2 * (C) 1997 Linus Torvalds
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
25 * Inode locking rules:
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode_sb_list_lock protects:
32 * sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
42 * Inode LRU list locks
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
66 const struct address_space_operations empty_aops = {
68 EXPORT_SYMBOL(empty_aops);
71 * Statistics gathering..
73 struct inodes_stat_t inodes_stat;
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 static struct kmem_cache *inode_cachep __read_mostly;
80 static long get_nr_inodes(void)
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
89 static inline long get_nr_inodes_unused(void)
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
98 long get_nr_dirty_inodes(void)
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
106 * Handle nr_inode sysctl
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void __user *buffer, size_t *lenp, loff_t *ppos)
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
118 static int no_open(struct inode *inode, struct file *file)
124 * inode_init_always - perform inode structure intialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
131 int inode_init_always(struct super_block *sb, struct inode *inode)
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
138 inode->i_blkbits = sb->s_blocksize_bits;
140 atomic_set(&inode->i_count, 1);
141 inode->i_op = &empty_iops;
142 inode->i_fop = &no_open_fops;
143 inode->__i_nlink = 1;
144 inode->i_opflags = 0;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
151 inode->i_generation = 0;
152 inode->i_pipe = NULL;
153 inode->i_bdev = NULL;
154 inode->i_cdev = NULL;
155 inode->i_link = NULL;
157 inode->dirtied_when = 0;
159 if (security_inode_alloc(inode))
161 spin_lock_init(&inode->i_lock);
162 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
164 mutex_init(&inode->i_mutex);
165 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
167 atomic_set(&inode->i_dio_count, 0);
169 mapping->a_ops = &empty_aops;
170 mapping->host = inode;
172 atomic_set(&mapping->i_mmap_writable, 0);
173 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
174 mapping->private_data = NULL;
175 mapping->writeback_index = 0;
176 inode->i_private = NULL;
177 inode->i_mapping = mapping;
178 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
179 #ifdef CONFIG_FS_POSIX_ACL
180 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
183 #ifdef CONFIG_FSNOTIFY
184 inode->i_fsnotify_mask = 0;
186 inode->i_flctx = NULL;
187 this_cpu_inc(nr_inodes);
193 EXPORT_SYMBOL(inode_init_always);
195 static struct inode *alloc_inode(struct super_block *sb)
199 if (sb->s_op->alloc_inode)
200 inode = sb->s_op->alloc_inode(sb);
202 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
207 if (unlikely(inode_init_always(sb, inode))) {
208 if (inode->i_sb->s_op->destroy_inode)
209 inode->i_sb->s_op->destroy_inode(inode);
211 kmem_cache_free(inode_cachep, inode);
218 void free_inode_nonrcu(struct inode *inode)
220 kmem_cache_free(inode_cachep, inode);
222 EXPORT_SYMBOL(free_inode_nonrcu);
224 void __destroy_inode(struct inode *inode)
226 BUG_ON(inode_has_buffers(inode));
227 security_inode_free(inode);
228 fsnotify_inode_delete(inode);
229 locks_free_lock_context(inode->i_flctx);
230 if (!inode->i_nlink) {
231 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
232 atomic_long_dec(&inode->i_sb->s_remove_count);
235 #ifdef CONFIG_FS_POSIX_ACL
236 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
237 posix_acl_release(inode->i_acl);
238 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
239 posix_acl_release(inode->i_default_acl);
241 this_cpu_dec(nr_inodes);
243 EXPORT_SYMBOL(__destroy_inode);
245 static void i_callback(struct rcu_head *head)
247 struct inode *inode = container_of(head, struct inode, i_rcu);
248 kmem_cache_free(inode_cachep, inode);
251 static void destroy_inode(struct inode *inode)
253 BUG_ON(!list_empty(&inode->i_lru));
254 __destroy_inode(inode);
255 if (inode->i_sb->s_op->destroy_inode)
256 inode->i_sb->s_op->destroy_inode(inode);
258 call_rcu(&inode->i_rcu, i_callback);
262 * drop_nlink - directly drop an inode's link count
265 * This is a low-level filesystem helper to replace any
266 * direct filesystem manipulation of i_nlink. In cases
267 * where we are attempting to track writes to the
268 * filesystem, a decrement to zero means an imminent
269 * write when the file is truncated and actually unlinked
272 void drop_nlink(struct inode *inode)
274 WARN_ON(inode->i_nlink == 0);
277 atomic_long_inc(&inode->i_sb->s_remove_count);
279 EXPORT_SYMBOL(drop_nlink);
282 * clear_nlink - directly zero an inode's link count
285 * This is a low-level filesystem helper to replace any
286 * direct filesystem manipulation of i_nlink. See
287 * drop_nlink() for why we care about i_nlink hitting zero.
289 void clear_nlink(struct inode *inode)
291 if (inode->i_nlink) {
292 inode->__i_nlink = 0;
293 atomic_long_inc(&inode->i_sb->s_remove_count);
296 EXPORT_SYMBOL(clear_nlink);
299 * set_nlink - directly set an inode's link count
301 * @nlink: new nlink (should be non-zero)
303 * This is a low-level filesystem helper to replace any
304 * direct filesystem manipulation of i_nlink.
306 void set_nlink(struct inode *inode, unsigned int nlink)
311 /* Yes, some filesystems do change nlink from zero to one */
312 if (inode->i_nlink == 0)
313 atomic_long_dec(&inode->i_sb->s_remove_count);
315 inode->__i_nlink = nlink;
318 EXPORT_SYMBOL(set_nlink);
321 * inc_nlink - directly increment an inode's link count
324 * This is a low-level filesystem helper to replace any
325 * direct filesystem manipulation of i_nlink. Currently,
326 * it is only here for parity with dec_nlink().
328 void inc_nlink(struct inode *inode)
330 if (unlikely(inode->i_nlink == 0)) {
331 WARN_ON(!(inode->i_state & I_LINKABLE));
332 atomic_long_dec(&inode->i_sb->s_remove_count);
337 EXPORT_SYMBOL(inc_nlink);
339 void address_space_init_once(struct address_space *mapping)
341 memset(mapping, 0, sizeof(*mapping));
342 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
343 spin_lock_init(&mapping->tree_lock);
344 init_rwsem(&mapping->i_mmap_rwsem);
345 INIT_LIST_HEAD(&mapping->private_list);
346 spin_lock_init(&mapping->private_lock);
347 mapping->i_mmap = RB_ROOT;
349 EXPORT_SYMBOL(address_space_init_once);
352 * These are initializations that only need to be done
353 * once, because the fields are idempotent across use
354 * of the inode, so let the slab aware of that.
356 void inode_init_once(struct inode *inode)
358 memset(inode, 0, sizeof(*inode));
359 INIT_HLIST_NODE(&inode->i_hash);
360 INIT_LIST_HEAD(&inode->i_devices);
361 INIT_LIST_HEAD(&inode->i_wb_list);
362 INIT_LIST_HEAD(&inode->i_lru);
363 address_space_init_once(&inode->i_data);
364 i_size_ordered_init(inode);
365 #ifdef CONFIG_FSNOTIFY
366 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
369 EXPORT_SYMBOL(inode_init_once);
371 static void init_once(void *foo)
373 struct inode *inode = (struct inode *) foo;
375 inode_init_once(inode);
379 * inode->i_lock must be held
381 void __iget(struct inode *inode)
383 atomic_inc(&inode->i_count);
387 * get additional reference to inode; caller must already hold one.
389 void ihold(struct inode *inode)
391 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
393 EXPORT_SYMBOL(ihold);
395 static void inode_lru_list_add(struct inode *inode)
397 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
398 this_cpu_inc(nr_unused);
402 * Add inode to LRU if needed (inode is unused and clean).
404 * Needs inode->i_lock held.
406 void inode_add_lru(struct inode *inode)
408 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
409 I_FREEING | I_WILL_FREE)) &&
410 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
411 inode_lru_list_add(inode);
415 static void inode_lru_list_del(struct inode *inode)
418 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
419 this_cpu_dec(nr_unused);
423 * inode_sb_list_add - add inode to the superblock list of inodes
424 * @inode: inode to add
426 void inode_sb_list_add(struct inode *inode)
428 spin_lock(&inode_sb_list_lock);
429 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
430 spin_unlock(&inode_sb_list_lock);
432 EXPORT_SYMBOL_GPL(inode_sb_list_add);
434 static inline void inode_sb_list_del(struct inode *inode)
436 if (!list_empty(&inode->i_sb_list)) {
437 spin_lock(&inode_sb_list_lock);
438 list_del_init(&inode->i_sb_list);
439 spin_unlock(&inode_sb_list_lock);
443 static unsigned long hash(struct super_block *sb, unsigned long hashval)
447 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
449 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
450 return tmp & i_hash_mask;
454 * __insert_inode_hash - hash an inode
455 * @inode: unhashed inode
456 * @hashval: unsigned long value used to locate this object in the
459 * Add an inode to the inode hash for this superblock.
461 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
463 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
465 spin_lock(&inode_hash_lock);
466 spin_lock(&inode->i_lock);
467 hlist_add_head(&inode->i_hash, b);
468 spin_unlock(&inode->i_lock);
469 spin_unlock(&inode_hash_lock);
471 EXPORT_SYMBOL(__insert_inode_hash);
474 * __remove_inode_hash - remove an inode from the hash
475 * @inode: inode to unhash
477 * Remove an inode from the superblock.
479 void __remove_inode_hash(struct inode *inode)
481 spin_lock(&inode_hash_lock);
482 spin_lock(&inode->i_lock);
483 hlist_del_init(&inode->i_hash);
484 spin_unlock(&inode->i_lock);
485 spin_unlock(&inode_hash_lock);
487 EXPORT_SYMBOL(__remove_inode_hash);
489 void clear_inode(struct inode *inode)
493 * We have to cycle tree_lock here because reclaim can be still in the
494 * process of removing the last page (in __delete_from_page_cache())
495 * and we must not free mapping under it.
497 spin_lock_irq(&inode->i_data.tree_lock);
498 BUG_ON(inode->i_data.nrpages);
499 BUG_ON(inode->i_data.nrshadows);
500 spin_unlock_irq(&inode->i_data.tree_lock);
501 BUG_ON(!list_empty(&inode->i_data.private_list));
502 BUG_ON(!(inode->i_state & I_FREEING));
503 BUG_ON(inode->i_state & I_CLEAR);
504 /* don't need i_lock here, no concurrent mods to i_state */
505 inode->i_state = I_FREEING | I_CLEAR;
507 EXPORT_SYMBOL(clear_inode);
510 * Free the inode passed in, removing it from the lists it is still connected
511 * to. We remove any pages still attached to the inode and wait for any IO that
512 * is still in progress before finally destroying the inode.
514 * An inode must already be marked I_FREEING so that we avoid the inode being
515 * moved back onto lists if we race with other code that manipulates the lists
516 * (e.g. writeback_single_inode). The caller is responsible for setting this.
518 * An inode must already be removed from the LRU list before being evicted from
519 * the cache. This should occur atomically with setting the I_FREEING state
520 * flag, so no inodes here should ever be on the LRU when being evicted.
522 static void evict(struct inode *inode)
524 const struct super_operations *op = inode->i_sb->s_op;
526 BUG_ON(!(inode->i_state & I_FREEING));
527 BUG_ON(!list_empty(&inode->i_lru));
529 if (!list_empty(&inode->i_wb_list))
530 inode_wb_list_del(inode);
532 inode_sb_list_del(inode);
535 * Wait for flusher thread to be done with the inode so that filesystem
536 * does not start destroying it while writeback is still running. Since
537 * the inode has I_FREEING set, flusher thread won't start new work on
538 * the inode. We just have to wait for running writeback to finish.
540 inode_wait_for_writeback(inode);
542 if (op->evict_inode) {
543 op->evict_inode(inode);
545 truncate_inode_pages_final(&inode->i_data);
548 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
550 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
553 remove_inode_hash(inode);
555 spin_lock(&inode->i_lock);
556 wake_up_bit(&inode->i_state, __I_NEW);
557 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
558 spin_unlock(&inode->i_lock);
560 destroy_inode(inode);
564 * dispose_list - dispose of the contents of a local list
565 * @head: the head of the list to free
567 * Dispose-list gets a local list with local inodes in it, so it doesn't
568 * need to worry about list corruption and SMP locks.
570 static void dispose_list(struct list_head *head)
572 while (!list_empty(head)) {
575 inode = list_first_entry(head, struct inode, i_lru);
576 list_del_init(&inode->i_lru);
583 * evict_inodes - evict all evictable inodes for a superblock
584 * @sb: superblock to operate on
586 * Make sure that no inodes with zero refcount are retained. This is
587 * called by superblock shutdown after having MS_ACTIVE flag removed,
588 * so any inode reaching zero refcount during or after that call will
589 * be immediately evicted.
591 void evict_inodes(struct super_block *sb)
593 struct inode *inode, *next;
596 spin_lock(&inode_sb_list_lock);
597 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
598 if (atomic_read(&inode->i_count))
601 spin_lock(&inode->i_lock);
602 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
603 spin_unlock(&inode->i_lock);
607 inode->i_state |= I_FREEING;
608 inode_lru_list_del(inode);
609 spin_unlock(&inode->i_lock);
610 list_add(&inode->i_lru, &dispose);
612 spin_unlock(&inode_sb_list_lock);
614 dispose_list(&dispose);
618 * invalidate_inodes - attempt to free all inodes on a superblock
619 * @sb: superblock to operate on
620 * @kill_dirty: flag to guide handling of dirty inodes
622 * Attempts to free all inodes for a given superblock. If there were any
623 * busy inodes return a non-zero value, else zero.
624 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
627 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
630 struct inode *inode, *next;
633 spin_lock(&inode_sb_list_lock);
634 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
635 spin_lock(&inode->i_lock);
636 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 spin_unlock(&inode->i_lock);
640 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
641 spin_unlock(&inode->i_lock);
645 if (atomic_read(&inode->i_count)) {
646 spin_unlock(&inode->i_lock);
651 inode->i_state |= I_FREEING;
652 inode_lru_list_del(inode);
653 spin_unlock(&inode->i_lock);
654 list_add(&inode->i_lru, &dispose);
656 spin_unlock(&inode_sb_list_lock);
658 dispose_list(&dispose);
664 * Isolate the inode from the LRU in preparation for freeing it.
666 * Any inodes which are pinned purely because of attached pagecache have their
667 * pagecache removed. If the inode has metadata buffers attached to
668 * mapping->private_list then try to remove them.
670 * If the inode has the I_REFERENCED flag set, then it means that it has been
671 * used recently - the flag is set in iput_final(). When we encounter such an
672 * inode, clear the flag and move it to the back of the LRU so it gets another
673 * pass through the LRU before it gets reclaimed. This is necessary because of
674 * the fact we are doing lazy LRU updates to minimise lock contention so the
675 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
676 * with this flag set because they are the inodes that are out of order.
678 static enum lru_status inode_lru_isolate(struct list_head *item,
679 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
681 struct list_head *freeable = arg;
682 struct inode *inode = container_of(item, struct inode, i_lru);
685 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
686 * If we fail to get the lock, just skip it.
688 if (!spin_trylock(&inode->i_lock))
692 * Referenced or dirty inodes are still in use. Give them another pass
693 * through the LRU as we canot reclaim them now.
695 if (atomic_read(&inode->i_count) ||
696 (inode->i_state & ~I_REFERENCED)) {
697 list_lru_isolate(lru, &inode->i_lru);
698 spin_unlock(&inode->i_lock);
699 this_cpu_dec(nr_unused);
703 /* recently referenced inodes get one more pass */
704 if (inode->i_state & I_REFERENCED) {
705 inode->i_state &= ~I_REFERENCED;
706 spin_unlock(&inode->i_lock);
710 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
712 spin_unlock(&inode->i_lock);
713 spin_unlock(lru_lock);
714 if (remove_inode_buffers(inode)) {
716 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
717 if (current_is_kswapd())
718 __count_vm_events(KSWAPD_INODESTEAL, reap);
720 __count_vm_events(PGINODESTEAL, reap);
721 if (current->reclaim_state)
722 current->reclaim_state->reclaimed_slab += reap;
729 WARN_ON(inode->i_state & I_NEW);
730 inode->i_state |= I_FREEING;
731 list_lru_isolate_move(lru, &inode->i_lru, freeable);
732 spin_unlock(&inode->i_lock);
734 this_cpu_dec(nr_unused);
739 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
740 * This is called from the superblock shrinker function with a number of inodes
741 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
742 * then are freed outside inode_lock by dispose_list().
744 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
749 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
750 inode_lru_isolate, &freeable);
751 dispose_list(&freeable);
755 static void __wait_on_freeing_inode(struct inode *inode);
757 * Called with the inode lock held.
759 static struct inode *find_inode(struct super_block *sb,
760 struct hlist_head *head,
761 int (*test)(struct inode *, void *),
764 struct inode *inode = NULL;
767 hlist_for_each_entry(inode, head, i_hash) {
768 if (inode->i_sb != sb)
770 if (!test(inode, data))
772 spin_lock(&inode->i_lock);
773 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
774 __wait_on_freeing_inode(inode);
778 spin_unlock(&inode->i_lock);
785 * find_inode_fast is the fast path version of find_inode, see the comment at
786 * iget_locked for details.
788 static struct inode *find_inode_fast(struct super_block *sb,
789 struct hlist_head *head, unsigned long ino)
791 struct inode *inode = NULL;
794 hlist_for_each_entry(inode, head, i_hash) {
795 if (inode->i_ino != ino)
797 if (inode->i_sb != sb)
799 spin_lock(&inode->i_lock);
800 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
801 __wait_on_freeing_inode(inode);
805 spin_unlock(&inode->i_lock);
812 * Each cpu owns a range of LAST_INO_BATCH numbers.
813 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
814 * to renew the exhausted range.
816 * This does not significantly increase overflow rate because every CPU can
817 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
818 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
819 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
820 * overflow rate by 2x, which does not seem too significant.
822 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
823 * error if st_ino won't fit in target struct field. Use 32bit counter
824 * here to attempt to avoid that.
826 #define LAST_INO_BATCH 1024
827 static DEFINE_PER_CPU(unsigned int, last_ino);
829 unsigned int get_next_ino(void)
831 unsigned int *p = &get_cpu_var(last_ino);
832 unsigned int res = *p;
835 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
836 static atomic_t shared_last_ino;
837 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
839 res = next - LAST_INO_BATCH;
844 put_cpu_var(last_ino);
847 EXPORT_SYMBOL(get_next_ino);
850 * new_inode_pseudo - obtain an inode
853 * Allocates a new inode for given superblock.
854 * Inode wont be chained in superblock s_inodes list
856 * - fs can't be unmount
857 * - quotas, fsnotify, writeback can't work
859 struct inode *new_inode_pseudo(struct super_block *sb)
861 struct inode *inode = alloc_inode(sb);
864 spin_lock(&inode->i_lock);
866 spin_unlock(&inode->i_lock);
867 INIT_LIST_HEAD(&inode->i_sb_list);
873 * new_inode - obtain an inode
876 * Allocates a new inode for given superblock. The default gfp_mask
877 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
878 * If HIGHMEM pages are unsuitable or it is known that pages allocated
879 * for the page cache are not reclaimable or migratable,
880 * mapping_set_gfp_mask() must be called with suitable flags on the
881 * newly created inode's mapping
884 struct inode *new_inode(struct super_block *sb)
888 spin_lock_prefetch(&inode_sb_list_lock);
890 inode = new_inode_pseudo(sb);
892 inode_sb_list_add(inode);
895 EXPORT_SYMBOL(new_inode);
897 #ifdef CONFIG_DEBUG_LOCK_ALLOC
898 void lockdep_annotate_inode_mutex_key(struct inode *inode)
900 if (S_ISDIR(inode->i_mode)) {
901 struct file_system_type *type = inode->i_sb->s_type;
903 /* Set new key only if filesystem hasn't already changed it */
904 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
906 * ensure nobody is actually holding i_mutex
908 mutex_destroy(&inode->i_mutex);
909 mutex_init(&inode->i_mutex);
910 lockdep_set_class(&inode->i_mutex,
911 &type->i_mutex_dir_key);
915 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
919 * unlock_new_inode - clear the I_NEW state and wake up any waiters
920 * @inode: new inode to unlock
922 * Called when the inode is fully initialised to clear the new state of the
923 * inode and wake up anyone waiting for the inode to finish initialisation.
925 void unlock_new_inode(struct inode *inode)
927 lockdep_annotate_inode_mutex_key(inode);
928 spin_lock(&inode->i_lock);
929 WARN_ON(!(inode->i_state & I_NEW));
930 inode->i_state &= ~I_NEW;
932 wake_up_bit(&inode->i_state, __I_NEW);
933 spin_unlock(&inode->i_lock);
935 EXPORT_SYMBOL(unlock_new_inode);
938 * lock_two_nondirectories - take two i_mutexes on non-directory objects
940 * Lock any non-NULL argument that is not a directory.
941 * Zero, one or two objects may be locked by this function.
943 * @inode1: first inode to lock
944 * @inode2: second inode to lock
946 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
949 swap(inode1, inode2);
951 if (inode1 && !S_ISDIR(inode1->i_mode))
952 mutex_lock(&inode1->i_mutex);
953 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
954 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
956 EXPORT_SYMBOL(lock_two_nondirectories);
959 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
960 * @inode1: first inode to unlock
961 * @inode2: second inode to unlock
963 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
965 if (inode1 && !S_ISDIR(inode1->i_mode))
966 mutex_unlock(&inode1->i_mutex);
967 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
968 mutex_unlock(&inode2->i_mutex);
970 EXPORT_SYMBOL(unlock_two_nondirectories);
973 * iget5_locked - obtain an inode from a mounted file system
974 * @sb: super block of file system
975 * @hashval: hash value (usually inode number) to get
976 * @test: callback used for comparisons between inodes
977 * @set: callback used to initialize a new struct inode
978 * @data: opaque data pointer to pass to @test and @set
980 * Search for the inode specified by @hashval and @data in the inode cache,
981 * and if present it is return it with an increased reference count. This is
982 * a generalized version of iget_locked() for file systems where the inode
983 * number is not sufficient for unique identification of an inode.
985 * If the inode is not in cache, allocate a new inode and return it locked,
986 * hashed, and with the I_NEW flag set. The file system gets to fill it in
987 * before unlocking it via unlock_new_inode().
989 * Note both @test and @set are called with the inode_hash_lock held, so can't
992 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
993 int (*test)(struct inode *, void *),
994 int (*set)(struct inode *, void *), void *data)
996 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
999 spin_lock(&inode_hash_lock);
1000 inode = find_inode(sb, head, test, data);
1001 spin_unlock(&inode_hash_lock);
1004 wait_on_inode(inode);
1008 inode = alloc_inode(sb);
1012 spin_lock(&inode_hash_lock);
1013 /* We released the lock, so.. */
1014 old = find_inode(sb, head, test, data);
1016 if (set(inode, data))
1019 spin_lock(&inode->i_lock);
1020 inode->i_state = I_NEW;
1021 hlist_add_head(&inode->i_hash, head);
1022 spin_unlock(&inode->i_lock);
1023 inode_sb_list_add(inode);
1024 spin_unlock(&inode_hash_lock);
1026 /* Return the locked inode with I_NEW set, the
1027 * caller is responsible for filling in the contents
1033 * Uhhuh, somebody else created the same inode under
1034 * us. Use the old inode instead of the one we just
1037 spin_unlock(&inode_hash_lock);
1038 destroy_inode(inode);
1040 wait_on_inode(inode);
1045 spin_unlock(&inode_hash_lock);
1046 destroy_inode(inode);
1049 EXPORT_SYMBOL(iget5_locked);
1052 * iget_locked - obtain an inode from a mounted file system
1053 * @sb: super block of file system
1054 * @ino: inode number to get
1056 * Search for the inode specified by @ino in the inode cache and if present
1057 * return it with an increased reference count. This is for file systems
1058 * where the inode number is sufficient for unique identification of an inode.
1060 * If the inode is not in cache, allocate a new inode and return it locked,
1061 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1062 * before unlocking it via unlock_new_inode().
1064 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1066 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1067 struct inode *inode;
1069 spin_lock(&inode_hash_lock);
1070 inode = find_inode_fast(sb, head, ino);
1071 spin_unlock(&inode_hash_lock);
1073 wait_on_inode(inode);
1077 inode = alloc_inode(sb);
1081 spin_lock(&inode_hash_lock);
1082 /* We released the lock, so.. */
1083 old = find_inode_fast(sb, head, ino);
1086 spin_lock(&inode->i_lock);
1087 inode->i_state = I_NEW;
1088 hlist_add_head(&inode->i_hash, head);
1089 spin_unlock(&inode->i_lock);
1090 inode_sb_list_add(inode);
1091 spin_unlock(&inode_hash_lock);
1093 /* Return the locked inode with I_NEW set, the
1094 * caller is responsible for filling in the contents
1100 * Uhhuh, somebody else created the same inode under
1101 * us. Use the old inode instead of the one we just
1104 spin_unlock(&inode_hash_lock);
1105 destroy_inode(inode);
1107 wait_on_inode(inode);
1111 EXPORT_SYMBOL(iget_locked);
1114 * search the inode cache for a matching inode number.
1115 * If we find one, then the inode number we are trying to
1116 * allocate is not unique and so we should not use it.
1118 * Returns 1 if the inode number is unique, 0 if it is not.
1120 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1122 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1123 struct inode *inode;
1125 spin_lock(&inode_hash_lock);
1126 hlist_for_each_entry(inode, b, i_hash) {
1127 if (inode->i_ino == ino && inode->i_sb == sb) {
1128 spin_unlock(&inode_hash_lock);
1132 spin_unlock(&inode_hash_lock);
1138 * iunique - get a unique inode number
1140 * @max_reserved: highest reserved inode number
1142 * Obtain an inode number that is unique on the system for a given
1143 * superblock. This is used by file systems that have no natural
1144 * permanent inode numbering system. An inode number is returned that
1145 * is higher than the reserved limit but unique.
1148 * With a large number of inodes live on the file system this function
1149 * currently becomes quite slow.
1151 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1154 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1155 * error if st_ino won't fit in target struct field. Use 32bit counter
1156 * here to attempt to avoid that.
1158 static DEFINE_SPINLOCK(iunique_lock);
1159 static unsigned int counter;
1162 spin_lock(&iunique_lock);
1164 if (counter <= max_reserved)
1165 counter = max_reserved + 1;
1167 } while (!test_inode_iunique(sb, res));
1168 spin_unlock(&iunique_lock);
1172 EXPORT_SYMBOL(iunique);
1174 struct inode *igrab(struct inode *inode)
1176 spin_lock(&inode->i_lock);
1177 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1179 spin_unlock(&inode->i_lock);
1181 spin_unlock(&inode->i_lock);
1183 * Handle the case where s_op->clear_inode is not been
1184 * called yet, and somebody is calling igrab
1185 * while the inode is getting freed.
1191 EXPORT_SYMBOL(igrab);
1194 * ilookup5_nowait - search for an inode in the inode cache
1195 * @sb: super block of file system to search
1196 * @hashval: hash value (usually inode number) to search for
1197 * @test: callback used for comparisons between inodes
1198 * @data: opaque data pointer to pass to @test
1200 * Search for the inode specified by @hashval and @data in the inode cache.
1201 * If the inode is in the cache, the inode is returned with an incremented
1204 * Note: I_NEW is not waited upon so you have to be very careful what you do
1205 * with the returned inode. You probably should be using ilookup5() instead.
1207 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1209 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1210 int (*test)(struct inode *, void *), void *data)
1212 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1213 struct inode *inode;
1215 spin_lock(&inode_hash_lock);
1216 inode = find_inode(sb, head, test, data);
1217 spin_unlock(&inode_hash_lock);
1221 EXPORT_SYMBOL(ilookup5_nowait);
1224 * ilookup5 - search for an inode in the inode cache
1225 * @sb: super block of file system to search
1226 * @hashval: hash value (usually inode number) to search for
1227 * @test: callback used for comparisons between inodes
1228 * @data: opaque data pointer to pass to @test
1230 * Search for the inode specified by @hashval and @data in the inode cache,
1231 * and if the inode is in the cache, return the inode with an incremented
1232 * reference count. Waits on I_NEW before returning the inode.
1233 * returned with an incremented reference count.
1235 * This is a generalized version of ilookup() for file systems where the
1236 * inode number is not sufficient for unique identification of an inode.
1238 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1240 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1241 int (*test)(struct inode *, void *), void *data)
1243 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1246 wait_on_inode(inode);
1249 EXPORT_SYMBOL(ilookup5);
1252 * ilookup - search for an inode in the inode cache
1253 * @sb: super block of file system to search
1254 * @ino: inode number to search for
1256 * Search for the inode @ino in the inode cache, and if the inode is in the
1257 * cache, the inode is returned with an incremented reference count.
1259 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1261 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1262 struct inode *inode;
1264 spin_lock(&inode_hash_lock);
1265 inode = find_inode_fast(sb, head, ino);
1266 spin_unlock(&inode_hash_lock);
1269 wait_on_inode(inode);
1272 EXPORT_SYMBOL(ilookup);
1275 * find_inode_nowait - find an inode in the inode cache
1276 * @sb: super block of file system to search
1277 * @hashval: hash value (usually inode number) to search for
1278 * @match: callback used for comparisons between inodes
1279 * @data: opaque data pointer to pass to @match
1281 * Search for the inode specified by @hashval and @data in the inode
1282 * cache, where the helper function @match will return 0 if the inode
1283 * does not match, 1 if the inode does match, and -1 if the search
1284 * should be stopped. The @match function must be responsible for
1285 * taking the i_lock spin_lock and checking i_state for an inode being
1286 * freed or being initialized, and incrementing the reference count
1287 * before returning 1. It also must not sleep, since it is called with
1288 * the inode_hash_lock spinlock held.
1290 * This is a even more generalized version of ilookup5() when the
1291 * function must never block --- find_inode() can block in
1292 * __wait_on_freeing_inode() --- or when the caller can not increment
1293 * the reference count because the resulting iput() might cause an
1294 * inode eviction. The tradeoff is that the @match funtion must be
1295 * very carefully implemented.
1297 struct inode *find_inode_nowait(struct super_block *sb,
1298 unsigned long hashval,
1299 int (*match)(struct inode *, unsigned long,
1303 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1304 struct inode *inode, *ret_inode = NULL;
1307 spin_lock(&inode_hash_lock);
1308 hlist_for_each_entry(inode, head, i_hash) {
1309 if (inode->i_sb != sb)
1311 mval = match(inode, hashval, data);
1319 spin_unlock(&inode_hash_lock);
1322 EXPORT_SYMBOL(find_inode_nowait);
1324 int insert_inode_locked(struct inode *inode)
1326 struct super_block *sb = inode->i_sb;
1327 ino_t ino = inode->i_ino;
1328 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1331 struct inode *old = NULL;
1332 spin_lock(&inode_hash_lock);
1333 hlist_for_each_entry(old, head, i_hash) {
1334 if (old->i_ino != ino)
1336 if (old->i_sb != sb)
1338 spin_lock(&old->i_lock);
1339 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1340 spin_unlock(&old->i_lock);
1346 spin_lock(&inode->i_lock);
1347 inode->i_state |= I_NEW;
1348 hlist_add_head(&inode->i_hash, head);
1349 spin_unlock(&inode->i_lock);
1350 spin_unlock(&inode_hash_lock);
1354 spin_unlock(&old->i_lock);
1355 spin_unlock(&inode_hash_lock);
1357 if (unlikely(!inode_unhashed(old))) {
1364 EXPORT_SYMBOL(insert_inode_locked);
1366 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1367 int (*test)(struct inode *, void *), void *data)
1369 struct super_block *sb = inode->i_sb;
1370 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1373 struct inode *old = NULL;
1375 spin_lock(&inode_hash_lock);
1376 hlist_for_each_entry(old, head, i_hash) {
1377 if (old->i_sb != sb)
1379 if (!test(old, data))
1381 spin_lock(&old->i_lock);
1382 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1383 spin_unlock(&old->i_lock);
1389 spin_lock(&inode->i_lock);
1390 inode->i_state |= I_NEW;
1391 hlist_add_head(&inode->i_hash, head);
1392 spin_unlock(&inode->i_lock);
1393 spin_unlock(&inode_hash_lock);
1397 spin_unlock(&old->i_lock);
1398 spin_unlock(&inode_hash_lock);
1400 if (unlikely(!inode_unhashed(old))) {
1407 EXPORT_SYMBOL(insert_inode_locked4);
1410 int generic_delete_inode(struct inode *inode)
1414 EXPORT_SYMBOL(generic_delete_inode);
1417 * Called when we're dropping the last reference
1420 * Call the FS "drop_inode()" function, defaulting to
1421 * the legacy UNIX filesystem behaviour. If it tells
1422 * us to evict inode, do so. Otherwise, retain inode
1423 * in cache if fs is alive, sync and evict if fs is
1426 static void iput_final(struct inode *inode)
1428 struct super_block *sb = inode->i_sb;
1429 const struct super_operations *op = inode->i_sb->s_op;
1432 WARN_ON(inode->i_state & I_NEW);
1435 drop = op->drop_inode(inode);
1437 drop = generic_drop_inode(inode);
1439 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1440 inode->i_state |= I_REFERENCED;
1441 inode_add_lru(inode);
1442 spin_unlock(&inode->i_lock);
1447 inode->i_state |= I_WILL_FREE;
1448 spin_unlock(&inode->i_lock);
1449 write_inode_now(inode, 1);
1450 spin_lock(&inode->i_lock);
1451 WARN_ON(inode->i_state & I_NEW);
1452 inode->i_state &= ~I_WILL_FREE;
1455 inode->i_state |= I_FREEING;
1456 if (!list_empty(&inode->i_lru))
1457 inode_lru_list_del(inode);
1458 spin_unlock(&inode->i_lock);
1464 * iput - put an inode
1465 * @inode: inode to put
1467 * Puts an inode, dropping its usage count. If the inode use count hits
1468 * zero, the inode is then freed and may also be destroyed.
1470 * Consequently, iput() can sleep.
1472 void iput(struct inode *inode)
1476 BUG_ON(inode->i_state & I_CLEAR);
1478 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1479 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1480 atomic_inc(&inode->i_count);
1481 inode->i_state &= ~I_DIRTY_TIME;
1482 spin_unlock(&inode->i_lock);
1483 trace_writeback_lazytime_iput(inode);
1484 mark_inode_dirty_sync(inode);
1490 EXPORT_SYMBOL(iput);
1493 * bmap - find a block number in a file
1494 * @inode: inode of file
1495 * @block: block to find
1497 * Returns the block number on the device holding the inode that
1498 * is the disk block number for the block of the file requested.
1499 * That is, asked for block 4 of inode 1 the function will return the
1500 * disk block relative to the disk start that holds that block of the
1503 sector_t bmap(struct inode *inode, sector_t block)
1506 if (inode->i_mapping->a_ops->bmap)
1507 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1510 EXPORT_SYMBOL(bmap);
1513 * With relative atime, only update atime if the previous atime is
1514 * earlier than either the ctime or mtime or if at least a day has
1515 * passed since the last atime update.
1517 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1518 struct timespec now)
1521 if (!(mnt->mnt_flags & MNT_RELATIME))
1524 * Is mtime younger than atime? If yes, update atime:
1526 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1529 * Is ctime younger than atime? If yes, update atime:
1531 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1535 * Is the previous atime value older than a day? If yes,
1538 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1541 * Good, we can skip the atime update:
1546 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1548 int iflags = I_DIRTY_TIME;
1550 if (flags & S_ATIME)
1551 inode->i_atime = *time;
1552 if (flags & S_VERSION)
1553 inode_inc_iversion(inode);
1554 if (flags & S_CTIME)
1555 inode->i_ctime = *time;
1556 if (flags & S_MTIME)
1557 inode->i_mtime = *time;
1559 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1560 iflags |= I_DIRTY_SYNC;
1561 __mark_inode_dirty(inode, iflags);
1564 EXPORT_SYMBOL(generic_update_time);
1567 * This does the actual work of updating an inodes time or version. Must have
1568 * had called mnt_want_write() before calling this.
1570 static int update_time(struct inode *inode, struct timespec *time, int flags)
1572 int (*update_time)(struct inode *, struct timespec *, int);
1574 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1575 generic_update_time;
1577 return update_time(inode, time, flags);
1581 * touch_atime - update the access time
1582 * @path: the &struct path to update
1584 * Update the accessed time on an inode and mark it for writeback.
1585 * This function automatically handles read only file systems and media,
1586 * as well as the "noatime" flag and inode specific "noatime" markers.
1588 bool atime_needs_update(const struct path *path, struct inode *inode)
1590 struct vfsmount *mnt = path->mnt;
1591 struct timespec now;
1593 if (inode->i_flags & S_NOATIME)
1595 if (IS_NOATIME(inode))
1597 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1600 if (mnt->mnt_flags & MNT_NOATIME)
1602 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1605 now = current_fs_time(inode->i_sb);
1607 if (!relatime_need_update(mnt, inode, now))
1610 if (timespec_equal(&inode->i_atime, &now))
1616 void touch_atime(const struct path *path)
1618 struct vfsmount *mnt = path->mnt;
1619 struct inode *inode = d_inode(path->dentry);
1620 struct timespec now;
1622 if (!atime_needs_update(path, inode))
1625 if (!sb_start_write_trylock(inode->i_sb))
1628 if (__mnt_want_write(mnt) != 0)
1631 * File systems can error out when updating inodes if they need to
1632 * allocate new space to modify an inode (such is the case for
1633 * Btrfs), but since we touch atime while walking down the path we
1634 * really don't care if we failed to update the atime of the file,
1635 * so just ignore the return value.
1636 * We may also fail on filesystems that have the ability to make parts
1637 * of the fs read only, e.g. subvolumes in Btrfs.
1639 now = current_fs_time(inode->i_sb);
1640 update_time(inode, &now, S_ATIME);
1641 __mnt_drop_write(mnt);
1643 sb_end_write(inode->i_sb);
1645 EXPORT_SYMBOL(touch_atime);
1648 * The logic we want is
1650 * if suid or (sgid and xgrp)
1653 int should_remove_suid(struct dentry *dentry)
1655 umode_t mode = d_inode(dentry)->i_mode;
1658 /* suid always must be killed */
1659 if (unlikely(mode & S_ISUID))
1660 kill = ATTR_KILL_SUID;
1663 * sgid without any exec bits is just a mandatory locking mark; leave
1664 * it alone. If some exec bits are set, it's a real sgid; kill it.
1666 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1667 kill |= ATTR_KILL_SGID;
1669 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1674 EXPORT_SYMBOL(should_remove_suid);
1676 static int __remove_suid(struct dentry *dentry, int kill)
1678 struct iattr newattrs;
1680 newattrs.ia_valid = ATTR_FORCE | kill;
1682 * Note we call this on write, so notify_change will not
1683 * encounter any conflicting delegations:
1685 return notify_change(dentry, &newattrs, NULL);
1688 int file_remove_suid(struct file *file)
1690 struct dentry *dentry = file->f_path.dentry;
1691 struct inode *inode = d_inode(dentry);
1696 /* Fast path for nothing security related */
1697 if (IS_NOSEC(inode))
1700 killsuid = should_remove_suid(dentry);
1701 killpriv = security_inode_need_killpriv(dentry);
1706 error = security_inode_killpriv(dentry);
1707 if (!error && killsuid)
1708 error = __remove_suid(dentry, killsuid);
1709 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1710 inode->i_flags |= S_NOSEC;
1714 EXPORT_SYMBOL(file_remove_suid);
1717 * file_update_time - update mtime and ctime time
1718 * @file: file accessed
1720 * Update the mtime and ctime members of an inode and mark the inode
1721 * for writeback. Note that this function is meant exclusively for
1722 * usage in the file write path of filesystems, and filesystems may
1723 * choose to explicitly ignore update via this function with the
1724 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1725 * timestamps are handled by the server. This can return an error for
1726 * file systems who need to allocate space in order to update an inode.
1729 int file_update_time(struct file *file)
1731 struct inode *inode = file_inode(file);
1732 struct timespec now;
1736 /* First try to exhaust all avenues to not sync */
1737 if (IS_NOCMTIME(inode))
1740 now = current_fs_time(inode->i_sb);
1741 if (!timespec_equal(&inode->i_mtime, &now))
1744 if (!timespec_equal(&inode->i_ctime, &now))
1747 if (IS_I_VERSION(inode))
1748 sync_it |= S_VERSION;
1753 /* Finally allowed to write? Takes lock. */
1754 if (__mnt_want_write_file(file))
1757 ret = update_time(inode, &now, sync_it);
1758 __mnt_drop_write_file(file);
1762 EXPORT_SYMBOL(file_update_time);
1764 int inode_needs_sync(struct inode *inode)
1768 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1772 EXPORT_SYMBOL(inode_needs_sync);
1775 * If we try to find an inode in the inode hash while it is being
1776 * deleted, we have to wait until the filesystem completes its
1777 * deletion before reporting that it isn't found. This function waits
1778 * until the deletion _might_ have completed. Callers are responsible
1779 * to recheck inode state.
1781 * It doesn't matter if I_NEW is not set initially, a call to
1782 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1785 static void __wait_on_freeing_inode(struct inode *inode)
1787 wait_queue_head_t *wq;
1788 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1789 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1790 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1791 spin_unlock(&inode->i_lock);
1792 spin_unlock(&inode_hash_lock);
1794 finish_wait(wq, &wait.wait);
1795 spin_lock(&inode_hash_lock);
1798 static __initdata unsigned long ihash_entries;
1799 static int __init set_ihash_entries(char *str)
1803 ihash_entries = simple_strtoul(str, &str, 0);
1806 __setup("ihash_entries=", set_ihash_entries);
1809 * Initialize the waitqueues and inode hash table.
1811 void __init inode_init_early(void)
1815 /* If hashes are distributed across NUMA nodes, defer
1816 * hash allocation until vmalloc space is available.
1822 alloc_large_system_hash("Inode-cache",
1823 sizeof(struct hlist_head),
1832 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1833 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1836 void __init inode_init(void)
1840 /* inode slab cache */
1841 inode_cachep = kmem_cache_create("inode_cache",
1842 sizeof(struct inode),
1844 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1848 /* Hash may have been set up in inode_init_early */
1853 alloc_large_system_hash("Inode-cache",
1854 sizeof(struct hlist_head),
1863 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1864 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1867 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1869 inode->i_mode = mode;
1870 if (S_ISCHR(mode)) {
1871 inode->i_fop = &def_chr_fops;
1872 inode->i_rdev = rdev;
1873 } else if (S_ISBLK(mode)) {
1874 inode->i_fop = &def_blk_fops;
1875 inode->i_rdev = rdev;
1876 } else if (S_ISFIFO(mode))
1877 inode->i_fop = &pipefifo_fops;
1878 else if (S_ISSOCK(mode))
1879 ; /* leave it no_open_fops */
1881 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1882 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1885 EXPORT_SYMBOL(init_special_inode);
1888 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1890 * @dir: Directory inode
1891 * @mode: mode of the new inode
1893 void inode_init_owner(struct inode *inode, const struct inode *dir,
1896 inode->i_uid = current_fsuid();
1897 if (dir && dir->i_mode & S_ISGID) {
1898 inode->i_gid = dir->i_gid;
1902 inode->i_gid = current_fsgid();
1903 inode->i_mode = mode;
1905 EXPORT_SYMBOL(inode_init_owner);
1908 * inode_owner_or_capable - check current task permissions to inode
1909 * @inode: inode being checked
1911 * Return true if current either has CAP_FOWNER in a namespace with the
1912 * inode owner uid mapped, or owns the file.
1914 bool inode_owner_or_capable(const struct inode *inode)
1916 struct user_namespace *ns;
1918 if (uid_eq(current_fsuid(), inode->i_uid))
1921 ns = current_user_ns();
1922 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1926 EXPORT_SYMBOL(inode_owner_or_capable);
1929 * Direct i/o helper functions
1931 static void __inode_dio_wait(struct inode *inode)
1933 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1934 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1937 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1938 if (atomic_read(&inode->i_dio_count))
1940 } while (atomic_read(&inode->i_dio_count));
1941 finish_wait(wq, &q.wait);
1945 * inode_dio_wait - wait for outstanding DIO requests to finish
1946 * @inode: inode to wait for
1948 * Waits for all pending direct I/O requests to finish so that we can
1949 * proceed with a truncate or equivalent operation.
1951 * Must be called under a lock that serializes taking new references
1952 * to i_dio_count, usually by inode->i_mutex.
1954 void inode_dio_wait(struct inode *inode)
1956 if (atomic_read(&inode->i_dio_count))
1957 __inode_dio_wait(inode);
1959 EXPORT_SYMBOL(inode_dio_wait);
1962 * inode_set_flags - atomically set some inode flags
1964 * Note: the caller should be holding i_mutex, or else be sure that
1965 * they have exclusive access to the inode structure (i.e., while the
1966 * inode is being instantiated). The reason for the cmpxchg() loop
1967 * --- which wouldn't be necessary if all code paths which modify
1968 * i_flags actually followed this rule, is that there is at least one
1969 * code path which doesn't today --- for example,
1970 * __generic_file_aio_write() calls file_remove_suid() without holding
1971 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1973 * In the long run, i_mutex is overkill, and we should probably look
1974 * at using the i_lock spinlock to protect i_flags, and then make sure
1975 * it is so documented in include/linux/fs.h and that all code follows
1976 * the locking convention!!
1978 void inode_set_flags(struct inode *inode, unsigned int flags,
1981 unsigned int old_flags, new_flags;
1983 WARN_ON_ONCE(flags & ~mask);
1985 old_flags = ACCESS_ONCE(inode->i_flags);
1986 new_flags = (old_flags & ~mask) | flags;
1987 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1988 new_flags) != old_flags));
1990 EXPORT_SYMBOL(inode_set_flags);