2 FUSE: Filesystem in Userspace
5 This program can be distributed under the terms of the GNU GPL.
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
22 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
23 int opcode, struct fuse_open_out *outargp)
25 struct fuse_open_in inarg;
28 memset(&inarg, 0, sizeof(inarg));
29 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
30 if (!fc->atomic_o_trunc)
31 inarg.flags &= ~O_TRUNC;
32 args.in.h.opcode = opcode;
33 args.in.h.nodeid = nodeid;
35 args.in.args[0].size = sizeof(inarg);
36 args.in.args[0].value = &inarg;
38 args.out.args[0].size = sizeof(*outargp);
39 args.out.args[0].value = outargp;
41 return fuse_simple_request(fc, &args);
44 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
48 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL);
53 ff->reserved_req = fuse_request_alloc(0);
54 if (unlikely(!ff->reserved_req)) {
59 INIT_LIST_HEAD(&ff->write_entry);
60 mutex_init(&ff->readdir.lock);
61 refcount_set(&ff->count, 1);
62 RB_CLEAR_NODE(&ff->polled_node);
63 init_waitqueue_head(&ff->poll_wait);
65 ff->kh = atomic64_inc_return(&fc->khctr);
70 void fuse_file_free(struct fuse_file *ff)
72 fuse_request_free(ff->reserved_req);
73 mutex_destroy(&ff->readdir.lock);
77 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
79 refcount_inc(&ff->count);
83 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
85 iput(req->misc.release.inode);
88 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
90 if (refcount_dec_and_test(&ff->count)) {
91 struct fuse_req *req = ff->reserved_req;
93 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
95 * Drop the release request when client does not
98 __clear_bit(FR_BACKGROUND, &req->flags);
99 iput(req->misc.release.inode);
100 fuse_put_request(ff->fc, req);
102 __set_bit(FR_FORCE, &req->flags);
103 __clear_bit(FR_BACKGROUND, &req->flags);
104 fuse_request_send(ff->fc, req);
105 iput(req->misc.release.inode);
106 fuse_put_request(ff->fc, req);
108 req->end = fuse_release_end;
109 __set_bit(FR_BACKGROUND, &req->flags);
110 fuse_request_send_background(ff->fc, req);
116 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
119 struct fuse_file *ff;
120 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
122 ff = fuse_file_alloc(fc);
127 /* Default for no-open */
128 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
129 if (isdir ? !fc->no_opendir : !fc->no_open) {
130 struct fuse_open_out outarg;
133 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
136 ff->open_flags = outarg.open_flags;
138 } else if (err != -ENOSYS) {
150 ff->open_flags &= ~FOPEN_DIRECT_IO;
153 file->private_data = ff;
157 EXPORT_SYMBOL_GPL(fuse_do_open);
159 static void fuse_link_write_file(struct file *file)
161 struct inode *inode = file_inode(file);
162 struct fuse_inode *fi = get_fuse_inode(inode);
163 struct fuse_file *ff = file->private_data;
165 * file may be written through mmap, so chain it onto the
166 * inodes's write_file list
168 spin_lock(&fi->lock);
169 if (list_empty(&ff->write_entry))
170 list_add(&ff->write_entry, &fi->write_files);
171 spin_unlock(&fi->lock);
174 void fuse_finish_open(struct inode *inode, struct file *file)
176 struct fuse_file *ff = file->private_data;
177 struct fuse_conn *fc = get_fuse_conn(inode);
179 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
180 invalidate_inode_pages2(inode->i_mapping);
181 if (ff->open_flags & FOPEN_NONSEEKABLE)
182 nonseekable_open(inode, file);
183 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
184 struct fuse_inode *fi = get_fuse_inode(inode);
186 spin_lock(&fi->lock);
187 fi->attr_version = atomic64_inc_return(&fc->attr_version);
188 i_size_write(inode, 0);
189 spin_unlock(&fi->lock);
190 fuse_invalidate_attr(inode);
191 if (fc->writeback_cache)
192 file_update_time(file);
194 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
195 fuse_link_write_file(file);
198 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
200 struct fuse_conn *fc = get_fuse_conn(inode);
202 bool lock_inode = (file->f_flags & O_TRUNC) &&
203 fc->atomic_o_trunc &&
206 err = generic_file_open(inode, file);
213 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
216 fuse_finish_open(inode, file);
224 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
225 int flags, int opcode)
227 struct fuse_conn *fc = ff->fc;
228 struct fuse_req *req = ff->reserved_req;
229 struct fuse_release_in *inarg = &req->misc.release.in;
231 /* Inode is NULL on error path of fuse_create_open() */
233 spin_lock(&fi->lock);
234 list_del(&ff->write_entry);
235 spin_unlock(&fi->lock);
237 spin_lock(&fc->lock);
238 if (!RB_EMPTY_NODE(&ff->polled_node))
239 rb_erase(&ff->polled_node, &fc->polled_files);
240 spin_unlock(&fc->lock);
242 wake_up_interruptible_all(&ff->poll_wait);
245 inarg->flags = flags;
246 req->in.h.opcode = opcode;
247 req->in.h.nodeid = ff->nodeid;
249 req->in.args[0].size = sizeof(struct fuse_release_in);
250 req->in.args[0].value = inarg;
253 void fuse_release_common(struct file *file, bool isdir)
255 struct fuse_inode *fi = get_fuse_inode(file_inode(file));
256 struct fuse_file *ff = file->private_data;
257 struct fuse_req *req = ff->reserved_req;
258 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
260 fuse_prepare_release(fi, ff, file->f_flags, opcode);
263 struct fuse_release_in *inarg = &req->misc.release.in;
264 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
265 inarg->lock_owner = fuse_lock_owner_id(ff->fc,
268 /* Hold inode until release is finished */
269 req->misc.release.inode = igrab(file_inode(file));
272 * Normally this will send the RELEASE request, however if
273 * some asynchronous READ or WRITE requests are outstanding,
274 * the sending will be delayed.
276 * Make the release synchronous if this is a fuseblk mount,
277 * synchronous RELEASE is allowed (and desirable) in this case
278 * because the server can be trusted not to screw up.
280 fuse_file_put(ff, ff->fc->destroy_req != NULL, isdir);
283 static int fuse_open(struct inode *inode, struct file *file)
285 return fuse_open_common(inode, file, false);
288 static int fuse_release(struct inode *inode, struct file *file)
290 struct fuse_conn *fc = get_fuse_conn(inode);
292 /* see fuse_vma_close() for !writeback_cache case */
293 if (fc->writeback_cache)
294 write_inode_now(inode, 1);
296 fuse_release_common(file, false);
298 /* return value is ignored by VFS */
302 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
304 WARN_ON(refcount_read(&ff->count) > 1);
305 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
307 * iput(NULL) is a no-op and since the refcount is 1 and everything's
308 * synchronous, we are fine with not doing igrab() here"
310 fuse_file_put(ff, true, false);
312 EXPORT_SYMBOL_GPL(fuse_sync_release);
315 * Scramble the ID space with XTEA, so that the value of the files_struct
316 * pointer is not exposed to userspace.
318 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
320 u32 *k = fc->scramble_key;
321 u64 v = (unsigned long) id;
327 for (i = 0; i < 32; i++) {
328 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
330 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
333 return (u64) v0 + ((u64) v1 << 32);
336 static struct fuse_req *fuse_find_writeback(struct fuse_inode *fi,
337 pgoff_t idx_from, pgoff_t idx_to)
339 struct fuse_req *req;
341 list_for_each_entry(req, &fi->writepages, writepages_entry) {
344 WARN_ON(get_fuse_inode(req->inode) != fi);
345 curr_index = req->misc.write.in.offset >> PAGE_SHIFT;
346 if (idx_from < curr_index + req->num_pages &&
347 curr_index <= idx_to) {
355 * Check if any page in a range is under writeback
357 * This is currently done by walking the list of writepage requests
358 * for the inode, which can be pretty inefficient.
360 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
363 struct fuse_inode *fi = get_fuse_inode(inode);
366 spin_lock(&fi->lock);
367 found = fuse_find_writeback(fi, idx_from, idx_to);
368 spin_unlock(&fi->lock);
373 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
375 return fuse_range_is_writeback(inode, index, index);
379 * Wait for page writeback to be completed.
381 * Since fuse doesn't rely on the VM writeback tracking, this has to
382 * use some other means.
384 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
386 struct fuse_inode *fi = get_fuse_inode(inode);
388 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
393 * Wait for all pending writepages on the inode to finish.
395 * This is currently done by blocking further writes with FUSE_NOWRITE
396 * and waiting for all sent writes to complete.
398 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
399 * could conflict with truncation.
401 static void fuse_sync_writes(struct inode *inode)
403 fuse_set_nowrite(inode);
404 fuse_release_nowrite(inode);
407 static int fuse_flush(struct file *file, fl_owner_t id)
409 struct inode *inode = file_inode(file);
410 struct fuse_conn *fc = get_fuse_conn(inode);
411 struct fuse_file *ff = file->private_data;
412 struct fuse_req *req;
413 struct fuse_flush_in inarg;
416 if (is_bad_inode(inode))
422 err = write_inode_now(inode, 1);
427 fuse_sync_writes(inode);
430 err = filemap_check_errors(file->f_mapping);
434 req = fuse_get_req_nofail_nopages(fc, file);
435 memset(&inarg, 0, sizeof(inarg));
437 inarg.lock_owner = fuse_lock_owner_id(fc, id);
438 req->in.h.opcode = FUSE_FLUSH;
439 req->in.h.nodeid = get_node_id(inode);
441 req->in.args[0].size = sizeof(inarg);
442 req->in.args[0].value = &inarg;
443 __set_bit(FR_FORCE, &req->flags);
444 fuse_request_send(fc, req);
445 err = req->out.h.error;
446 fuse_put_request(fc, req);
447 if (err == -ENOSYS) {
454 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
455 int datasync, int opcode)
457 struct inode *inode = file->f_mapping->host;
458 struct fuse_conn *fc = get_fuse_conn(inode);
459 struct fuse_file *ff = file->private_data;
461 struct fuse_fsync_in inarg;
463 memset(&inarg, 0, sizeof(inarg));
465 inarg.fsync_flags = datasync ? 1 : 0;
466 args.in.h.opcode = opcode;
467 args.in.h.nodeid = get_node_id(inode);
469 args.in.args[0].size = sizeof(inarg);
470 args.in.args[0].value = &inarg;
471 return fuse_simple_request(fc, &args);
474 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
477 struct inode *inode = file->f_mapping->host;
478 struct fuse_conn *fc = get_fuse_conn(inode);
481 if (is_bad_inode(inode))
487 * Start writeback against all dirty pages of the inode, then
488 * wait for all outstanding writes, before sending the FSYNC
491 err = file_write_and_wait_range(file, start, end);
495 fuse_sync_writes(inode);
498 * Due to implementation of fuse writeback
499 * file_write_and_wait_range() does not catch errors.
500 * We have to do this directly after fuse_sync_writes()
502 err = file_check_and_advance_wb_err(file);
506 err = sync_inode_metadata(inode, 1);
513 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
514 if (err == -ENOSYS) {
524 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
525 size_t count, int opcode)
527 struct fuse_read_in *inarg = &req->misc.read.in;
528 struct fuse_file *ff = file->private_data;
533 inarg->flags = file->f_flags;
534 req->in.h.opcode = opcode;
535 req->in.h.nodeid = ff->nodeid;
537 req->in.args[0].size = sizeof(struct fuse_read_in);
538 req->in.args[0].value = inarg;
540 req->out.numargs = 1;
541 req->out.args[0].size = count;
544 static void fuse_release_user_pages(struct fuse_req *req, bool should_dirty)
548 for (i = 0; i < req->num_pages; i++) {
549 struct page *page = req->pages[i];
551 set_page_dirty_lock(page);
556 static void fuse_io_release(struct kref *kref)
558 kfree(container_of(kref, struct fuse_io_priv, refcnt));
561 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
566 if (io->bytes >= 0 && io->write)
569 return io->bytes < 0 ? io->size : io->bytes;
573 * In case of short read, the caller sets 'pos' to the position of
574 * actual end of fuse request in IO request. Otherwise, if bytes_requested
575 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
578 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
579 * both submitted asynchronously. The first of them was ACKed by userspace as
580 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
581 * second request was ACKed as short, e.g. only 1K was read, resulting in
584 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
585 * will be equal to the length of the longest contiguous fragment of
586 * transferred data starting from the beginning of IO request.
588 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
592 spin_lock(&io->lock);
594 io->err = io->err ? : err;
595 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
599 if (!left && io->blocking)
601 spin_unlock(&io->lock);
603 if (!left && !io->blocking) {
604 ssize_t res = fuse_get_res_by_io(io);
607 struct inode *inode = file_inode(io->iocb->ki_filp);
608 struct fuse_conn *fc = get_fuse_conn(inode);
609 struct fuse_inode *fi = get_fuse_inode(inode);
611 spin_lock(&fi->lock);
612 fi->attr_version = atomic64_inc_return(&fc->attr_version);
613 spin_unlock(&fi->lock);
616 io->iocb->ki_complete(io->iocb, res, 0);
619 kref_put(&io->refcnt, fuse_io_release);
622 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
624 struct fuse_io_priv *io = req->io;
627 fuse_release_user_pages(req, io->should_dirty);
630 if (req->misc.write.in.size != req->misc.write.out.size)
631 pos = req->misc.write.in.offset - io->offset +
632 req->misc.write.out.size;
634 if (req->misc.read.in.size != req->out.args[0].size)
635 pos = req->misc.read.in.offset - io->offset +
636 req->out.args[0].size;
639 fuse_aio_complete(io, req->out.h.error, pos);
642 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
643 size_t num_bytes, struct fuse_io_priv *io)
645 spin_lock(&io->lock);
646 kref_get(&io->refcnt);
647 io->size += num_bytes;
649 spin_unlock(&io->lock);
652 req->end = fuse_aio_complete_req;
654 __fuse_get_request(req);
655 fuse_request_send_background(fc, req);
660 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
661 loff_t pos, size_t count, fl_owner_t owner)
663 struct file *file = io->iocb->ki_filp;
664 struct fuse_file *ff = file->private_data;
665 struct fuse_conn *fc = ff->fc;
667 fuse_read_fill(req, file, pos, count, FUSE_READ);
669 struct fuse_read_in *inarg = &req->misc.read.in;
671 inarg->read_flags |= FUSE_READ_LOCKOWNER;
672 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
676 return fuse_async_req_send(fc, req, count, io);
678 fuse_request_send(fc, req);
679 return req->out.args[0].size;
682 static void fuse_read_update_size(struct inode *inode, loff_t size,
685 struct fuse_conn *fc = get_fuse_conn(inode);
686 struct fuse_inode *fi = get_fuse_inode(inode);
688 spin_lock(&fi->lock);
689 if (attr_ver == fi->attr_version && size < inode->i_size &&
690 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
691 fi->attr_version = atomic64_inc_return(&fc->attr_version);
692 i_size_write(inode, size);
694 spin_unlock(&fi->lock);
697 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
700 size_t num_read = req->out.args[0].size;
701 struct fuse_conn *fc = get_fuse_conn(inode);
703 if (fc->writeback_cache) {
705 * A hole in a file. Some data after the hole are in page cache,
706 * but have not reached the client fs yet. So, the hole is not
710 int start_idx = num_read >> PAGE_SHIFT;
711 size_t off = num_read & (PAGE_SIZE - 1);
713 for (i = start_idx; i < req->num_pages; i++) {
714 zero_user_segment(req->pages[i], off, PAGE_SIZE);
718 loff_t pos = page_offset(req->pages[0]) + num_read;
719 fuse_read_update_size(inode, pos, attr_ver);
723 static int fuse_do_readpage(struct file *file, struct page *page)
726 struct fuse_io_priv io;
727 struct inode *inode = page->mapping->host;
728 struct fuse_conn *fc = get_fuse_conn(inode);
729 struct fuse_req *req;
731 loff_t pos = page_offset(page);
732 size_t count = PAGE_SIZE;
737 * Page writeback can extend beyond the lifetime of the
738 * page-cache page, so make sure we read a properly synced
741 fuse_wait_on_page_writeback(inode, page->index);
743 req = fuse_get_req(fc, 1);
747 attr_ver = fuse_get_attr_version(fc);
749 req->out.page_zeroing = 1;
750 req->out.argpages = 1;
752 req->pages[0] = page;
753 req->page_descs[0].length = count;
754 init_sync_kiocb(&iocb, file);
755 io = (struct fuse_io_priv) FUSE_IO_PRIV_SYNC(&iocb);
756 num_read = fuse_send_read(req, &io, pos, count, NULL);
757 err = req->out.h.error;
761 * Short read means EOF. If file size is larger, truncate it
763 if (num_read < count)
764 fuse_short_read(req, inode, attr_ver);
766 SetPageUptodate(page);
769 fuse_put_request(fc, req);
774 static int fuse_readpage(struct file *file, struct page *page)
776 struct inode *inode = page->mapping->host;
780 if (is_bad_inode(inode))
783 err = fuse_do_readpage(file, page);
784 fuse_invalidate_atime(inode);
790 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
793 size_t count = req->misc.read.in.size;
794 size_t num_read = req->out.args[0].size;
795 struct address_space *mapping = NULL;
797 for (i = 0; mapping == NULL && i < req->num_pages; i++)
798 mapping = req->pages[i]->mapping;
801 struct inode *inode = mapping->host;
804 * Short read means EOF. If file size is larger, truncate it
806 if (!req->out.h.error && num_read < count)
807 fuse_short_read(req, inode, req->misc.read.attr_ver);
809 fuse_invalidate_atime(inode);
812 for (i = 0; i < req->num_pages; i++) {
813 struct page *page = req->pages[i];
814 if (!req->out.h.error)
815 SetPageUptodate(page);
822 fuse_file_put(req->ff, false, false);
825 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
827 struct fuse_file *ff = file->private_data;
828 struct fuse_conn *fc = ff->fc;
829 loff_t pos = page_offset(req->pages[0]);
830 size_t count = req->num_pages << PAGE_SHIFT;
832 req->out.argpages = 1;
833 req->out.page_zeroing = 1;
834 req->out.page_replace = 1;
835 fuse_read_fill(req, file, pos, count, FUSE_READ);
836 req->misc.read.attr_ver = fuse_get_attr_version(fc);
837 if (fc->async_read) {
838 req->ff = fuse_file_get(ff);
839 req->end = fuse_readpages_end;
840 fuse_request_send_background(fc, req);
842 fuse_request_send(fc, req);
843 fuse_readpages_end(fc, req);
844 fuse_put_request(fc, req);
848 struct fuse_fill_data {
849 struct fuse_req *req;
855 static int fuse_readpages_fill(void *_data, struct page *page)
857 struct fuse_fill_data *data = _data;
858 struct fuse_req *req = data->req;
859 struct inode *inode = data->inode;
860 struct fuse_conn *fc = get_fuse_conn(inode);
862 fuse_wait_on_page_writeback(inode, page->index);
864 if (req->num_pages &&
865 (req->num_pages == fc->max_pages ||
866 (req->num_pages + 1) * PAGE_SIZE > fc->max_read ||
867 req->pages[req->num_pages - 1]->index + 1 != page->index)) {
868 unsigned int nr_alloc = min_t(unsigned int, data->nr_pages,
870 fuse_send_readpages(req, data->file);
872 req = fuse_get_req_for_background(fc, nr_alloc);
874 req = fuse_get_req(fc, nr_alloc);
883 if (WARN_ON(req->num_pages >= req->max_pages)) {
885 fuse_put_request(fc, req);
890 req->pages[req->num_pages] = page;
891 req->page_descs[req->num_pages].length = PAGE_SIZE;
897 static int fuse_readpages(struct file *file, struct address_space *mapping,
898 struct list_head *pages, unsigned nr_pages)
900 struct inode *inode = mapping->host;
901 struct fuse_conn *fc = get_fuse_conn(inode);
902 struct fuse_fill_data data;
904 unsigned int nr_alloc = min_t(unsigned int, nr_pages, fc->max_pages);
907 if (is_bad_inode(inode))
913 data.req = fuse_get_req_for_background(fc, nr_alloc);
915 data.req = fuse_get_req(fc, nr_alloc);
916 data.nr_pages = nr_pages;
917 err = PTR_ERR(data.req);
918 if (IS_ERR(data.req))
921 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
923 if (data.req->num_pages)
924 fuse_send_readpages(data.req, file);
926 fuse_put_request(fc, data.req);
932 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
934 struct inode *inode = iocb->ki_filp->f_mapping->host;
935 struct fuse_conn *fc = get_fuse_conn(inode);
938 * In auto invalidate mode, always update attributes on read.
939 * Otherwise, only update if we attempt to read past EOF (to ensure
940 * i_size is up to date).
942 if (fc->auto_inval_data ||
943 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
945 err = fuse_update_attributes(inode, iocb->ki_filp);
950 return generic_file_read_iter(iocb, to);
953 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
954 loff_t pos, size_t count)
956 struct fuse_write_in *inarg = &req->misc.write.in;
957 struct fuse_write_out *outarg = &req->misc.write.out;
962 req->in.h.opcode = FUSE_WRITE;
963 req->in.h.nodeid = ff->nodeid;
965 if (ff->fc->minor < 9)
966 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
968 req->in.args[0].size = sizeof(struct fuse_write_in);
969 req->in.args[0].value = inarg;
970 req->in.args[1].size = count;
971 req->out.numargs = 1;
972 req->out.args[0].size = sizeof(struct fuse_write_out);
973 req->out.args[0].value = outarg;
976 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
977 loff_t pos, size_t count, fl_owner_t owner)
979 struct kiocb *iocb = io->iocb;
980 struct file *file = iocb->ki_filp;
981 struct fuse_file *ff = file->private_data;
982 struct fuse_conn *fc = ff->fc;
983 struct fuse_write_in *inarg = &req->misc.write.in;
985 fuse_write_fill(req, ff, pos, count);
986 inarg->flags = file->f_flags;
987 if (iocb->ki_flags & IOCB_DSYNC)
988 inarg->flags |= O_DSYNC;
989 if (iocb->ki_flags & IOCB_SYNC)
990 inarg->flags |= O_SYNC;
992 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
993 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
997 return fuse_async_req_send(fc, req, count, io);
999 fuse_request_send(fc, req);
1000 return req->misc.write.out.size;
1003 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1005 struct fuse_conn *fc = get_fuse_conn(inode);
1006 struct fuse_inode *fi = get_fuse_inode(inode);
1009 spin_lock(&fi->lock);
1010 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1011 if (pos > inode->i_size) {
1012 i_size_write(inode, pos);
1015 spin_unlock(&fi->lock);
1020 static size_t fuse_send_write_pages(struct fuse_req *req, struct kiocb *iocb,
1021 struct inode *inode, loff_t pos,
1027 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1029 for (i = 0; i < req->num_pages; i++)
1030 fuse_wait_on_page_writeback(inode, req->pages[i]->index);
1032 res = fuse_send_write(req, &io, pos, count, NULL);
1034 offset = req->page_descs[0].offset;
1036 for (i = 0; i < req->num_pages; i++) {
1037 struct page *page = req->pages[i];
1039 if (!req->out.h.error && !offset && count >= PAGE_SIZE)
1040 SetPageUptodate(page);
1042 if (count > PAGE_SIZE - offset)
1043 count -= PAGE_SIZE - offset;
1055 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1056 struct address_space *mapping,
1057 struct iov_iter *ii, loff_t pos)
1059 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1060 unsigned offset = pos & (PAGE_SIZE - 1);
1064 req->in.argpages = 1;
1065 req->page_descs[0].offset = offset;
1070 pgoff_t index = pos >> PAGE_SHIFT;
1071 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1072 iov_iter_count(ii));
1074 bytes = min_t(size_t, bytes, fc->max_write - count);
1078 if (iov_iter_fault_in_readable(ii, bytes))
1082 page = grab_cache_page_write_begin(mapping, index, 0);
1086 if (mapping_writably_mapped(mapping))
1087 flush_dcache_page(page);
1089 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1090 flush_dcache_page(page);
1092 iov_iter_advance(ii, tmp);
1096 bytes = min(bytes, iov_iter_single_seg_count(ii));
1101 req->pages[req->num_pages] = page;
1102 req->page_descs[req->num_pages].length = tmp;
1108 if (offset == PAGE_SIZE)
1111 if (!fc->big_writes)
1113 } while (iov_iter_count(ii) && count < fc->max_write &&
1114 req->num_pages < req->max_pages && offset == 0);
1116 return count > 0 ? count : err;
1119 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1120 unsigned int max_pages)
1122 return min_t(unsigned int,
1123 ((pos + len - 1) >> PAGE_SHIFT) -
1124 (pos >> PAGE_SHIFT) + 1,
1128 static ssize_t fuse_perform_write(struct kiocb *iocb,
1129 struct address_space *mapping,
1130 struct iov_iter *ii, loff_t pos)
1132 struct inode *inode = mapping->host;
1133 struct fuse_conn *fc = get_fuse_conn(inode);
1134 struct fuse_inode *fi = get_fuse_inode(inode);
1138 if (inode->i_size < pos + iov_iter_count(ii))
1139 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1142 struct fuse_req *req;
1144 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1147 req = fuse_get_req(fc, nr_pages);
1153 count = fuse_fill_write_pages(req, mapping, ii, pos);
1159 num_written = fuse_send_write_pages(req, iocb, inode,
1161 err = req->out.h.error;
1166 /* break out of the loop on short write */
1167 if (num_written != count)
1171 fuse_put_request(fc, req);
1172 } while (!err && iov_iter_count(ii));
1175 fuse_write_update_size(inode, pos);
1177 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1178 fuse_invalidate_attr(inode);
1180 return res > 0 ? res : err;
1183 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1185 struct file *file = iocb->ki_filp;
1186 struct address_space *mapping = file->f_mapping;
1187 ssize_t written = 0;
1188 ssize_t written_buffered = 0;
1189 struct inode *inode = mapping->host;
1193 if (get_fuse_conn(inode)->writeback_cache) {
1194 /* Update size (EOF optimization) and mode (SUID clearing) */
1195 err = fuse_update_attributes(mapping->host, file);
1199 return generic_file_write_iter(iocb, from);
1204 /* We can write back this queue in page reclaim */
1205 current->backing_dev_info = inode_to_bdi(inode);
1207 err = generic_write_checks(iocb, from);
1211 err = file_remove_privs(file);
1215 err = file_update_time(file);
1219 if (iocb->ki_flags & IOCB_DIRECT) {
1220 loff_t pos = iocb->ki_pos;
1221 written = generic_file_direct_write(iocb, from);
1222 if (written < 0 || !iov_iter_count(from))
1227 written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1228 if (written_buffered < 0) {
1229 err = written_buffered;
1232 endbyte = pos + written_buffered - 1;
1234 err = filemap_write_and_wait_range(file->f_mapping, pos,
1239 invalidate_mapping_pages(file->f_mapping,
1241 endbyte >> PAGE_SHIFT);
1243 written += written_buffered;
1244 iocb->ki_pos = pos + written_buffered;
1246 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1248 iocb->ki_pos += written;
1251 current->backing_dev_info = NULL;
1252 inode_unlock(inode);
1254 written = generic_write_sync(iocb, written);
1256 return written ? written : err;
1259 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1260 unsigned index, unsigned nr_pages)
1264 for (i = index; i < index + nr_pages; i++)
1265 req->page_descs[i].length = PAGE_SIZE -
1266 req->page_descs[i].offset;
1269 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1271 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1274 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1277 return min(iov_iter_single_seg_count(ii), max_size);
1280 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1281 size_t *nbytesp, int write)
1283 size_t nbytes = 0; /* # bytes already packed in req */
1286 /* Special case for kernel I/O: can copy directly into the buffer */
1287 if (iov_iter_is_kvec(ii)) {
1288 unsigned long user_addr = fuse_get_user_addr(ii);
1289 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1292 req->in.args[1].value = (void *) user_addr;
1294 req->out.args[0].value = (void *) user_addr;
1296 iov_iter_advance(ii, frag_size);
1297 *nbytesp = frag_size;
1301 while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1304 ret = iov_iter_get_pages(ii, &req->pages[req->num_pages],
1306 req->max_pages - req->num_pages,
1311 iov_iter_advance(ii, ret);
1315 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1317 req->page_descs[req->num_pages].offset = start;
1318 fuse_page_descs_length_init(req, req->num_pages, npages);
1320 req->num_pages += npages;
1321 req->page_descs[req->num_pages - 1].length -=
1322 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1326 req->in.argpages = 1;
1328 req->out.argpages = 1;
1332 return ret < 0 ? ret : 0;
1335 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1336 loff_t *ppos, int flags)
1338 int write = flags & FUSE_DIO_WRITE;
1339 int cuse = flags & FUSE_DIO_CUSE;
1340 struct file *file = io->iocb->ki_filp;
1341 struct inode *inode = file->f_mapping->host;
1342 struct fuse_file *ff = file->private_data;
1343 struct fuse_conn *fc = ff->fc;
1344 size_t nmax = write ? fc->max_write : fc->max_read;
1346 size_t count = iov_iter_count(iter);
1347 pgoff_t idx_from = pos >> PAGE_SHIFT;
1348 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1350 struct fuse_req *req;
1354 req = fuse_get_req_for_background(fc, iov_iter_npages(iter,
1357 req = fuse_get_req(fc, iov_iter_npages(iter, fc->max_pages));
1359 return PTR_ERR(req);
1361 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1364 fuse_sync_writes(inode);
1366 inode_unlock(inode);
1369 io->should_dirty = !write && iter_is_iovec(iter);
1372 fl_owner_t owner = current->files;
1373 size_t nbytes = min(count, nmax);
1374 err = fuse_get_user_pages(req, iter, &nbytes, write);
1379 nres = fuse_send_write(req, io, pos, nbytes, owner);
1381 nres = fuse_send_read(req, io, pos, nbytes, owner);
1384 fuse_release_user_pages(req, io->should_dirty);
1385 if (req->out.h.error) {
1386 err = req->out.h.error;
1388 } else if (nres > nbytes) {
1399 fuse_put_request(fc, req);
1401 req = fuse_get_req_for_background(fc,
1402 iov_iter_npages(iter, fc->max_pages));
1404 req = fuse_get_req(fc, iov_iter_npages(iter,
1411 fuse_put_request(fc, req);
1415 return res > 0 ? res : err;
1417 EXPORT_SYMBOL_GPL(fuse_direct_io);
1419 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1420 struct iov_iter *iter,
1424 struct inode *inode = file_inode(io->iocb->ki_filp);
1426 res = fuse_direct_io(io, iter, ppos, 0);
1428 fuse_invalidate_atime(inode);
1433 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1435 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1439 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1440 res = fuse_direct_IO(iocb, to);
1442 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1444 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1450 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1452 struct inode *inode = file_inode(iocb->ki_filp);
1453 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1456 /* Don't allow parallel writes to the same file */
1458 res = generic_write_checks(iocb, from);
1460 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1461 res = fuse_direct_IO(iocb, from);
1463 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1467 fuse_invalidate_attr(inode);
1469 fuse_write_update_size(inode, iocb->ki_pos);
1470 inode_unlock(inode);
1475 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1477 struct file *file = iocb->ki_filp;
1478 struct fuse_file *ff = file->private_data;
1480 if (is_bad_inode(file_inode(file)))
1483 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1484 return fuse_cache_read_iter(iocb, to);
1486 return fuse_direct_read_iter(iocb, to);
1489 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1491 struct file *file = iocb->ki_filp;
1492 struct fuse_file *ff = file->private_data;
1494 if (is_bad_inode(file_inode(file)))
1497 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1498 return fuse_cache_write_iter(iocb, from);
1500 return fuse_direct_write_iter(iocb, from);
1503 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1507 for (i = 0; i < req->num_pages; i++)
1508 __free_page(req->pages[i]);
1511 fuse_file_put(req->ff, false, false);
1514 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1516 struct inode *inode = req->inode;
1517 struct fuse_inode *fi = get_fuse_inode(inode);
1518 struct backing_dev_info *bdi = inode_to_bdi(inode);
1521 list_del(&req->writepages_entry);
1522 for (i = 0; i < req->num_pages; i++) {
1523 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1524 dec_node_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1525 wb_writeout_inc(&bdi->wb);
1527 wake_up(&fi->page_waitq);
1530 /* Called under fi->lock, may release and reacquire it */
1531 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1533 __releases(fi->lock)
1534 __acquires(fi->lock)
1536 struct fuse_req *aux, *next;
1537 struct fuse_inode *fi = get_fuse_inode(req->inode);
1538 struct fuse_write_in *inarg = &req->misc.write.in;
1539 __u64 data_size = req->num_pages * PAGE_SIZE;
1542 if (inarg->offset + data_size <= size) {
1543 inarg->size = data_size;
1544 } else if (inarg->offset < size) {
1545 inarg->size = size - inarg->offset;
1547 /* Got truncated off completely */
1551 req->in.args[1].size = inarg->size;
1552 queued = fuse_request_queue_background(fc, req);
1553 /* Fails on broken connection only */
1554 if (unlikely(!queued))
1561 fuse_writepage_finish(fc, req);
1562 spin_unlock(&fi->lock);
1564 /* After fuse_writepage_finish() aux request list is private */
1565 for (aux = req->misc.write.next; aux; aux = next) {
1566 next = aux->misc.write.next;
1567 aux->misc.write.next = NULL;
1568 fuse_writepage_free(fc, aux);
1569 fuse_put_request(fc, aux);
1572 fuse_writepage_free(fc, req);
1573 fuse_put_request(fc, req);
1574 spin_lock(&fi->lock);
1578 * If fi->writectr is positive (no truncate or fsync going on) send
1579 * all queued writepage requests.
1581 * Called with fi->lock
1583 void fuse_flush_writepages(struct inode *inode)
1584 __releases(fi->lock)
1585 __acquires(fi->lock)
1587 struct fuse_conn *fc = get_fuse_conn(inode);
1588 struct fuse_inode *fi = get_fuse_inode(inode);
1589 size_t crop = i_size_read(inode);
1590 struct fuse_req *req;
1592 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1593 req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1594 list_del_init(&req->list);
1595 fuse_send_writepage(fc, req, crop);
1599 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1601 struct inode *inode = req->inode;
1602 struct fuse_inode *fi = get_fuse_inode(inode);
1604 mapping_set_error(inode->i_mapping, req->out.h.error);
1605 spin_lock(&fi->lock);
1606 while (req->misc.write.next) {
1607 struct fuse_conn *fc = get_fuse_conn(inode);
1608 struct fuse_write_in *inarg = &req->misc.write.in;
1609 struct fuse_req *next = req->misc.write.next;
1610 req->misc.write.next = next->misc.write.next;
1611 next->misc.write.next = NULL;
1612 next->ff = fuse_file_get(req->ff);
1613 list_add(&next->writepages_entry, &fi->writepages);
1616 * Skip fuse_flush_writepages() to make it easy to crop requests
1617 * based on primary request size.
1619 * 1st case (trivial): there are no concurrent activities using
1620 * fuse_set/release_nowrite. Then we're on safe side because
1621 * fuse_flush_writepages() would call fuse_send_writepage()
1624 * 2nd case: someone called fuse_set_nowrite and it is waiting
1625 * now for completion of all in-flight requests. This happens
1626 * rarely and no more than once per page, so this should be
1629 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1630 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1631 * that fuse_set_nowrite returned implies that all in-flight
1632 * requests were completed along with all of their secondary
1633 * requests. Further primary requests are blocked by negative
1634 * writectr. Hence there cannot be any in-flight requests and
1635 * no invocations of fuse_writepage_end() while we're in
1636 * fuse_set_nowrite..fuse_release_nowrite section.
1638 fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1641 fuse_writepage_finish(fc, req);
1642 spin_unlock(&fi->lock);
1643 fuse_writepage_free(fc, req);
1646 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1647 struct fuse_inode *fi)
1649 struct fuse_file *ff = NULL;
1651 spin_lock(&fi->lock);
1652 if (!list_empty(&fi->write_files)) {
1653 ff = list_entry(fi->write_files.next, struct fuse_file,
1657 spin_unlock(&fi->lock);
1662 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1663 struct fuse_inode *fi)
1665 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1670 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1672 struct fuse_conn *fc = get_fuse_conn(inode);
1673 struct fuse_inode *fi = get_fuse_inode(inode);
1674 struct fuse_file *ff;
1677 ff = __fuse_write_file_get(fc, fi);
1678 err = fuse_flush_times(inode, ff);
1680 fuse_file_put(ff, false, false);
1685 static int fuse_writepage_locked(struct page *page)
1687 struct address_space *mapping = page->mapping;
1688 struct inode *inode = mapping->host;
1689 struct fuse_conn *fc = get_fuse_conn(inode);
1690 struct fuse_inode *fi = get_fuse_inode(inode);
1691 struct fuse_req *req;
1692 struct page *tmp_page;
1693 int error = -ENOMEM;
1695 set_page_writeback(page);
1697 req = fuse_request_alloc_nofs(1);
1701 /* writeback always goes to bg_queue */
1702 __set_bit(FR_BACKGROUND, &req->flags);
1703 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1708 req->ff = fuse_write_file_get(fc, fi);
1712 fuse_write_fill(req, req->ff, page_offset(page), 0);
1714 copy_highpage(tmp_page, page);
1715 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1716 req->misc.write.next = NULL;
1717 req->in.argpages = 1;
1719 req->pages[0] = tmp_page;
1720 req->page_descs[0].offset = 0;
1721 req->page_descs[0].length = PAGE_SIZE;
1722 req->end = fuse_writepage_end;
1725 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1726 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1728 spin_lock(&fi->lock);
1729 list_add(&req->writepages_entry, &fi->writepages);
1730 list_add_tail(&req->list, &fi->queued_writes);
1731 fuse_flush_writepages(inode);
1732 spin_unlock(&fi->lock);
1734 end_page_writeback(page);
1739 __free_page(tmp_page);
1741 fuse_request_free(req);
1743 mapping_set_error(page->mapping, error);
1744 end_page_writeback(page);
1748 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1752 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1754 * ->writepages() should be called for sync() and friends. We
1755 * should only get here on direct reclaim and then we are
1756 * allowed to skip a page which is already in flight
1758 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1760 redirty_page_for_writepage(wbc, page);
1764 err = fuse_writepage_locked(page);
1770 struct fuse_fill_wb_data {
1771 struct fuse_req *req;
1772 struct fuse_file *ff;
1773 struct inode *inode;
1774 struct page **orig_pages;
1777 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1779 struct fuse_req *req = data->req;
1780 struct inode *inode = data->inode;
1781 struct fuse_inode *fi = get_fuse_inode(inode);
1782 int num_pages = req->num_pages;
1785 req->ff = fuse_file_get(data->ff);
1786 spin_lock(&fi->lock);
1787 list_add_tail(&req->list, &fi->queued_writes);
1788 fuse_flush_writepages(inode);
1789 spin_unlock(&fi->lock);
1791 for (i = 0; i < num_pages; i++)
1792 end_page_writeback(data->orig_pages[i]);
1796 * First recheck under fi->lock if the offending offset is still under
1797 * writeback. If yes, then iterate auxiliary write requests, to see if there's
1798 * one already added for a page at this offset. If there's none, then insert
1799 * this new request onto the auxiliary list, otherwise reuse the existing one by
1800 * copying the new page contents over to the old temporary page.
1802 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1805 struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1806 struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1807 struct fuse_req *tmp;
1808 struct fuse_req *old_req;
1810 WARN_ON(new_req->num_pages != 0);
1812 spin_lock(&fi->lock);
1813 list_del(&new_req->writepages_entry);
1814 old_req = fuse_find_writeback(fi, page->index, page->index);
1816 list_add(&new_req->writepages_entry, &fi->writepages);
1817 spin_unlock(&fi->lock);
1821 new_req->num_pages = 1;
1822 for (tmp = old_req->misc.write.next; tmp; tmp = tmp->misc.write.next) {
1825 WARN_ON(tmp->inode != new_req->inode);
1826 curr_index = tmp->misc.write.in.offset >> PAGE_SHIFT;
1827 if (curr_index == page->index) {
1828 WARN_ON(tmp->num_pages != 1);
1829 WARN_ON(!test_bit(FR_PENDING, &tmp->flags));
1830 swap(tmp->pages[0], new_req->pages[0]);
1836 new_req->misc.write.next = old_req->misc.write.next;
1837 old_req->misc.write.next = new_req;
1840 spin_unlock(&fi->lock);
1843 struct backing_dev_info *bdi = inode_to_bdi(new_req->inode);
1845 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1846 dec_node_page_state(new_req->pages[0], NR_WRITEBACK_TEMP);
1847 wb_writeout_inc(&bdi->wb);
1848 fuse_writepage_free(fc, new_req);
1849 fuse_request_free(new_req);
1855 static int fuse_writepages_fill(struct page *page,
1856 struct writeback_control *wbc, void *_data)
1858 struct fuse_fill_wb_data *data = _data;
1859 struct fuse_req *req = data->req;
1860 struct inode *inode = data->inode;
1861 struct fuse_inode *fi = get_fuse_inode(inode);
1862 struct fuse_conn *fc = get_fuse_conn(inode);
1863 struct page *tmp_page;
1869 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1875 * Being under writeback is unlikely but possible. For example direct
1876 * read to an mmaped fuse file will set the page dirty twice; once when
1877 * the pages are faulted with get_user_pages(), and then after the read
1880 is_writeback = fuse_page_is_writeback(inode, page->index);
1882 if (req && req->num_pages &&
1883 (is_writeback || req->num_pages == fc->max_pages ||
1884 (req->num_pages + 1) * PAGE_SIZE > fc->max_write ||
1885 data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1886 fuse_writepages_send(data);
1888 } else if (req && req->num_pages == req->max_pages) {
1889 if (!fuse_req_realloc_pages(fc, req, GFP_NOFS)) {
1890 fuse_writepages_send(data);
1891 req = data->req = NULL;
1896 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1901 * The page must not be redirtied until the writeout is completed
1902 * (i.e. userspace has sent a reply to the write request). Otherwise
1903 * there could be more than one temporary page instance for each real
1906 * This is ensured by holding the page lock in page_mkwrite() while
1907 * checking fuse_page_is_writeback(). We already hold the page lock
1908 * since clear_page_dirty_for_io() and keep it held until we add the
1909 * request to the fi->writepages list and increment req->num_pages.
1910 * After this fuse_page_is_writeback() will indicate that the page is
1911 * under writeback, so we can release the page lock.
1913 if (data->req == NULL) {
1914 struct fuse_inode *fi = get_fuse_inode(inode);
1917 req = fuse_request_alloc_nofs(FUSE_REQ_INLINE_PAGES);
1919 __free_page(tmp_page);
1923 fuse_write_fill(req, data->ff, page_offset(page), 0);
1924 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1925 req->misc.write.next = NULL;
1926 req->in.argpages = 1;
1927 __set_bit(FR_BACKGROUND, &req->flags);
1929 req->end = fuse_writepage_end;
1932 spin_lock(&fi->lock);
1933 list_add(&req->writepages_entry, &fi->writepages);
1934 spin_unlock(&fi->lock);
1938 set_page_writeback(page);
1940 copy_highpage(tmp_page, page);
1941 req->pages[req->num_pages] = tmp_page;
1942 req->page_descs[req->num_pages].offset = 0;
1943 req->page_descs[req->num_pages].length = PAGE_SIZE;
1945 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1946 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1949 if (is_writeback && fuse_writepage_in_flight(req, page)) {
1950 end_page_writeback(page);
1954 data->orig_pages[req->num_pages] = page;
1957 * Protected by fi->lock against concurrent access by
1958 * fuse_page_is_writeback().
1960 spin_lock(&fi->lock);
1962 spin_unlock(&fi->lock);
1970 static int fuse_writepages(struct address_space *mapping,
1971 struct writeback_control *wbc)
1973 struct inode *inode = mapping->host;
1974 struct fuse_conn *fc = get_fuse_conn(inode);
1975 struct fuse_fill_wb_data data;
1979 if (is_bad_inode(inode))
1987 data.orig_pages = kcalloc(fc->max_pages,
1988 sizeof(struct page *),
1990 if (!data.orig_pages)
1993 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1995 /* Ignore errors if we can write at least one page */
1996 BUG_ON(!data.req->num_pages);
1997 fuse_writepages_send(&data);
2001 fuse_file_put(data.ff, false, false);
2003 kfree(data.orig_pages);
2009 * It's worthy to make sure that space is reserved on disk for the write,
2010 * but how to implement it without killing performance need more thinking.
2012 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2013 loff_t pos, unsigned len, unsigned flags,
2014 struct page **pagep, void **fsdata)
2016 pgoff_t index = pos >> PAGE_SHIFT;
2017 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2022 WARN_ON(!fc->writeback_cache);
2024 page = grab_cache_page_write_begin(mapping, index, flags);
2028 fuse_wait_on_page_writeback(mapping->host, page->index);
2030 if (PageUptodate(page) || len == PAGE_SIZE)
2033 * Check if the start this page comes after the end of file, in which
2034 * case the readpage can be optimized away.
2036 fsize = i_size_read(mapping->host);
2037 if (fsize <= (pos & PAGE_MASK)) {
2038 size_t off = pos & ~PAGE_MASK;
2040 zero_user_segment(page, 0, off);
2043 err = fuse_do_readpage(file, page);
2057 static int fuse_write_end(struct file *file, struct address_space *mapping,
2058 loff_t pos, unsigned len, unsigned copied,
2059 struct page *page, void *fsdata)
2061 struct inode *inode = page->mapping->host;
2063 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2067 if (!PageUptodate(page)) {
2068 /* Zero any unwritten bytes at the end of the page */
2069 size_t endoff = (pos + copied) & ~PAGE_MASK;
2071 zero_user_segment(page, endoff, PAGE_SIZE);
2072 SetPageUptodate(page);
2075 fuse_write_update_size(inode, pos + copied);
2076 set_page_dirty(page);
2085 static int fuse_launder_page(struct page *page)
2088 if (clear_page_dirty_for_io(page)) {
2089 struct inode *inode = page->mapping->host;
2090 err = fuse_writepage_locked(page);
2092 fuse_wait_on_page_writeback(inode, page->index);
2098 * Write back dirty pages now, because there may not be any suitable
2101 static void fuse_vma_close(struct vm_area_struct *vma)
2103 filemap_write_and_wait(vma->vm_file->f_mapping);
2107 * Wait for writeback against this page to complete before allowing it
2108 * to be marked dirty again, and hence written back again, possibly
2109 * before the previous writepage completed.
2111 * Block here, instead of in ->writepage(), so that the userspace fs
2112 * can only block processes actually operating on the filesystem.
2114 * Otherwise unprivileged userspace fs would be able to block
2119 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2121 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2123 struct page *page = vmf->page;
2124 struct inode *inode = file_inode(vmf->vma->vm_file);
2126 file_update_time(vmf->vma->vm_file);
2128 if (page->mapping != inode->i_mapping) {
2130 return VM_FAULT_NOPAGE;
2133 fuse_wait_on_page_writeback(inode, page->index);
2134 return VM_FAULT_LOCKED;
2137 static const struct vm_operations_struct fuse_file_vm_ops = {
2138 .close = fuse_vma_close,
2139 .fault = filemap_fault,
2140 .map_pages = filemap_map_pages,
2141 .page_mkwrite = fuse_page_mkwrite,
2144 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2146 struct fuse_file *ff = file->private_data;
2148 if (ff->open_flags & FOPEN_DIRECT_IO) {
2149 /* Can't provide the coherency needed for MAP_SHARED */
2150 if (vma->vm_flags & VM_MAYSHARE)
2153 invalidate_inode_pages2(file->f_mapping);
2155 return generic_file_mmap(file, vma);
2158 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2159 fuse_link_write_file(file);
2161 file_accessed(file);
2162 vma->vm_ops = &fuse_file_vm_ops;
2166 static int convert_fuse_file_lock(struct fuse_conn *fc,
2167 const struct fuse_file_lock *ffl,
2168 struct file_lock *fl)
2170 switch (ffl->type) {
2176 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2177 ffl->end < ffl->start)
2180 fl->fl_start = ffl->start;
2181 fl->fl_end = ffl->end;
2184 * Convert pid into init's pid namespace. The locks API will
2185 * translate it into the caller's pid namespace.
2188 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2195 fl->fl_type = ffl->type;
2199 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2200 const struct file_lock *fl, int opcode, pid_t pid,
2201 int flock, struct fuse_lk_in *inarg)
2203 struct inode *inode = file_inode(file);
2204 struct fuse_conn *fc = get_fuse_conn(inode);
2205 struct fuse_file *ff = file->private_data;
2207 memset(inarg, 0, sizeof(*inarg));
2209 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2210 inarg->lk.start = fl->fl_start;
2211 inarg->lk.end = fl->fl_end;
2212 inarg->lk.type = fl->fl_type;
2213 inarg->lk.pid = pid;
2215 inarg->lk_flags |= FUSE_LK_FLOCK;
2216 args->in.h.opcode = opcode;
2217 args->in.h.nodeid = get_node_id(inode);
2218 args->in.numargs = 1;
2219 args->in.args[0].size = sizeof(*inarg);
2220 args->in.args[0].value = inarg;
2223 static int fuse_getlk(struct file *file, struct file_lock *fl)
2225 struct inode *inode = file_inode(file);
2226 struct fuse_conn *fc = get_fuse_conn(inode);
2228 struct fuse_lk_in inarg;
2229 struct fuse_lk_out outarg;
2232 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2233 args.out.numargs = 1;
2234 args.out.args[0].size = sizeof(outarg);
2235 args.out.args[0].value = &outarg;
2236 err = fuse_simple_request(fc, &args);
2238 err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2243 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2245 struct inode *inode = file_inode(file);
2246 struct fuse_conn *fc = get_fuse_conn(inode);
2248 struct fuse_lk_in inarg;
2249 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2250 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2251 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2254 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2255 /* NLM needs asynchronous locks, which we don't support yet */
2259 /* Unlock on close is handled by the flush method */
2260 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2263 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2264 err = fuse_simple_request(fc, &args);
2266 /* locking is restartable */
2273 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2275 struct inode *inode = file_inode(file);
2276 struct fuse_conn *fc = get_fuse_conn(inode);
2279 if (cmd == F_CANCELLK) {
2281 } else if (cmd == F_GETLK) {
2283 posix_test_lock(file, fl);
2286 err = fuse_getlk(file, fl);
2289 err = posix_lock_file(file, fl, NULL);
2291 err = fuse_setlk(file, fl, 0);
2296 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2298 struct inode *inode = file_inode(file);
2299 struct fuse_conn *fc = get_fuse_conn(inode);
2303 err = locks_lock_file_wait(file, fl);
2305 struct fuse_file *ff = file->private_data;
2307 /* emulate flock with POSIX locks */
2309 err = fuse_setlk(file, fl, 1);
2315 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2317 struct inode *inode = mapping->host;
2318 struct fuse_conn *fc = get_fuse_conn(inode);
2320 struct fuse_bmap_in inarg;
2321 struct fuse_bmap_out outarg;
2324 if (!inode->i_sb->s_bdev || fc->no_bmap)
2327 memset(&inarg, 0, sizeof(inarg));
2328 inarg.block = block;
2329 inarg.blocksize = inode->i_sb->s_blocksize;
2330 args.in.h.opcode = FUSE_BMAP;
2331 args.in.h.nodeid = get_node_id(inode);
2332 args.in.numargs = 1;
2333 args.in.args[0].size = sizeof(inarg);
2334 args.in.args[0].value = &inarg;
2335 args.out.numargs = 1;
2336 args.out.args[0].size = sizeof(outarg);
2337 args.out.args[0].value = &outarg;
2338 err = fuse_simple_request(fc, &args);
2342 return err ? 0 : outarg.block;
2345 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2347 struct inode *inode = file->f_mapping->host;
2348 struct fuse_conn *fc = get_fuse_conn(inode);
2349 struct fuse_file *ff = file->private_data;
2351 struct fuse_lseek_in inarg = {
2356 struct fuse_lseek_out outarg;
2362 args.in.h.opcode = FUSE_LSEEK;
2363 args.in.h.nodeid = ff->nodeid;
2364 args.in.numargs = 1;
2365 args.in.args[0].size = sizeof(inarg);
2366 args.in.args[0].value = &inarg;
2367 args.out.numargs = 1;
2368 args.out.args[0].size = sizeof(outarg);
2369 args.out.args[0].value = &outarg;
2370 err = fuse_simple_request(fc, &args);
2372 if (err == -ENOSYS) {
2379 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2382 err = fuse_update_attributes(inode, file);
2384 return generic_file_llseek(file, offset, whence);
2389 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2392 struct inode *inode = file_inode(file);
2397 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2398 retval = generic_file_llseek(file, offset, whence);
2402 retval = fuse_update_attributes(inode, file);
2404 retval = generic_file_llseek(file, offset, whence);
2405 inode_unlock(inode);
2410 retval = fuse_lseek(file, offset, whence);
2411 inode_unlock(inode);
2421 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2422 * ABI was defined to be 'struct iovec' which is different on 32bit
2423 * and 64bit. Fortunately we can determine which structure the server
2424 * used from the size of the reply.
2426 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2427 size_t transferred, unsigned count,
2430 #ifdef CONFIG_COMPAT
2431 if (count * sizeof(struct compat_iovec) == transferred) {
2432 struct compat_iovec *ciov = src;
2436 * With this interface a 32bit server cannot support
2437 * non-compat (i.e. ones coming from 64bit apps) ioctl
2443 for (i = 0; i < count; i++) {
2444 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2445 dst[i].iov_len = ciov[i].iov_len;
2451 if (count * sizeof(struct iovec) != transferred)
2454 memcpy(dst, src, transferred);
2458 /* Make sure iov_length() won't overflow */
2459 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2463 u32 max = fc->max_pages << PAGE_SHIFT;
2465 for (n = 0; n < count; n++, iov++) {
2466 if (iov->iov_len > (size_t) max)
2468 max -= iov->iov_len;
2473 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2474 void *src, size_t transferred, unsigned count,
2478 struct fuse_ioctl_iovec *fiov = src;
2480 if (fc->minor < 16) {
2481 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2485 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2488 for (i = 0; i < count; i++) {
2489 /* Did the server supply an inappropriate value? */
2490 if (fiov[i].base != (unsigned long) fiov[i].base ||
2491 fiov[i].len != (unsigned long) fiov[i].len)
2494 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2495 dst[i].iov_len = (size_t) fiov[i].len;
2497 #ifdef CONFIG_COMPAT
2499 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2500 (compat_size_t) dst[i].iov_len != fiov[i].len))
2510 * For ioctls, there is no generic way to determine how much memory
2511 * needs to be read and/or written. Furthermore, ioctls are allowed
2512 * to dereference the passed pointer, so the parameter requires deep
2513 * copying but FUSE has no idea whatsoever about what to copy in or
2516 * This is solved by allowing FUSE server to retry ioctl with
2517 * necessary in/out iovecs. Let's assume the ioctl implementation
2518 * needs to read in the following structure.
2525 * On the first callout to FUSE server, inarg->in_size and
2526 * inarg->out_size will be NULL; then, the server completes the ioctl
2527 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2528 * the actual iov array to
2530 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2532 * which tells FUSE to copy in the requested area and retry the ioctl.
2533 * On the second round, the server has access to the structure and
2534 * from that it can tell what to look for next, so on the invocation,
2535 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2537 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2538 * { .iov_base = a.buf, .iov_len = a.buflen } }
2540 * FUSE will copy both struct a and the pointed buffer from the
2541 * process doing the ioctl and retry ioctl with both struct a and the
2544 * This time, FUSE server has everything it needs and completes ioctl
2545 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2547 * Copying data out works the same way.
2549 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2550 * automatically initializes in and out iovs by decoding @cmd with
2551 * _IOC_* macros and the server is not allowed to request RETRY. This
2552 * limits ioctl data transfers to well-formed ioctls and is the forced
2553 * behavior for all FUSE servers.
2555 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2558 struct fuse_file *ff = file->private_data;
2559 struct fuse_conn *fc = ff->fc;
2560 struct fuse_ioctl_in inarg = {
2566 struct fuse_ioctl_out outarg;
2567 struct fuse_req *req = NULL;
2568 struct page **pages = NULL;
2569 struct iovec *iov_page = NULL;
2570 struct iovec *in_iov = NULL, *out_iov = NULL;
2571 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2572 size_t in_size, out_size, transferred, c;
2576 #if BITS_PER_LONG == 32
2577 inarg.flags |= FUSE_IOCTL_32BIT;
2579 if (flags & FUSE_IOCTL_COMPAT)
2580 inarg.flags |= FUSE_IOCTL_32BIT;
2583 /* assume all the iovs returned by client always fits in a page */
2584 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2587 pages = kcalloc(fc->max_pages, sizeof(pages[0]), GFP_KERNEL);
2588 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2589 if (!pages || !iov_page)
2593 * If restricted, initialize IO parameters as encoded in @cmd.
2594 * RETRY from server is not allowed.
2596 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2597 struct iovec *iov = iov_page;
2599 iov->iov_base = (void __user *)arg;
2600 iov->iov_len = _IOC_SIZE(cmd);
2602 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2607 if (_IOC_DIR(cmd) & _IOC_READ) {
2614 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2615 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2618 * Out data can be used either for actual out data or iovs,
2619 * make sure there always is at least one page.
2621 out_size = max_t(size_t, out_size, PAGE_SIZE);
2622 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2624 /* make sure there are enough buffer pages and init request with them */
2626 if (max_pages > fc->max_pages)
2628 while (num_pages < max_pages) {
2629 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2630 if (!pages[num_pages])
2635 req = fuse_get_req(fc, num_pages);
2641 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2642 req->num_pages = num_pages;
2643 fuse_page_descs_length_init(req, 0, req->num_pages);
2645 /* okay, let's send it to the client */
2646 req->in.h.opcode = FUSE_IOCTL;
2647 req->in.h.nodeid = ff->nodeid;
2648 req->in.numargs = 1;
2649 req->in.args[0].size = sizeof(inarg);
2650 req->in.args[0].value = &inarg;
2653 req->in.args[1].size = in_size;
2654 req->in.argpages = 1;
2657 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2658 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2659 c = copy_page_from_iter(pages[i], 0, PAGE_SIZE, &ii);
2660 if (c != PAGE_SIZE && iov_iter_count(&ii))
2665 req->out.numargs = 2;
2666 req->out.args[0].size = sizeof(outarg);
2667 req->out.args[0].value = &outarg;
2668 req->out.args[1].size = out_size;
2669 req->out.argpages = 1;
2670 req->out.argvar = 1;
2672 fuse_request_send(fc, req);
2673 err = req->out.h.error;
2674 transferred = req->out.args[1].size;
2675 fuse_put_request(fc, req);
2680 /* did it ask for retry? */
2681 if (outarg.flags & FUSE_IOCTL_RETRY) {
2684 /* no retry if in restricted mode */
2686 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2689 in_iovs = outarg.in_iovs;
2690 out_iovs = outarg.out_iovs;
2693 * Make sure things are in boundary, separate checks
2694 * are to protect against overflow.
2697 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2698 out_iovs > FUSE_IOCTL_MAX_IOV ||
2699 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2702 vaddr = kmap_atomic(pages[0]);
2703 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2704 transferred, in_iovs + out_iovs,
2705 (flags & FUSE_IOCTL_COMPAT) != 0);
2706 kunmap_atomic(vaddr);
2711 out_iov = in_iov + in_iovs;
2713 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2717 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2725 if (transferred > inarg.out_size)
2729 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2730 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2731 c = copy_page_to_iter(pages[i], 0, PAGE_SIZE, &ii);
2732 if (c != PAGE_SIZE && iov_iter_count(&ii))
2738 fuse_put_request(fc, req);
2739 free_page((unsigned long) iov_page);
2741 __free_page(pages[--num_pages]);
2744 return err ? err : outarg.result;
2746 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2748 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2749 unsigned long arg, unsigned int flags)
2751 struct inode *inode = file_inode(file);
2752 struct fuse_conn *fc = get_fuse_conn(inode);
2754 if (!fuse_allow_current_process(fc))
2757 if (is_bad_inode(inode))
2760 return fuse_do_ioctl(file, cmd, arg, flags);
2763 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2766 return fuse_ioctl_common(file, cmd, arg, 0);
2769 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2772 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2776 * All files which have been polled are linked to RB tree
2777 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2778 * find the matching one.
2780 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2781 struct rb_node **parent_out)
2783 struct rb_node **link = &fc->polled_files.rb_node;
2784 struct rb_node *last = NULL;
2787 struct fuse_file *ff;
2790 ff = rb_entry(last, struct fuse_file, polled_node);
2793 link = &last->rb_left;
2794 else if (kh > ff->kh)
2795 link = &last->rb_right;
2806 * The file is about to be polled. Make sure it's on the polled_files
2807 * RB tree. Note that files once added to the polled_files tree are
2808 * not removed before the file is released. This is because a file
2809 * polled once is likely to be polled again.
2811 static void fuse_register_polled_file(struct fuse_conn *fc,
2812 struct fuse_file *ff)
2814 spin_lock(&fc->lock);
2815 if (RB_EMPTY_NODE(&ff->polled_node)) {
2816 struct rb_node **link, *uninitialized_var(parent);
2818 link = fuse_find_polled_node(fc, ff->kh, &parent);
2820 rb_link_node(&ff->polled_node, parent, link);
2821 rb_insert_color(&ff->polled_node, &fc->polled_files);
2823 spin_unlock(&fc->lock);
2826 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2828 struct fuse_file *ff = file->private_data;
2829 struct fuse_conn *fc = ff->fc;
2830 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2831 struct fuse_poll_out outarg;
2836 return DEFAULT_POLLMASK;
2838 poll_wait(file, &ff->poll_wait, wait);
2839 inarg.events = mangle_poll(poll_requested_events(wait));
2842 * Ask for notification iff there's someone waiting for it.
2843 * The client may ignore the flag and always notify.
2845 if (waitqueue_active(&ff->poll_wait)) {
2846 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2847 fuse_register_polled_file(fc, ff);
2850 args.in.h.opcode = FUSE_POLL;
2851 args.in.h.nodeid = ff->nodeid;
2852 args.in.numargs = 1;
2853 args.in.args[0].size = sizeof(inarg);
2854 args.in.args[0].value = &inarg;
2855 args.out.numargs = 1;
2856 args.out.args[0].size = sizeof(outarg);
2857 args.out.args[0].value = &outarg;
2858 err = fuse_simple_request(fc, &args);
2861 return demangle_poll(outarg.revents);
2862 if (err == -ENOSYS) {
2864 return DEFAULT_POLLMASK;
2868 EXPORT_SYMBOL_GPL(fuse_file_poll);
2871 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2872 * wakes up the poll waiters.
2874 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2875 struct fuse_notify_poll_wakeup_out *outarg)
2877 u64 kh = outarg->kh;
2878 struct rb_node **link;
2880 spin_lock(&fc->lock);
2882 link = fuse_find_polled_node(fc, kh, NULL);
2884 struct fuse_file *ff;
2886 ff = rb_entry(*link, struct fuse_file, polled_node);
2887 wake_up_interruptible_sync(&ff->poll_wait);
2890 spin_unlock(&fc->lock);
2894 static void fuse_do_truncate(struct file *file)
2896 struct inode *inode = file->f_mapping->host;
2899 attr.ia_valid = ATTR_SIZE;
2900 attr.ia_size = i_size_read(inode);
2902 attr.ia_file = file;
2903 attr.ia_valid |= ATTR_FILE;
2905 fuse_do_setattr(file_dentry(file), &attr, file);
2908 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2910 return round_up(off, fc->max_pages << PAGE_SHIFT);
2914 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2916 DECLARE_COMPLETION_ONSTACK(wait);
2918 struct file *file = iocb->ki_filp;
2919 struct fuse_file *ff = file->private_data;
2920 bool async_dio = ff->fc->async_dio;
2922 struct inode *inode;
2924 size_t count = iov_iter_count(iter);
2925 loff_t offset = iocb->ki_pos;
2926 struct fuse_io_priv *io;
2929 inode = file->f_mapping->host;
2930 i_size = i_size_read(inode);
2932 if ((iov_iter_rw(iter) == READ) && (offset > i_size))
2935 /* optimization for short read */
2936 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
2937 if (offset >= i_size)
2939 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
2940 count = iov_iter_count(iter);
2943 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2946 spin_lock_init(&io->lock);
2947 kref_init(&io->refcnt);
2951 io->offset = offset;
2952 io->write = (iov_iter_rw(iter) == WRITE);
2955 * By default, we want to optimize all I/Os with async request
2956 * submission to the client filesystem if supported.
2958 io->async = async_dio;
2960 io->blocking = is_sync_kiocb(iocb);
2963 * We cannot asynchronously extend the size of a file.
2964 * In such case the aio will behave exactly like sync io.
2966 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
2967 io->blocking = true;
2969 if (io->async && io->blocking) {
2971 * Additional reference to keep io around after
2972 * calling fuse_aio_complete()
2974 kref_get(&io->refcnt);
2978 if (iov_iter_rw(iter) == WRITE) {
2979 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2980 fuse_invalidate_attr(inode);
2982 ret = __fuse_direct_read(io, iter, &pos);
2986 bool blocking = io->blocking;
2988 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2990 /* we have a non-extending, async request, so return */
2992 return -EIOCBQUEUED;
2994 wait_for_completion(&wait);
2995 ret = fuse_get_res_by_io(io);
2998 kref_put(&io->refcnt, fuse_io_release);
3000 if (iov_iter_rw(iter) == WRITE) {
3002 fuse_write_update_size(inode, pos);
3003 else if (ret < 0 && offset + count > i_size)
3004 fuse_do_truncate(file);
3010 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3013 struct fuse_file *ff = file->private_data;
3014 struct inode *inode = file_inode(file);
3015 struct fuse_inode *fi = get_fuse_inode(inode);
3016 struct fuse_conn *fc = ff->fc;
3018 struct fuse_fallocate_in inarg = {
3025 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3026 (mode & FALLOC_FL_PUNCH_HOLE);
3028 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3031 if (fc->no_fallocate)
3036 if (mode & FALLOC_FL_PUNCH_HOLE) {
3037 loff_t endbyte = offset + length - 1;
3038 err = filemap_write_and_wait_range(inode->i_mapping,
3043 fuse_sync_writes(inode);
3047 if (!(mode & FALLOC_FL_KEEP_SIZE))
3048 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3050 args.in.h.opcode = FUSE_FALLOCATE;
3051 args.in.h.nodeid = ff->nodeid;
3052 args.in.numargs = 1;
3053 args.in.args[0].size = sizeof(inarg);
3054 args.in.args[0].value = &inarg;
3055 err = fuse_simple_request(fc, &args);
3056 if (err == -ENOSYS) {
3057 fc->no_fallocate = 1;
3063 /* we could have extended the file */
3064 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3065 bool changed = fuse_write_update_size(inode, offset + length);
3067 if (changed && fc->writeback_cache)
3068 file_update_time(file);
3071 if (mode & FALLOC_FL_PUNCH_HOLE)
3072 truncate_pagecache_range(inode, offset, offset + length - 1);
3074 fuse_invalidate_attr(inode);
3077 if (!(mode & FALLOC_FL_KEEP_SIZE))
3078 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3081 inode_unlock(inode);
3086 static ssize_t fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3087 struct file *file_out, loff_t pos_out,
3088 size_t len, unsigned int flags)
3090 struct fuse_file *ff_in = file_in->private_data;
3091 struct fuse_file *ff_out = file_out->private_data;
3092 struct inode *inode_out = file_inode(file_out);
3093 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3094 struct fuse_conn *fc = ff_in->fc;
3096 struct fuse_copy_file_range_in inarg = {
3099 .nodeid_out = ff_out->nodeid,
3100 .fh_out = ff_out->fh,
3105 struct fuse_write_out outarg;
3107 /* mark unstable when write-back is not used, and file_out gets
3109 bool is_unstable = (!fc->writeback_cache) &&
3110 ((pos_out + len) > inode_out->i_size);
3112 if (fc->no_copy_file_range)
3115 inode_lock(inode_out);
3117 if (fc->writeback_cache) {
3118 err = filemap_write_and_wait_range(inode_out->i_mapping,
3119 pos_out, pos_out + len);
3123 fuse_sync_writes(inode_out);
3127 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3129 args.in.h.opcode = FUSE_COPY_FILE_RANGE;
3130 args.in.h.nodeid = ff_in->nodeid;
3131 args.in.numargs = 1;
3132 args.in.args[0].size = sizeof(inarg);
3133 args.in.args[0].value = &inarg;
3134 args.out.numargs = 1;
3135 args.out.args[0].size = sizeof(outarg);
3136 args.out.args[0].value = &outarg;
3137 err = fuse_simple_request(fc, &args);
3138 if (err == -ENOSYS) {
3139 fc->no_copy_file_range = 1;
3145 if (fc->writeback_cache) {
3146 fuse_write_update_size(inode_out, pos_out + outarg.size);
3147 file_update_time(file_out);
3150 fuse_invalidate_attr(inode_out);
3155 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3157 inode_unlock(inode_out);
3162 static const struct file_operations fuse_file_operations = {
3163 .llseek = fuse_file_llseek,
3164 .read_iter = fuse_file_read_iter,
3165 .write_iter = fuse_file_write_iter,
3166 .mmap = fuse_file_mmap,
3168 .flush = fuse_flush,
3169 .release = fuse_release,
3170 .fsync = fuse_fsync,
3171 .lock = fuse_file_lock,
3172 .flock = fuse_file_flock,
3173 .splice_read = generic_file_splice_read,
3174 .splice_write = iter_file_splice_write,
3175 .unlocked_ioctl = fuse_file_ioctl,
3176 .compat_ioctl = fuse_file_compat_ioctl,
3177 .poll = fuse_file_poll,
3178 .fallocate = fuse_file_fallocate,
3179 .copy_file_range = fuse_copy_file_range,
3182 static const struct address_space_operations fuse_file_aops = {
3183 .readpage = fuse_readpage,
3184 .writepage = fuse_writepage,
3185 .writepages = fuse_writepages,
3186 .launder_page = fuse_launder_page,
3187 .readpages = fuse_readpages,
3188 .set_page_dirty = __set_page_dirty_nobuffers,
3190 .direct_IO = fuse_direct_IO,
3191 .write_begin = fuse_write_begin,
3192 .write_end = fuse_write_end,
3195 void fuse_init_file_inode(struct inode *inode)
3197 struct fuse_inode *fi = get_fuse_inode(inode);
3199 inode->i_fop = &fuse_file_operations;
3200 inode->i_data.a_ops = &fuse_file_aops;
3202 INIT_LIST_HEAD(&fi->write_files);
3203 INIT_LIST_HEAD(&fi->queued_writes);
3205 init_waitqueue_head(&fi->page_waitq);
3206 INIT_LIST_HEAD(&fi->writepages);