2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * Meant to be mostly used for locally generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
19 * Burst avoidance (aka pacing) capability :
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
54 #include <net/tcp_states.h>
58 * Per flow structure, dynamically allocated
61 struct sk_buff *head; /* list of skbs for this flow : first skb */
63 struct sk_buff *tail; /* last skb in the list */
64 unsigned long age; /* jiffies when flow was emptied, for gc */
66 struct rb_node fq_node; /* anchor in fq_root[] trees */
68 int qlen; /* number of packets in flow queue */
70 u32 socket_hash; /* sk_hash */
71 struct fq_flow *next; /* next pointer in RR lists, or &detached */
73 struct rb_node rate_node; /* anchor in q->delayed tree */
78 struct fq_flow *first;
82 struct fq_sched_data {
83 struct fq_flow_head new_flows;
85 struct fq_flow_head old_flows;
87 struct rb_root delayed; /* for rate limited flows */
88 u64 time_next_delayed_flow;
89 unsigned long unthrottle_latency_ns;
91 struct fq_flow internal; /* for non classified or high prio packets */
94 u32 flow_refill_delay;
95 u32 flow_plimit; /* max packets per flow */
96 unsigned long flow_max_rate; /* optional max rate per flow */
98 u32 orphan_mask; /* mask for orphaned skb */
99 u32 low_rate_threshold;
100 struct rb_root *fq_root;
109 u64 stat_internal_packets;
112 u64 stat_flows_plimit;
113 u64 stat_pkts_too_long;
114 u64 stat_allocation_errors;
115 struct qdisc_watchdog watchdog;
118 /* special value to mark a detached flow (not on old/new list) */
119 static struct fq_flow detached, throttled;
121 static void fq_flow_set_detached(struct fq_flow *f)
127 static bool fq_flow_is_detached(const struct fq_flow *f)
129 return f->next == &detached;
132 static bool fq_flow_is_throttled(const struct fq_flow *f)
134 return f->next == &throttled;
137 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
140 head->last->next = flow;
147 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
149 rb_erase(&f->rate_node, &q->delayed);
150 q->throttled_flows--;
151 fq_flow_add_tail(&q->old_flows, f);
154 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
156 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
162 aux = rb_entry(parent, struct fq_flow, rate_node);
163 if (f->time_next_packet >= aux->time_next_packet)
164 p = &parent->rb_right;
166 p = &parent->rb_left;
168 rb_link_node(&f->rate_node, parent, p);
169 rb_insert_color(&f->rate_node, &q->delayed);
170 q->throttled_flows++;
173 f->next = &throttled;
174 if (q->time_next_delayed_flow > f->time_next_packet)
175 q->time_next_delayed_flow = f->time_next_packet;
179 static struct kmem_cache *fq_flow_cachep __read_mostly;
182 /* limit number of collected flows per round */
184 #define FQ_GC_AGE (3*HZ)
186 static bool fq_gc_candidate(const struct fq_flow *f)
188 return fq_flow_is_detached(f) &&
189 time_after(jiffies, f->age + FQ_GC_AGE);
192 static void fq_gc(struct fq_sched_data *q,
193 struct rb_root *root,
196 struct fq_flow *f, *tofree[FQ_GC_MAX];
197 struct rb_node **p, *parent;
205 f = rb_entry(parent, struct fq_flow, fq_node);
209 if (fq_gc_candidate(f)) {
211 if (fcnt == FQ_GC_MAX)
216 p = &parent->rb_right;
218 p = &parent->rb_left;
222 q->inactive_flows -= fcnt;
223 q->stat_gc_flows += fcnt;
225 struct fq_flow *f = tofree[--fcnt];
227 rb_erase(&f->fq_node, root);
228 kmem_cache_free(fq_flow_cachep, f);
232 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
234 struct rb_node **p, *parent;
235 struct sock *sk = skb->sk;
236 struct rb_root *root;
239 /* warning: no starvation prevention... */
240 if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
243 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
244 * or a listener (SYNCOOKIE mode)
245 * 1) request sockets are not full blown,
246 * they do not contain sk_pacing_rate
247 * 2) They are not part of a 'flow' yet
248 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
249 * especially if the listener set SO_MAX_PACING_RATE
250 * 4) We pretend they are orphaned
252 if (!sk || sk_listener(sk)) {
253 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
255 /* By forcing low order bit to 1, we make sure to not
256 * collide with a local flow (socket pointers are word aligned)
258 sk = (struct sock *)((hash << 1) | 1UL);
262 root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
264 if (q->flows >= (2U << q->fq_trees_log) &&
265 q->inactive_flows > q->flows/2)
273 f = rb_entry(parent, struct fq_flow, fq_node);
275 /* socket might have been reallocated, so check
276 * if its sk_hash is the same.
277 * It not, we need to refill credit with
280 if (unlikely(skb->sk &&
281 f->socket_hash != sk->sk_hash)) {
282 f->credit = q->initial_quantum;
283 f->socket_hash = sk->sk_hash;
284 if (fq_flow_is_throttled(f))
285 fq_flow_unset_throttled(q, f);
286 f->time_next_packet = 0ULL;
291 p = &parent->rb_right;
293 p = &parent->rb_left;
296 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
298 q->stat_allocation_errors++;
301 fq_flow_set_detached(f);
304 f->socket_hash = sk->sk_hash;
305 f->credit = q->initial_quantum;
307 rb_link_node(&f->fq_node, parent, p);
308 rb_insert_color(&f->fq_node, root);
316 /* remove one skb from head of flow queue */
317 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
319 struct sk_buff *skb = flow->head;
322 flow->head = skb->next;
323 skb_mark_not_on_list(skb);
325 qdisc_qstats_backlog_dec(sch, skb);
331 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
333 struct sk_buff *head = flow->head;
339 flow->tail->next = skb;
344 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
345 struct sk_buff **to_free)
347 struct fq_sched_data *q = qdisc_priv(sch);
350 if (unlikely(sch->q.qlen >= sch->limit))
351 return qdisc_drop(skb, sch, to_free);
353 f = fq_classify(skb, q);
354 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
355 q->stat_flows_plimit++;
356 return qdisc_drop(skb, sch, to_free);
360 qdisc_qstats_backlog_inc(sch, skb);
361 if (fq_flow_is_detached(f)) {
362 struct sock *sk = skb->sk;
364 fq_flow_add_tail(&q->new_flows, f);
365 if (time_after(jiffies, f->age + q->flow_refill_delay))
366 f->credit = max_t(u32, f->credit, q->quantum);
367 if (sk && q->rate_enable) {
368 if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
370 smp_store_release(&sk->sk_pacing_status,
376 /* Note: this overwrites f->age */
377 flow_queue_add(f, skb);
379 if (unlikely(f == &q->internal)) {
380 q->stat_internal_packets++;
384 return NET_XMIT_SUCCESS;
387 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
389 unsigned long sample;
392 if (q->time_next_delayed_flow > now)
395 /* Update unthrottle latency EWMA.
396 * This is cheap and can help diagnosing timer/latency problems.
398 sample = (unsigned long)(now - q->time_next_delayed_flow);
399 q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
400 q->unthrottle_latency_ns += sample >> 3;
402 q->time_next_delayed_flow = ~0ULL;
403 while ((p = rb_first(&q->delayed)) != NULL) {
404 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
406 if (f->time_next_packet > now) {
407 q->time_next_delayed_flow = f->time_next_packet;
410 fq_flow_unset_throttled(q, f);
414 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
416 struct fq_sched_data *q = qdisc_priv(sch);
417 struct fq_flow_head *head;
427 skb = fq_dequeue_head(sch, &q->internal);
431 now = ktime_get_ns();
432 fq_check_throttled(q, now);
434 head = &q->new_flows;
436 head = &q->old_flows;
438 if (q->time_next_delayed_flow != ~0ULL)
439 qdisc_watchdog_schedule_ns(&q->watchdog,
440 q->time_next_delayed_flow);
446 if (f->credit <= 0) {
447 f->credit += q->quantum;
448 head->first = f->next;
449 fq_flow_add_tail(&q->old_flows, f);
455 u64 time_next_packet = max_t(u64, ktime_to_ns(skb->tstamp),
456 f->time_next_packet);
458 if (now < time_next_packet) {
459 head->first = f->next;
460 f->time_next_packet = time_next_packet;
461 fq_flow_set_throttled(q, f);
464 if (time_next_packet &&
465 (s64)(now - time_next_packet - q->ce_threshold) > 0) {
466 INET_ECN_set_ce(skb);
471 skb = fq_dequeue_head(sch, f);
473 head->first = f->next;
474 /* force a pass through old_flows to prevent starvation */
475 if ((head == &q->new_flows) && q->old_flows.first) {
476 fq_flow_add_tail(&q->old_flows, f);
478 fq_flow_set_detached(f);
484 plen = qdisc_pkt_len(skb);
490 rate = q->flow_max_rate;
492 /* If EDT time was provided for this skb, we need to
493 * update f->time_next_packet only if this qdisc enforces
498 rate = min(skb->sk->sk_pacing_rate, rate);
500 if (rate <= q->low_rate_threshold) {
503 plen = max(plen, q->quantum);
509 u64 len = (u64)plen * NSEC_PER_SEC;
512 len = div64_ul(len, rate);
513 /* Since socket rate can change later,
514 * clamp the delay to 1 second.
515 * Really, providers of too big packets should be fixed !
517 if (unlikely(len > NSEC_PER_SEC)) {
519 q->stat_pkts_too_long++;
521 /* Account for schedule/timers drifts.
522 * f->time_next_packet was set when prior packet was sent,
523 * and current time (@now) can be too late by tens of us.
525 if (f->time_next_packet)
526 len -= min(len/2, now - f->time_next_packet);
527 f->time_next_packet = now + len;
530 qdisc_bstats_update(sch, skb);
534 static void fq_flow_purge(struct fq_flow *flow)
536 rtnl_kfree_skbs(flow->head, flow->tail);
541 static void fq_reset(struct Qdisc *sch)
543 struct fq_sched_data *q = qdisc_priv(sch);
544 struct rb_root *root;
550 sch->qstats.backlog = 0;
552 fq_flow_purge(&q->internal);
557 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
558 root = &q->fq_root[idx];
559 while ((p = rb_first(root)) != NULL) {
560 f = rb_entry(p, struct fq_flow, fq_node);
565 kmem_cache_free(fq_flow_cachep, f);
568 q->new_flows.first = NULL;
569 q->old_flows.first = NULL;
570 q->delayed = RB_ROOT;
572 q->inactive_flows = 0;
573 q->throttled_flows = 0;
576 static void fq_rehash(struct fq_sched_data *q,
577 struct rb_root *old_array, u32 old_log,
578 struct rb_root *new_array, u32 new_log)
580 struct rb_node *op, **np, *parent;
581 struct rb_root *oroot, *nroot;
582 struct fq_flow *of, *nf;
586 for (idx = 0; idx < (1U << old_log); idx++) {
587 oroot = &old_array[idx];
588 while ((op = rb_first(oroot)) != NULL) {
590 of = rb_entry(op, struct fq_flow, fq_node);
591 if (fq_gc_candidate(of)) {
593 kmem_cache_free(fq_flow_cachep, of);
596 nroot = &new_array[hash_ptr(of->sk, new_log)];
598 np = &nroot->rb_node;
603 nf = rb_entry(parent, struct fq_flow, fq_node);
604 BUG_ON(nf->sk == of->sk);
607 np = &parent->rb_right;
609 np = &parent->rb_left;
612 rb_link_node(&of->fq_node, parent, np);
613 rb_insert_color(&of->fq_node, nroot);
617 q->inactive_flows -= fcnt;
618 q->stat_gc_flows += fcnt;
621 static void fq_free(void *addr)
626 static int fq_resize(struct Qdisc *sch, u32 log)
628 struct fq_sched_data *q = qdisc_priv(sch);
629 struct rb_root *array;
633 if (q->fq_root && log == q->fq_trees_log)
636 /* If XPS was setup, we can allocate memory on right NUMA node */
637 array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
638 netdev_queue_numa_node_read(sch->dev_queue));
642 for (idx = 0; idx < (1U << log); idx++)
643 array[idx] = RB_ROOT;
647 old_fq_root = q->fq_root;
649 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
652 q->fq_trees_log = log;
654 sch_tree_unlock(sch);
656 fq_free(old_fq_root);
661 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
662 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
663 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
664 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
665 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
666 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
667 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
668 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
669 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
670 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
671 [TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 },
672 [TCA_FQ_CE_THRESHOLD] = { .type = NLA_U32 },
675 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
676 struct netlink_ext_ack *extack)
678 struct fq_sched_data *q = qdisc_priv(sch);
679 struct nlattr *tb[TCA_FQ_MAX + 1];
680 int err, drop_count = 0;
681 unsigned drop_len = 0;
687 err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy, NULL);
693 fq_log = q->fq_trees_log;
695 if (tb[TCA_FQ_BUCKETS_LOG]) {
696 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
698 if (nval >= 1 && nval <= ilog2(256*1024))
703 if (tb[TCA_FQ_PLIMIT])
704 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
706 if (tb[TCA_FQ_FLOW_PLIMIT])
707 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
709 if (tb[TCA_FQ_QUANTUM]) {
710 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
713 q->quantum = quantum;
718 if (tb[TCA_FQ_INITIAL_QUANTUM])
719 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
721 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
722 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
723 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
725 if (tb[TCA_FQ_FLOW_MAX_RATE]) {
726 u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
728 q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
730 if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
731 q->low_rate_threshold =
732 nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
734 if (tb[TCA_FQ_RATE_ENABLE]) {
735 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
738 q->rate_enable = enable;
743 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
744 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
746 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
749 if (tb[TCA_FQ_ORPHAN_MASK])
750 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
752 if (tb[TCA_FQ_CE_THRESHOLD])
753 q->ce_threshold = (u64)NSEC_PER_USEC *
754 nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
757 sch_tree_unlock(sch);
758 err = fq_resize(sch, fq_log);
761 while (sch->q.qlen > sch->limit) {
762 struct sk_buff *skb = fq_dequeue(sch);
766 drop_len += qdisc_pkt_len(skb);
767 rtnl_kfree_skbs(skb, skb);
770 qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
772 sch_tree_unlock(sch);
776 static void fq_destroy(struct Qdisc *sch)
778 struct fq_sched_data *q = qdisc_priv(sch);
782 qdisc_watchdog_cancel(&q->watchdog);
785 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
786 struct netlink_ext_ack *extack)
788 struct fq_sched_data *q = qdisc_priv(sch);
792 q->flow_plimit = 100;
793 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
794 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
795 q->flow_refill_delay = msecs_to_jiffies(40);
796 q->flow_max_rate = ~0UL;
797 q->time_next_delayed_flow = ~0ULL;
799 q->new_flows.first = NULL;
800 q->old_flows.first = NULL;
801 q->delayed = RB_ROOT;
803 q->fq_trees_log = ilog2(1024);
804 q->orphan_mask = 1024 - 1;
805 q->low_rate_threshold = 550000 / 8;
807 /* Default ce_threshold of 4294 seconds */
808 q->ce_threshold = (u64)NSEC_PER_USEC * ~0U;
810 qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
813 err = fq_change(sch, opt, extack);
815 err = fq_resize(sch, q->fq_trees_log);
820 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
822 struct fq_sched_data *q = qdisc_priv(sch);
823 u64 ce_threshold = q->ce_threshold;
826 opts = nla_nest_start(skb, TCA_OPTIONS);
828 goto nla_put_failure;
830 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
832 do_div(ce_threshold, NSEC_PER_USEC);
834 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
835 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
836 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
837 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
838 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
839 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
840 min_t(unsigned long, q->flow_max_rate, ~0U)) ||
841 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
842 jiffies_to_usecs(q->flow_refill_delay)) ||
843 nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
844 nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
845 q->low_rate_threshold) ||
846 nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
847 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
848 goto nla_put_failure;
850 return nla_nest_end(skb, opts);
856 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
858 struct fq_sched_data *q = qdisc_priv(sch);
859 struct tc_fq_qd_stats st;
863 st.gc_flows = q->stat_gc_flows;
864 st.highprio_packets = q->stat_internal_packets;
866 st.throttled = q->stat_throttled;
867 st.flows_plimit = q->stat_flows_plimit;
868 st.pkts_too_long = q->stat_pkts_too_long;
869 st.allocation_errors = q->stat_allocation_errors;
870 st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
872 st.inactive_flows = q->inactive_flows;
873 st.throttled_flows = q->throttled_flows;
874 st.unthrottle_latency_ns = min_t(unsigned long,
875 q->unthrottle_latency_ns, ~0U);
876 st.ce_mark = q->stat_ce_mark;
877 sch_tree_unlock(sch);
879 return gnet_stats_copy_app(d, &st, sizeof(st));
882 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
884 .priv_size = sizeof(struct fq_sched_data),
886 .enqueue = fq_enqueue,
887 .dequeue = fq_dequeue,
888 .peek = qdisc_peek_dequeued,
891 .destroy = fq_destroy,
894 .dump_stats = fq_dump_stats,
895 .owner = THIS_MODULE,
898 static int __init fq_module_init(void)
902 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
903 sizeof(struct fq_flow),
908 ret = register_qdisc(&fq_qdisc_ops);
910 kmem_cache_destroy(fq_flow_cachep);
914 static void __exit fq_module_exit(void)
916 unregister_qdisc(&fq_qdisc_ops);
917 kmem_cache_destroy(fq_flow_cachep);
920 module_init(fq_module_init)
921 module_exit(fq_module_exit)
922 MODULE_AUTHOR("Eric Dumazet");
923 MODULE_LICENSE("GPL");