_pl, *msg_en;
320 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
322 rec = kzalloc(mem_size, sk->sk_allocation);
326 msg_pl = &rec->msg_plaintext;
327 msg_en = &rec->msg_encrypted;
332 sg_init_table(rec->sg_aead_in, 2);
333 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
334 sg_unmark_end(&rec->sg_aead_in[1]);
336 sg_init_table(rec->sg_aead_out, 2);
337 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
338 sg_unmark_end(&rec->sg_aead_out[1]);
343 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
345 sk_msg_free(sk, &rec->msg_encrypted);
346 sk_msg_free(sk, &rec->msg_plaintext);
350 static void tls_free_open_rec(struct sock *sk)
352 struct tls_context *tls_ctx = tls_get_ctx(sk);
353 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
354 struct tls_rec *rec = ctx->open_rec;
357 tls_free_rec(sk, rec);
358 ctx->open_rec = NULL;
362 int tls_tx_records(struct sock *sk, int flags)
364 struct tls_context *tls_ctx = tls_get_ctx(sk);
365 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
366 struct tls_rec *rec, *tmp;
367 struct sk_msg *msg_en;
368 int tx_flags, rc = 0;
370 if (tls_is_partially_sent_record(tls_ctx)) {
371 rec = list_first_entry(&ctx->tx_list,
372 struct tls_rec, list);
375 tx_flags = rec->tx_flags;
379 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
383 /* Full record has been transmitted.
384 * Remove the head of tx_list
386 list_del(&rec->list);
387 sk_msg_free(sk, &rec->msg_plaintext);
391 /* Tx all ready records */
392 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
393 if (READ_ONCE(rec->tx_ready)) {
395 tx_flags = rec->tx_flags;
399 msg_en = &rec->msg_encrypted;
400 rc = tls_push_sg(sk, tls_ctx,
401 &msg_en->sg.data[msg_en->sg.curr],
406 list_del(&rec->list);
407 sk_msg_free(sk, &rec->msg_plaintext);
415 if (rc < 0 && rc != -EAGAIN)
416 tls_err_abort(sk, EBADMSG);
421 static void tls_encrypt_done(struct crypto_async_request *req, int err)
423 struct aead_request *aead_req = (struct aead_request *)req;
424 struct sock *sk = req->data;
425 struct tls_context *tls_ctx = tls_get_ctx(sk);
426 struct tls_prot_info *prot = &tls_ctx->prot_info;
427 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
428 struct scatterlist *sge;
429 struct sk_msg *msg_en;
434 rec = container_of(aead_req, struct tls_rec, aead_req);
435 msg_en = &rec->msg_encrypted;
437 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
438 sge->offset -= prot->prepend_size;
439 sge->length += prot->prepend_size;
441 /* Check if error is previously set on socket */
442 if (err || sk->sk_err) {
445 /* If err is already set on socket, return the same code */
447 ctx->async_wait.err = sk->sk_err;
449 ctx->async_wait.err = err;
450 tls_err_abort(sk, err);
455 struct tls_rec *first_rec;
457 /* Mark the record as ready for transmission */
458 smp_store_mb(rec->tx_ready, true);
460 /* If received record is at head of tx_list, schedule tx */
461 first_rec = list_first_entry(&ctx->tx_list,
462 struct tls_rec, list);
463 if (rec == first_rec)
467 pending = atomic_dec_return(&ctx->encrypt_pending);
469 if (!pending && READ_ONCE(ctx->async_notify))
470 complete(&ctx->async_wait.completion);
475 /* Schedule the transmission */
476 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
477 schedule_delayed_work(&ctx->tx_work.work, 1);
480 static int tls_do_encryption(struct sock *sk,
481 struct tls_context *tls_ctx,
482 struct tls_sw_context_tx *ctx,
483 struct aead_request *aead_req,
484 size_t data_len, u32 start)
486 struct tls_prot_info *prot = &tls_ctx->prot_info;
487 struct tls_rec *rec = ctx->open_rec;
488 struct sk_msg *msg_en = &rec->msg_encrypted;
489 struct scatterlist *sge = sk_msg_elem(msg_en, start);
490 int rc, iv_offset = 0;
492 /* For CCM based ciphers, first byte of IV is a constant */
493 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
494 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
498 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
499 prot->iv_size + prot->salt_size);
501 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
503 sge->offset += prot->prepend_size;
504 sge->length -= prot->prepend_size;
506 msg_en->sg.curr = start;
508 aead_request_set_tfm(aead_req, ctx->aead_send);
509 aead_request_set_ad(aead_req, prot->aad_size);
510 aead_request_set_crypt(aead_req, rec->sg_aead_in,
512 data_len, rec->iv_data);
514 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
515 tls_encrypt_done, sk);
517 /* Add the record in tx_list */
518 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
519 atomic_inc(&ctx->encrypt_pending);
521 rc = crypto_aead_encrypt(aead_req);
522 if (!rc || rc != -EINPROGRESS) {
523 atomic_dec(&ctx->encrypt_pending);
524 sge->offset -= prot->prepend_size;
525 sge->length += prot->prepend_size;
529 WRITE_ONCE(rec->tx_ready, true);
530 } else if (rc != -EINPROGRESS) {
531 list_del(&rec->list);
535 /* Unhook the record from context if encryption is not failure */
536 ctx->open_rec = NULL;
537 tls_advance_record_sn(sk, &tls_ctx->tx, prot->version);
541 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
542 struct tls_rec **to, struct sk_msg *msg_opl,
543 struct sk_msg *msg_oen, u32 split_point,
544 u32 tx_overhead_size, u32 *orig_end)
546 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
547 struct scatterlist *sge, *osge, *nsge;
548 u32 orig_size = msg_opl->sg.size;
549 struct scatterlist tmp = { };
550 struct sk_msg *msg_npl;
554 new = tls_get_rec(sk);
557 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
558 tx_overhead_size, 0);
560 tls_free_rec(sk, new);
564 *orig_end = msg_opl->sg.end;
565 i = msg_opl->sg.start;
566 sge = sk_msg_elem(msg_opl, i);
567 while (apply && sge->length) {
568 if (sge->length > apply) {
569 u32 len = sge->length - apply;
571 get_page(sg_page(sge));
572 sg_set_page(&tmp, sg_page(sge), len,
573 sge->offset + apply);
578 apply -= sge->length;
579 bytes += sge->length;
582 sk_msg_iter_var_next(i);
583 if (i == msg_opl->sg.end)
585 sge = sk_msg_elem(msg_opl, i);
589 msg_opl->sg.curr = i;
590 msg_opl->sg.copybreak = 0;
591 msg_opl->apply_bytes = 0;
592 msg_opl->sg.size = bytes;
594 msg_npl = &new->msg_plaintext;
595 msg_npl->apply_bytes = apply;
596 msg_npl->sg.size = orig_size - bytes;
598 j = msg_npl->sg.start;
599 nsge = sk_msg_elem(msg_npl, j);
601 memcpy(nsge, &tmp, sizeof(*nsge));
602 sk_msg_iter_var_next(j);
603 nsge = sk_msg_elem(msg_npl, j);
606 osge = sk_msg_elem(msg_opl, i);
607 while (osge->length) {
608 memcpy(nsge, osge, sizeof(*nsge));
610 sk_msg_iter_var_next(i);
611 sk_msg_iter_var_next(j);
614 osge = sk_msg_elem(msg_opl, i);
615 nsge = sk_msg_elem(msg_npl, j);
619 msg_npl->sg.curr = j;
620 msg_npl->sg.copybreak = 0;
626 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
627 struct tls_rec *from, u32 orig_end)
629 struct sk_msg *msg_npl = &from->msg_plaintext;
630 struct sk_msg *msg_opl = &to->msg_plaintext;
631 struct scatterlist *osge, *nsge;
635 sk_msg_iter_var_prev(i);
636 j = msg_npl->sg.start;
638 osge = sk_msg_elem(msg_opl, i);
639 nsge = sk_msg_elem(msg_npl, j);
641 if (sg_page(osge) == sg_page(nsge) &&
642 osge->offset + osge->length == nsge->offset) {
643 osge->length += nsge->length;
644 put_page(sg_page(nsge));
647 msg_opl->sg.end = orig_end;
648 msg_opl->sg.curr = orig_end;
649 msg_opl->sg.copybreak = 0;
650 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
651 msg_opl->sg.size += msg_npl->sg.size;
653 sk_msg_free(sk, &to->msg_encrypted);
654 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
659 static int tls_push_record(struct sock *sk, int flags,
660 unsigned char record_type)
662 struct tls_context *tls_ctx = tls_get_ctx(sk);
663 struct tls_prot_info *prot = &tls_ctx->prot_info;
664 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
665 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
666 u32 i, split_point, uninitialized_var(orig_end);
667 struct sk_msg *msg_pl, *msg_en;
668 struct aead_request *req;
675 msg_pl = &rec->msg_plaintext;
676 msg_en = &rec->msg_encrypted;
678 split_point = msg_pl->apply_bytes;
679 split = split_point && split_point < msg_pl->sg.size;
681 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
682 split_point, prot->overhead_size,
686 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
687 prot->overhead_size);
690 rec->tx_flags = flags;
691 req = &rec->aead_req;
694 sk_msg_iter_var_prev(i);
696 rec->content_type = record_type;
697 if (prot->version == TLS_1_3_VERSION) {
698 /* Add content type to end of message. No padding added */
699 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
700 sg_mark_end(&rec->sg_content_type);
701 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
702 &rec->sg_content_type);
704 sg_mark_end(sk_msg_elem(msg_pl, i));
707 i = msg_pl->sg.start;
708 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
709 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
712 sk_msg_iter_var_prev(i);
713 sg_mark_end(sk_msg_elem(msg_en, i));
715 i = msg_en->sg.start;
716 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
718 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
719 tls_ctx->tx.rec_seq, prot->rec_seq_size,
720 record_type, prot->version);
722 tls_fill_prepend(tls_ctx,
723 page_address(sg_page(&msg_en->sg.data[i])) +
724 msg_en->sg.data[i].offset,
725 msg_pl->sg.size + prot->tail_size,
726 record_type, prot->version);
728 tls_ctx->pending_open_record_frags = false;
730 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
731 msg_pl->sg.size + prot->tail_size, i);
733 if (rc != -EINPROGRESS) {
734 tls_err_abort(sk, EBADMSG);
736 tls_ctx->pending_open_record_frags = true;
737 tls_merge_open_record(sk, rec, tmp, orig_end);
740 ctx->async_capable = 1;
743 msg_pl = &tmp->msg_plaintext;
744 msg_en = &tmp->msg_encrypted;
745 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
746 tls_ctx->pending_open_record_frags = true;
750 return tls_tx_records(sk, flags);
753 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
754 bool full_record, u8 record_type,
755 size_t *copied, int flags)
757 struct tls_context *tls_ctx = tls_get_ctx(sk);
758 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
759 struct sk_msg msg_redir = { };
760 struct sk_psock *psock;
761 struct sock *sk_redir;
767 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
768 psock = sk_psock_get(sk);
769 if (!psock || !policy)
770 return tls_push_record(sk, flags, record_type);
772 enospc = sk_msg_full(msg);
773 if (psock->eval == __SK_NONE) {
774 delta = msg->sg.size;
775 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
776 if (delta < msg->sg.size)
777 delta -= msg->sg.size;
781 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
782 !enospc && !full_record) {
788 if (msg->apply_bytes && msg->apply_bytes < send)
789 send = msg->apply_bytes;
791 switch (psock->eval) {
793 err = tls_push_record(sk, flags, record_type);
795 *copied -= sk_msg_free(sk, msg);
796 tls_free_open_rec(sk);
801 sk_redir = psock->sk_redir;
802 memcpy(&msg_redir, msg, sizeof(*msg));
803 if (msg->apply_bytes < send)
804 msg->apply_bytes = 0;
806 msg->apply_bytes -= send;
807 sk_msg_return_zero(sk, msg, send);
808 msg->sg.size -= send;
810 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
813 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
816 if (msg->sg.size == 0)
817 tls_free_open_rec(sk);
821 sk_msg_free_partial(sk, msg, send);
822 if (msg->apply_bytes < send)
823 msg->apply_bytes = 0;
825 msg->apply_bytes -= send;
826 if (msg->sg.size == 0)
827 tls_free_open_rec(sk);
828 *copied -= (send + delta);
833 bool reset_eval = !ctx->open_rec;
837 msg = &rec->msg_plaintext;
838 if (!msg->apply_bytes)
842 psock->eval = __SK_NONE;
843 if (psock->sk_redir) {
844 sock_put(psock->sk_redir);
845 psock->sk_redir = NULL;
852 sk_psock_put(sk, psock);
856 static int tls_sw_push_pending_record(struct sock *sk, int flags)
858 struct tls_context *tls_ctx = tls_get_ctx(sk);
859 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
860 struct tls_rec *rec = ctx->open_rec;
861 struct sk_msg *msg_pl;
867 msg_pl = &rec->msg_plaintext;
868 copied = msg_pl->sg.size;
872 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
876 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
878 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
879 struct tls_context *tls_ctx = tls_get_ctx(sk);
880 struct tls_prot_info *prot = &tls_ctx->prot_info;
881 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
882 bool async_capable = ctx->async_capable;
883 unsigned char record_type = TLS_RECORD_TYPE_DATA;
884 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
885 bool eor = !(msg->msg_flags & MSG_MORE);
886 size_t try_to_copy, copied = 0;
887 struct sk_msg *msg_pl, *msg_en;
897 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
902 /* Wait till there is any pending write on socket */
903 if (unlikely(sk->sk_write_pending)) {
904 ret = wait_on_pending_writer(sk, &timeo);
909 if (unlikely(msg->msg_controllen)) {
910 ret = tls_proccess_cmsg(sk, msg, &record_type);
912 if (ret == -EINPROGRESS)
914 else if (ret != -EAGAIN)
919 while (msg_data_left(msg)) {
928 rec = ctx->open_rec = tls_get_rec(sk);
934 msg_pl = &rec->msg_plaintext;
935 msg_en = &rec->msg_encrypted;
937 orig_size = msg_pl->sg.size;
939 try_to_copy = msg_data_left(msg);
940 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
941 if (try_to_copy >= record_room) {
942 try_to_copy = record_room;
946 required_size = msg_pl->sg.size + try_to_copy +
949 if (!sk_stream_memory_free(sk))
950 goto wait_for_sndbuf;
953 ret = tls_alloc_encrypted_msg(sk, required_size);
956 goto wait_for_memory;
958 /* Adjust try_to_copy according to the amount that was
959 * actually allocated. The difference is due
960 * to max sg elements limit
962 try_to_copy -= required_size - msg_en->sg.size;
966 if (!is_kvec && (full_record || eor) && !async_capable) {
967 u32 first = msg_pl->sg.end;
969 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
970 msg_pl, try_to_copy);
972 goto fallback_to_reg_send;
974 rec->inplace_crypto = 0;
977 copied += try_to_copy;
979 sk_msg_sg_copy_set(msg_pl, first);
980 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
981 record_type, &copied,
984 if (ret == -EINPROGRESS)
986 else if (ret == -ENOMEM)
987 goto wait_for_memory;
988 else if (ret == -ENOSPC)
990 else if (ret != -EAGAIN)
995 copied -= try_to_copy;
996 sk_msg_sg_copy_clear(msg_pl, first);
997 iov_iter_revert(&msg->msg_iter,
998 msg_pl->sg.size - orig_size);
999 fallback_to_reg_send:
1000 sk_msg_trim(sk, msg_pl, orig_size);
1003 required_size = msg_pl->sg.size + try_to_copy;
1005 ret = tls_clone_plaintext_msg(sk, required_size);
1010 /* Adjust try_to_copy according to the amount that was
1011 * actually allocated. The difference is due
1012 * to max sg elements limit
1014 try_to_copy -= required_size - msg_pl->sg.size;
1016 sk_msg_trim(sk, msg_en,
1017 msg_pl->sg.size + prot->overhead_size);
1021 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1022 msg_pl, try_to_copy);
1027 /* Open records defined only if successfully copied, otherwise
1028 * we would trim the sg but not reset the open record frags.
1030 tls_ctx->pending_open_record_frags = true;
1031 copied += try_to_copy;
1032 if (full_record || eor) {
1033 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1034 record_type, &copied,
1037 if (ret == -EINPROGRESS)
1039 else if (ret == -ENOMEM)
1040 goto wait_for_memory;
1041 else if (ret != -EAGAIN) {
1052 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1054 ret = sk_stream_wait_memory(sk, &timeo);
1057 tls_trim_both_msgs(sk, orig_size);
1061 if (msg_en->sg.size < required_size)
1062 goto alloc_encrypted;
1067 } else if (num_zc) {
1068 /* Wait for pending encryptions to get completed */
1069 smp_store_mb(ctx->async_notify, true);
1071 if (atomic_read(&ctx->encrypt_pending))
1072 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1074 reinit_completion(&ctx->async_wait.completion);
1076 WRITE_ONCE(ctx->async_notify, false);
1078 if (ctx->async_wait.err) {
1079 ret = ctx->async_wait.err;
1084 /* Transmit if any encryptions have completed */
1085 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1086 cancel_delayed_work(&ctx->tx_work.work);
1087 tls_tx_records(sk, msg->msg_flags);
1091 ret = sk_stream_error(sk, msg->msg_flags, ret);
1094 return copied ? copied : ret;
1097 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1098 int offset, size_t size, int flags)
1100 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1101 struct tls_context *tls_ctx = tls_get_ctx(sk);
1102 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1103 struct tls_prot_info *prot = &tls_ctx->prot_info;
1104 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1105 struct sk_msg *msg_pl;
1106 struct tls_rec *rec;
1114 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1115 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1117 /* Wait till there is any pending write on socket */
1118 if (unlikely(sk->sk_write_pending)) {
1119 ret = wait_on_pending_writer(sk, &timeo);
1124 /* Call the sk_stream functions to manage the sndbuf mem. */
1126 size_t copy, required_size;
1134 rec = ctx->open_rec;
1136 rec = ctx->open_rec = tls_get_rec(sk);
1142 msg_pl = &rec->msg_plaintext;
1144 full_record = false;
1145 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1148 if (copy >= record_room) {
1153 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1155 if (!sk_stream_memory_free(sk))
1156 goto wait_for_sndbuf;
1158 ret = tls_alloc_encrypted_msg(sk, required_size);
1161 goto wait_for_memory;
1163 /* Adjust copy according to the amount that was
1164 * actually allocated. The difference is due
1165 * to max sg elements limit
1167 copy -= required_size - msg_pl->sg.size;
1171 sk_msg_page_add(msg_pl, page, copy, offset);
1172 sk_mem_charge(sk, copy);
1178 tls_ctx->pending_open_record_frags = true;
1179 if (full_record || eor || sk_msg_full(msg_pl)) {
1180 rec->inplace_crypto = 0;
1181 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1182 record_type, &copied, flags);
1184 if (ret == -EINPROGRESS)
1186 else if (ret == -ENOMEM)
1187 goto wait_for_memory;
1188 else if (ret != -EAGAIN) {
1197 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1199 ret = sk_stream_wait_memory(sk, &timeo);
1201 tls_trim_both_msgs(sk, msg_pl->sg.size);
1209 /* Transmit if any encryptions have completed */
1210 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1211 cancel_delayed_work(&ctx->tx_work.work);
1212 tls_tx_records(sk, flags);
1216 ret = sk_stream_error(sk, flags, ret);
1217 return copied ? copied : ret;
1220 int tls_sw_sendpage(struct sock *sk, struct page *page,
1221 int offset, size_t size, int flags)
1225 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1226 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1230 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1235 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1236 int flags, long timeo, int *err)
1238 struct tls_context *tls_ctx = tls_get_ctx(sk);
1239 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1240 struct sk_buff *skb;
1241 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1243 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1245 *err = sock_error(sk);
1249 if (sk->sk_shutdown & RCV_SHUTDOWN)
1252 if (sock_flag(sk, SOCK_DONE))
1255 if ((flags & MSG_DONTWAIT) || !timeo) {
1260 add_wait_queue(sk_sleep(sk), &wait);
1261 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1262 sk_wait_event(sk, &timeo,
1263 ctx->recv_pkt != skb ||
1264 !sk_psock_queue_empty(psock),
1266 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1267 remove_wait_queue(sk_sleep(sk), &wait);
1269 /* Handle signals */
1270 if (signal_pending(current)) {
1271 *err = sock_intr_errno(timeo);
1279 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1280 int length, int *pages_used,
1281 unsigned int *size_used,
1282 struct scatterlist *to,
1285 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1286 struct page *pages[MAX_SKB_FRAGS];
1287 unsigned int size = *size_used;
1288 ssize_t copied, use;
1291 while (length > 0) {
1293 maxpages = to_max_pages - num_elem;
1294 if (maxpages == 0) {
1298 copied = iov_iter_get_pages(from, pages,
1306 iov_iter_advance(from, copied);
1311 use = min_t(int, copied, PAGE_SIZE - offset);
1313 sg_set_page(&to[num_elem],
1314 pages[i], use, offset);
1315 sg_unmark_end(&to[num_elem]);
1316 /* We do not uncharge memory from this API */
1325 /* Mark the end in the last sg entry if newly added */
1326 if (num_elem > *pages_used)
1327 sg_mark_end(&to[num_elem - 1]);
1330 iov_iter_revert(from, size - *size_used);
1332 *pages_used = num_elem;
1337 /* This function decrypts the input skb into either out_iov or in out_sg
1338 * or in skb buffers itself. The input parameter 'zc' indicates if
1339 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1340 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1341 * NULL, then the decryption happens inside skb buffers itself, i.e.
1342 * zero-copy gets disabled and 'zc' is updated.
1345 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1346 struct iov_iter *out_iov,
1347 struct scatterlist *out_sg,
1348 int *chunk, bool *zc, bool async)
1350 struct tls_context *tls_ctx = tls_get_ctx(sk);
1351 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1352 struct tls_prot_info *prot = &tls_ctx->prot_info;
1353 struct strp_msg *rxm = strp_msg(skb);
1354 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1355 struct aead_request *aead_req;
1356 struct sk_buff *unused;
1357 u8 *aad, *iv, *mem = NULL;
1358 struct scatterlist *sgin = NULL;
1359 struct scatterlist *sgout = NULL;
1360 const int data_len = rxm->full_len - prot->overhead_size +
1364 if (*zc && (out_iov || out_sg)) {
1366 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1368 n_sgout = sg_nents(out_sg);
1369 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1370 rxm->full_len - prot->prepend_size);
1374 n_sgin = skb_cow_data(skb, 0, &unused);
1380 /* Increment to accommodate AAD */
1381 n_sgin = n_sgin + 1;
1383 nsg = n_sgin + n_sgout;
1385 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1386 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1387 mem_size = mem_size + prot->aad_size;
1388 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1390 /* Allocate a single block of memory which contains
1391 * aead_req || sgin[] || sgout[] || aad || iv.
1392 * This order achieves correct alignment for aead_req, sgin, sgout.
1394 mem = kmalloc(mem_size, sk->sk_allocation);
1398 /* Segment the allocated memory */
1399 aead_req = (struct aead_request *)mem;
1400 sgin = (struct scatterlist *)(mem + aead_size);
1401 sgout = sgin + n_sgin;
1402 aad = (u8 *)(sgout + n_sgout);
1403 iv = aad + prot->aad_size;
1405 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1406 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1412 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1413 iv + iv_offset + prot->salt_size,
1419 if (prot->version == TLS_1_3_VERSION)
1420 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1421 crypto_aead_ivsize(ctx->aead_recv));
1423 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1425 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1428 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1430 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1431 ctx->control, prot->version);
1434 sg_init_table(sgin, n_sgin);
1435 sg_set_buf(&sgin[0], aad, prot->aad_size);
1436 err = skb_to_sgvec(skb, &sgin[1],
1437 rxm->offset + prot->prepend_size,
1438 rxm->full_len - prot->prepend_size);
1446 sg_init_table(sgout, n_sgout);
1447 sg_set_buf(&sgout[0], aad, prot->aad_size);
1450 err = tls_setup_from_iter(sk, out_iov, data_len,
1451 &pages, chunk, &sgout[1],
1454 goto fallback_to_reg_recv;
1455 } else if (out_sg) {
1456 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1458 goto fallback_to_reg_recv;
1461 fallback_to_reg_recv:
1468 /* Prepare and submit AEAD request */
1469 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1470 data_len, aead_req, async);
1471 if (err == -EINPROGRESS)
1474 /* Release the pages in case iov was mapped to pages */
1475 for (; pages > 0; pages--)
1476 put_page(sg_page(&sgout[pages]));
1482 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1483 struct iov_iter *dest, int *chunk, bool *zc,
1486 struct tls_context *tls_ctx = tls_get_ctx(sk);
1487 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1488 struct tls_prot_info *prot = &tls_ctx->prot_info;
1489 int version = prot->version;
1490 struct strp_msg *rxm = strp_msg(skb);
1493 if (!ctx->decrypted) {
1494 #ifdef CONFIG_TLS_DEVICE
1495 err = tls_device_decrypted(sk, skb);
1499 /* Still not decrypted after tls_device */
1500 if (!ctx->decrypted) {
1501 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1504 if (err == -EINPROGRESS)
1505 tls_advance_record_sn(sk, &tls_ctx->rx,
1514 pad = padding_length(ctx, prot, skb);
1518 rxm->full_len -= pad;
1519 rxm->offset += prot->prepend_size;
1520 rxm->full_len -= prot->overhead_size;
1521 tls_advance_record_sn(sk, &tls_ctx->rx, version);
1522 ctx->decrypted = true;
1523 ctx->saved_data_ready(sk);
1531 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1532 struct scatterlist *sgout)
1537 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1540 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1543 struct tls_context *tls_ctx = tls_get_ctx(sk);
1544 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1547 struct strp_msg *rxm = strp_msg(skb);
1549 if (len < rxm->full_len) {
1551 rxm->full_len -= len;
1557 /* Finished with message */
1558 ctx->recv_pkt = NULL;
1559 __strp_unpause(&ctx->strp);
1564 /* This function traverses the rx_list in tls receive context to copies the
1565 * decrypted records into the buffer provided by caller zero copy is not
1566 * true. Further, the records are removed from the rx_list if it is not a peek
1567 * case and the record has been consumed completely.
1569 static int process_rx_list(struct tls_sw_context_rx *ctx,
1578 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1581 struct tls_msg *tlm;
1584 /* Set the record type in 'control' if caller didn't pass it */
1587 ctrl = tlm->control;
1590 while (skip && skb) {
1591 struct strp_msg *rxm = strp_msg(skb);
1594 /* Cannot process a record of different type */
1595 if (ctrl != tlm->control)
1598 if (skip < rxm->full_len)
1601 skip = skip - rxm->full_len;
1602 skb = skb_peek_next(skb, &ctx->rx_list);
1605 while (len && skb) {
1606 struct sk_buff *next_skb;
1607 struct strp_msg *rxm = strp_msg(skb);
1608 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1612 /* Cannot process a record of different type */
1613 if (ctrl != tlm->control)
1616 /* Set record type if not already done. For a non-data record,
1617 * do not proceed if record type could not be copied.
1620 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1621 sizeof(ctrl), &ctrl);
1623 if (ctrl != TLS_RECORD_TYPE_DATA) {
1624 if (cerr || msg->msg_flags & MSG_CTRUNC)
1631 if (!zc || (rxm->full_len - skip) > len) {
1632 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1639 copied = copied + chunk;
1641 /* Consume the data from record if it is non-peek case*/
1643 rxm->offset = rxm->offset + chunk;
1644 rxm->full_len = rxm->full_len - chunk;
1646 /* Return if there is unconsumed data in the record */
1647 if (rxm->full_len - skip)
1651 /* The remaining skip-bytes must lie in 1st record in rx_list.
1652 * So from the 2nd record, 'skip' should be 0.
1657 msg->msg_flags |= MSG_EOR;
1659 next_skb = skb_peek_next(skb, &ctx->rx_list);
1662 skb_unlink(skb, &ctx->rx_list);
1673 int tls_sw_recvmsg(struct sock *sk,
1680 struct tls_context *tls_ctx = tls_get_ctx(sk);
1681 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1682 struct tls_prot_info *prot = &tls_ctx->prot_info;
1683 struct sk_psock *psock;
1684 unsigned char control = 0;
1685 ssize_t decrypted = 0;
1686 struct strp_msg *rxm;
1687 struct tls_msg *tlm;
1688 struct sk_buff *skb;
1691 int target, err = 0;
1693 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1694 bool is_peek = flags & MSG_PEEK;
1699 if (unlikely(flags & MSG_ERRQUEUE))
1700 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1702 psock = sk_psock_get(sk);
1705 /* Process pending decrypted records. It must be non-zero-copy */
1706 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1709 tls_err_abort(sk, err);
1717 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1718 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1724 bool retain_skb = false;
1731 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1734 int ret = __tcp_bpf_recvmsg(sk, psock,
1746 if (prot->version == TLS_1_3_VERSION)
1749 tlm->control = ctx->control;
1752 rxm = strp_msg(skb);
1754 to_decrypt = rxm->full_len - prot->overhead_size;
1756 if (to_decrypt <= len && !is_kvec && !is_peek &&
1757 ctx->control == TLS_RECORD_TYPE_DATA &&
1758 prot->version != TLS_1_3_VERSION)
1761 /* Do not use async mode if record is non-data */
1762 if (ctx->control == TLS_RECORD_TYPE_DATA)
1763 async_capable = ctx->async_capable;
1765 async_capable = false;
1767 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1768 &chunk, &zc, async_capable);
1769 if (err < 0 && err != -EINPROGRESS) {
1770 tls_err_abort(sk, EBADMSG);
1774 if (err == -EINPROGRESS) {
1777 } else if (prot->version == TLS_1_3_VERSION) {
1778 tlm->control = ctx->control;
1781 /* If the type of records being processed is not known yet,
1782 * set it to record type just dequeued. If it is already known,
1783 * but does not match the record type just dequeued, go to end.
1784 * We always get record type here since for tls1.2, record type
1785 * is known just after record is dequeued from stream parser.
1786 * For tls1.3, we disable async.
1790 control = tlm->control;
1791 else if (control != tlm->control)
1797 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1798 sizeof(control), &control);
1800 if (control != TLS_RECORD_TYPE_DATA) {
1801 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1809 goto pick_next_record;
1812 if (rxm->full_len > len) {
1816 chunk = rxm->full_len;
1819 err = skb_copy_datagram_msg(skb, rxm->offset,
1825 rxm->offset = rxm->offset + chunk;
1826 rxm->full_len = rxm->full_len - chunk;
1837 /* For async or peek case, queue the current skb */
1838 if (async || is_peek || retain_skb) {
1839 skb_queue_tail(&ctx->rx_list, skb);
1843 if (tls_sw_advance_skb(sk, skb, chunk)) {
1844 /* Return full control message to
1845 * userspace before trying to parse
1846 * another message type
1848 msg->msg_flags |= MSG_EOR;
1849 if (ctx->control != TLS_RECORD_TYPE_DATA)
1855 /* If we have a new message from strparser, continue now. */
1856 if (decrypted >= target && !ctx->recv_pkt)
1862 /* Wait for all previously submitted records to be decrypted */
1863 smp_store_mb(ctx->async_notify, true);
1864 if (atomic_read(&ctx->decrypt_pending)) {
1865 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1867 /* one of async decrypt failed */
1868 tls_err_abort(sk, err);
1874 reinit_completion(&ctx->async_wait.completion);
1876 WRITE_ONCE(ctx->async_notify, false);
1878 /* Drain records from the rx_list & copy if required */
1879 if (is_peek || is_kvec)
1880 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1881 decrypted, false, is_peek);
1883 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1884 decrypted, true, is_peek);
1886 tls_err_abort(sk, err);
1892 copied += decrypted;
1897 sk_psock_put(sk, psock);
1898 return copied ? : err;
1901 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1902 struct pipe_inode_info *pipe,
1903 size_t len, unsigned int flags)
1905 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1906 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1907 struct strp_msg *rxm = NULL;
1908 struct sock *sk = sock->sk;
1909 struct sk_buff *skb;
1918 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1920 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1922 goto splice_read_end;
1924 if (!ctx->decrypted) {
1925 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1927 /* splice does not support reading control messages */
1928 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1930 goto splice_read_end;
1934 tls_err_abort(sk, EBADMSG);
1935 goto splice_read_end;
1937 ctx->decrypted = true;
1939 rxm = strp_msg(skb);
1941 chunk = min_t(unsigned int, rxm->full_len, len);
1942 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1944 goto splice_read_end;
1946 if (likely(!(flags & MSG_PEEK)))
1947 tls_sw_advance_skb(sk, skb, copied);
1951 return copied ? : err;
1954 bool tls_sw_stream_read(const struct sock *sk)
1956 struct tls_context *tls_ctx = tls_get_ctx(sk);
1957 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1958 bool ingress_empty = true;
1959 struct sk_psock *psock;
1962 psock = sk_psock(sk);
1964 ingress_empty = list_empty(&psock->ingress_msg);
1967 return !ingress_empty || ctx->recv_pkt;
1970 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1972 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1973 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1974 struct tls_prot_info *prot = &tls_ctx->prot_info;
1975 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1976 struct strp_msg *rxm = strp_msg(skb);
1977 size_t cipher_overhead;
1978 size_t data_len = 0;
1981 /* Verify that we have a full TLS header, or wait for more data */
1982 if (rxm->offset + prot->prepend_size > skb->len)
1985 /* Sanity-check size of on-stack buffer. */
1986 if (WARN_ON(prot->prepend_size > sizeof(header))) {
1991 /* Linearize header to local buffer */
1992 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
1997 ctx->control = header[0];
1999 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2001 cipher_overhead = prot->tag_size;
2002 if (prot->version != TLS_1_3_VERSION)
2003 cipher_overhead += prot->iv_size;
2005 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2010 if (data_len < cipher_overhead) {
2015 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2016 if (header[1] != TLS_1_2_VERSION_MINOR ||
2017 header[2] != TLS_1_2_VERSION_MAJOR) {
2021 #ifdef CONFIG_TLS_DEVICE
2022 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
2023 *(u64*)tls_ctx->rx.rec_seq);
2025 return data_len + TLS_HEADER_SIZE;
2028 tls_err_abort(strp->sk, ret);
2033 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2035 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2036 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2038 ctx->decrypted = false;
2040 ctx->recv_pkt = skb;
2043 ctx->saved_data_ready(strp->sk);
2046 static void tls_data_ready(struct sock *sk)
2048 struct tls_context *tls_ctx = tls_get_ctx(sk);
2049 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2050 struct sk_psock *psock;
2052 strp_data_ready(&ctx->strp);
2054 psock = sk_psock_get(sk);
2055 if (psock && !list_empty(&psock->ingress_msg)) {
2056 ctx->saved_data_ready(sk);
2057 sk_psock_put(sk, psock);
2061 void tls_sw_free_resources_tx(struct sock *sk)
2063 struct tls_context *tls_ctx = tls_get_ctx(sk);
2064 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2065 struct tls_rec *rec, *tmp;
2067 /* Wait for any pending async encryptions to complete */
2068 smp_store_mb(ctx->async_notify, true);
2069 if (atomic_read(&ctx->encrypt_pending))
2070 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2073 cancel_delayed_work_sync(&ctx->tx_work.work);
2076 /* Tx whatever records we can transmit and abandon the rest */
2077 tls_tx_records(sk, -1);
2079 /* Free up un-sent records in tx_list. First, free
2080 * the partially sent record if any at head of tx_list.
2082 if (tls_free_partial_record(sk, tls_ctx)) {
2083 rec = list_first_entry(&ctx->tx_list,
2084 struct tls_rec, list);
2085 list_del(&rec->list);
2086 sk_msg_free(sk, &rec->msg_plaintext);
2090 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2091 list_del(&rec->list);
2092 sk_msg_free(sk, &rec->msg_encrypted);
2093 sk_msg_free(sk, &rec->msg_plaintext);
2097 crypto_free_aead(ctx->aead_send);
2098 tls_free_open_rec(sk);
2103 void tls_sw_release_resources_rx(struct sock *sk)
2105 struct tls_context *tls_ctx = tls_get_ctx(sk);
2106 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2108 kfree(tls_ctx->rx.rec_seq);
2109 kfree(tls_ctx->rx.iv);
2111 if (ctx->aead_recv) {
2112 kfree_skb(ctx->recv_pkt);
2113 ctx->recv_pkt = NULL;
2114 skb_queue_purge(&ctx->rx_list);
2115 crypto_free_aead(ctx->aead_recv);
2116 strp_stop(&ctx->strp);
2117 write_lock_bh(&sk->sk_callback_lock);
2118 sk->sk_data_ready = ctx->saved_data_ready;
2119 write_unlock_bh(&sk->sk_callback_lock);
2121 strp_done(&ctx->strp);
2126 void tls_sw_free_resources_rx(struct sock *sk)
2128 struct tls_context *tls_ctx = tls_get_ctx(sk);
2129 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2131 tls_sw_release_resources_rx(sk);
2136 /* The work handler to transmitt the encrypted records in tx_list */
2137 static void tx_work_handler(struct work_struct *work)
2139 struct delayed_work *delayed_work = to_delayed_work(work);
2140 struct tx_work *tx_work = container_of(delayed_work,
2141 struct tx_work, work);
2142 struct sock *sk = tx_work->sk;
2143 struct tls_context *tls_ctx = tls_get_ctx(sk);
2144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2146 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2150 tls_tx_records(sk, -1);
2154 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2156 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2158 /* Schedule the transmission if tx list is ready */
2159 if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
2160 /* Schedule the transmission */
2161 if (!test_and_set_bit(BIT_TX_SCHEDULED,
2162 &tx_ctx->tx_bitmask))
2163 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2167 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2169 struct tls_context *tls_ctx = tls_get_ctx(sk);
2170 struct tls_prot_info *prot = &tls_ctx->prot_info;
2171 struct tls_crypto_info *crypto_info;
2172 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2173 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2174 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2175 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2176 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2177 struct cipher_context *cctx;
2178 struct crypto_aead **aead;
2179 struct strp_callbacks cb;
2180 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2181 struct crypto_tfm *tfm;
2182 char *iv, *rec_seq, *key, *salt, *cipher_name;
2192 if (!ctx->priv_ctx_tx) {
2193 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2198 ctx->priv_ctx_tx = sw_ctx_tx;
2201 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2204 if (!ctx->priv_ctx_rx) {
2205 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2210 ctx->priv_ctx_rx = sw_ctx_rx;
2213 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2218 crypto_init_wait(&sw_ctx_tx->async_wait);
2219 crypto_info = &ctx->crypto_send.info;
2221 aead = &sw_ctx_tx->aead_send;
2222 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2223 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2224 sw_ctx_tx->tx_work.sk = sk;
2226 crypto_init_wait(&sw_ctx_rx->async_wait);
2227 crypto_info = &ctx->crypto_recv.info;
2229 skb_queue_head_init(&sw_ctx_rx->rx_list);
2230 aead = &sw_ctx_rx->aead_recv;
2233 switch (crypto_info->cipher_type) {
2234 case TLS_CIPHER_AES_GCM_128: {
2235 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2236 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2237 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2238 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2239 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2241 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2243 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2244 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2245 key = gcm_128_info->key;
2246 salt = gcm_128_info->salt;
2247 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2248 cipher_name = "gcm(aes)";
2251 case TLS_CIPHER_AES_GCM_256: {
2252 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2253 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2254 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2255 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2256 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2258 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2260 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2261 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2262 key = gcm_256_info->key;
2263 salt = gcm_256_info->salt;
2264 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2265 cipher_name = "gcm(aes)";
2268 case TLS_CIPHER_AES_CCM_128: {
2269 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2270 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2271 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2272 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2273 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2275 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2277 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2278 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2279 key = ccm_128_info->key;
2280 salt = ccm_128_info->salt;
2281 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2282 cipher_name = "ccm(aes)";
2290 /* Sanity-check the IV size for stack allocations. */
2291 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
2296 if (crypto_info->version == TLS_1_3_VERSION) {
2298 prot->aad_size = TLS_HEADER_SIZE;
2299 prot->tail_size = 1;
2301 prot->aad_size = TLS_AAD_SPACE_SIZE;
2302 prot->tail_size = 0;
2305 prot->version = crypto_info->version;
2306 prot->cipher_type = crypto_info->cipher_type;
2307 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2308 prot->tag_size = tag_size;
2309 prot->overhead_size = prot->prepend_size +
2310 prot->tag_size + prot->tail_size;
2311 prot->iv_size = iv_size;
2312 prot->salt_size = salt_size;
2313 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2318 /* Note: 128 & 256 bit salt are the same size */
2319 prot->rec_seq_size = rec_seq_size;
2320 memcpy(cctx->iv, salt, salt_size);
2321 memcpy(cctx->iv + salt_size, iv, iv_size);
2322 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2323 if (!cctx->rec_seq) {
2329 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2330 if (IS_ERR(*aead)) {
2331 rc = PTR_ERR(*aead);
2337 ctx->push_pending_record = tls_sw_push_pending_record;
2339 rc = crypto_aead_setkey(*aead, key, keysize);
2344 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2349 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2351 if (crypto_info->version == TLS_1_3_VERSION)
2352 sw_ctx_rx->async_capable = false;
2354 sw_ctx_rx->async_capable =
2355 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2357 /* Set up strparser */
2358 memset(&cb, 0, sizeof(cb));
2359 cb.rcv_msg = tls_queue;
2360 cb.parse_msg = tls_read_size;
2362 strp_init(&sw_ctx_rx->strp, sk, &cb);
2364 write_lock_bh(&sk->sk_callback_lock);
2365 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
2366 sk->sk_data_ready = tls_data_ready;
2367 write_unlock_bh(&sk->sk_callback_lock);
2369 strp_check_rcv(&sw_ctx_rx->strp);
2375 crypto_free_aead(*aead);
2378 kfree(cctx->rec_seq);
2379 cctx->rec_seq = NULL;
2385 kfree(ctx->priv_ctx_tx);
2386 ctx->priv_ctx_tx = NULL;
2388 kfree(ctx->priv_ctx_rx);
2389 ctx->priv_ctx_rx = NULL;