1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
27 #include <asm/intel-family.h>
29 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
30 EXPORT_SYMBOL(cpu_khz);
32 unsigned int __read_mostly tsc_khz;
33 EXPORT_SYMBOL(tsc_khz);
36 * TSC can be unstable due to cpufreq or due to unsynced TSCs
38 static int __read_mostly tsc_unstable;
40 /* native_sched_clock() is called before tsc_init(), so
41 we must start with the TSC soft disabled to prevent
42 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
43 static int __read_mostly tsc_disabled = -1;
45 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
47 int tsc_clocksource_reliable;
49 static u32 art_to_tsc_numerator;
50 static u32 art_to_tsc_denominator;
51 static u64 art_to_tsc_offset;
52 struct clocksource *art_related_clocksource;
55 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
56 seqcount_t seq; /* 32 + 4 = 36 */
58 }; /* fits one cacheline */
60 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
62 void cyc2ns_read_begin(struct cyc2ns_data *data)
66 preempt_disable_notrace();
69 seq = this_cpu_read(cyc2ns.seq.sequence);
72 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
73 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
74 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
76 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
79 void cyc2ns_read_end(void)
81 preempt_enable_notrace();
85 * Accelerators for sched_clock()
86 * convert from cycles(64bits) => nanoseconds (64bits)
88 * ns = cycles / (freq / ns_per_sec)
89 * ns = cycles * (ns_per_sec / freq)
90 * ns = cycles * (10^9 / (cpu_khz * 10^3))
91 * ns = cycles * (10^6 / cpu_khz)
94 * ns = cycles * (10^6 * SC / cpu_khz) / SC
95 * ns = cycles * cyc2ns_scale / SC
97 * And since SC is a constant power of two, we can convert the div
98 * into a shift. The larger SC is, the more accurate the conversion, but
99 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
100 * (64-bit result) can be used.
102 * We can use khz divisor instead of mhz to keep a better precision.
108 static void cyc2ns_data_init(struct cyc2ns_data *data)
110 data->cyc2ns_mul = 0;
111 data->cyc2ns_shift = 0;
112 data->cyc2ns_offset = 0;
115 static void __init cyc2ns_init(int cpu)
117 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
119 cyc2ns_data_init(&c2n->data[0]);
120 cyc2ns_data_init(&c2n->data[1]);
122 seqcount_init(&c2n->seq);
125 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
127 struct cyc2ns_data data;
128 unsigned long long ns;
130 cyc2ns_read_begin(&data);
132 ns = data.cyc2ns_offset;
133 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
140 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
142 unsigned long long ns_now;
143 struct cyc2ns_data data;
147 local_irq_save(flags);
148 sched_clock_idle_sleep_event();
153 ns_now = cycles_2_ns(tsc_now);
156 * Compute a new multiplier as per the above comment and ensure our
157 * time function is continuous; see the comment near struct
160 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
164 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
165 * not expected to be greater than 31 due to the original published
166 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
167 * value) - refer perf_event_mmap_page documentation in perf_event.h.
169 if (data.cyc2ns_shift == 32) {
170 data.cyc2ns_shift = 31;
171 data.cyc2ns_mul >>= 1;
174 data.cyc2ns_offset = ns_now -
175 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
177 c2n = per_cpu_ptr(&cyc2ns, cpu);
179 raw_write_seqcount_latch(&c2n->seq);
181 raw_write_seqcount_latch(&c2n->seq);
185 sched_clock_idle_wakeup_event();
186 local_irq_restore(flags);
190 * Scheduler clock - returns current time in nanosec units.
192 u64 native_sched_clock(void)
194 if (static_branch_likely(&__use_tsc)) {
195 u64 tsc_now = rdtsc();
197 /* return the value in ns */
198 return cycles_2_ns(tsc_now);
202 * Fall back to jiffies if there's no TSC available:
203 * ( But note that we still use it if the TSC is marked
204 * unstable. We do this because unlike Time Of Day,
205 * the scheduler clock tolerates small errors and it's
206 * very important for it to be as fast as the platform
210 /* No locking but a rare wrong value is not a big deal: */
211 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
215 * Generate a sched_clock if you already have a TSC value.
217 u64 native_sched_clock_from_tsc(u64 tsc)
219 return cycles_2_ns(tsc);
222 /* We need to define a real function for sched_clock, to override the
223 weak default version */
224 #ifdef CONFIG_PARAVIRT
225 unsigned long long sched_clock(void)
227 return paravirt_sched_clock();
230 bool using_native_sched_clock(void)
232 return pv_time_ops.sched_clock == native_sched_clock;
236 sched_clock(void) __attribute__((alias("native_sched_clock")));
238 bool using_native_sched_clock(void) { return true; }
241 int check_tsc_unstable(void)
245 EXPORT_SYMBOL_GPL(check_tsc_unstable);
247 #ifdef CONFIG_X86_TSC
248 int __init notsc_setup(char *str)
250 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
256 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
259 int __init notsc_setup(char *str)
261 setup_clear_cpu_cap(X86_FEATURE_TSC);
266 __setup("notsc", notsc_setup);
268 static int no_sched_irq_time;
270 static int __init tsc_setup(char *str)
272 if (!strcmp(str, "reliable"))
273 tsc_clocksource_reliable = 1;
274 if (!strncmp(str, "noirqtime", 9))
275 no_sched_irq_time = 1;
276 if (!strcmp(str, "unstable"))
277 mark_tsc_unstable("boot parameter");
281 __setup("tsc=", tsc_setup);
283 #define MAX_RETRIES 5
284 #define SMI_TRESHOLD 50000
287 * Read TSC and the reference counters. Take care of SMI disturbance
289 static u64 tsc_read_refs(u64 *p, int hpet)
294 for (i = 0; i < MAX_RETRIES; i++) {
297 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
299 *p = acpi_pm_read_early();
301 if ((t2 - t1) < SMI_TRESHOLD)
308 * Calculate the TSC frequency from HPET reference
310 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
315 hpet2 += 0x100000000ULL;
317 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
318 do_div(tmp, 1000000);
319 do_div(deltatsc, tmp);
321 return (unsigned long) deltatsc;
325 * Calculate the TSC frequency from PMTimer reference
327 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
335 pm2 += (u64)ACPI_PM_OVRRUN;
337 tmp = pm2 * 1000000000LL;
338 do_div(tmp, PMTMR_TICKS_PER_SEC);
339 do_div(deltatsc, tmp);
341 return (unsigned long) deltatsc;
345 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
346 #define CAL_PIT_LOOPS 1000
349 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
350 #define CAL2_PIT_LOOPS 5000
354 * Try to calibrate the TSC against the Programmable
355 * Interrupt Timer and return the frequency of the TSC
358 * Return ULONG_MAX on failure to calibrate.
360 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
362 u64 tsc, t1, t2, delta;
363 unsigned long tscmin, tscmax;
366 /* Set the Gate high, disable speaker */
367 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
370 * Setup CTC channel 2* for mode 0, (interrupt on terminal
371 * count mode), binary count. Set the latch register to 50ms
372 * (LSB then MSB) to begin countdown.
375 outb(latch & 0xff, 0x42);
376 outb(latch >> 8, 0x42);
378 tsc = t1 = t2 = get_cycles();
383 while ((inb(0x61) & 0x20) == 0) {
387 if ((unsigned long) delta < tscmin)
388 tscmin = (unsigned int) delta;
389 if ((unsigned long) delta > tscmax)
390 tscmax = (unsigned int) delta;
397 * If we were not able to read the PIT more than loopmin
398 * times, then we have been hit by a massive SMI
400 * If the maximum is 10 times larger than the minimum,
401 * then we got hit by an SMI as well.
403 if (pitcnt < loopmin || tscmax > 10 * tscmin)
406 /* Calculate the PIT value */
413 * This reads the current MSB of the PIT counter, and
414 * checks if we are running on sufficiently fast and
415 * non-virtualized hardware.
417 * Our expectations are:
419 * - the PIT is running at roughly 1.19MHz
421 * - each IO is going to take about 1us on real hardware,
422 * but we allow it to be much faster (by a factor of 10) or
423 * _slightly_ slower (ie we allow up to a 2us read+counter
424 * update - anything else implies a unacceptably slow CPU
425 * or PIT for the fast calibration to work.
427 * - with 256 PIT ticks to read the value, we have 214us to
428 * see the same MSB (and overhead like doing a single TSC
429 * read per MSB value etc).
431 * - We're doing 2 reads per loop (LSB, MSB), and we expect
432 * them each to take about a microsecond on real hardware.
433 * So we expect a count value of around 100. But we'll be
434 * generous, and accept anything over 50.
436 * - if the PIT is stuck, and we see *many* more reads, we
437 * return early (and the next caller of pit_expect_msb()
438 * then consider it a failure when they don't see the
439 * next expected value).
441 * These expectations mean that we know that we have seen the
442 * transition from one expected value to another with a fairly
443 * high accuracy, and we didn't miss any events. We can thus
444 * use the TSC value at the transitions to calculate a pretty
445 * good value for the TSC frequencty.
447 static inline int pit_verify_msb(unsigned char val)
451 return inb(0x42) == val;
454 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
457 u64 tsc = 0, prev_tsc = 0;
459 for (count = 0; count < 50000; count++) {
460 if (!pit_verify_msb(val))
465 *deltap = get_cycles() - prev_tsc;
469 * We require _some_ success, but the quality control
470 * will be based on the error terms on the TSC values.
476 * How many MSB values do we want to see? We aim for
477 * a maximum error rate of 500ppm (in practice the
478 * real error is much smaller), but refuse to spend
479 * more than 50ms on it.
481 #define MAX_QUICK_PIT_MS 50
482 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
484 static unsigned long quick_pit_calibrate(void)
488 unsigned long d1, d2;
490 /* Set the Gate high, disable speaker */
491 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
494 * Counter 2, mode 0 (one-shot), binary count
496 * NOTE! Mode 2 decrements by two (and then the
497 * output is flipped each time, giving the same
498 * final output frequency as a decrement-by-one),
499 * so mode 0 is much better when looking at the
504 /* Start at 0xffff */
509 * The PIT starts counting at the next edge, so we
510 * need to delay for a microsecond. The easiest way
511 * to do that is to just read back the 16-bit counter
516 if (pit_expect_msb(0xff, &tsc, &d1)) {
517 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
518 if (!pit_expect_msb(0xff-i, &delta, &d2))
524 * Extrapolate the error and fail fast if the error will
525 * never be below 500 ppm.
528 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
532 * Iterate until the error is less than 500 ppm
534 if (d1+d2 >= delta >> 11)
538 * Check the PIT one more time to verify that
539 * all TSC reads were stable wrt the PIT.
541 * This also guarantees serialization of the
542 * last cycle read ('d2') in pit_expect_msb.
544 if (!pit_verify_msb(0xfe - i))
549 pr_info("Fast TSC calibration failed\n");
554 * Ok, if we get here, then we've seen the
555 * MSB of the PIT decrement 'i' times, and the
556 * error has shrunk to less than 500 ppm.
558 * As a result, we can depend on there not being
559 * any odd delays anywhere, and the TSC reads are
560 * reliable (within the error).
562 * kHz = ticks / time-in-seconds / 1000;
563 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
564 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
566 delta *= PIT_TICK_RATE;
567 do_div(delta, i*256*1000);
568 pr_info("Fast TSC calibration using PIT\n");
573 * native_calibrate_tsc
574 * Determine TSC frequency via CPUID, else return 0.
576 unsigned long native_calibrate_tsc(void)
578 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
579 unsigned int crystal_khz;
581 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
584 if (boot_cpu_data.cpuid_level < 0x15)
587 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
589 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
590 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
592 if (ebx_numerator == 0 || eax_denominator == 0)
595 crystal_khz = ecx_hz / 1000;
597 if (crystal_khz == 0) {
598 switch (boot_cpu_data.x86_model) {
599 case INTEL_FAM6_SKYLAKE_MOBILE:
600 case INTEL_FAM6_SKYLAKE_DESKTOP:
601 case INTEL_FAM6_KABYLAKE_MOBILE:
602 case INTEL_FAM6_KABYLAKE_DESKTOP:
603 crystal_khz = 24000; /* 24.0 MHz */
605 case INTEL_FAM6_SKYLAKE_X:
606 case INTEL_FAM6_ATOM_DENVERTON:
607 crystal_khz = 25000; /* 25.0 MHz */
609 case INTEL_FAM6_ATOM_GOLDMONT:
610 crystal_khz = 19200; /* 19.2 MHz */
616 * TSC frequency determined by CPUID is a "hardware reported"
617 * frequency and is the most accurate one so far we have. This
618 * is considered a known frequency.
620 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
623 * For Atom SoCs TSC is the only reliable clocksource.
624 * Mark TSC reliable so no watchdog on it.
626 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
627 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
629 return crystal_khz * ebx_numerator / eax_denominator;
632 static unsigned long cpu_khz_from_cpuid(void)
634 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
636 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
639 if (boot_cpu_data.cpuid_level < 0x16)
642 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
644 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
646 return eax_base_mhz * 1000;
650 * native_calibrate_cpu - calibrate the cpu on boot
652 unsigned long native_calibrate_cpu(void)
654 u64 tsc1, tsc2, delta, ref1, ref2;
655 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
656 unsigned long flags, latch, ms, fast_calibrate;
657 int hpet = is_hpet_enabled(), i, loopmin;
659 fast_calibrate = cpu_khz_from_cpuid();
661 return fast_calibrate;
663 fast_calibrate = cpu_khz_from_msr();
665 return fast_calibrate;
667 local_irq_save(flags);
668 fast_calibrate = quick_pit_calibrate();
669 local_irq_restore(flags);
671 return fast_calibrate;
674 * Run 5 calibration loops to get the lowest frequency value
675 * (the best estimate). We use two different calibration modes
678 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
679 * load a timeout of 50ms. We read the time right after we
680 * started the timer and wait until the PIT count down reaches
681 * zero. In each wait loop iteration we read the TSC and check
682 * the delta to the previous read. We keep track of the min
683 * and max values of that delta. The delta is mostly defined
684 * by the IO time of the PIT access, so we can detect when a
685 * SMI/SMM disturbance happened between the two reads. If the
686 * maximum time is significantly larger than the minimum time,
687 * then we discard the result and have another try.
689 * 2) Reference counter. If available we use the HPET or the
690 * PMTIMER as a reference to check the sanity of that value.
691 * We use separate TSC readouts and check inside of the
692 * reference read for a SMI/SMM disturbance. We dicard
693 * disturbed values here as well. We do that around the PIT
694 * calibration delay loop as we have to wait for a certain
695 * amount of time anyway.
698 /* Preset PIT loop values */
701 loopmin = CAL_PIT_LOOPS;
703 for (i = 0; i < 3; i++) {
704 unsigned long tsc_pit_khz;
707 * Read the start value and the reference count of
708 * hpet/pmtimer when available. Then do the PIT
709 * calibration, which will take at least 50ms, and
710 * read the end value.
712 local_irq_save(flags);
713 tsc1 = tsc_read_refs(&ref1, hpet);
714 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
715 tsc2 = tsc_read_refs(&ref2, hpet);
716 local_irq_restore(flags);
718 /* Pick the lowest PIT TSC calibration so far */
719 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
721 /* hpet or pmtimer available ? */
725 /* Check, whether the sampling was disturbed by an SMI */
726 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
729 tsc2 = (tsc2 - tsc1) * 1000000LL;
731 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
733 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
735 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
737 /* Check the reference deviation */
738 delta = ((u64) tsc_pit_min) * 100;
739 do_div(delta, tsc_ref_min);
742 * If both calibration results are inside a 10% window
743 * then we can be sure, that the calibration
744 * succeeded. We break out of the loop right away. We
745 * use the reference value, as it is more precise.
747 if (delta >= 90 && delta <= 110) {
748 pr_info("PIT calibration matches %s. %d loops\n",
749 hpet ? "HPET" : "PMTIMER", i + 1);
754 * Check whether PIT failed more than once. This
755 * happens in virtualized environments. We need to
756 * give the virtual PC a slightly longer timeframe for
757 * the HPET/PMTIMER to make the result precise.
759 if (i == 1 && tsc_pit_min == ULONG_MAX) {
762 loopmin = CAL2_PIT_LOOPS;
767 * Now check the results.
769 if (tsc_pit_min == ULONG_MAX) {
770 /* PIT gave no useful value */
771 pr_warn("Unable to calibrate against PIT\n");
773 /* We don't have an alternative source, disable TSC */
774 if (!hpet && !ref1 && !ref2) {
775 pr_notice("No reference (HPET/PMTIMER) available\n");
779 /* The alternative source failed as well, disable TSC */
780 if (tsc_ref_min == ULONG_MAX) {
781 pr_warn("HPET/PMTIMER calibration failed\n");
785 /* Use the alternative source */
786 pr_info("using %s reference calibration\n",
787 hpet ? "HPET" : "PMTIMER");
792 /* We don't have an alternative source, use the PIT calibration value */
793 if (!hpet && !ref1 && !ref2) {
794 pr_info("Using PIT calibration value\n");
798 /* The alternative source failed, use the PIT calibration value */
799 if (tsc_ref_min == ULONG_MAX) {
800 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
805 * The calibration values differ too much. In doubt, we use
806 * the PIT value as we know that there are PMTIMERs around
807 * running at double speed. At least we let the user know:
809 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
810 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
811 pr_info("Using PIT calibration value\n");
815 void recalibrate_cpu_khz(void)
818 unsigned long cpu_khz_old = cpu_khz;
820 if (!boot_cpu_has(X86_FEATURE_TSC))
823 cpu_khz = x86_platform.calibrate_cpu();
824 tsc_khz = x86_platform.calibrate_tsc();
827 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
829 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
830 cpu_khz_old, cpu_khz);
834 EXPORT_SYMBOL(recalibrate_cpu_khz);
837 static unsigned long long cyc2ns_suspend;
839 void tsc_save_sched_clock_state(void)
841 if (!sched_clock_stable())
844 cyc2ns_suspend = sched_clock();
848 * Even on processors with invariant TSC, TSC gets reset in some the
849 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
850 * arbitrary value (still sync'd across cpu's) during resume from such sleep
851 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
852 * that sched_clock() continues from the point where it was left off during
855 void tsc_restore_sched_clock_state(void)
857 unsigned long long offset;
861 if (!sched_clock_stable())
864 local_irq_save(flags);
867 * We're coming out of suspend, there's no concurrency yet; don't
868 * bother being nice about the RCU stuff, just write to both
872 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
873 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
875 offset = cyc2ns_suspend - sched_clock();
877 for_each_possible_cpu(cpu) {
878 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
879 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
882 local_irq_restore(flags);
885 #ifdef CONFIG_CPU_FREQ
886 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
889 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
890 * not that important because current Opteron setups do not support
891 * scaling on SMP anyroads.
893 * Should fix up last_tsc too. Currently gettimeofday in the
894 * first tick after the change will be slightly wrong.
897 static unsigned int ref_freq;
898 static unsigned long loops_per_jiffy_ref;
899 static unsigned long tsc_khz_ref;
901 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
904 struct cpufreq_freqs *freq = data;
907 lpj = &boot_cpu_data.loops_per_jiffy;
909 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
910 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
914 ref_freq = freq->old;
915 loops_per_jiffy_ref = *lpj;
916 tsc_khz_ref = tsc_khz;
918 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
919 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
920 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
922 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
923 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
924 mark_tsc_unstable("cpufreq changes");
926 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
932 static struct notifier_block time_cpufreq_notifier_block = {
933 .notifier_call = time_cpufreq_notifier
936 static int __init cpufreq_register_tsc_scaling(void)
938 if (!boot_cpu_has(X86_FEATURE_TSC))
940 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
942 cpufreq_register_notifier(&time_cpufreq_notifier_block,
943 CPUFREQ_TRANSITION_NOTIFIER);
947 core_initcall(cpufreq_register_tsc_scaling);
949 #endif /* CONFIG_CPU_FREQ */
951 #define ART_CPUID_LEAF (0x15)
952 #define ART_MIN_DENOMINATOR (1)
956 * If ART is present detect the numerator:denominator to convert to TSC
958 static void __init detect_art(void)
960 unsigned int unused[2];
962 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
966 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
967 * and the TSC counter resets must not occur asynchronously.
969 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
970 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
971 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
975 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
976 &art_to_tsc_numerator, unused, unused+1);
978 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
981 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
983 /* Make this sticky over multiple CPU init calls */
984 setup_force_cpu_cap(X86_FEATURE_ART);
988 /* clocksource code */
990 static struct clocksource clocksource_tsc;
992 static void tsc_resume(struct clocksource *cs)
994 tsc_verify_tsc_adjust(true);
998 * We used to compare the TSC to the cycle_last value in the clocksource
999 * structure to avoid a nasty time-warp. This can be observed in a
1000 * very small window right after one CPU updated cycle_last under
1001 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1002 * is smaller than the cycle_last reference value due to a TSC which
1003 * is slighty behind. This delta is nowhere else observable, but in
1004 * that case it results in a forward time jump in the range of hours
1005 * due to the unsigned delta calculation of the time keeping core
1006 * code, which is necessary to support wrapping clocksources like pm
1009 * This sanity check is now done in the core timekeeping code.
1010 * checking the result of read_tsc() - cycle_last for being negative.
1011 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1013 static u64 read_tsc(struct clocksource *cs)
1015 return (u64)rdtsc_ordered();
1018 static void tsc_cs_mark_unstable(struct clocksource *cs)
1024 if (using_native_sched_clock())
1025 clear_sched_clock_stable();
1026 disable_sched_clock_irqtime();
1027 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1030 static void tsc_cs_tick_stable(struct clocksource *cs)
1035 if (using_native_sched_clock())
1036 sched_clock_tick_stable();
1040 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1042 static struct clocksource clocksource_tsc = {
1046 .mask = CLOCKSOURCE_MASK(64),
1047 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1048 CLOCK_SOURCE_MUST_VERIFY,
1049 .archdata = { .vclock_mode = VCLOCK_TSC },
1050 .resume = tsc_resume,
1051 .mark_unstable = tsc_cs_mark_unstable,
1052 .tick_stable = tsc_cs_tick_stable,
1055 void mark_tsc_unstable(char *reason)
1061 if (using_native_sched_clock())
1062 clear_sched_clock_stable();
1063 disable_sched_clock_irqtime();
1064 pr_info("Marking TSC unstable due to %s\n", reason);
1065 /* Change only the rating, when not registered */
1066 if (clocksource_tsc.mult) {
1067 clocksource_mark_unstable(&clocksource_tsc);
1069 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1070 clocksource_tsc.rating = 0;
1074 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1076 static void __init check_system_tsc_reliable(void)
1078 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1079 if (is_geode_lx()) {
1080 /* RTSC counts during suspend */
1081 #define RTSC_SUSP 0x100
1082 unsigned long res_low, res_high;
1084 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1085 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1086 if (res_low & RTSC_SUSP)
1087 tsc_clocksource_reliable = 1;
1090 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1091 tsc_clocksource_reliable = 1;
1095 * Make an educated guess if the TSC is trustworthy and synchronized
1098 int unsynchronized_tsc(void)
1100 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1104 if (apic_is_clustered_box())
1108 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1111 if (tsc_clocksource_reliable)
1114 * Intel systems are normally all synchronized.
1115 * Exceptions must mark TSC as unstable:
1117 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1118 /* assume multi socket systems are not synchronized: */
1119 if (num_possible_cpus() > 1)
1127 * Convert ART to TSC given numerator/denominator found in detect_art()
1129 struct system_counterval_t convert_art_to_tsc(u64 art)
1133 rem = do_div(art, art_to_tsc_denominator);
1135 res = art * art_to_tsc_numerator;
1136 tmp = rem * art_to_tsc_numerator;
1138 do_div(tmp, art_to_tsc_denominator);
1139 res += tmp + art_to_tsc_offset;
1141 return (struct system_counterval_t) {.cs = art_related_clocksource,
1144 EXPORT_SYMBOL(convert_art_to_tsc);
1146 static void tsc_refine_calibration_work(struct work_struct *work);
1147 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1149 * tsc_refine_calibration_work - Further refine tsc freq calibration
1152 * This functions uses delayed work over a period of a
1153 * second to further refine the TSC freq value. Since this is
1154 * timer based, instead of loop based, we don't block the boot
1155 * process while this longer calibration is done.
1157 * If there are any calibration anomalies (too many SMIs, etc),
1158 * or the refined calibration is off by 1% of the fast early
1159 * calibration, we throw out the new calibration and use the
1160 * early calibration.
1162 static void tsc_refine_calibration_work(struct work_struct *work)
1164 static u64 tsc_start = -1, ref_start;
1166 u64 tsc_stop, ref_stop, delta;
1170 /* Don't bother refining TSC on unstable systems */
1171 if (check_tsc_unstable())
1175 * Since the work is started early in boot, we may be
1176 * delayed the first time we expire. So set the workqueue
1177 * again once we know timers are working.
1179 if (tsc_start == -1) {
1181 * Only set hpet once, to avoid mixing hardware
1182 * if the hpet becomes enabled later.
1184 hpet = is_hpet_enabled();
1185 schedule_delayed_work(&tsc_irqwork, HZ);
1186 tsc_start = tsc_read_refs(&ref_start, hpet);
1190 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1192 /* hpet or pmtimer available ? */
1193 if (ref_start == ref_stop)
1196 /* Check, whether the sampling was disturbed by an SMI */
1197 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1200 delta = tsc_stop - tsc_start;
1203 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1205 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1207 /* Make sure we're within 1% */
1208 if (abs(tsc_khz - freq) > tsc_khz/100)
1212 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1213 (unsigned long)tsc_khz / 1000,
1214 (unsigned long)tsc_khz % 1000);
1216 /* Inform the TSC deadline clockevent devices about the recalibration */
1217 lapic_update_tsc_freq();
1219 /* Update the sched_clock() rate to match the clocksource one */
1220 for_each_possible_cpu(cpu)
1221 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1224 if (boot_cpu_has(X86_FEATURE_ART))
1225 art_related_clocksource = &clocksource_tsc;
1226 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1230 static int __init init_tsc_clocksource(void)
1232 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1235 if (tsc_clocksource_reliable)
1236 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1237 /* lower the rating if we already know its unstable: */
1238 if (check_tsc_unstable()) {
1239 clocksource_tsc.rating = 0;
1240 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1243 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1244 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1247 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1248 * the refined calibration and directly register it as a clocksource.
1250 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1251 if (boot_cpu_has(X86_FEATURE_ART))
1252 art_related_clocksource = &clocksource_tsc;
1253 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1257 schedule_delayed_work(&tsc_irqwork, 0);
1261 * We use device_initcall here, to ensure we run after the hpet
1262 * is fully initialized, which may occur at fs_initcall time.
1264 device_initcall(init_tsc_clocksource);
1266 void __init tsc_early_delay_calibrate(void)
1270 if (!boot_cpu_has(X86_FEATURE_TSC))
1273 cpu_khz = x86_platform.calibrate_cpu();
1274 tsc_khz = x86_platform.calibrate_tsc();
1276 tsc_khz = tsc_khz ? : cpu_khz;
1280 lpj = tsc_khz * 1000;
1282 loops_per_jiffy = lpj;
1285 void __init tsc_init(void)
1290 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1291 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1295 cpu_khz = x86_platform.calibrate_cpu();
1296 tsc_khz = x86_platform.calibrate_tsc();
1299 * Trust non-zero tsc_khz as authorative,
1300 * and use it to sanity check cpu_khz,
1301 * which will be off if system timer is off.
1305 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1309 mark_tsc_unstable("could not calculate TSC khz");
1310 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1314 pr_info("Detected %lu.%03lu MHz processor\n",
1315 (unsigned long)cpu_khz / 1000,
1316 (unsigned long)cpu_khz % 1000);
1318 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1319 tsc_store_and_check_tsc_adjust(true);
1322 * Secondary CPUs do not run through tsc_init(), so set up
1323 * all the scale factors for all CPUs, assuming the same
1324 * speed as the bootup CPU. (cpufreq notifiers will fix this
1325 * up if their speed diverges)
1328 for_each_possible_cpu(cpu) {
1330 set_cyc2ns_scale(tsc_khz, cpu, cyc);
1333 if (tsc_disabled > 0)
1336 /* now allow native_sched_clock() to use rdtsc */
1339 static_branch_enable(&__use_tsc);
1341 if (!no_sched_irq_time)
1342 enable_sched_clock_irqtime();
1344 lpj = ((u64)tsc_khz * 1000);
1350 check_system_tsc_reliable();
1352 if (unsynchronized_tsc())
1353 mark_tsc_unstable("TSCs unsynchronized");
1360 * If we have a constant TSC and are using the TSC for the delay loop,
1361 * we can skip clock calibration if another cpu in the same socket has already
1362 * been calibrated. This assumes that CONSTANT_TSC applies to all
1363 * cpus in the socket - this should be a safe assumption.
1365 unsigned long calibrate_delay_is_known(void)
1367 int sibling, cpu = smp_processor_id();
1368 struct cpumask *mask = topology_core_cpumask(cpu);
1370 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1376 sibling = cpumask_any_but(mask, cpu);
1377 if (sibling < nr_cpu_ids)
1378 return cpu_data(sibling).loops_per_jiffy;