1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
14 #include "ordered-data.h"
15 #include "transaction.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
21 #include "block-group.h"
24 #include "accessors.h"
25 #include "file-item.h"
29 * This is only the first step towards a full-features scrub. It reads all
30 * extent and super block and verifies the checksums. In case a bad checksum
31 * is found or the extent cannot be read, good data will be written back if
34 * Future enhancements:
35 * - In case an unrepairable extent is encountered, track which files are
36 * affected and report them
37 * - track and record media errors, throw out bad devices
38 * - add a mode to also read unallocated space
44 * The following value only influences the performance.
46 * This determines the batch size for stripe submitted in one go.
48 #define SCRUB_STRIPES_PER_SCTX 8 /* That would be 8 64K stripe per-device. */
51 * The following value times PAGE_SIZE needs to be large enough to match the
52 * largest node/leaf/sector size that shall be supported.
54 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
56 /* Represent one sector and its needed info to verify the content. */
57 struct scrub_sector_verification {
62 * Csum pointer for data csum verification. Should point to a
63 * sector csum inside scrub_stripe::csums.
65 * NULL if this data sector has no csum.
70 * Extra info for metadata verification. All sectors inside a
71 * tree block share the same generation.
77 enum scrub_stripe_flags {
78 /* Set when @mirror_num, @dev, @physical and @logical are set. */
79 SCRUB_STRIPE_FLAG_INITIALIZED,
81 /* Set when the read-repair is finished. */
82 SCRUB_STRIPE_FLAG_REPAIR_DONE,
85 * Set for data stripes if it's triggered from P/Q stripe.
86 * During such scrub, we should not report errors in data stripes, nor
87 * update the accounting.
89 SCRUB_STRIPE_FLAG_NO_REPORT,
92 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE)
95 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
98 struct scrub_ctx *sctx;
99 struct btrfs_block_group *bg;
101 struct page *pages[SCRUB_STRIPE_PAGES];
102 struct scrub_sector_verification *sectors;
104 struct btrfs_device *dev;
110 /* Should be BTRFS_STRIPE_LEN / sectorsize. */
114 * How many data/meta extents are in this stripe. Only for scrub status
115 * reporting purposes.
121 wait_queue_head_t io_wait;
122 wait_queue_head_t repair_wait;
125 * Indicate the states of the stripe. Bits are defined in
126 * scrub_stripe_flags enum.
130 /* Indicate which sectors are covered by extent items. */
131 unsigned long extent_sector_bitmap;
134 * The errors hit during the initial read of the stripe.
136 * Would be utilized for error reporting and repair.
138 * The remaining init_nr_* records the number of errors hit, only used
139 * by error reporting.
141 unsigned long init_error_bitmap;
142 unsigned int init_nr_io_errors;
143 unsigned int init_nr_csum_errors;
144 unsigned int init_nr_meta_errors;
147 * The following error bitmaps are all for the current status.
148 * Every time we submit a new read, these bitmaps may be updated.
150 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
152 * IO and csum errors can happen for both metadata and data.
154 unsigned long error_bitmap;
155 unsigned long io_error_bitmap;
156 unsigned long csum_error_bitmap;
157 unsigned long meta_error_bitmap;
159 /* For writeback (repair or replace) error reporting. */
160 unsigned long write_error_bitmap;
162 /* Writeback can be concurrent, thus we need to protect the bitmap. */
163 spinlock_t write_error_lock;
166 * Checksum for the whole stripe if this stripe is inside a data block
171 struct work_struct work;
175 struct scrub_stripe stripes[SCRUB_STRIPES_PER_SCTX];
176 struct scrub_stripe *raid56_data_stripes;
177 struct btrfs_fs_info *fs_info;
184 /* State of IO submission throttling affecting the associated device */
185 ktime_t throttle_deadline;
191 struct mutex wr_lock;
192 struct btrfs_device *wr_tgtdev;
197 struct btrfs_scrub_progress stat;
198 spinlock_t stat_lock;
201 * Use a ref counter to avoid use-after-free issues. Scrub workers
202 * decrement bios_in_flight and workers_pending and then do a wakeup
203 * on the list_wait wait queue. We must ensure the main scrub task
204 * doesn't free the scrub context before or while the workers are
205 * doing the wakeup() call.
210 struct scrub_warning {
211 struct btrfs_path *path;
212 u64 extent_item_size;
216 struct btrfs_device *dev;
219 static void release_scrub_stripe(struct scrub_stripe *stripe)
224 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
225 if (stripe->pages[i])
226 __free_page(stripe->pages[i]);
227 stripe->pages[i] = NULL;
229 kfree(stripe->sectors);
230 kfree(stripe->csums);
231 stripe->sectors = NULL;
232 stripe->csums = NULL;
237 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
238 struct scrub_stripe *stripe)
242 memset(stripe, 0, sizeof(*stripe));
244 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
247 init_waitqueue_head(&stripe->io_wait);
248 init_waitqueue_head(&stripe->repair_wait);
249 atomic_set(&stripe->pending_io, 0);
250 spin_lock_init(&stripe->write_error_lock);
252 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
256 stripe->sectors = kcalloc(stripe->nr_sectors,
257 sizeof(struct scrub_sector_verification),
259 if (!stripe->sectors)
262 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
263 fs_info->csum_size, GFP_KERNEL);
268 release_scrub_stripe(stripe);
272 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
274 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
277 static void scrub_put_ctx(struct scrub_ctx *sctx);
279 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
281 while (atomic_read(&fs_info->scrub_pause_req)) {
282 mutex_unlock(&fs_info->scrub_lock);
283 wait_event(fs_info->scrub_pause_wait,
284 atomic_read(&fs_info->scrub_pause_req) == 0);
285 mutex_lock(&fs_info->scrub_lock);
289 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
291 atomic_inc(&fs_info->scrubs_paused);
292 wake_up(&fs_info->scrub_pause_wait);
295 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
297 mutex_lock(&fs_info->scrub_lock);
298 __scrub_blocked_if_needed(fs_info);
299 atomic_dec(&fs_info->scrubs_paused);
300 mutex_unlock(&fs_info->scrub_lock);
302 wake_up(&fs_info->scrub_pause_wait);
305 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
307 scrub_pause_on(fs_info);
308 scrub_pause_off(fs_info);
311 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
318 for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++)
319 release_scrub_stripe(&sctx->stripes[i]);
324 static void scrub_put_ctx(struct scrub_ctx *sctx)
326 if (refcount_dec_and_test(&sctx->refs))
327 scrub_free_ctx(sctx);
330 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
331 struct btrfs_fs_info *fs_info, int is_dev_replace)
333 struct scrub_ctx *sctx;
336 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
339 refcount_set(&sctx->refs, 1);
340 sctx->is_dev_replace = is_dev_replace;
341 sctx->fs_info = fs_info;
342 for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) {
345 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
348 sctx->stripes[i].sctx = sctx;
350 sctx->first_free = 0;
351 atomic_set(&sctx->cancel_req, 0);
353 spin_lock_init(&sctx->stat_lock);
354 sctx->throttle_deadline = 0;
356 mutex_init(&sctx->wr_lock);
357 if (is_dev_replace) {
358 WARN_ON(!fs_info->dev_replace.tgtdev);
359 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
365 scrub_free_ctx(sctx);
366 return ERR_PTR(-ENOMEM);
369 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
370 u64 root, void *warn_ctx)
376 struct extent_buffer *eb;
377 struct btrfs_inode_item *inode_item;
378 struct scrub_warning *swarn = warn_ctx;
379 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
380 struct inode_fs_paths *ipath = NULL;
381 struct btrfs_root *local_root;
382 struct btrfs_key key;
384 local_root = btrfs_get_fs_root(fs_info, root, true);
385 if (IS_ERR(local_root)) {
386 ret = PTR_ERR(local_root);
391 * this makes the path point to (inum INODE_ITEM ioff)
394 key.type = BTRFS_INODE_ITEM_KEY;
397 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
399 btrfs_put_root(local_root);
400 btrfs_release_path(swarn->path);
404 eb = swarn->path->nodes[0];
405 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
406 struct btrfs_inode_item);
407 nlink = btrfs_inode_nlink(eb, inode_item);
408 btrfs_release_path(swarn->path);
411 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
412 * uses GFP_NOFS in this context, so we keep it consistent but it does
413 * not seem to be strictly necessary.
415 nofs_flag = memalloc_nofs_save();
416 ipath = init_ipath(4096, local_root, swarn->path);
417 memalloc_nofs_restore(nofs_flag);
419 btrfs_put_root(local_root);
420 ret = PTR_ERR(ipath);
424 ret = paths_from_inode(inum, ipath);
430 * we deliberately ignore the bit ipath might have been too small to
431 * hold all of the paths here
433 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
434 btrfs_warn_in_rcu(fs_info,
435 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
436 swarn->errstr, swarn->logical,
437 btrfs_dev_name(swarn->dev),
440 fs_info->sectorsize, nlink,
441 (char *)(unsigned long)ipath->fspath->val[i]);
443 btrfs_put_root(local_root);
448 btrfs_warn_in_rcu(fs_info,
449 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
450 swarn->errstr, swarn->logical,
451 btrfs_dev_name(swarn->dev),
453 root, inum, offset, ret);
459 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
460 bool is_super, u64 logical, u64 physical)
462 struct btrfs_fs_info *fs_info = dev->fs_info;
463 struct btrfs_path *path;
464 struct btrfs_key found_key;
465 struct extent_buffer *eb;
466 struct btrfs_extent_item *ei;
467 struct scrub_warning swarn;
472 /* Super block error, no need to search extent tree. */
474 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
475 errstr, btrfs_dev_name(dev), physical);
478 path = btrfs_alloc_path();
482 swarn.physical = physical;
483 swarn.logical = logical;
484 swarn.errstr = errstr;
487 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
492 swarn.extent_item_size = found_key.offset;
495 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
496 item_size = btrfs_item_size(eb, path->slots[0]);
498 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
499 unsigned long ptr = 0;
504 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
505 item_size, &ref_root,
509 "failed to resolve tree backref for logical %llu: %d",
515 btrfs_warn_in_rcu(fs_info,
516 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
517 errstr, swarn.logical, btrfs_dev_name(dev),
518 swarn.physical, (ref_level ? "node" : "leaf"),
519 ref_level, ref_root);
521 btrfs_release_path(path);
523 struct btrfs_backref_walk_ctx ctx = { 0 };
525 btrfs_release_path(path);
527 ctx.bytenr = found_key.objectid;
528 ctx.extent_item_pos = swarn.logical - found_key.objectid;
529 ctx.fs_info = fs_info;
534 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
538 btrfs_free_path(path);
541 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
546 if (!btrfs_is_zoned(sctx->fs_info))
549 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
552 if (sctx->write_pointer < physical) {
553 length = physical - sctx->write_pointer;
555 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
556 sctx->write_pointer, length);
558 sctx->write_pointer = physical;
563 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
565 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
566 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
568 return stripe->pages[page_index];
571 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
574 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
576 return offset_in_page(sector_nr << fs_info->sectorsize_bits);
579 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
581 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
582 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
583 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
584 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
585 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
586 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
587 u8 on_disk_csum[BTRFS_CSUM_SIZE];
588 u8 calculated_csum[BTRFS_CSUM_SIZE];
589 struct btrfs_header *header;
592 * Here we don't have a good way to attach the pages (and subpages)
593 * to a dummy extent buffer, thus we have to directly grab the members
596 header = (struct btrfs_header *)(page_address(first_page) + first_off);
597 memcpy(on_disk_csum, header->csum, fs_info->csum_size);
599 if (logical != btrfs_stack_header_bytenr(header)) {
600 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
601 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
602 btrfs_warn_rl(fs_info,
603 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
604 logical, stripe->mirror_num,
605 btrfs_stack_header_bytenr(header), logical);
608 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
609 BTRFS_FSID_SIZE) != 0) {
610 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
611 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
612 btrfs_warn_rl(fs_info,
613 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
614 logical, stripe->mirror_num,
615 header->fsid, fs_info->fs_devices->fsid);
618 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
619 BTRFS_UUID_SIZE) != 0) {
620 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
621 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
622 btrfs_warn_rl(fs_info,
623 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
624 logical, stripe->mirror_num,
625 header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
629 /* Now check tree block csum. */
630 shash->tfm = fs_info->csum_shash;
631 crypto_shash_init(shash);
632 crypto_shash_update(shash, page_address(first_page) + first_off +
633 BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
635 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
636 struct page *page = scrub_stripe_get_page(stripe, i);
637 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
639 crypto_shash_update(shash, page_address(page) + page_off,
640 fs_info->sectorsize);
643 crypto_shash_final(shash, calculated_csum);
644 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
645 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
646 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
647 btrfs_warn_rl(fs_info,
648 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
649 logical, stripe->mirror_num,
650 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
651 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
654 if (stripe->sectors[sector_nr].generation !=
655 btrfs_stack_header_generation(header)) {
656 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
657 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
658 btrfs_warn_rl(fs_info,
659 "tree block %llu mirror %u has bad generation, has %llu want %llu",
660 logical, stripe->mirror_num,
661 btrfs_stack_header_generation(header),
662 stripe->sectors[sector_nr].generation);
665 bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666 bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
667 bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
670 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
672 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
673 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
674 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
675 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
676 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
677 u8 csum_buf[BTRFS_CSUM_SIZE];
680 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
682 /* Sector not utilized, skip it. */
683 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
686 /* IO error, no need to check. */
687 if (test_bit(sector_nr, &stripe->io_error_bitmap))
690 /* Metadata, verify the full tree block. */
691 if (sector->is_metadata) {
693 * Check if the tree block crosses the stripe boudary. If
694 * crossed the boundary, we cannot verify it but only give a
697 * This can only happen on a very old filesystem where chunks
698 * are not ensured to be stripe aligned.
700 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
701 btrfs_warn_rl(fs_info,
702 "tree block at %llu crosses stripe boundary %llu",
704 (sector_nr << fs_info->sectorsize_bits),
708 scrub_verify_one_metadata(stripe, sector_nr);
713 * Data is easier, we just verify the data csum (if we have it). For
714 * cases without csum, we have no other choice but to trust it.
717 clear_bit(sector_nr, &stripe->error_bitmap);
721 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
723 set_bit(sector_nr, &stripe->csum_error_bitmap);
724 set_bit(sector_nr, &stripe->error_bitmap);
726 clear_bit(sector_nr, &stripe->csum_error_bitmap);
727 clear_bit(sector_nr, &stripe->error_bitmap);
731 /* Verify specified sectors of a stripe. */
732 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
734 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
735 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
738 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
739 scrub_verify_one_sector(stripe, sector_nr);
740 if (stripe->sectors[sector_nr].is_metadata)
741 sector_nr += sectors_per_tree - 1;
745 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
749 for (i = 0; i < stripe->nr_sectors; i++) {
750 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
751 scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
754 ASSERT(i < stripe->nr_sectors);
759 * Repair read is different to the regular read:
761 * - Only reads the failed sectors
762 * - May have extra blocksize limits
764 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
766 struct scrub_stripe *stripe = bbio->private;
767 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
768 struct bio_vec *bvec;
769 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
773 ASSERT(sector_nr < stripe->nr_sectors);
775 bio_for_each_bvec_all(bvec, &bbio->bio, i)
776 bio_size += bvec->bv_len;
778 if (bbio->bio.bi_status) {
779 bitmap_set(&stripe->io_error_bitmap, sector_nr,
780 bio_size >> fs_info->sectorsize_bits);
781 bitmap_set(&stripe->error_bitmap, sector_nr,
782 bio_size >> fs_info->sectorsize_bits);
784 bitmap_clear(&stripe->io_error_bitmap, sector_nr,
785 bio_size >> fs_info->sectorsize_bits);
788 if (atomic_dec_and_test(&stripe->pending_io))
789 wake_up(&stripe->io_wait);
792 static int calc_next_mirror(int mirror, int num_copies)
794 ASSERT(mirror <= num_copies);
795 return (mirror + 1 > num_copies) ? 1 : mirror + 1;
798 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
799 int mirror, int blocksize, bool wait)
801 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
802 struct btrfs_bio *bbio = NULL;
803 const unsigned long old_error_bitmap = stripe->error_bitmap;
806 ASSERT(stripe->mirror_num >= 1);
807 ASSERT(atomic_read(&stripe->pending_io) == 0);
809 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
814 page = scrub_stripe_get_page(stripe, i);
815 pgoff = scrub_stripe_get_page_offset(stripe, i);
817 /* The current sector cannot be merged, submit the bio. */
818 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
819 bbio->bio.bi_iter.bi_size >= blocksize)) {
820 ASSERT(bbio->bio.bi_iter.bi_size);
821 atomic_inc(&stripe->pending_io);
822 btrfs_submit_bio(bbio, mirror);
824 wait_scrub_stripe_io(stripe);
829 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
830 fs_info, scrub_repair_read_endio, stripe);
831 bbio->bio.bi_iter.bi_sector = (stripe->logical +
832 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
835 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
836 ASSERT(ret == fs_info->sectorsize);
839 ASSERT(bbio->bio.bi_iter.bi_size);
840 atomic_inc(&stripe->pending_io);
841 btrfs_submit_bio(bbio, mirror);
843 wait_scrub_stripe_io(stripe);
847 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
848 struct scrub_stripe *stripe)
850 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
851 DEFAULT_RATELIMIT_BURST);
852 struct btrfs_fs_info *fs_info = sctx->fs_info;
853 struct btrfs_device *dev = NULL;
855 int nr_data_sectors = 0;
856 int nr_meta_sectors = 0;
857 int nr_nodatacsum_sectors = 0;
858 int nr_repaired_sectors = 0;
861 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
865 * Init needed infos for error reporting.
867 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
868 * thus no need for dev/physical, error reporting still needs dev and physical.
870 if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
871 u64 mapped_len = fs_info->sectorsize;
872 struct btrfs_io_context *bioc = NULL;
873 int stripe_index = stripe->mirror_num - 1;
876 /* For scrub, our mirror_num should always start at 1. */
877 ASSERT(stripe->mirror_num >= 1);
878 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
879 stripe->logical, &mapped_len, &bioc,
882 * If we failed, dev will be NULL, and later detailed reports
883 * will just be skipped.
887 physical = bioc->stripes[stripe_index].physical;
888 dev = bioc->stripes[stripe_index].dev;
889 btrfs_put_bioc(bioc);
893 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
894 bool repaired = false;
896 if (stripe->sectors[sector_nr].is_metadata) {
900 if (!stripe->sectors[sector_nr].csum)
901 nr_nodatacsum_sectors++;
904 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
905 !test_bit(sector_nr, &stripe->error_bitmap)) {
906 nr_repaired_sectors++;
910 /* Good sector from the beginning, nothing need to be done. */
911 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
915 * Report error for the corrupted sectors. If repaired, just
916 * output the message of repaired message.
920 btrfs_err_rl_in_rcu(fs_info,
921 "fixed up error at logical %llu on dev %s physical %llu",
922 stripe->logical, btrfs_dev_name(dev),
925 btrfs_err_rl_in_rcu(fs_info,
926 "fixed up error at logical %llu on mirror %u",
927 stripe->logical, stripe->mirror_num);
932 /* The remaining are all for unrepaired. */
934 btrfs_err_rl_in_rcu(fs_info,
935 "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
936 stripe->logical, btrfs_dev_name(dev),
939 btrfs_err_rl_in_rcu(fs_info,
940 "unable to fixup (regular) error at logical %llu on mirror %u",
941 stripe->logical, stripe->mirror_num);
944 if (test_bit(sector_nr, &stripe->io_error_bitmap))
945 if (__ratelimit(&rs) && dev)
946 scrub_print_common_warning("i/o error", dev, false,
947 stripe->logical, physical);
948 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
949 if (__ratelimit(&rs) && dev)
950 scrub_print_common_warning("checksum error", dev, false,
951 stripe->logical, physical);
952 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
953 if (__ratelimit(&rs) && dev)
954 scrub_print_common_warning("header error", dev, false,
955 stripe->logical, physical);
958 spin_lock(&sctx->stat_lock);
959 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
960 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
961 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
962 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
963 sctx->stat.no_csum += nr_nodatacsum_sectors;
964 sctx->stat.read_errors += stripe->init_nr_io_errors;
965 sctx->stat.csum_errors += stripe->init_nr_csum_errors;
966 sctx->stat.verify_errors += stripe->init_nr_meta_errors;
967 sctx->stat.uncorrectable_errors +=
968 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
969 sctx->stat.corrected_errors += nr_repaired_sectors;
970 spin_unlock(&sctx->stat_lock);
974 * The main entrance for all read related scrub work, including:
976 * - Wait for the initial read to finish
977 * - Verify and locate any bad sectors
978 * - Go through the remaining mirrors and try to read as large blocksize as
980 * - Go through all mirrors (including the failed mirror) sector-by-sector
982 * Writeback does not happen here, it needs extra synchronization.
984 static void scrub_stripe_read_repair_worker(struct work_struct *work)
986 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
987 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
988 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
993 ASSERT(stripe->mirror_num > 0);
995 wait_scrub_stripe_io(stripe);
996 scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
997 /* Save the initial failed bitmap for later repair and report usage. */
998 stripe->init_error_bitmap = stripe->error_bitmap;
999 stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1000 stripe->nr_sectors);
1001 stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1002 stripe->nr_sectors);
1003 stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1004 stripe->nr_sectors);
1006 if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1010 * Try all remaining mirrors.
1012 * Here we still try to read as large block as possible, as this is
1013 * faster and we have extra safety nets to rely on.
1015 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1016 mirror != stripe->mirror_num;
1017 mirror = calc_next_mirror(mirror, num_copies)) {
1018 const unsigned long old_error_bitmap = stripe->error_bitmap;
1020 scrub_stripe_submit_repair_read(stripe, mirror,
1021 BTRFS_STRIPE_LEN, false);
1022 wait_scrub_stripe_io(stripe);
1023 scrub_verify_one_stripe(stripe, old_error_bitmap);
1024 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1029 * Last safety net, try re-checking all mirrors, including the failed
1030 * one, sector-by-sector.
1032 * As if one sector failed the drive's internal csum, the whole read
1033 * containing the offending sector would be marked as error.
1034 * Thus here we do sector-by-sector read.
1036 * This can be slow, thus we only try it as the last resort.
1039 for (i = 0, mirror = stripe->mirror_num;
1041 i++, mirror = calc_next_mirror(mirror, num_copies)) {
1042 const unsigned long old_error_bitmap = stripe->error_bitmap;
1044 scrub_stripe_submit_repair_read(stripe, mirror,
1045 fs_info->sectorsize, true);
1046 wait_scrub_stripe_io(stripe);
1047 scrub_verify_one_stripe(stripe, old_error_bitmap);
1048 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1052 scrub_stripe_report_errors(stripe->sctx, stripe);
1053 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1054 wake_up(&stripe->repair_wait);
1057 static void scrub_read_endio(struct btrfs_bio *bbio)
1059 struct scrub_stripe *stripe = bbio->private;
1061 if (bbio->bio.bi_status) {
1062 bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1063 bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
1065 bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1067 bio_put(&bbio->bio);
1068 if (atomic_dec_and_test(&stripe->pending_io)) {
1069 wake_up(&stripe->io_wait);
1070 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1071 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1075 static void scrub_write_endio(struct btrfs_bio *bbio)
1077 struct scrub_stripe *stripe = bbio->private;
1078 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1079 struct bio_vec *bvec;
1080 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1084 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1085 bio_size += bvec->bv_len;
1087 if (bbio->bio.bi_status) {
1088 unsigned long flags;
1090 spin_lock_irqsave(&stripe->write_error_lock, flags);
1091 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1092 bio_size >> fs_info->sectorsize_bits);
1093 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1095 bio_put(&bbio->bio);
1097 if (atomic_dec_and_test(&stripe->pending_io))
1098 wake_up(&stripe->io_wait);
1101 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1102 struct scrub_stripe *stripe,
1103 struct btrfs_bio *bbio, bool dev_replace)
1105 struct btrfs_fs_info *fs_info = sctx->fs_info;
1106 u32 bio_len = bbio->bio.bi_iter.bi_size;
1107 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1110 fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1111 atomic_inc(&stripe->pending_io);
1112 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1113 if (!btrfs_is_zoned(fs_info))
1116 * For zoned writeback, queue depth must be 1, thus we must wait for
1117 * the write to finish before the next write.
1119 wait_scrub_stripe_io(stripe);
1122 * And also need to update the write pointer if write finished
1125 if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1126 &stripe->write_error_bitmap))
1127 sctx->write_pointer += bio_len;
1131 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1133 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1135 * - Only needs logical bytenr and mirror_num
1136 * Just like the scrub read path
1138 * - Would only result in writes to the specified mirror
1139 * Unlike the regular writeback path, which would write back to all stripes
1141 * - Handle dev-replace and read-repair writeback differently
1143 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1144 unsigned long write_bitmap, bool dev_replace)
1146 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1147 struct btrfs_bio *bbio = NULL;
1150 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1151 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1152 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1155 /* We should only writeback sectors covered by an extent. */
1156 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1158 /* Cannot merge with previous sector, submit the current one. */
1159 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1160 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1164 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1165 fs_info, scrub_write_endio, stripe);
1166 bbio->bio.bi_iter.bi_sector = (stripe->logical +
1167 (sector_nr << fs_info->sectorsize_bits)) >>
1170 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1171 ASSERT(ret == fs_info->sectorsize);
1174 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1178 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1179 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1181 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1182 unsigned int bio_size)
1184 const int time_slice = 1000;
1190 bwlimit = READ_ONCE(device->scrub_speed_max);
1195 * Slice is divided into intervals when the IO is submitted, adjust by
1196 * bwlimit and maximum of 64 intervals.
1198 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1199 div = min_t(u32, 64, div);
1201 /* Start new epoch, set deadline */
1203 if (sctx->throttle_deadline == 0) {
1204 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1205 sctx->throttle_sent = 0;
1208 /* Still in the time to send? */
1209 if (ktime_before(now, sctx->throttle_deadline)) {
1210 /* If current bio is within the limit, send it */
1211 sctx->throttle_sent += bio_size;
1212 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1215 /* We're over the limit, sleep until the rest of the slice */
1216 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1218 /* New request after deadline, start new epoch */
1225 timeout = div_u64(delta * HZ, 1000);
1226 schedule_timeout_interruptible(timeout);
1229 /* Next call will start the deadline period */
1230 sctx->throttle_deadline = 0;
1234 * Given a physical address, this will calculate it's
1235 * logical offset. if this is a parity stripe, it will return
1236 * the most left data stripe's logical offset.
1238 * return 0 if it is a data stripe, 1 means parity stripe.
1240 static int get_raid56_logic_offset(u64 physical, int num,
1241 struct map_lookup *map, u64 *offset,
1247 const int data_stripes = nr_data_stripes(map);
1249 last_offset = (physical - map->stripes[num].physical) * data_stripes;
1251 *stripe_start = last_offset;
1253 *offset = last_offset;
1254 for (i = 0; i < data_stripes; i++) {
1259 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1261 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1263 /* Work out the disk rotation on this stripe-set */
1264 rot = stripe_nr % map->num_stripes;
1265 stripe_nr /= map->num_stripes;
1266 /* calculate which stripe this data locates */
1268 stripe_index = rot % map->num_stripes;
1269 if (stripe_index == num)
1271 if (stripe_index < num)
1274 *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1279 * Return 0 if the extent item range covers any byte of the range.
1280 * Return <0 if the extent item is before @search_start.
1281 * Return >0 if the extent item is after @start_start + @search_len.
1283 static int compare_extent_item_range(struct btrfs_path *path,
1284 u64 search_start, u64 search_len)
1286 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1288 struct btrfs_key key;
1290 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1291 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1292 key.type == BTRFS_METADATA_ITEM_KEY);
1293 if (key.type == BTRFS_METADATA_ITEM_KEY)
1294 len = fs_info->nodesize;
1298 if (key.objectid + len <= search_start)
1300 if (key.objectid >= search_start + search_len)
1306 * Locate one extent item which covers any byte in range
1307 * [@search_start, @search_start + @search_length)
1309 * If the path is not initialized, we will initialize the search by doing
1310 * a btrfs_search_slot().
1311 * If the path is already initialized, we will use the path as the initial
1312 * slot, to avoid duplicated btrfs_search_slot() calls.
1314 * NOTE: If an extent item starts before @search_start, we will still
1315 * return the extent item. This is for data extent crossing stripe boundary.
1317 * Return 0 if we found such extent item, and @path will point to the extent item.
1318 * Return >0 if no such extent item can be found, and @path will be released.
1319 * Return <0 if hit fatal error, and @path will be released.
1321 static int find_first_extent_item(struct btrfs_root *extent_root,
1322 struct btrfs_path *path,
1323 u64 search_start, u64 search_len)
1325 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1326 struct btrfs_key key;
1329 /* Continue using the existing path */
1331 goto search_forward;
1333 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1334 key.type = BTRFS_METADATA_ITEM_KEY;
1336 key.type = BTRFS_EXTENT_ITEM_KEY;
1337 key.objectid = search_start;
1338 key.offset = (u64)-1;
1340 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1346 * Here we intentionally pass 0 as @min_objectid, as there could be
1347 * an extent item starting before @search_start.
1349 ret = btrfs_previous_extent_item(extent_root, path, 0);
1353 * No matter whether we have found an extent item, the next loop will
1354 * properly do every check on the key.
1358 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1359 if (key.objectid >= search_start + search_len)
1361 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1362 key.type != BTRFS_EXTENT_ITEM_KEY)
1365 ret = compare_extent_item_range(path, search_start, search_len);
1372 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
1373 ret = btrfs_next_leaf(extent_root, path);
1375 /* Either no more item or fatal error */
1376 btrfs_release_path(path);
1381 btrfs_release_path(path);
1385 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1386 u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1388 struct btrfs_key key;
1389 struct btrfs_extent_item *ei;
1391 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1392 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1393 key.type == BTRFS_EXTENT_ITEM_KEY);
1394 *extent_start_ret = key.objectid;
1395 if (key.type == BTRFS_METADATA_ITEM_KEY)
1396 *size_ret = path->nodes[0]->fs_info->nodesize;
1398 *size_ret = key.offset;
1399 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1400 *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1401 *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1404 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1405 u64 physical, u64 physical_end)
1407 struct btrfs_fs_info *fs_info = sctx->fs_info;
1410 if (!btrfs_is_zoned(fs_info))
1413 mutex_lock(&sctx->wr_lock);
1414 if (sctx->write_pointer < physical_end) {
1415 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1417 sctx->write_pointer);
1420 "zoned: failed to recover write pointer");
1422 mutex_unlock(&sctx->wr_lock);
1423 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1428 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1429 struct scrub_stripe *stripe,
1430 u64 extent_start, u64 extent_len,
1431 u64 extent_flags, u64 extent_gen)
1433 for (u64 cur_logical = max(stripe->logical, extent_start);
1434 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1435 extent_start + extent_len);
1436 cur_logical += fs_info->sectorsize) {
1437 const int nr_sector = (cur_logical - stripe->logical) >>
1438 fs_info->sectorsize_bits;
1439 struct scrub_sector_verification *sector =
1440 &stripe->sectors[nr_sector];
1442 set_bit(nr_sector, &stripe->extent_sector_bitmap);
1443 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1444 sector->is_metadata = true;
1445 sector->generation = extent_gen;
1450 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1452 stripe->extent_sector_bitmap = 0;
1453 stripe->init_error_bitmap = 0;
1454 stripe->init_nr_io_errors = 0;
1455 stripe->init_nr_csum_errors = 0;
1456 stripe->init_nr_meta_errors = 0;
1457 stripe->error_bitmap = 0;
1458 stripe->io_error_bitmap = 0;
1459 stripe->csum_error_bitmap = 0;
1460 stripe->meta_error_bitmap = 0;
1464 * Locate one stripe which has at least one extent in its range.
1466 * Return 0 if found such stripe, and store its info into @stripe.
1467 * Return >0 if there is no such stripe in the specified range.
1468 * Return <0 for error.
1470 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1471 struct btrfs_device *dev, u64 physical,
1472 int mirror_num, u64 logical_start,
1474 struct scrub_stripe *stripe)
1476 struct btrfs_fs_info *fs_info = bg->fs_info;
1477 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1478 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1479 const u64 logical_end = logical_start + logical_len;
1480 struct btrfs_path path = { 0 };
1481 u64 cur_logical = logical_start;
1489 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1490 stripe->nr_sectors);
1491 scrub_stripe_reset_bitmaps(stripe);
1493 /* The range must be inside the bg. */
1494 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1496 path.search_commit_root = 1;
1497 path.skip_locking = 1;
1499 ret = find_first_extent_item(extent_root, &path, logical_start, logical_len);
1500 /* Either error or not found. */
1503 get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen);
1504 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1505 stripe->nr_meta_extents++;
1506 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1507 stripe->nr_data_extents++;
1508 cur_logical = max(extent_start, cur_logical);
1511 * Round down to stripe boundary.
1513 * The extra calculation against bg->start is to handle block groups
1514 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1516 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1518 stripe->physical = physical + stripe->logical - logical_start;
1521 stripe->mirror_num = mirror_num;
1522 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1524 /* Fill the first extent info into stripe->sectors[] array. */
1525 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1526 extent_flags, extent_gen);
1527 cur_logical = extent_start + extent_len;
1529 /* Fill the extent info for the remaining sectors. */
1530 while (cur_logical <= stripe_end) {
1531 ret = find_first_extent_item(extent_root, &path, cur_logical,
1532 stripe_end - cur_logical + 1);
1539 get_extent_info(&path, &extent_start, &extent_len,
1540 &extent_flags, &extent_gen);
1541 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1542 stripe->nr_meta_extents++;
1543 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1544 stripe->nr_data_extents++;
1545 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1546 extent_flags, extent_gen);
1547 cur_logical = extent_start + extent_len;
1550 /* Now fill the data csum. */
1551 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1553 unsigned long csum_bitmap = 0;
1555 /* Csum space should have already been allocated. */
1556 ASSERT(stripe->csums);
1559 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1560 * should contain at most 16 sectors.
1562 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1564 ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical,
1565 stripe_end, stripe->csums,
1566 &csum_bitmap, true);
1572 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1573 stripe->sectors[sector_nr].csum = stripe->csums +
1574 sector_nr * fs_info->csum_size;
1577 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1579 btrfs_release_path(&path);
1583 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1585 scrub_stripe_reset_bitmaps(stripe);
1587 stripe->nr_meta_extents = 0;
1588 stripe->nr_data_extents = 0;
1591 for (int i = 0; i < stripe->nr_sectors; i++) {
1592 stripe->sectors[i].is_metadata = false;
1593 stripe->sectors[i].csum = NULL;
1594 stripe->sectors[i].generation = 0;
1598 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1599 struct scrub_stripe *stripe)
1601 struct btrfs_fs_info *fs_info = sctx->fs_info;
1602 struct btrfs_bio *bbio;
1603 int mirror = stripe->mirror_num;
1606 ASSERT(stripe->mirror_num > 0);
1607 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1609 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1610 scrub_read_endio, stripe);
1612 /* Read the whole stripe. */
1613 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1614 for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
1617 ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
1618 /* We should have allocated enough bio vectors. */
1619 ASSERT(ret == PAGE_SIZE);
1621 atomic_inc(&stripe->pending_io);
1624 * For dev-replace, either user asks to avoid the source dev, or
1625 * the device is missing, we try the next mirror instead.
1627 if (sctx->is_dev_replace &&
1628 (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1629 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1630 !stripe->dev->bdev)) {
1631 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1632 stripe->bg->length);
1634 mirror = calc_next_mirror(mirror, num_copies);
1636 btrfs_submit_bio(bbio, mirror);
1639 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1643 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1644 if (stripe->sectors[i].is_metadata) {
1645 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1648 "stripe %llu has unrepaired metadata sector at %llu",
1650 stripe->logical + (i << fs_info->sectorsize_bits));
1657 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1659 struct btrfs_fs_info *fs_info = sctx->fs_info;
1660 struct scrub_stripe *stripe;
1661 const int nr_stripes = sctx->cur_stripe;
1667 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1669 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1670 btrfs_stripe_nr_to_offset(nr_stripes));
1671 for (int i = 0; i < nr_stripes; i++) {
1672 stripe = &sctx->stripes[i];
1673 scrub_submit_initial_read(sctx, stripe);
1676 for (int i = 0; i < nr_stripes; i++) {
1677 stripe = &sctx->stripes[i];
1679 wait_event(stripe->repair_wait,
1680 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1684 * Submit the repaired sectors. For zoned case, we cannot do repair
1685 * in-place, but queue the bg to be relocated.
1687 if (btrfs_is_zoned(fs_info)) {
1688 for (int i = 0; i < nr_stripes; i++) {
1689 stripe = &sctx->stripes[i];
1691 if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) {
1692 btrfs_repair_one_zone(fs_info,
1693 sctx->stripes[0].bg->start);
1697 } else if (!sctx->readonly) {
1698 for (int i = 0; i < nr_stripes; i++) {
1699 unsigned long repaired;
1701 stripe = &sctx->stripes[i];
1703 bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1704 &stripe->error_bitmap, stripe->nr_sectors);
1705 scrub_write_sectors(sctx, stripe, repaired, false);
1709 /* Submit for dev-replace. */
1710 if (sctx->is_dev_replace) {
1712 * For dev-replace, if we know there is something wrong with
1713 * metadata, we should immedately abort.
1715 for (int i = 0; i < nr_stripes; i++) {
1716 if (stripe_has_metadata_error(&sctx->stripes[i])) {
1721 for (int i = 0; i < nr_stripes; i++) {
1724 stripe = &sctx->stripes[i];
1726 ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1728 bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1729 &stripe->error_bitmap, stripe->nr_sectors);
1730 scrub_write_sectors(sctx, stripe, good, true);
1734 /* Wait for the above writebacks to finish. */
1735 for (int i = 0; i < nr_stripes; i++) {
1736 stripe = &sctx->stripes[i];
1738 wait_scrub_stripe_io(stripe);
1739 scrub_reset_stripe(stripe);
1742 sctx->cur_stripe = 0;
1746 static void raid56_scrub_wait_endio(struct bio *bio)
1748 complete(bio->bi_private);
1751 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1752 struct btrfs_device *dev, int mirror_num,
1753 u64 logical, u32 length, u64 physical)
1755 struct scrub_stripe *stripe;
1758 /* No available slot, submit all stripes and wait for them. */
1759 if (sctx->cur_stripe >= SCRUB_STRIPES_PER_SCTX) {
1760 ret = flush_scrub_stripes(sctx);
1765 stripe = &sctx->stripes[sctx->cur_stripe];
1767 /* We can queue one stripe using the remaining slot. */
1768 scrub_reset_stripe(stripe);
1769 ret = scrub_find_fill_first_stripe(bg, dev, physical, mirror_num,
1770 logical, length, stripe);
1771 /* Either >0 as no more extents or <0 for error. */
1778 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1779 struct btrfs_device *scrub_dev,
1780 struct btrfs_block_group *bg,
1781 struct map_lookup *map,
1782 u64 full_stripe_start)
1784 DECLARE_COMPLETION_ONSTACK(io_done);
1785 struct btrfs_fs_info *fs_info = sctx->fs_info;
1786 struct btrfs_raid_bio *rbio;
1787 struct btrfs_io_context *bioc = NULL;
1789 struct scrub_stripe *stripe;
1790 bool all_empty = true;
1791 const int data_stripes = nr_data_stripes(map);
1792 unsigned long extent_bitmap = 0;
1793 u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1796 ASSERT(sctx->raid56_data_stripes);
1798 for (int i = 0; i < data_stripes; i++) {
1803 stripe = &sctx->raid56_data_stripes[i];
1804 rot = div_u64(full_stripe_start - bg->start,
1805 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1806 stripe_index = (i + rot) % map->num_stripes;
1807 physical = map->stripes[stripe_index].physical +
1808 btrfs_stripe_nr_to_offset(rot);
1810 scrub_reset_stripe(stripe);
1811 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1812 ret = scrub_find_fill_first_stripe(bg,
1813 map->stripes[stripe_index].dev, physical, 1,
1814 full_stripe_start + btrfs_stripe_nr_to_offset(i),
1815 BTRFS_STRIPE_LEN, stripe);
1819 * No extent in this data stripe, need to manually mark them
1820 * initialized to make later read submission happy.
1823 stripe->logical = full_stripe_start +
1824 btrfs_stripe_nr_to_offset(i);
1825 stripe->dev = map->stripes[stripe_index].dev;
1826 stripe->mirror_num = 1;
1827 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1831 /* Check if all data stripes are empty. */
1832 for (int i = 0; i < data_stripes; i++) {
1833 stripe = &sctx->raid56_data_stripes[i];
1834 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1844 for (int i = 0; i < data_stripes; i++) {
1845 stripe = &sctx->raid56_data_stripes[i];
1846 scrub_submit_initial_read(sctx, stripe);
1848 for (int i = 0; i < data_stripes; i++) {
1849 stripe = &sctx->raid56_data_stripes[i];
1851 wait_event(stripe->repair_wait,
1852 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1854 /* For now, no zoned support for RAID56. */
1855 ASSERT(!btrfs_is_zoned(sctx->fs_info));
1857 /* Writeback for the repaired sectors. */
1858 for (int i = 0; i < data_stripes; i++) {
1859 unsigned long repaired;
1861 stripe = &sctx->raid56_data_stripes[i];
1863 bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1864 &stripe->error_bitmap, stripe->nr_sectors);
1865 scrub_write_sectors(sctx, stripe, repaired, false);
1868 /* Wait for the above writebacks to finish. */
1869 for (int i = 0; i < data_stripes; i++) {
1870 stripe = &sctx->raid56_data_stripes[i];
1872 wait_scrub_stripe_io(stripe);
1876 * Now all data stripes are properly verified. Check if we have any
1877 * unrepaired, if so abort immediately or we could further corrupt the
1880 * During the loop, also populate extent_bitmap.
1882 for (int i = 0; i < data_stripes; i++) {
1883 unsigned long error;
1885 stripe = &sctx->raid56_data_stripes[i];
1888 * We should only check the errors where there is an extent.
1889 * As we may hit an empty data stripe while it's missing.
1891 bitmap_and(&error, &stripe->error_bitmap,
1892 &stripe->extent_sector_bitmap, stripe->nr_sectors);
1893 if (!bitmap_empty(&error, stripe->nr_sectors)) {
1895 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
1896 full_stripe_start, i, stripe->nr_sectors,
1901 bitmap_or(&extent_bitmap, &extent_bitmap,
1902 &stripe->extent_sector_bitmap, stripe->nr_sectors);
1905 /* Now we can check and regenerate the P/Q stripe. */
1906 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
1907 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
1908 bio->bi_private = &io_done;
1909 bio->bi_end_io = raid56_scrub_wait_endio;
1911 btrfs_bio_counter_inc_blocked(fs_info);
1912 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
1913 &length, &bioc, NULL, NULL, 1);
1915 btrfs_put_bioc(bioc);
1916 btrfs_bio_counter_dec(fs_info);
1919 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
1920 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1921 btrfs_put_bioc(bioc);
1924 btrfs_bio_counter_dec(fs_info);
1927 /* Use the recovered stripes as cache to avoid read them from disk again. */
1928 for (int i = 0; i < data_stripes; i++) {
1929 stripe = &sctx->raid56_data_stripes[i];
1931 raid56_parity_cache_data_pages(rbio, stripe->pages,
1932 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
1934 raid56_parity_submit_scrub_rbio(rbio);
1935 wait_for_completion_io(&io_done);
1936 ret = blk_status_to_errno(bio->bi_status);
1938 btrfs_bio_counter_dec(fs_info);
1945 * Scrub one range which can only has simple mirror based profile.
1946 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
1949 * Since we may need to handle a subset of block group, we need @logical_start
1950 * and @logical_length parameter.
1952 static int scrub_simple_mirror(struct scrub_ctx *sctx,
1953 struct btrfs_block_group *bg,
1954 struct map_lookup *map,
1955 u64 logical_start, u64 logical_length,
1956 struct btrfs_device *device,
1957 u64 physical, int mirror_num)
1959 struct btrfs_fs_info *fs_info = sctx->fs_info;
1960 const u64 logical_end = logical_start + logical_length;
1961 /* An artificial limit, inherit from old scrub behavior */
1962 struct btrfs_path path = { 0 };
1963 u64 cur_logical = logical_start;
1966 /* The range must be inside the bg */
1967 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1969 path.search_commit_root = 1;
1970 path.skip_locking = 1;
1971 /* Go through each extent items inside the logical range */
1972 while (cur_logical < logical_end) {
1973 u64 cur_physical = physical + cur_logical - logical_start;
1976 if (atomic_read(&fs_info->scrub_cancel_req) ||
1977 atomic_read(&sctx->cancel_req)) {
1982 if (atomic_read(&fs_info->scrub_pause_req)) {
1983 /* Push queued extents */
1984 scrub_blocked_if_needed(fs_info);
1986 /* Block group removed? */
1987 spin_lock(&bg->lock);
1988 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
1989 spin_unlock(&bg->lock);
1993 spin_unlock(&bg->lock);
1995 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
1996 cur_logical, logical_end - cur_logical,
1999 /* No more extent, just update the accounting */
2000 sctx->stat.last_physical = physical + logical_length;
2007 ASSERT(sctx->cur_stripe > 0);
2008 cur_logical = sctx->stripes[sctx->cur_stripe - 1].logical
2011 /* Don't hold CPU for too long time */
2014 btrfs_release_path(&path);
2018 /* Calculate the full stripe length for simple stripe based profiles */
2019 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2021 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2022 BTRFS_BLOCK_GROUP_RAID10));
2024 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2027 /* Get the logical bytenr for the stripe */
2028 static u64 simple_stripe_get_logical(struct map_lookup *map,
2029 struct btrfs_block_group *bg,
2032 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2033 BTRFS_BLOCK_GROUP_RAID10));
2034 ASSERT(stripe_index < map->num_stripes);
2037 * (stripe_index / sub_stripes) gives how many data stripes we need to
2040 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2044 /* Get the mirror number for the stripe */
2045 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2047 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2048 BTRFS_BLOCK_GROUP_RAID10));
2049 ASSERT(stripe_index < map->num_stripes);
2051 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2052 return stripe_index % map->sub_stripes + 1;
2055 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2056 struct btrfs_block_group *bg,
2057 struct map_lookup *map,
2058 struct btrfs_device *device,
2061 const u64 logical_increment = simple_stripe_full_stripe_len(map);
2062 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2063 const u64 orig_physical = map->stripes[stripe_index].physical;
2064 const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2065 u64 cur_logical = orig_logical;
2066 u64 cur_physical = orig_physical;
2069 while (cur_logical < bg->start + bg->length) {
2071 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2072 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2075 ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2076 BTRFS_STRIPE_LEN, device, cur_physical,
2080 /* Skip to next stripe which belongs to the target device */
2081 cur_logical += logical_increment;
2082 /* For physical offset, we just go to next stripe */
2083 cur_physical += BTRFS_STRIPE_LEN;
2088 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2089 struct btrfs_block_group *bg,
2090 struct extent_map *em,
2091 struct btrfs_device *scrub_dev,
2094 struct btrfs_fs_info *fs_info = sctx->fs_info;
2095 struct map_lookup *map = em->map_lookup;
2096 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2097 const u64 chunk_logical = bg->start;
2100 u64 physical = map->stripes[stripe_index].physical;
2101 const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2102 const u64 physical_end = physical + dev_stripe_len;
2105 /* The logical increment after finishing one stripe */
2107 /* Offset inside the chunk */
2112 scrub_blocked_if_needed(fs_info);
2114 if (sctx->is_dev_replace &&
2115 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2116 mutex_lock(&sctx->wr_lock);
2117 sctx->write_pointer = physical;
2118 mutex_unlock(&sctx->wr_lock);
2121 /* Prepare the extra data stripes used by RAID56. */
2122 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2123 ASSERT(sctx->raid56_data_stripes == NULL);
2125 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2126 sizeof(struct scrub_stripe),
2128 if (!sctx->raid56_data_stripes) {
2132 for (int i = 0; i < nr_data_stripes(map); i++) {
2133 ret = init_scrub_stripe(fs_info,
2134 &sctx->raid56_data_stripes[i]);
2137 sctx->raid56_data_stripes[i].bg = bg;
2138 sctx->raid56_data_stripes[i].sctx = sctx;
2142 * There used to be a big double loop to handle all profiles using the
2143 * same routine, which grows larger and more gross over time.
2145 * So here we handle each profile differently, so simpler profiles
2146 * have simpler scrubbing function.
2148 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2149 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2151 * Above check rules out all complex profile, the remaining
2152 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2153 * mirrored duplication without stripe.
2155 * Only @physical and @mirror_num needs to calculated using
2158 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2159 scrub_dev, map->stripes[stripe_index].physical,
2164 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2165 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2166 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2170 /* Only RAID56 goes through the old code */
2171 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2174 /* Calculate the logical end of the stripe */
2175 get_raid56_logic_offset(physical_end, stripe_index,
2176 map, &logic_end, NULL);
2177 logic_end += chunk_logical;
2179 /* Initialize @offset in case we need to go to out: label */
2180 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2181 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2184 * Due to the rotation, for RAID56 it's better to iterate each stripe
2185 * using their physical offset.
2187 while (physical < physical_end) {
2188 ret = get_raid56_logic_offset(physical, stripe_index, map,
2189 &logical, &stripe_logical);
2190 logical += chunk_logical;
2192 /* it is parity strip */
2193 stripe_logical += chunk_logical;
2194 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2195 map, stripe_logical);
2202 * Now we're at a data stripe, scrub each extents in the range.
2204 * At this stage, if we ignore the repair part, inside each data
2205 * stripe it is no different than SINGLE profile.
2206 * We can reuse scrub_simple_mirror() here, as the repair part
2207 * is still based on @mirror_num.
2209 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2210 scrub_dev, physical, 1);
2214 logical += increment;
2215 physical += BTRFS_STRIPE_LEN;
2216 spin_lock(&sctx->stat_lock);
2218 sctx->stat.last_physical =
2219 map->stripes[stripe_index].physical + dev_stripe_len;
2221 sctx->stat.last_physical = physical;
2222 spin_unlock(&sctx->stat_lock);
2227 ret2 = flush_scrub_stripes(sctx);
2230 if (sctx->raid56_data_stripes) {
2231 for (int i = 0; i < nr_data_stripes(map); i++)
2232 release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2233 kfree(sctx->raid56_data_stripes);
2234 sctx->raid56_data_stripes = NULL;
2237 if (sctx->is_dev_replace && ret >= 0) {
2240 ret2 = sync_write_pointer_for_zoned(sctx,
2241 chunk_logical + offset,
2242 map->stripes[stripe_index].physical,
2248 return ret < 0 ? ret : 0;
2251 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2252 struct btrfs_block_group *bg,
2253 struct btrfs_device *scrub_dev,
2257 struct btrfs_fs_info *fs_info = sctx->fs_info;
2258 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2259 struct map_lookup *map;
2260 struct extent_map *em;
2264 read_lock(&map_tree->lock);
2265 em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2266 read_unlock(&map_tree->lock);
2270 * Might have been an unused block group deleted by the cleaner
2271 * kthread or relocation.
2273 spin_lock(&bg->lock);
2274 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2276 spin_unlock(&bg->lock);
2280 if (em->start != bg->start)
2282 if (em->len < dev_extent_len)
2285 map = em->map_lookup;
2286 for (i = 0; i < map->num_stripes; ++i) {
2287 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2288 map->stripes[i].physical == dev_offset) {
2289 ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
2295 free_extent_map(em);
2300 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2301 struct btrfs_block_group *cache)
2303 struct btrfs_fs_info *fs_info = cache->fs_info;
2304 struct btrfs_trans_handle *trans;
2306 if (!btrfs_is_zoned(fs_info))
2309 btrfs_wait_block_group_reservations(cache);
2310 btrfs_wait_nocow_writers(cache);
2311 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2313 trans = btrfs_join_transaction(root);
2315 return PTR_ERR(trans);
2316 return btrfs_commit_transaction(trans);
2319 static noinline_for_stack
2320 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2321 struct btrfs_device *scrub_dev, u64 start, u64 end)
2323 struct btrfs_dev_extent *dev_extent = NULL;
2324 struct btrfs_path *path;
2325 struct btrfs_fs_info *fs_info = sctx->fs_info;
2326 struct btrfs_root *root = fs_info->dev_root;
2331 struct extent_buffer *l;
2332 struct btrfs_key key;
2333 struct btrfs_key found_key;
2334 struct btrfs_block_group *cache;
2335 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2337 path = btrfs_alloc_path();
2341 path->reada = READA_FORWARD;
2342 path->search_commit_root = 1;
2343 path->skip_locking = 1;
2345 key.objectid = scrub_dev->devid;
2347 key.type = BTRFS_DEV_EXTENT_KEY;
2352 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2356 if (path->slots[0] >=
2357 btrfs_header_nritems(path->nodes[0])) {
2358 ret = btrfs_next_leaf(root, path);
2371 slot = path->slots[0];
2373 btrfs_item_key_to_cpu(l, &found_key, slot);
2375 if (found_key.objectid != scrub_dev->devid)
2378 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2381 if (found_key.offset >= end)
2384 if (found_key.offset < key.offset)
2387 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2388 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2390 if (found_key.offset + dev_extent_len <= start)
2393 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2396 * get a reference on the corresponding block group to prevent
2397 * the chunk from going away while we scrub it
2399 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2401 /* some chunks are removed but not committed to disk yet,
2402 * continue scrubbing */
2406 ASSERT(cache->start <= chunk_offset);
2408 * We are using the commit root to search for device extents, so
2409 * that means we could have found a device extent item from a
2410 * block group that was deleted in the current transaction. The
2411 * logical start offset of the deleted block group, stored at
2412 * @chunk_offset, might be part of the logical address range of
2413 * a new block group (which uses different physical extents).
2414 * In this case btrfs_lookup_block_group() has returned the new
2415 * block group, and its start address is less than @chunk_offset.
2417 * We skip such new block groups, because it's pointless to
2418 * process them, as we won't find their extents because we search
2419 * for them using the commit root of the extent tree. For a device
2420 * replace it's also fine to skip it, we won't miss copying them
2421 * to the target device because we have the write duplication
2422 * setup through the regular write path (by btrfs_map_block()),
2423 * and we have committed a transaction when we started the device
2424 * replace, right after setting up the device replace state.
2426 if (cache->start < chunk_offset) {
2427 btrfs_put_block_group(cache);
2431 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2432 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2433 btrfs_put_block_group(cache);
2439 * Make sure that while we are scrubbing the corresponding block
2440 * group doesn't get its logical address and its device extents
2441 * reused for another block group, which can possibly be of a
2442 * different type and different profile. We do this to prevent
2443 * false error detections and crashes due to bogus attempts to
2446 spin_lock(&cache->lock);
2447 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2448 spin_unlock(&cache->lock);
2449 btrfs_put_block_group(cache);
2452 btrfs_freeze_block_group(cache);
2453 spin_unlock(&cache->lock);
2456 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2457 * to avoid deadlock caused by:
2458 * btrfs_inc_block_group_ro()
2459 * -> btrfs_wait_for_commit()
2460 * -> btrfs_commit_transaction()
2461 * -> btrfs_scrub_pause()
2463 scrub_pause_on(fs_info);
2466 * Don't do chunk preallocation for scrub.
2468 * This is especially important for SYSTEM bgs, or we can hit
2469 * -EFBIG from btrfs_finish_chunk_alloc() like:
2470 * 1. The only SYSTEM bg is marked RO.
2471 * Since SYSTEM bg is small, that's pretty common.
2472 * 2. New SYSTEM bg will be allocated
2473 * Due to regular version will allocate new chunk.
2474 * 3. New SYSTEM bg is empty and will get cleaned up
2475 * Before cleanup really happens, it's marked RO again.
2476 * 4. Empty SYSTEM bg get scrubbed
2479 * This can easily boost the amount of SYSTEM chunks if cleaner
2480 * thread can't be triggered fast enough, and use up all space
2481 * of btrfs_super_block::sys_chunk_array
2483 * While for dev replace, we need to try our best to mark block
2484 * group RO, to prevent race between:
2485 * - Write duplication
2486 * Contains latest data
2488 * Contains data from commit tree
2490 * If target block group is not marked RO, nocow writes can
2491 * be overwritten by scrub copy, causing data corruption.
2492 * So for dev-replace, it's not allowed to continue if a block
2495 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2496 if (!ret && sctx->is_dev_replace) {
2497 ret = finish_extent_writes_for_zoned(root, cache);
2499 btrfs_dec_block_group_ro(cache);
2500 scrub_pause_off(fs_info);
2501 btrfs_put_block_group(cache);
2508 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2509 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2511 * btrfs_inc_block_group_ro return -ENOSPC when it
2512 * failed in creating new chunk for metadata.
2513 * It is not a problem for scrub, because
2514 * metadata are always cowed, and our scrub paused
2515 * commit_transactions.
2517 * For RAID56 chunks, we have to mark them read-only
2518 * for scrub, as later we would use our own cache
2519 * out of RAID56 realm.
2520 * Thus we want the RAID56 bg to be marked RO to
2521 * prevent RMW from screwing up out cache.
2524 } else if (ret == -ETXTBSY) {
2526 "skipping scrub of block group %llu due to active swapfile",
2528 scrub_pause_off(fs_info);
2533 "failed setting block group ro: %d", ret);
2534 btrfs_unfreeze_block_group(cache);
2535 btrfs_put_block_group(cache);
2536 scrub_pause_off(fs_info);
2541 * Now the target block is marked RO, wait for nocow writes to
2542 * finish before dev-replace.
2543 * COW is fine, as COW never overwrites extents in commit tree.
2545 if (sctx->is_dev_replace) {
2546 btrfs_wait_nocow_writers(cache);
2547 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2551 scrub_pause_off(fs_info);
2552 down_write(&dev_replace->rwsem);
2553 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2554 dev_replace->cursor_left = found_key.offset;
2555 dev_replace->item_needs_writeback = 1;
2556 up_write(&dev_replace->rwsem);
2558 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2560 if (sctx->is_dev_replace &&
2561 !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2562 cache, found_key.offset))
2565 down_write(&dev_replace->rwsem);
2566 dev_replace->cursor_left = dev_replace->cursor_right;
2567 dev_replace->item_needs_writeback = 1;
2568 up_write(&dev_replace->rwsem);
2571 btrfs_dec_block_group_ro(cache);
2574 * We might have prevented the cleaner kthread from deleting
2575 * this block group if it was already unused because we raced
2576 * and set it to RO mode first. So add it back to the unused
2577 * list, otherwise it might not ever be deleted unless a manual
2578 * balance is triggered or it becomes used and unused again.
2580 spin_lock(&cache->lock);
2581 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2582 !cache->ro && cache->reserved == 0 && cache->used == 0) {
2583 spin_unlock(&cache->lock);
2584 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2585 btrfs_discard_queue_work(&fs_info->discard_ctl,
2588 btrfs_mark_bg_unused(cache);
2590 spin_unlock(&cache->lock);
2593 btrfs_unfreeze_block_group(cache);
2594 btrfs_put_block_group(cache);
2597 if (sctx->is_dev_replace &&
2598 atomic64_read(&dev_replace->num_write_errors) > 0) {
2602 if (sctx->stat.malloc_errors > 0) {
2607 key.offset = found_key.offset + dev_extent_len;
2608 btrfs_release_path(path);
2611 btrfs_free_path(path);
2616 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2617 struct page *page, u64 physical, u64 generation)
2619 struct btrfs_fs_info *fs_info = sctx->fs_info;
2620 struct bio_vec bvec;
2622 struct btrfs_super_block *sb = page_address(page);
2625 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2626 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2627 __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2628 ret = submit_bio_wait(&bio);
2633 ret = btrfs_check_super_csum(fs_info, sb);
2635 btrfs_err_rl(fs_info,
2636 "super block at physical %llu devid %llu has bad csum",
2637 physical, dev->devid);
2640 if (btrfs_super_generation(sb) != generation) {
2641 btrfs_err_rl(fs_info,
2642 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2643 physical, dev->devid,
2644 btrfs_super_generation(sb), generation);
2648 return btrfs_validate_super(fs_info, sb, -1);
2651 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2652 struct btrfs_device *scrub_dev)
2659 struct btrfs_fs_info *fs_info = sctx->fs_info;
2661 if (BTRFS_FS_ERROR(fs_info))
2664 page = alloc_page(GFP_KERNEL);
2666 spin_lock(&sctx->stat_lock);
2667 sctx->stat.malloc_errors++;
2668 spin_unlock(&sctx->stat_lock);
2672 /* Seed devices of a new filesystem has their own generation. */
2673 if (scrub_dev->fs_devices != fs_info->fs_devices)
2674 gen = scrub_dev->generation;
2676 gen = fs_info->last_trans_committed;
2678 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2679 bytenr = btrfs_sb_offset(i);
2680 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2681 scrub_dev->commit_total_bytes)
2683 if (!btrfs_check_super_location(scrub_dev, bytenr))
2686 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2688 spin_lock(&sctx->stat_lock);
2689 sctx->stat.super_errors++;
2690 spin_unlock(&sctx->stat_lock);
2697 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2699 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2700 &fs_info->scrub_lock)) {
2701 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2703 fs_info->scrub_workers = NULL;
2704 mutex_unlock(&fs_info->scrub_lock);
2707 destroy_workqueue(scrub_workers);
2712 * get a reference count on fs_info->scrub_workers. start worker if necessary
2714 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2717 struct workqueue_struct *scrub_workers = NULL;
2718 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2719 int max_active = fs_info->thread_pool_size;
2722 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2726 scrub_workers = alloc_ordered_workqueue("btrfs-scrub", flags);
2728 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2732 mutex_lock(&fs_info->scrub_lock);
2733 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2734 ASSERT(fs_info->scrub_workers == NULL);
2735 fs_info->scrub_workers = scrub_workers;
2736 refcount_set(&fs_info->scrub_workers_refcnt, 1);
2737 mutex_unlock(&fs_info->scrub_lock);
2740 /* Other thread raced in and created the workers for us */
2741 refcount_inc(&fs_info->scrub_workers_refcnt);
2742 mutex_unlock(&fs_info->scrub_lock);
2746 destroy_workqueue(scrub_workers);
2750 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2751 u64 end, struct btrfs_scrub_progress *progress,
2752 int readonly, int is_dev_replace)
2754 struct btrfs_dev_lookup_args args = { .devid = devid };
2755 struct scrub_ctx *sctx;
2757 struct btrfs_device *dev;
2758 unsigned int nofs_flag;
2759 bool need_commit = false;
2761 if (btrfs_fs_closing(fs_info))
2764 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2765 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2768 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2769 * value (max nodesize / min sectorsize), thus nodesize should always
2772 ASSERT(fs_info->nodesize <=
2773 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2775 /* Allocate outside of device_list_mutex */
2776 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2778 return PTR_ERR(sctx);
2780 ret = scrub_workers_get(fs_info, is_dev_replace);
2784 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2785 dev = btrfs_find_device(fs_info->fs_devices, &args);
2786 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2788 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2793 if (!is_dev_replace && !readonly &&
2794 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2795 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2796 btrfs_err_in_rcu(fs_info,
2797 "scrub on devid %llu: filesystem on %s is not writable",
2798 devid, btrfs_dev_name(dev));
2803 mutex_lock(&fs_info->scrub_lock);
2804 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2805 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2806 mutex_unlock(&fs_info->scrub_lock);
2807 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2812 down_read(&fs_info->dev_replace.rwsem);
2813 if (dev->scrub_ctx ||
2815 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2816 up_read(&fs_info->dev_replace.rwsem);
2817 mutex_unlock(&fs_info->scrub_lock);
2818 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2822 up_read(&fs_info->dev_replace.rwsem);
2824 sctx->readonly = readonly;
2825 dev->scrub_ctx = sctx;
2826 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2829 * checking @scrub_pause_req here, we can avoid
2830 * race between committing transaction and scrubbing.
2832 __scrub_blocked_if_needed(fs_info);
2833 atomic_inc(&fs_info->scrubs_running);
2834 mutex_unlock(&fs_info->scrub_lock);
2837 * In order to avoid deadlock with reclaim when there is a transaction
2838 * trying to pause scrub, make sure we use GFP_NOFS for all the
2839 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2840 * invoked by our callees. The pausing request is done when the
2841 * transaction commit starts, and it blocks the transaction until scrub
2842 * is paused (done at specific points at scrub_stripe() or right above
2843 * before incrementing fs_info->scrubs_running).
2845 nofs_flag = memalloc_nofs_save();
2846 if (!is_dev_replace) {
2847 u64 old_super_errors;
2849 spin_lock(&sctx->stat_lock);
2850 old_super_errors = sctx->stat.super_errors;
2851 spin_unlock(&sctx->stat_lock);
2853 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2855 * by holding device list mutex, we can
2856 * kick off writing super in log tree sync.
2858 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2859 ret = scrub_supers(sctx, dev);
2860 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2862 spin_lock(&sctx->stat_lock);
2864 * Super block errors found, but we can not commit transaction
2865 * at current context, since btrfs_commit_transaction() needs
2866 * to pause the current running scrub (hold by ourselves).
2868 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2870 spin_unlock(&sctx->stat_lock);
2874 ret = scrub_enumerate_chunks(sctx, dev, start, end);
2875 memalloc_nofs_restore(nofs_flag);
2877 atomic_dec(&fs_info->scrubs_running);
2878 wake_up(&fs_info->scrub_pause_wait);
2881 memcpy(progress, &sctx->stat, sizeof(*progress));
2883 if (!is_dev_replace)
2884 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2885 ret ? "not finished" : "finished", devid, ret);
2887 mutex_lock(&fs_info->scrub_lock);
2888 dev->scrub_ctx = NULL;
2889 mutex_unlock(&fs_info->scrub_lock);
2891 scrub_workers_put(fs_info);
2892 scrub_put_ctx(sctx);
2895 * We found some super block errors before, now try to force a
2896 * transaction commit, as scrub has finished.
2899 struct btrfs_trans_handle *trans;
2901 trans = btrfs_start_transaction(fs_info->tree_root, 0);
2902 if (IS_ERR(trans)) {
2903 ret = PTR_ERR(trans);
2905 "scrub: failed to start transaction to fix super block errors: %d", ret);
2908 ret = btrfs_commit_transaction(trans);
2911 "scrub: failed to commit transaction to fix super block errors: %d", ret);
2915 scrub_workers_put(fs_info);
2917 scrub_free_ctx(sctx);
2922 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
2924 mutex_lock(&fs_info->scrub_lock);
2925 atomic_inc(&fs_info->scrub_pause_req);
2926 while (atomic_read(&fs_info->scrubs_paused) !=
2927 atomic_read(&fs_info->scrubs_running)) {
2928 mutex_unlock(&fs_info->scrub_lock);
2929 wait_event(fs_info->scrub_pause_wait,
2930 atomic_read(&fs_info->scrubs_paused) ==
2931 atomic_read(&fs_info->scrubs_running));
2932 mutex_lock(&fs_info->scrub_lock);
2934 mutex_unlock(&fs_info->scrub_lock);
2937 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
2939 atomic_dec(&fs_info->scrub_pause_req);
2940 wake_up(&fs_info->scrub_pause_wait);
2943 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2945 mutex_lock(&fs_info->scrub_lock);
2946 if (!atomic_read(&fs_info->scrubs_running)) {
2947 mutex_unlock(&fs_info->scrub_lock);
2951 atomic_inc(&fs_info->scrub_cancel_req);
2952 while (atomic_read(&fs_info->scrubs_running)) {
2953 mutex_unlock(&fs_info->scrub_lock);
2954 wait_event(fs_info->scrub_pause_wait,
2955 atomic_read(&fs_info->scrubs_running) == 0);
2956 mutex_lock(&fs_info->scrub_lock);
2958 atomic_dec(&fs_info->scrub_cancel_req);
2959 mutex_unlock(&fs_info->scrub_lock);
2964 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
2966 struct btrfs_fs_info *fs_info = dev->fs_info;
2967 struct scrub_ctx *sctx;
2969 mutex_lock(&fs_info->scrub_lock);
2970 sctx = dev->scrub_ctx;
2972 mutex_unlock(&fs_info->scrub_lock);
2975 atomic_inc(&sctx->cancel_req);
2976 while (dev->scrub_ctx) {
2977 mutex_unlock(&fs_info->scrub_lock);
2978 wait_event(fs_info->scrub_pause_wait,
2979 dev->scrub_ctx == NULL);
2980 mutex_lock(&fs_info->scrub_lock);
2982 mutex_unlock(&fs_info->scrub_lock);
2987 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
2988 struct btrfs_scrub_progress *progress)
2990 struct btrfs_dev_lookup_args args = { .devid = devid };
2991 struct btrfs_device *dev;
2992 struct scrub_ctx *sctx = NULL;
2994 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2995 dev = btrfs_find_device(fs_info->fs_devices, &args);
2997 sctx = dev->scrub_ctx;
2999 memcpy(progress, &sctx->stat, sizeof(*progress));
3000 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3002 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;