2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
41 #include <asm/processor.h>
44 #include <asm/uaccess.h>
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
53 static cpumask_t cpus_hardware_enabled;
55 struct kvm_arch_ops *kvm_arch_ops;
57 static __read_mostly struct preempt_ops kvm_preempt_ops;
59 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
61 static struct kvm_stats_debugfs_item {
64 struct dentry *dentry;
65 } debugfs_entries[] = {
66 { "pf_fixed", STAT_OFFSET(pf_fixed) },
67 { "pf_guest", STAT_OFFSET(pf_guest) },
68 { "tlb_flush", STAT_OFFSET(tlb_flush) },
69 { "invlpg", STAT_OFFSET(invlpg) },
70 { "exits", STAT_OFFSET(exits) },
71 { "io_exits", STAT_OFFSET(io_exits) },
72 { "mmio_exits", STAT_OFFSET(mmio_exits) },
73 { "signal_exits", STAT_OFFSET(signal_exits) },
74 { "irq_window", STAT_OFFSET(irq_window_exits) },
75 { "halt_exits", STAT_OFFSET(halt_exits) },
76 { "request_irq", STAT_OFFSET(request_irq_exits) },
77 { "irq_exits", STAT_OFFSET(irq_exits) },
78 { "light_exits", STAT_OFFSET(light_exits) },
79 { "efer_reload", STAT_OFFSET(efer_reload) },
83 static struct dentry *debugfs_dir;
85 #define MAX_IO_MSRS 256
87 #define CR0_RESERVED_BITS \
88 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
89 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
90 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
91 #define CR4_RESERVED_BITS \
92 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
93 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
94 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
95 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
97 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
98 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
101 // LDT or TSS descriptor in the GDT. 16 bytes.
102 struct segment_descriptor_64 {
103 struct segment_descriptor s;
110 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long segment_base(u16 selector)
115 struct descriptor_table gdt;
116 struct segment_descriptor *d;
117 unsigned long table_base;
118 typedef unsigned long ul;
124 asm ("sgdt %0" : "=m"(gdt));
125 table_base = gdt.base;
127 if (selector & 4) { /* from ldt */
130 asm ("sldt %0" : "=g"(ldt_selector));
131 table_base = segment_base(ldt_selector);
133 d = (struct segment_descriptor *)(table_base + (selector & ~7));
134 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
137 && (d->type == 2 || d->type == 9 || d->type == 11))
138 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
142 EXPORT_SYMBOL_GPL(segment_base);
144 static inline int valid_vcpu(int n)
146 return likely(n >= 0 && n < KVM_MAX_VCPUS);
149 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
152 unsigned char *host_buf = dest;
153 unsigned long req_size = size;
161 paddr = gva_to_hpa(vcpu, addr);
163 if (is_error_hpa(paddr))
166 guest_buf = (hva_t)kmap_atomic(
167 pfn_to_page(paddr >> PAGE_SHIFT),
169 offset = addr & ~PAGE_MASK;
171 now = min(size, PAGE_SIZE - offset);
172 memcpy(host_buf, (void*)guest_buf, now);
176 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
178 return req_size - size;
180 EXPORT_SYMBOL_GPL(kvm_read_guest);
182 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
185 unsigned char *host_buf = data;
186 unsigned long req_size = size;
195 paddr = gva_to_hpa(vcpu, addr);
197 if (is_error_hpa(paddr))
200 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
201 mark_page_dirty(vcpu->kvm, gfn);
202 guest_buf = (hva_t)kmap_atomic(
203 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
204 offset = addr & ~PAGE_MASK;
206 now = min(size, PAGE_SIZE - offset);
207 memcpy((void*)guest_buf, host_buf, now);
211 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
213 return req_size - size;
215 EXPORT_SYMBOL_GPL(kvm_write_guest);
217 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
219 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
222 vcpu->guest_fpu_loaded = 1;
223 fx_save(vcpu->host_fx_image);
224 fx_restore(vcpu->guest_fx_image);
226 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
228 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
230 if (!vcpu->guest_fpu_loaded)
233 vcpu->guest_fpu_loaded = 0;
234 fx_save(vcpu->guest_fx_image);
235 fx_restore(vcpu->host_fx_image);
237 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
240 * Switches to specified vcpu, until a matching vcpu_put()
242 static void vcpu_load(struct kvm_vcpu *vcpu)
246 mutex_lock(&vcpu->mutex);
248 preempt_notifier_register(&vcpu->preempt_notifier);
249 kvm_arch_ops->vcpu_load(vcpu, cpu);
253 static void vcpu_put(struct kvm_vcpu *vcpu)
256 kvm_arch_ops->vcpu_put(vcpu);
257 preempt_notifier_unregister(&vcpu->preempt_notifier);
259 mutex_unlock(&vcpu->mutex);
262 static void ack_flush(void *_completed)
264 atomic_t *completed = _completed;
266 atomic_inc(completed);
269 void kvm_flush_remote_tlbs(struct kvm *kvm)
273 struct kvm_vcpu *vcpu;
276 atomic_set(&completed, 0);
279 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
280 vcpu = kvm->vcpus[i];
283 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
286 if (cpu != -1 && cpu != raw_smp_processor_id())
287 if (!cpu_isset(cpu, cpus)) {
294 * We really want smp_call_function_mask() here. But that's not
295 * available, so ipi all cpus in parallel and wait for them
298 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
299 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
300 while (atomic_read(&completed) != needed) {
306 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
311 mutex_init(&vcpu->mutex);
313 vcpu->mmu.root_hpa = INVALID_PAGE;
317 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
322 vcpu->run = page_address(page);
324 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
329 vcpu->pio_data = page_address(page);
331 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
333 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
335 r = kvm_mmu_create(vcpu);
337 goto fail_free_pio_data;
342 free_page((unsigned long)vcpu->pio_data);
344 free_page((unsigned long)vcpu->run);
348 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
350 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
352 kvm_mmu_destroy(vcpu);
353 free_page((unsigned long)vcpu->pio_data);
354 free_page((unsigned long)vcpu->run);
356 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
358 static struct kvm *kvm_create_vm(void)
360 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
363 return ERR_PTR(-ENOMEM);
365 kvm_io_bus_init(&kvm->pio_bus);
366 mutex_init(&kvm->lock);
367 INIT_LIST_HEAD(&kvm->active_mmu_pages);
368 kvm_io_bus_init(&kvm->mmio_bus);
369 spin_lock(&kvm_lock);
370 list_add(&kvm->vm_list, &vm_list);
371 spin_unlock(&kvm_lock);
375 static int kvm_dev_open(struct inode *inode, struct file *filp)
381 * Free any memory in @free but not in @dont.
383 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
384 struct kvm_memory_slot *dont)
388 if (!dont || free->phys_mem != dont->phys_mem)
389 if (free->phys_mem) {
390 for (i = 0; i < free->npages; ++i)
391 if (free->phys_mem[i])
392 __free_page(free->phys_mem[i]);
393 vfree(free->phys_mem);
396 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
397 vfree(free->dirty_bitmap);
399 free->phys_mem = NULL;
401 free->dirty_bitmap = NULL;
404 static void kvm_free_physmem(struct kvm *kvm)
408 for (i = 0; i < kvm->nmemslots; ++i)
409 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
412 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
416 for (i = 0; i < 2; ++i)
417 if (vcpu->pio.guest_pages[i]) {
418 __free_page(vcpu->pio.guest_pages[i]);
419 vcpu->pio.guest_pages[i] = NULL;
423 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
426 kvm_mmu_unload(vcpu);
430 static void kvm_free_vcpus(struct kvm *kvm)
435 * Unpin any mmu pages first.
437 for (i = 0; i < KVM_MAX_VCPUS; ++i)
439 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
440 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
442 kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
443 kvm->vcpus[i] = NULL;
449 static int kvm_dev_release(struct inode *inode, struct file *filp)
454 static void kvm_destroy_vm(struct kvm *kvm)
456 spin_lock(&kvm_lock);
457 list_del(&kvm->vm_list);
458 spin_unlock(&kvm_lock);
459 kvm_io_bus_destroy(&kvm->pio_bus);
460 kvm_io_bus_destroy(&kvm->mmio_bus);
462 kvm_free_physmem(kvm);
466 static int kvm_vm_release(struct inode *inode, struct file *filp)
468 struct kvm *kvm = filp->private_data;
474 static void inject_gp(struct kvm_vcpu *vcpu)
476 kvm_arch_ops->inject_gp(vcpu, 0);
480 * Load the pae pdptrs. Return true is they are all valid.
482 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
484 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
485 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
490 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
492 mutex_lock(&vcpu->kvm->lock);
493 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
499 pdpt = kmap_atomic(page, KM_USER0);
500 memcpy(pdpte, pdpt+offset, sizeof(pdpte));
501 kunmap_atomic(pdpt, KM_USER0);
503 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
504 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
511 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
513 mutex_unlock(&vcpu->kvm->lock);
518 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
520 if (cr0 & CR0_RESERVED_BITS) {
521 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
527 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
528 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
533 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
534 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
535 "and a clear PE flag\n");
540 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
542 if ((vcpu->shadow_efer & EFER_LME)) {
546 printk(KERN_DEBUG "set_cr0: #GP, start paging "
547 "in long mode while PAE is disabled\n");
551 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
553 printk(KERN_DEBUG "set_cr0: #GP, start paging "
554 "in long mode while CS.L == 1\n");
561 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
562 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
570 kvm_arch_ops->set_cr0(vcpu, cr0);
573 mutex_lock(&vcpu->kvm->lock);
574 kvm_mmu_reset_context(vcpu);
575 mutex_unlock(&vcpu->kvm->lock);
578 EXPORT_SYMBOL_GPL(set_cr0);
580 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
582 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
584 EXPORT_SYMBOL_GPL(lmsw);
586 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
588 if (cr4 & CR4_RESERVED_BITS) {
589 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
594 if (is_long_mode(vcpu)) {
595 if (!(cr4 & X86_CR4_PAE)) {
596 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
601 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
602 && !load_pdptrs(vcpu, vcpu->cr3)) {
603 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
608 if (cr4 & X86_CR4_VMXE) {
609 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
613 kvm_arch_ops->set_cr4(vcpu, cr4);
614 mutex_lock(&vcpu->kvm->lock);
615 kvm_mmu_reset_context(vcpu);
616 mutex_unlock(&vcpu->kvm->lock);
618 EXPORT_SYMBOL_GPL(set_cr4);
620 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
622 if (is_long_mode(vcpu)) {
623 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
624 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
630 if (cr3 & CR3_PAE_RESERVED_BITS) {
632 "set_cr3: #GP, reserved bits\n");
636 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
637 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
643 if (cr3 & CR3_NONPAE_RESERVED_BITS) {
645 "set_cr3: #GP, reserved bits\n");
653 mutex_lock(&vcpu->kvm->lock);
655 * Does the new cr3 value map to physical memory? (Note, we
656 * catch an invalid cr3 even in real-mode, because it would
657 * cause trouble later on when we turn on paging anyway.)
659 * A real CPU would silently accept an invalid cr3 and would
660 * attempt to use it - with largely undefined (and often hard
661 * to debug) behavior on the guest side.
663 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
666 vcpu->mmu.new_cr3(vcpu);
667 mutex_unlock(&vcpu->kvm->lock);
669 EXPORT_SYMBOL_GPL(set_cr3);
671 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
673 if (cr8 & CR8_RESERVED_BITS) {
674 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
680 EXPORT_SYMBOL_GPL(set_cr8);
682 void fx_init(struct kvm_vcpu *vcpu)
684 struct __attribute__ ((__packed__)) fx_image_s {
690 u64 operand;// fpu dp
696 fx_save(vcpu->host_fx_image);
698 fx_save(vcpu->guest_fx_image);
699 fx_restore(vcpu->host_fx_image);
701 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
702 fx_image->mxcsr = 0x1f80;
703 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
704 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
706 EXPORT_SYMBOL_GPL(fx_init);
709 * Allocate some memory and give it an address in the guest physical address
712 * Discontiguous memory is allowed, mostly for framebuffers.
714 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
715 struct kvm_memory_region *mem)
719 unsigned long npages;
721 struct kvm_memory_slot *memslot;
722 struct kvm_memory_slot old, new;
723 int memory_config_version;
726 /* General sanity checks */
727 if (mem->memory_size & (PAGE_SIZE - 1))
729 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
731 if (mem->slot >= KVM_MEMORY_SLOTS)
733 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
736 memslot = &kvm->memslots[mem->slot];
737 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
738 npages = mem->memory_size >> PAGE_SHIFT;
741 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
744 mutex_lock(&kvm->lock);
746 memory_config_version = kvm->memory_config_version;
747 new = old = *memslot;
749 new.base_gfn = base_gfn;
751 new.flags = mem->flags;
753 /* Disallow changing a memory slot's size. */
755 if (npages && old.npages && npages != old.npages)
758 /* Check for overlaps */
760 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
761 struct kvm_memory_slot *s = &kvm->memslots[i];
765 if (!((base_gfn + npages <= s->base_gfn) ||
766 (base_gfn >= s->base_gfn + s->npages)))
770 * Do memory allocations outside lock. memory_config_version will
773 mutex_unlock(&kvm->lock);
775 /* Deallocate if slot is being removed */
779 /* Free page dirty bitmap if unneeded */
780 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
781 new.dirty_bitmap = NULL;
785 /* Allocate if a slot is being created */
786 if (npages && !new.phys_mem) {
787 new.phys_mem = vmalloc(npages * sizeof(struct page *));
792 memset(new.phys_mem, 0, npages * sizeof(struct page *));
793 for (i = 0; i < npages; ++i) {
794 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
796 if (!new.phys_mem[i])
798 set_page_private(new.phys_mem[i],0);
802 /* Allocate page dirty bitmap if needed */
803 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
804 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
806 new.dirty_bitmap = vmalloc(dirty_bytes);
807 if (!new.dirty_bitmap)
809 memset(new.dirty_bitmap, 0, dirty_bytes);
812 mutex_lock(&kvm->lock);
814 if (memory_config_version != kvm->memory_config_version) {
815 mutex_unlock(&kvm->lock);
816 kvm_free_physmem_slot(&new, &old);
824 if (mem->slot >= kvm->nmemslots)
825 kvm->nmemslots = mem->slot + 1;
828 ++kvm->memory_config_version;
830 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
831 kvm_flush_remote_tlbs(kvm);
833 mutex_unlock(&kvm->lock);
835 kvm_free_physmem_slot(&old, &new);
839 mutex_unlock(&kvm->lock);
841 kvm_free_physmem_slot(&new, &old);
847 * Get (and clear) the dirty memory log for a memory slot.
849 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
850 struct kvm_dirty_log *log)
852 struct kvm_memory_slot *memslot;
855 unsigned long any = 0;
857 mutex_lock(&kvm->lock);
860 * Prevent changes to guest memory configuration even while the lock
864 mutex_unlock(&kvm->lock);
866 if (log->slot >= KVM_MEMORY_SLOTS)
869 memslot = &kvm->memslots[log->slot];
871 if (!memslot->dirty_bitmap)
874 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
876 for (i = 0; !any && i < n/sizeof(long); ++i)
877 any = memslot->dirty_bitmap[i];
880 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
883 mutex_lock(&kvm->lock);
884 kvm_mmu_slot_remove_write_access(kvm, log->slot);
885 kvm_flush_remote_tlbs(kvm);
886 memset(memslot->dirty_bitmap, 0, n);
887 mutex_unlock(&kvm->lock);
892 mutex_lock(&kvm->lock);
894 mutex_unlock(&kvm->lock);
899 * Set a new alias region. Aliases map a portion of physical memory into
900 * another portion. This is useful for memory windows, for example the PC
903 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
904 struct kvm_memory_alias *alias)
907 struct kvm_mem_alias *p;
910 /* General sanity checks */
911 if (alias->memory_size & (PAGE_SIZE - 1))
913 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
915 if (alias->slot >= KVM_ALIAS_SLOTS)
917 if (alias->guest_phys_addr + alias->memory_size
918 < alias->guest_phys_addr)
920 if (alias->target_phys_addr + alias->memory_size
921 < alias->target_phys_addr)
924 mutex_lock(&kvm->lock);
926 p = &kvm->aliases[alias->slot];
927 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
928 p->npages = alias->memory_size >> PAGE_SHIFT;
929 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
931 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
932 if (kvm->aliases[n - 1].npages)
936 kvm_mmu_zap_all(kvm);
938 mutex_unlock(&kvm->lock);
946 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
949 struct kvm_mem_alias *alias;
951 for (i = 0; i < kvm->naliases; ++i) {
952 alias = &kvm->aliases[i];
953 if (gfn >= alias->base_gfn
954 && gfn < alias->base_gfn + alias->npages)
955 return alias->target_gfn + gfn - alias->base_gfn;
960 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
964 for (i = 0; i < kvm->nmemslots; ++i) {
965 struct kvm_memory_slot *memslot = &kvm->memslots[i];
967 if (gfn >= memslot->base_gfn
968 && gfn < memslot->base_gfn + memslot->npages)
974 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
976 gfn = unalias_gfn(kvm, gfn);
977 return __gfn_to_memslot(kvm, gfn);
980 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
982 struct kvm_memory_slot *slot;
984 gfn = unalias_gfn(kvm, gfn);
985 slot = __gfn_to_memslot(kvm, gfn);
988 return slot->phys_mem[gfn - slot->base_gfn];
990 EXPORT_SYMBOL_GPL(gfn_to_page);
992 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
995 struct kvm_memory_slot *memslot;
996 unsigned long rel_gfn;
998 for (i = 0; i < kvm->nmemslots; ++i) {
999 memslot = &kvm->memslots[i];
1001 if (gfn >= memslot->base_gfn
1002 && gfn < memslot->base_gfn + memslot->npages) {
1004 if (!memslot->dirty_bitmap)
1007 rel_gfn = gfn - memslot->base_gfn;
1010 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1011 set_bit(rel_gfn, memslot->dirty_bitmap);
1017 static int emulator_read_std(unsigned long addr,
1020 struct x86_emulate_ctxt *ctxt)
1022 struct kvm_vcpu *vcpu = ctxt->vcpu;
1026 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1027 unsigned offset = addr & (PAGE_SIZE-1);
1028 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1033 if (gpa == UNMAPPED_GVA)
1034 return X86EMUL_PROPAGATE_FAULT;
1035 pfn = gpa >> PAGE_SHIFT;
1036 page = gfn_to_page(vcpu->kvm, pfn);
1038 return X86EMUL_UNHANDLEABLE;
1039 page_virt = kmap_atomic(page, KM_USER0);
1041 memcpy(data, page_virt + offset, tocopy);
1043 kunmap_atomic(page_virt, KM_USER0);
1050 return X86EMUL_CONTINUE;
1053 static int emulator_write_std(unsigned long addr,
1056 struct x86_emulate_ctxt *ctxt)
1058 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1060 return X86EMUL_UNHANDLEABLE;
1063 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1067 * Note that its important to have this wrapper function because
1068 * in the very near future we will be checking for MMIOs against
1069 * the LAPIC as well as the general MMIO bus
1071 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1074 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1077 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1080 static int emulator_read_emulated(unsigned long addr,
1083 struct x86_emulate_ctxt *ctxt)
1085 struct kvm_vcpu *vcpu = ctxt->vcpu;
1086 struct kvm_io_device *mmio_dev;
1089 if (vcpu->mmio_read_completed) {
1090 memcpy(val, vcpu->mmio_data, bytes);
1091 vcpu->mmio_read_completed = 0;
1092 return X86EMUL_CONTINUE;
1093 } else if (emulator_read_std(addr, val, bytes, ctxt)
1094 == X86EMUL_CONTINUE)
1095 return X86EMUL_CONTINUE;
1097 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1098 if (gpa == UNMAPPED_GVA)
1099 return X86EMUL_PROPAGATE_FAULT;
1102 * Is this MMIO handled locally?
1104 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1106 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1107 return X86EMUL_CONTINUE;
1110 vcpu->mmio_needed = 1;
1111 vcpu->mmio_phys_addr = gpa;
1112 vcpu->mmio_size = bytes;
1113 vcpu->mmio_is_write = 0;
1115 return X86EMUL_UNHANDLEABLE;
1118 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1119 const void *val, int bytes)
1124 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1126 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1129 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1130 virt = kmap_atomic(page, KM_USER0);
1131 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1132 memcpy(virt + offset_in_page(gpa), val, bytes);
1133 kunmap_atomic(virt, KM_USER0);
1137 static int emulator_write_emulated_onepage(unsigned long addr,
1140 struct x86_emulate_ctxt *ctxt)
1142 struct kvm_vcpu *vcpu = ctxt->vcpu;
1143 struct kvm_io_device *mmio_dev;
1144 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1146 if (gpa == UNMAPPED_GVA) {
1147 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1148 return X86EMUL_PROPAGATE_FAULT;
1151 if (emulator_write_phys(vcpu, gpa, val, bytes))
1152 return X86EMUL_CONTINUE;
1155 * Is this MMIO handled locally?
1157 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1159 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1160 return X86EMUL_CONTINUE;
1163 vcpu->mmio_needed = 1;
1164 vcpu->mmio_phys_addr = gpa;
1165 vcpu->mmio_size = bytes;
1166 vcpu->mmio_is_write = 1;
1167 memcpy(vcpu->mmio_data, val, bytes);
1169 return X86EMUL_CONTINUE;
1172 static int emulator_write_emulated(unsigned long addr,
1175 struct x86_emulate_ctxt *ctxt)
1177 /* Crossing a page boundary? */
1178 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1181 now = -addr & ~PAGE_MASK;
1182 rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
1183 if (rc != X86EMUL_CONTINUE)
1189 return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
1192 static int emulator_cmpxchg_emulated(unsigned long addr,
1196 struct x86_emulate_ctxt *ctxt)
1198 static int reported;
1202 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1204 return emulator_write_emulated(addr, new, bytes, ctxt);
1207 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1209 return kvm_arch_ops->get_segment_base(vcpu, seg);
1212 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1214 return X86EMUL_CONTINUE;
1217 int emulate_clts(struct kvm_vcpu *vcpu)
1221 cr0 = vcpu->cr0 & ~X86_CR0_TS;
1222 kvm_arch_ops->set_cr0(vcpu, cr0);
1223 return X86EMUL_CONTINUE;
1226 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1228 struct kvm_vcpu *vcpu = ctxt->vcpu;
1232 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1233 return X86EMUL_CONTINUE;
1235 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1237 return X86EMUL_UNHANDLEABLE;
1241 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1243 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1246 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1248 /* FIXME: better handling */
1249 return X86EMUL_UNHANDLEABLE;
1251 return X86EMUL_CONTINUE;
1254 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1256 static int reported;
1258 unsigned long rip = ctxt->vcpu->rip;
1259 unsigned long rip_linear;
1261 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1266 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1268 printk(KERN_ERR "emulation failed but !mmio_needed?"
1269 " rip %lx %02x %02x %02x %02x\n",
1270 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1274 struct x86_emulate_ops emulate_ops = {
1275 .read_std = emulator_read_std,
1276 .write_std = emulator_write_std,
1277 .read_emulated = emulator_read_emulated,
1278 .write_emulated = emulator_write_emulated,
1279 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1282 int emulate_instruction(struct kvm_vcpu *vcpu,
1283 struct kvm_run *run,
1287 struct x86_emulate_ctxt emulate_ctxt;
1291 vcpu->mmio_fault_cr2 = cr2;
1292 kvm_arch_ops->cache_regs(vcpu);
1294 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1296 emulate_ctxt.vcpu = vcpu;
1297 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1298 emulate_ctxt.cr2 = cr2;
1299 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1300 ? X86EMUL_MODE_REAL : cs_l
1301 ? X86EMUL_MODE_PROT64 : cs_db
1302 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1304 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1305 emulate_ctxt.cs_base = 0;
1306 emulate_ctxt.ds_base = 0;
1307 emulate_ctxt.es_base = 0;
1308 emulate_ctxt.ss_base = 0;
1310 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1311 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1312 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1313 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1316 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1317 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1319 vcpu->mmio_is_write = 0;
1320 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1322 if ((r || vcpu->mmio_is_write) && run) {
1323 run->exit_reason = KVM_EXIT_MMIO;
1324 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1325 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1326 run->mmio.len = vcpu->mmio_size;
1327 run->mmio.is_write = vcpu->mmio_is_write;
1331 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1332 return EMULATE_DONE;
1333 if (!vcpu->mmio_needed) {
1334 report_emulation_failure(&emulate_ctxt);
1335 return EMULATE_FAIL;
1337 return EMULATE_DO_MMIO;
1340 kvm_arch_ops->decache_regs(vcpu);
1341 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1343 if (vcpu->mmio_is_write) {
1344 vcpu->mmio_needed = 0;
1345 return EMULATE_DO_MMIO;
1348 return EMULATE_DONE;
1350 EXPORT_SYMBOL_GPL(emulate_instruction);
1352 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1354 if (vcpu->irq_summary)
1357 vcpu->run->exit_reason = KVM_EXIT_HLT;
1358 ++vcpu->stat.halt_exits;
1361 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1363 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1365 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1367 kvm_arch_ops->cache_regs(vcpu);
1369 #ifdef CONFIG_X86_64
1370 if (is_long_mode(vcpu)) {
1371 nr = vcpu->regs[VCPU_REGS_RAX];
1372 a0 = vcpu->regs[VCPU_REGS_RDI];
1373 a1 = vcpu->regs[VCPU_REGS_RSI];
1374 a2 = vcpu->regs[VCPU_REGS_RDX];
1375 a3 = vcpu->regs[VCPU_REGS_RCX];
1376 a4 = vcpu->regs[VCPU_REGS_R8];
1377 a5 = vcpu->regs[VCPU_REGS_R9];
1381 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1382 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1383 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1384 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1385 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1386 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1387 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1391 run->hypercall.nr = nr;
1392 run->hypercall.args[0] = a0;
1393 run->hypercall.args[1] = a1;
1394 run->hypercall.args[2] = a2;
1395 run->hypercall.args[3] = a3;
1396 run->hypercall.args[4] = a4;
1397 run->hypercall.args[5] = a5;
1398 run->hypercall.ret = ret;
1399 run->hypercall.longmode = is_long_mode(vcpu);
1400 kvm_arch_ops->decache_regs(vcpu);
1403 vcpu->regs[VCPU_REGS_RAX] = ret;
1404 kvm_arch_ops->decache_regs(vcpu);
1407 EXPORT_SYMBOL_GPL(kvm_hypercall);
1409 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1411 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1414 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1416 struct descriptor_table dt = { limit, base };
1418 kvm_arch_ops->set_gdt(vcpu, &dt);
1421 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1423 struct descriptor_table dt = { limit, base };
1425 kvm_arch_ops->set_idt(vcpu, &dt);
1428 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1429 unsigned long *rflags)
1432 *rflags = kvm_arch_ops->get_rflags(vcpu);
1435 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1437 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1448 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1453 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1454 unsigned long *rflags)
1458 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1459 *rflags = kvm_arch_ops->get_rflags(vcpu);
1468 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1471 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1476 * Register the para guest with the host:
1478 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1480 struct kvm_vcpu_para_state *para_state;
1481 hpa_t para_state_hpa, hypercall_hpa;
1482 struct page *para_state_page;
1483 unsigned char *hypercall;
1484 gpa_t hypercall_gpa;
1486 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1487 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1490 * Needs to be page aligned:
1492 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1495 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1496 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1497 if (is_error_hpa(para_state_hpa))
1500 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1501 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1502 para_state = kmap(para_state_page);
1504 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1505 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1507 para_state->host_version = KVM_PARA_API_VERSION;
1509 * We cannot support guests that try to register themselves
1510 * with a newer API version than the host supports:
1512 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1513 para_state->ret = -KVM_EINVAL;
1514 goto err_kunmap_skip;
1517 hypercall_gpa = para_state->hypercall_gpa;
1518 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1519 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1520 if (is_error_hpa(hypercall_hpa)) {
1521 para_state->ret = -KVM_EINVAL;
1522 goto err_kunmap_skip;
1525 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1526 vcpu->para_state_page = para_state_page;
1527 vcpu->para_state_gpa = para_state_gpa;
1528 vcpu->hypercall_gpa = hypercall_gpa;
1530 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1531 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1532 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1533 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1534 kunmap_atomic(hypercall, KM_USER1);
1536 para_state->ret = 0;
1538 kunmap(para_state_page);
1544 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1549 case 0xc0010010: /* SYSCFG */
1550 case 0xc0010015: /* HWCR */
1551 case MSR_IA32_PLATFORM_ID:
1552 case MSR_IA32_P5_MC_ADDR:
1553 case MSR_IA32_P5_MC_TYPE:
1554 case MSR_IA32_MC0_CTL:
1555 case MSR_IA32_MCG_STATUS:
1556 case MSR_IA32_MCG_CAP:
1557 case MSR_IA32_MC0_MISC:
1558 case MSR_IA32_MC0_MISC+4:
1559 case MSR_IA32_MC0_MISC+8:
1560 case MSR_IA32_MC0_MISC+12:
1561 case MSR_IA32_MC0_MISC+16:
1562 case MSR_IA32_UCODE_REV:
1563 case MSR_IA32_PERF_STATUS:
1564 case MSR_IA32_EBL_CR_POWERON:
1565 /* MTRR registers */
1567 case 0x200 ... 0x2ff:
1570 case 0xcd: /* fsb frequency */
1573 case MSR_IA32_APICBASE:
1574 data = vcpu->apic_base;
1576 case MSR_IA32_MISC_ENABLE:
1577 data = vcpu->ia32_misc_enable_msr;
1579 #ifdef CONFIG_X86_64
1581 data = vcpu->shadow_efer;
1585 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1591 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1594 * Reads an msr value (of 'msr_index') into 'pdata'.
1595 * Returns 0 on success, non-0 otherwise.
1596 * Assumes vcpu_load() was already called.
1598 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1600 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1603 #ifdef CONFIG_X86_64
1605 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1607 if (efer & EFER_RESERVED_BITS) {
1608 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1615 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1616 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1621 kvm_arch_ops->set_efer(vcpu, efer);
1624 efer |= vcpu->shadow_efer & EFER_LMA;
1626 vcpu->shadow_efer = efer;
1631 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1634 #ifdef CONFIG_X86_64
1636 set_efer(vcpu, data);
1639 case MSR_IA32_MC0_STATUS:
1640 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1641 __FUNCTION__, data);
1643 case MSR_IA32_MCG_STATUS:
1644 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1645 __FUNCTION__, data);
1647 case MSR_IA32_UCODE_REV:
1648 case MSR_IA32_UCODE_WRITE:
1649 case 0x200 ... 0x2ff: /* MTRRs */
1651 case MSR_IA32_APICBASE:
1652 vcpu->apic_base = data;
1654 case MSR_IA32_MISC_ENABLE:
1655 vcpu->ia32_misc_enable_msr = data;
1658 * This is the 'probe whether the host is KVM' logic:
1660 case MSR_KVM_API_MAGIC:
1661 return vcpu_register_para(vcpu, data);
1664 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1669 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1672 * Writes msr value into into the appropriate "register".
1673 * Returns 0 on success, non-0 otherwise.
1674 * Assumes vcpu_load() was already called.
1676 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1678 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1681 void kvm_resched(struct kvm_vcpu *vcpu)
1683 if (!need_resched())
1687 EXPORT_SYMBOL_GPL(kvm_resched);
1689 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1693 struct kvm_cpuid_entry *e, *best;
1695 kvm_arch_ops->cache_regs(vcpu);
1696 function = vcpu->regs[VCPU_REGS_RAX];
1697 vcpu->regs[VCPU_REGS_RAX] = 0;
1698 vcpu->regs[VCPU_REGS_RBX] = 0;
1699 vcpu->regs[VCPU_REGS_RCX] = 0;
1700 vcpu->regs[VCPU_REGS_RDX] = 0;
1702 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1703 e = &vcpu->cpuid_entries[i];
1704 if (e->function == function) {
1709 * Both basic or both extended?
1711 if (((e->function ^ function) & 0x80000000) == 0)
1712 if (!best || e->function > best->function)
1716 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1717 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1718 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1719 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1721 kvm_arch_ops->decache_regs(vcpu);
1722 kvm_arch_ops->skip_emulated_instruction(vcpu);
1724 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1726 static int pio_copy_data(struct kvm_vcpu *vcpu)
1728 void *p = vcpu->pio_data;
1731 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1733 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1736 free_pio_guest_pages(vcpu);
1739 q += vcpu->pio.guest_page_offset;
1740 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1742 memcpy(q, p, bytes);
1744 memcpy(p, q, bytes);
1745 q -= vcpu->pio.guest_page_offset;
1747 free_pio_guest_pages(vcpu);
1751 static int complete_pio(struct kvm_vcpu *vcpu)
1753 struct kvm_pio_request *io = &vcpu->pio;
1757 kvm_arch_ops->cache_regs(vcpu);
1761 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1765 r = pio_copy_data(vcpu);
1767 kvm_arch_ops->cache_regs(vcpu);
1774 delta *= io->cur_count;
1776 * The size of the register should really depend on
1777 * current address size.
1779 vcpu->regs[VCPU_REGS_RCX] -= delta;
1785 vcpu->regs[VCPU_REGS_RDI] += delta;
1787 vcpu->regs[VCPU_REGS_RSI] += delta;
1790 kvm_arch_ops->decache_regs(vcpu);
1792 io->count -= io->cur_count;
1796 kvm_arch_ops->skip_emulated_instruction(vcpu);
1800 static void kernel_pio(struct kvm_io_device *pio_dev,
1801 struct kvm_vcpu *vcpu,
1804 /* TODO: String I/O for in kernel device */
1807 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1811 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1816 static void pio_string_write(struct kvm_io_device *pio_dev,
1817 struct kvm_vcpu *vcpu)
1819 struct kvm_pio_request *io = &vcpu->pio;
1820 void *pd = vcpu->pio_data;
1823 for (i = 0; i < io->cur_count; i++) {
1824 kvm_iodevice_write(pio_dev, io->port,
1831 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1832 int size, unsigned long count, int string, int down,
1833 gva_t address, int rep, unsigned port)
1835 unsigned now, in_page;
1839 struct kvm_io_device *pio_dev;
1841 vcpu->run->exit_reason = KVM_EXIT_IO;
1842 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1843 vcpu->run->io.size = size;
1844 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1845 vcpu->run->io.count = count;
1846 vcpu->run->io.port = port;
1847 vcpu->pio.count = count;
1848 vcpu->pio.cur_count = count;
1849 vcpu->pio.size = size;
1851 vcpu->pio.port = port;
1852 vcpu->pio.string = string;
1853 vcpu->pio.down = down;
1854 vcpu->pio.guest_page_offset = offset_in_page(address);
1855 vcpu->pio.rep = rep;
1857 pio_dev = vcpu_find_pio_dev(vcpu, port);
1859 kvm_arch_ops->cache_regs(vcpu);
1860 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1861 kvm_arch_ops->decache_regs(vcpu);
1863 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1871 kvm_arch_ops->skip_emulated_instruction(vcpu);
1875 now = min(count, PAGE_SIZE / size);
1878 in_page = PAGE_SIZE - offset_in_page(address);
1880 in_page = offset_in_page(address) + size;
1881 now = min(count, (unsigned long)in_page / size);
1884 * String I/O straddles page boundary. Pin two guest pages
1885 * so that we satisfy atomicity constraints. Do just one
1886 * transaction to avoid complexity.
1893 * String I/O in reverse. Yuck. Kill the guest, fix later.
1895 printk(KERN_ERR "kvm: guest string pio down\n");
1899 vcpu->run->io.count = now;
1900 vcpu->pio.cur_count = now;
1902 for (i = 0; i < nr_pages; ++i) {
1903 mutex_lock(&vcpu->kvm->lock);
1904 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1907 vcpu->pio.guest_pages[i] = page;
1908 mutex_unlock(&vcpu->kvm->lock);
1911 free_pio_guest_pages(vcpu);
1916 if (!vcpu->pio.in) {
1917 /* string PIO write */
1918 ret = pio_copy_data(vcpu);
1919 if (ret >= 0 && pio_dev) {
1920 pio_string_write(pio_dev, vcpu);
1922 if (vcpu->pio.count == 0)
1926 printk(KERN_ERR "no string pio read support yet, "
1927 "port %x size %d count %ld\n",
1932 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1934 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1941 if (vcpu->sigset_active)
1942 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1944 /* re-sync apic's tpr */
1945 vcpu->cr8 = kvm_run->cr8;
1947 if (vcpu->pio.cur_count) {
1948 r = complete_pio(vcpu);
1953 if (vcpu->mmio_needed) {
1954 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1955 vcpu->mmio_read_completed = 1;
1956 vcpu->mmio_needed = 0;
1957 r = emulate_instruction(vcpu, kvm_run,
1958 vcpu->mmio_fault_cr2, 0);
1959 if (r == EMULATE_DO_MMIO) {
1961 * Read-modify-write. Back to userspace.
1968 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1969 kvm_arch_ops->cache_regs(vcpu);
1970 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1971 kvm_arch_ops->decache_regs(vcpu);
1974 r = kvm_arch_ops->run(vcpu, kvm_run);
1977 if (vcpu->sigset_active)
1978 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1984 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1985 struct kvm_regs *regs)
1989 kvm_arch_ops->cache_regs(vcpu);
1991 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1992 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1993 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1994 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1995 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1996 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1997 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1998 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1999 #ifdef CONFIG_X86_64
2000 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2001 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2002 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2003 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2004 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2005 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2006 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2007 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2010 regs->rip = vcpu->rip;
2011 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
2014 * Don't leak debug flags in case they were set for guest debugging
2016 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2017 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2024 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2025 struct kvm_regs *regs)
2029 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2030 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2031 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2032 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2033 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2034 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2035 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2036 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2037 #ifdef CONFIG_X86_64
2038 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2039 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2040 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2041 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2042 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2043 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2044 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2045 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2048 vcpu->rip = regs->rip;
2049 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2051 kvm_arch_ops->decache_regs(vcpu);
2058 static void get_segment(struct kvm_vcpu *vcpu,
2059 struct kvm_segment *var, int seg)
2061 return kvm_arch_ops->get_segment(vcpu, var, seg);
2064 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2065 struct kvm_sregs *sregs)
2067 struct descriptor_table dt;
2071 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2072 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2073 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2074 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2075 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2076 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2078 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2079 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2081 kvm_arch_ops->get_idt(vcpu, &dt);
2082 sregs->idt.limit = dt.limit;
2083 sregs->idt.base = dt.base;
2084 kvm_arch_ops->get_gdt(vcpu, &dt);
2085 sregs->gdt.limit = dt.limit;
2086 sregs->gdt.base = dt.base;
2088 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2089 sregs->cr0 = vcpu->cr0;
2090 sregs->cr2 = vcpu->cr2;
2091 sregs->cr3 = vcpu->cr3;
2092 sregs->cr4 = vcpu->cr4;
2093 sregs->cr8 = vcpu->cr8;
2094 sregs->efer = vcpu->shadow_efer;
2095 sregs->apic_base = vcpu->apic_base;
2097 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2098 sizeof sregs->interrupt_bitmap);
2105 static void set_segment(struct kvm_vcpu *vcpu,
2106 struct kvm_segment *var, int seg)
2108 return kvm_arch_ops->set_segment(vcpu, var, seg);
2111 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2112 struct kvm_sregs *sregs)
2114 int mmu_reset_needed = 0;
2116 struct descriptor_table dt;
2120 dt.limit = sregs->idt.limit;
2121 dt.base = sregs->idt.base;
2122 kvm_arch_ops->set_idt(vcpu, &dt);
2123 dt.limit = sregs->gdt.limit;
2124 dt.base = sregs->gdt.base;
2125 kvm_arch_ops->set_gdt(vcpu, &dt);
2127 vcpu->cr2 = sregs->cr2;
2128 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2129 vcpu->cr3 = sregs->cr3;
2131 vcpu->cr8 = sregs->cr8;
2133 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2134 #ifdef CONFIG_X86_64
2135 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2137 vcpu->apic_base = sregs->apic_base;
2139 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2141 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2142 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2144 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2145 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2146 if (!is_long_mode(vcpu) && is_pae(vcpu))
2147 load_pdptrs(vcpu, vcpu->cr3);
2149 if (mmu_reset_needed)
2150 kvm_mmu_reset_context(vcpu);
2152 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2153 sizeof vcpu->irq_pending);
2154 vcpu->irq_summary = 0;
2155 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2156 if (vcpu->irq_pending[i])
2157 __set_bit(i, &vcpu->irq_summary);
2159 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2160 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2161 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2162 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2163 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2164 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2166 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2167 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2175 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2176 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2178 * This list is modified at module load time to reflect the
2179 * capabilities of the host cpu.
2181 static u32 msrs_to_save[] = {
2182 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2184 #ifdef CONFIG_X86_64
2185 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2187 MSR_IA32_TIME_STAMP_COUNTER,
2190 static unsigned num_msrs_to_save;
2192 static u32 emulated_msrs[] = {
2193 MSR_IA32_MISC_ENABLE,
2196 static __init void kvm_init_msr_list(void)
2201 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2202 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2205 msrs_to_save[j] = msrs_to_save[i];
2208 num_msrs_to_save = j;
2212 * Adapt set_msr() to msr_io()'s calling convention
2214 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2216 return kvm_set_msr(vcpu, index, *data);
2220 * Read or write a bunch of msrs. All parameters are kernel addresses.
2222 * @return number of msrs set successfully.
2224 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2225 struct kvm_msr_entry *entries,
2226 int (*do_msr)(struct kvm_vcpu *vcpu,
2227 unsigned index, u64 *data))
2233 for (i = 0; i < msrs->nmsrs; ++i)
2234 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2243 * Read or write a bunch of msrs. Parameters are user addresses.
2245 * @return number of msrs set successfully.
2247 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2248 int (*do_msr)(struct kvm_vcpu *vcpu,
2249 unsigned index, u64 *data),
2252 struct kvm_msrs msrs;
2253 struct kvm_msr_entry *entries;
2258 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2262 if (msrs.nmsrs >= MAX_IO_MSRS)
2266 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2267 entries = vmalloc(size);
2272 if (copy_from_user(entries, user_msrs->entries, size))
2275 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2280 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2292 * Translate a guest virtual address to a guest physical address.
2294 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2295 struct kvm_translation *tr)
2297 unsigned long vaddr = tr->linear_address;
2301 mutex_lock(&vcpu->kvm->lock);
2302 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2303 tr->physical_address = gpa;
2304 tr->valid = gpa != UNMAPPED_GVA;
2307 mutex_unlock(&vcpu->kvm->lock);
2313 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2314 struct kvm_interrupt *irq)
2316 if (irq->irq < 0 || irq->irq >= 256)
2320 set_bit(irq->irq, vcpu->irq_pending);
2321 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2328 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2329 struct kvm_debug_guest *dbg)
2335 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2342 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2343 unsigned long address,
2346 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2347 unsigned long pgoff;
2350 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2352 page = virt_to_page(vcpu->run);
2353 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2354 page = virt_to_page(vcpu->pio_data);
2356 return NOPAGE_SIGBUS;
2359 *type = VM_FAULT_MINOR;
2364 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2365 .nopage = kvm_vcpu_nopage,
2368 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2370 vma->vm_ops = &kvm_vcpu_vm_ops;
2374 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2376 struct kvm_vcpu *vcpu = filp->private_data;
2378 fput(vcpu->kvm->filp);
2382 static struct file_operations kvm_vcpu_fops = {
2383 .release = kvm_vcpu_release,
2384 .unlocked_ioctl = kvm_vcpu_ioctl,
2385 .compat_ioctl = kvm_vcpu_ioctl,
2386 .mmap = kvm_vcpu_mmap,
2390 * Allocates an inode for the vcpu.
2392 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2395 struct inode *inode;
2398 r = anon_inode_getfd(&fd, &inode, &file,
2399 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2402 atomic_inc(&vcpu->kvm->filp->f_count);
2407 * Creates some virtual cpus. Good luck creating more than one.
2409 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2412 struct kvm_vcpu *vcpu;
2417 vcpu = kvm_arch_ops->vcpu_create(kvm, n);
2419 return PTR_ERR(vcpu);
2421 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2424 r = kvm_mmu_setup(vcpu);
2429 mutex_lock(&kvm->lock);
2430 if (kvm->vcpus[n]) {
2432 mutex_unlock(&kvm->lock);
2435 kvm->vcpus[n] = vcpu;
2436 mutex_unlock(&kvm->lock);
2438 /* Now it's all set up, let userspace reach it */
2439 r = create_vcpu_fd(vcpu);
2445 mutex_lock(&kvm->lock);
2446 kvm->vcpus[n] = NULL;
2447 mutex_unlock(&kvm->lock);
2451 kvm_mmu_unload(vcpu);
2455 kvm_arch_ops->vcpu_free(vcpu);
2459 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2463 struct kvm_cpuid_entry *e, *entry;
2465 rdmsrl(MSR_EFER, efer);
2467 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2468 e = &vcpu->cpuid_entries[i];
2469 if (e->function == 0x80000001) {
2474 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2475 entry->edx &= ~(1 << 20);
2476 printk(KERN_INFO "kvm: guest NX capability removed\n");
2480 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2481 struct kvm_cpuid *cpuid,
2482 struct kvm_cpuid_entry __user *entries)
2487 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2490 if (copy_from_user(&vcpu->cpuid_entries, entries,
2491 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2493 vcpu->cpuid_nent = cpuid->nent;
2494 cpuid_fix_nx_cap(vcpu);
2501 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2504 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2505 vcpu->sigset_active = 1;
2506 vcpu->sigset = *sigset;
2508 vcpu->sigset_active = 0;
2513 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2514 * we have asm/x86/processor.h
2525 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2526 #ifdef CONFIG_X86_64
2527 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2529 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2533 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2535 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2539 memcpy(fpu->fpr, fxsave->st_space, 128);
2540 fpu->fcw = fxsave->cwd;
2541 fpu->fsw = fxsave->swd;
2542 fpu->ftwx = fxsave->twd;
2543 fpu->last_opcode = fxsave->fop;
2544 fpu->last_ip = fxsave->rip;
2545 fpu->last_dp = fxsave->rdp;
2546 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2553 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2555 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2559 memcpy(fxsave->st_space, fpu->fpr, 128);
2560 fxsave->cwd = fpu->fcw;
2561 fxsave->swd = fpu->fsw;
2562 fxsave->twd = fpu->ftwx;
2563 fxsave->fop = fpu->last_opcode;
2564 fxsave->rip = fpu->last_ip;
2565 fxsave->rdp = fpu->last_dp;
2566 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2573 static long kvm_vcpu_ioctl(struct file *filp,
2574 unsigned int ioctl, unsigned long arg)
2576 struct kvm_vcpu *vcpu = filp->private_data;
2577 void __user *argp = (void __user *)arg;
2585 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2587 case KVM_GET_REGS: {
2588 struct kvm_regs kvm_regs;
2590 memset(&kvm_regs, 0, sizeof kvm_regs);
2591 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2595 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2600 case KVM_SET_REGS: {
2601 struct kvm_regs kvm_regs;
2604 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2606 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2612 case KVM_GET_SREGS: {
2613 struct kvm_sregs kvm_sregs;
2615 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2616 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2620 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2625 case KVM_SET_SREGS: {
2626 struct kvm_sregs kvm_sregs;
2629 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2631 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2637 case KVM_TRANSLATE: {
2638 struct kvm_translation tr;
2641 if (copy_from_user(&tr, argp, sizeof tr))
2643 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2647 if (copy_to_user(argp, &tr, sizeof tr))
2652 case KVM_INTERRUPT: {
2653 struct kvm_interrupt irq;
2656 if (copy_from_user(&irq, argp, sizeof irq))
2658 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2664 case KVM_DEBUG_GUEST: {
2665 struct kvm_debug_guest dbg;
2668 if (copy_from_user(&dbg, argp, sizeof dbg))
2670 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2677 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2680 r = msr_io(vcpu, argp, do_set_msr, 0);
2682 case KVM_SET_CPUID: {
2683 struct kvm_cpuid __user *cpuid_arg = argp;
2684 struct kvm_cpuid cpuid;
2687 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2689 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2694 case KVM_SET_SIGNAL_MASK: {
2695 struct kvm_signal_mask __user *sigmask_arg = argp;
2696 struct kvm_signal_mask kvm_sigmask;
2697 sigset_t sigset, *p;
2702 if (copy_from_user(&kvm_sigmask, argp,
2703 sizeof kvm_sigmask))
2706 if (kvm_sigmask.len != sizeof sigset)
2709 if (copy_from_user(&sigset, sigmask_arg->sigset,
2714 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2720 memset(&fpu, 0, sizeof fpu);
2721 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2725 if (copy_to_user(argp, &fpu, sizeof fpu))
2734 if (copy_from_user(&fpu, argp, sizeof fpu))
2736 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2749 static long kvm_vm_ioctl(struct file *filp,
2750 unsigned int ioctl, unsigned long arg)
2752 struct kvm *kvm = filp->private_data;
2753 void __user *argp = (void __user *)arg;
2757 case KVM_CREATE_VCPU:
2758 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2762 case KVM_SET_MEMORY_REGION: {
2763 struct kvm_memory_region kvm_mem;
2766 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2768 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2773 case KVM_GET_DIRTY_LOG: {
2774 struct kvm_dirty_log log;
2777 if (copy_from_user(&log, argp, sizeof log))
2779 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2784 case KVM_SET_MEMORY_ALIAS: {
2785 struct kvm_memory_alias alias;
2788 if (copy_from_user(&alias, argp, sizeof alias))
2790 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2802 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2803 unsigned long address,
2806 struct kvm *kvm = vma->vm_file->private_data;
2807 unsigned long pgoff;
2810 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2811 page = gfn_to_page(kvm, pgoff);
2813 return NOPAGE_SIGBUS;
2816 *type = VM_FAULT_MINOR;
2821 static struct vm_operations_struct kvm_vm_vm_ops = {
2822 .nopage = kvm_vm_nopage,
2825 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2827 vma->vm_ops = &kvm_vm_vm_ops;
2831 static struct file_operations kvm_vm_fops = {
2832 .release = kvm_vm_release,
2833 .unlocked_ioctl = kvm_vm_ioctl,
2834 .compat_ioctl = kvm_vm_ioctl,
2835 .mmap = kvm_vm_mmap,
2838 static int kvm_dev_ioctl_create_vm(void)
2841 struct inode *inode;
2845 kvm = kvm_create_vm();
2847 return PTR_ERR(kvm);
2848 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2850 kvm_destroy_vm(kvm);
2859 static long kvm_dev_ioctl(struct file *filp,
2860 unsigned int ioctl, unsigned long arg)
2862 void __user *argp = (void __user *)arg;
2866 case KVM_GET_API_VERSION:
2870 r = KVM_API_VERSION;
2876 r = kvm_dev_ioctl_create_vm();
2878 case KVM_GET_MSR_INDEX_LIST: {
2879 struct kvm_msr_list __user *user_msr_list = argp;
2880 struct kvm_msr_list msr_list;
2884 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2887 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2888 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2891 if (n < num_msrs_to_save)
2894 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2895 num_msrs_to_save * sizeof(u32)))
2897 if (copy_to_user(user_msr_list->indices
2898 + num_msrs_to_save * sizeof(u32),
2900 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2905 case KVM_CHECK_EXTENSION:
2907 * No extensions defined at present.
2911 case KVM_GET_VCPU_MMAP_SIZE:
2924 static struct file_operations kvm_chardev_ops = {
2925 .open = kvm_dev_open,
2926 .release = kvm_dev_release,
2927 .unlocked_ioctl = kvm_dev_ioctl,
2928 .compat_ioctl = kvm_dev_ioctl,
2931 static struct miscdevice kvm_dev = {
2938 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2941 static void decache_vcpus_on_cpu(int cpu)
2944 struct kvm_vcpu *vcpu;
2947 spin_lock(&kvm_lock);
2948 list_for_each_entry(vm, &vm_list, vm_list)
2949 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2950 vcpu = vm->vcpus[i];
2954 * If the vcpu is locked, then it is running on some
2955 * other cpu and therefore it is not cached on the
2958 * If it's not locked, check the last cpu it executed
2961 if (mutex_trylock(&vcpu->mutex)) {
2962 if (vcpu->cpu == cpu) {
2963 kvm_arch_ops->vcpu_decache(vcpu);
2966 mutex_unlock(&vcpu->mutex);
2969 spin_unlock(&kvm_lock);
2972 static void hardware_enable(void *junk)
2974 int cpu = raw_smp_processor_id();
2976 if (cpu_isset(cpu, cpus_hardware_enabled))
2978 cpu_set(cpu, cpus_hardware_enabled);
2979 kvm_arch_ops->hardware_enable(NULL);
2982 static void hardware_disable(void *junk)
2984 int cpu = raw_smp_processor_id();
2986 if (!cpu_isset(cpu, cpus_hardware_enabled))
2988 cpu_clear(cpu, cpus_hardware_enabled);
2989 decache_vcpus_on_cpu(cpu);
2990 kvm_arch_ops->hardware_disable(NULL);
2993 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3000 case CPU_DYING_FROZEN:
3001 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3003 hardware_disable(NULL);
3005 case CPU_UP_CANCELED:
3006 case CPU_UP_CANCELED_FROZEN:
3007 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3009 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3012 case CPU_ONLINE_FROZEN:
3013 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3015 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3021 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3024 if (val == SYS_RESTART) {
3026 * Some (well, at least mine) BIOSes hang on reboot if
3029 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3030 on_each_cpu(hardware_disable, NULL, 0, 1);
3035 static struct notifier_block kvm_reboot_notifier = {
3036 .notifier_call = kvm_reboot,
3040 void kvm_io_bus_init(struct kvm_io_bus *bus)
3042 memset(bus, 0, sizeof(*bus));
3045 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3049 for (i = 0; i < bus->dev_count; i++) {
3050 struct kvm_io_device *pos = bus->devs[i];
3052 kvm_iodevice_destructor(pos);
3056 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3060 for (i = 0; i < bus->dev_count; i++) {
3061 struct kvm_io_device *pos = bus->devs[i];
3063 if (pos->in_range(pos, addr))
3070 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3072 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3074 bus->devs[bus->dev_count++] = dev;
3077 static struct notifier_block kvm_cpu_notifier = {
3078 .notifier_call = kvm_cpu_hotplug,
3079 .priority = 20, /* must be > scheduler priority */
3082 static u64 stat_get(void *_offset)
3084 unsigned offset = (long)_offset;
3087 struct kvm_vcpu *vcpu;
3090 spin_lock(&kvm_lock);
3091 list_for_each_entry(kvm, &vm_list, vm_list)
3092 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3093 vcpu = kvm->vcpus[i];
3095 total += *(u32 *)((void *)vcpu + offset);
3097 spin_unlock(&kvm_lock);
3101 static void stat_set(void *offset, u64 val)
3105 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3107 static __init void kvm_init_debug(void)
3109 struct kvm_stats_debugfs_item *p;
3111 debugfs_dir = debugfs_create_dir("kvm", NULL);
3112 for (p = debugfs_entries; p->name; ++p)
3113 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3114 (void *)(long)p->offset,
3118 static void kvm_exit_debug(void)
3120 struct kvm_stats_debugfs_item *p;
3122 for (p = debugfs_entries; p->name; ++p)
3123 debugfs_remove(p->dentry);
3124 debugfs_remove(debugfs_dir);
3127 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3129 hardware_disable(NULL);
3133 static int kvm_resume(struct sys_device *dev)
3135 hardware_enable(NULL);
3139 static struct sysdev_class kvm_sysdev_class = {
3140 set_kset_name("kvm"),
3141 .suspend = kvm_suspend,
3142 .resume = kvm_resume,
3145 static struct sys_device kvm_sysdev = {
3147 .cls = &kvm_sysdev_class,
3150 hpa_t bad_page_address;
3153 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3155 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3158 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3160 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3162 kvm_arch_ops->vcpu_load(vcpu, cpu);
3165 static void kvm_sched_out(struct preempt_notifier *pn,
3166 struct task_struct *next)
3168 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3170 kvm_arch_ops->vcpu_put(vcpu);
3173 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
3178 printk(KERN_ERR "kvm: already loaded the other module\n");
3182 if (!ops->cpu_has_kvm_support()) {
3183 printk(KERN_ERR "kvm: no hardware support\n");
3186 if (ops->disabled_by_bios()) {
3187 printk(KERN_ERR "kvm: disabled by bios\n");
3193 r = kvm_arch_ops->hardware_setup();
3197 on_each_cpu(hardware_enable, NULL, 0, 1);
3198 r = register_cpu_notifier(&kvm_cpu_notifier);
3201 register_reboot_notifier(&kvm_reboot_notifier);
3203 r = sysdev_class_register(&kvm_sysdev_class);
3207 r = sysdev_register(&kvm_sysdev);
3211 kvm_chardev_ops.owner = module;
3213 r = misc_register(&kvm_dev);
3215 printk (KERN_ERR "kvm: misc device register failed\n");
3219 kvm_preempt_ops.sched_in = kvm_sched_in;
3220 kvm_preempt_ops.sched_out = kvm_sched_out;
3225 sysdev_unregister(&kvm_sysdev);
3227 sysdev_class_unregister(&kvm_sysdev_class);
3229 unregister_reboot_notifier(&kvm_reboot_notifier);
3230 unregister_cpu_notifier(&kvm_cpu_notifier);
3232 on_each_cpu(hardware_disable, NULL, 0, 1);
3233 kvm_arch_ops->hardware_unsetup();
3235 kvm_arch_ops = NULL;
3239 void kvm_exit_arch(void)
3241 misc_deregister(&kvm_dev);
3242 sysdev_unregister(&kvm_sysdev);
3243 sysdev_class_unregister(&kvm_sysdev_class);
3244 unregister_reboot_notifier(&kvm_reboot_notifier);
3245 unregister_cpu_notifier(&kvm_cpu_notifier);
3246 on_each_cpu(hardware_disable, NULL, 0, 1);
3247 kvm_arch_ops->hardware_unsetup();
3248 kvm_arch_ops = NULL;
3251 static __init int kvm_init(void)
3253 static struct page *bad_page;
3256 r = kvm_mmu_module_init();
3262 kvm_init_msr_list();
3264 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3269 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3270 memset(__va(bad_page_address), 0, PAGE_SIZE);
3276 kvm_mmu_module_exit();
3281 static __exit void kvm_exit(void)
3284 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3285 kvm_mmu_module_exit();
3288 module_init(kvm_init)
3289 module_exit(kvm_exit)
3291 EXPORT_SYMBOL_GPL(kvm_init_arch);
3292 EXPORT_SYMBOL_GPL(kvm_exit_arch);