2 * Copyright 2016 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
24 #include <linux/firmware.h>
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
30 #include "sdma0/sdma0_4_2_offset.h"
31 #include "sdma0/sdma0_4_2_sh_mask.h"
32 #include "sdma1/sdma1_4_2_offset.h"
33 #include "sdma1/sdma1_4_2_sh_mask.h"
34 #include "hdp/hdp_4_0_offset.h"
35 #include "sdma0/sdma0_4_1_default.h"
37 #include "soc15_common.h"
39 #include "vega10_sdma_pkt_open.h"
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
44 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
45 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
46 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
47 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
48 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
50 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
51 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
54 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
55 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
57 #define WREG32_SDMA(instance, offset, value) \
58 WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
59 #define RREG32_SDMA(instance, offset) \
60 RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
62 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
63 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
64 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
65 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
67 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
68 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
69 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
70 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
71 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
73 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
74 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
75 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
76 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
77 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
78 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
79 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
80 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
81 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
82 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
83 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
84 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
85 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
86 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
87 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
88 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
89 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
90 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
91 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
92 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
93 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
96 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
97 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
98 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
99 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
100 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
103 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
104 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
105 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
106 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
107 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
110 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
111 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
112 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
113 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
114 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
116 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
117 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
118 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
119 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
120 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
121 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
124 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
125 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
128 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
130 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
131 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
132 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
133 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
134 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
135 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
136 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
137 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
139 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
140 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
141 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
142 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
144 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
146 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
148 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
149 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
150 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
151 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
152 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
153 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
154 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
156 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xFE000000, 0x00000000),
159 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
160 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
161 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
162 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
163 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
164 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
166 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
169 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
170 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
171 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
176 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
177 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
178 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
179 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
180 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
181 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
182 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
183 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
184 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
185 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
186 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xFE000000, 0x00000000),
189 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
191 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
192 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
195 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
197 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
198 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
201 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
202 u32 instance, u32 offset)
204 return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
205 (adev->reg_offset[SDMA1_HWIP][0][0] + offset));
208 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
210 switch (adev->asic_type) {
212 soc15_program_register_sequence(adev,
213 golden_settings_sdma_4,
214 ARRAY_SIZE(golden_settings_sdma_4));
215 soc15_program_register_sequence(adev,
216 golden_settings_sdma_vg10,
217 ARRAY_SIZE(golden_settings_sdma_vg10));
220 soc15_program_register_sequence(adev,
221 golden_settings_sdma_4,
222 ARRAY_SIZE(golden_settings_sdma_4));
223 soc15_program_register_sequence(adev,
224 golden_settings_sdma_vg12,
225 ARRAY_SIZE(golden_settings_sdma_vg12));
228 soc15_program_register_sequence(adev,
229 golden_settings_sdma0_4_2_init,
230 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
231 soc15_program_register_sequence(adev,
232 golden_settings_sdma0_4_2,
233 ARRAY_SIZE(golden_settings_sdma0_4_2));
234 soc15_program_register_sequence(adev,
235 golden_settings_sdma1_4_2,
236 ARRAY_SIZE(golden_settings_sdma1_4_2));
239 soc15_program_register_sequence(adev,
240 golden_settings_sdma_4_1,
241 ARRAY_SIZE(golden_settings_sdma_4_1));
242 if (adev->rev_id >= 8)
243 soc15_program_register_sequence(adev,
244 golden_settings_sdma_rv2,
245 ARRAY_SIZE(golden_settings_sdma_rv2));
247 soc15_program_register_sequence(adev,
248 golden_settings_sdma_rv1,
249 ARRAY_SIZE(golden_settings_sdma_rv1));
257 * sdma_v4_0_init_microcode - load ucode images from disk
259 * @adev: amdgpu_device pointer
261 * Use the firmware interface to load the ucode images into
262 * the driver (not loaded into hw).
263 * Returns 0 on success, error on failure.
266 // emulation only, won't work on real chip
267 // vega10 real chip need to use PSP to load firmware
268 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
270 const char *chip_name;
273 struct amdgpu_firmware_info *info = NULL;
274 const struct common_firmware_header *header = NULL;
275 const struct sdma_firmware_header_v1_0 *hdr;
279 switch (adev->asic_type) {
281 chip_name = "vega10";
284 chip_name = "vega12";
287 chip_name = "vega20";
290 if (adev->rev_id >= 8)
291 chip_name = "raven2";
292 else if (adev->pdev->device == 0x15d8)
293 chip_name = "picasso";
301 for (i = 0; i < adev->sdma.num_instances; i++) {
303 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
305 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
306 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
309 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
312 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
313 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
314 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
315 if (adev->sdma.instance[i].feature_version >= 20)
316 adev->sdma.instance[i].burst_nop = true;
317 DRM_DEBUG("psp_load == '%s'\n",
318 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
320 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
321 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
322 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
323 info->fw = adev->sdma.instance[i].fw;
324 header = (const struct common_firmware_header *)info->fw->data;
325 adev->firmware.fw_size +=
326 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
331 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
332 for (i = 0; i < adev->sdma.num_instances; i++) {
333 release_firmware(adev->sdma.instance[i].fw);
334 adev->sdma.instance[i].fw = NULL;
341 * sdma_v4_0_ring_get_rptr - get the current read pointer
343 * @ring: amdgpu ring pointer
345 * Get the current rptr from the hardware (VEGA10+).
347 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
351 /* XXX check if swapping is necessary on BE */
352 rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
354 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
355 return ((*rptr) >> 2);
359 * sdma_v4_0_ring_get_wptr - get the current write pointer
361 * @ring: amdgpu ring pointer
363 * Get the current wptr from the hardware (VEGA10+).
365 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
367 struct amdgpu_device *adev = ring->adev;
370 if (ring->use_doorbell) {
371 /* XXX check if swapping is necessary on BE */
372 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
373 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
375 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
377 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
378 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
386 * sdma_v4_0_ring_set_wptr - commit the write pointer
388 * @ring: amdgpu ring pointer
390 * Write the wptr back to the hardware (VEGA10+).
392 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
394 struct amdgpu_device *adev = ring->adev;
396 DRM_DEBUG("Setting write pointer\n");
397 if (ring->use_doorbell) {
398 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
400 DRM_DEBUG("Using doorbell -- "
401 "wptr_offs == 0x%08x "
402 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
403 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
405 lower_32_bits(ring->wptr << 2),
406 upper_32_bits(ring->wptr << 2));
407 /* XXX check if swapping is necessary on BE */
408 WRITE_ONCE(*wb, (ring->wptr << 2));
409 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
410 ring->doorbell_index, ring->wptr << 2);
411 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
413 DRM_DEBUG("Not using doorbell -- "
414 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
415 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
417 lower_32_bits(ring->wptr << 2),
419 upper_32_bits(ring->wptr << 2));
420 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
421 lower_32_bits(ring->wptr << 2));
422 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
423 upper_32_bits(ring->wptr << 2));
428 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
430 * @ring: amdgpu ring pointer
432 * Get the current wptr from the hardware (VEGA10+).
434 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
436 struct amdgpu_device *adev = ring->adev;
439 if (ring->use_doorbell) {
440 /* XXX check if swapping is necessary on BE */
441 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
443 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
445 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
452 * sdma_v4_0_ring_set_wptr - commit the write pointer
454 * @ring: amdgpu ring pointer
456 * Write the wptr back to the hardware (VEGA10+).
458 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
460 struct amdgpu_device *adev = ring->adev;
462 if (ring->use_doorbell) {
463 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
465 /* XXX check if swapping is necessary on BE */
466 WRITE_ONCE(*wb, (ring->wptr << 2));
467 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
469 uint64_t wptr = ring->wptr << 2;
471 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
472 lower_32_bits(wptr));
473 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
474 upper_32_bits(wptr));
478 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
480 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
483 for (i = 0; i < count; i++)
484 if (sdma && sdma->burst_nop && (i == 0))
485 amdgpu_ring_write(ring, ring->funcs->nop |
486 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
488 amdgpu_ring_write(ring, ring->funcs->nop);
492 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
494 * @ring: amdgpu ring pointer
495 * @ib: IB object to schedule
497 * Schedule an IB in the DMA ring (VEGA10).
499 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
500 struct amdgpu_job *job,
501 struct amdgpu_ib *ib,
504 unsigned vmid = AMDGPU_JOB_GET_VMID(job);
506 /* IB packet must end on a 8 DW boundary */
507 sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
509 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
510 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
511 /* base must be 32 byte aligned */
512 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
513 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
514 amdgpu_ring_write(ring, ib->length_dw);
515 amdgpu_ring_write(ring, 0);
516 amdgpu_ring_write(ring, 0);
520 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
521 int mem_space, int hdp,
522 uint32_t addr0, uint32_t addr1,
523 uint32_t ref, uint32_t mask,
526 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
527 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
528 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
529 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
532 amdgpu_ring_write(ring, addr0);
533 amdgpu_ring_write(ring, addr1);
536 amdgpu_ring_write(ring, addr0 << 2);
537 amdgpu_ring_write(ring, addr1 << 2);
539 amdgpu_ring_write(ring, ref); /* reference */
540 amdgpu_ring_write(ring, mask); /* mask */
541 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
542 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
546 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
548 * @ring: amdgpu ring pointer
550 * Emit an hdp flush packet on the requested DMA ring.
552 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
554 struct amdgpu_device *adev = ring->adev;
555 u32 ref_and_mask = 0;
556 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
559 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
561 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
563 sdma_v4_0_wait_reg_mem(ring, 0, 1,
564 adev->nbio_funcs->get_hdp_flush_done_offset(adev),
565 adev->nbio_funcs->get_hdp_flush_req_offset(adev),
566 ref_and_mask, ref_and_mask, 10);
570 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
572 * @ring: amdgpu ring pointer
573 * @fence: amdgpu fence object
575 * Add a DMA fence packet to the ring to write
576 * the fence seq number and DMA trap packet to generate
577 * an interrupt if needed (VEGA10).
579 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
582 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
583 /* write the fence */
584 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
585 /* zero in first two bits */
587 amdgpu_ring_write(ring, lower_32_bits(addr));
588 amdgpu_ring_write(ring, upper_32_bits(addr));
589 amdgpu_ring_write(ring, lower_32_bits(seq));
591 /* optionally write high bits as well */
594 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
595 /* zero in first two bits */
597 amdgpu_ring_write(ring, lower_32_bits(addr));
598 amdgpu_ring_write(ring, upper_32_bits(addr));
599 amdgpu_ring_write(ring, upper_32_bits(seq));
602 /* generate an interrupt */
603 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
604 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
609 * sdma_v4_0_gfx_stop - stop the gfx async dma engines
611 * @adev: amdgpu_device pointer
613 * Stop the gfx async dma ring buffers (VEGA10).
615 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
617 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
618 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
619 u32 rb_cntl, ib_cntl;
622 if ((adev->mman.buffer_funcs_ring == sdma0) ||
623 (adev->mman.buffer_funcs_ring == sdma1))
624 amdgpu_ttm_set_buffer_funcs_status(adev, false);
626 for (i = 0; i < adev->sdma.num_instances; i++) {
627 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
628 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
629 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
630 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
631 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
632 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
635 sdma0->sched.ready = false;
636 sdma1->sched.ready = false;
640 * sdma_v4_0_rlc_stop - stop the compute async dma engines
642 * @adev: amdgpu_device pointer
644 * Stop the compute async dma queues (VEGA10).
646 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
652 * sdma_v4_0_page_stop - stop the page async dma engines
654 * @adev: amdgpu_device pointer
656 * Stop the page async dma ring buffers (VEGA10).
658 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
660 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page;
661 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page;
662 u32 rb_cntl, ib_cntl;
665 if ((adev->mman.buffer_funcs_ring == sdma0) ||
666 (adev->mman.buffer_funcs_ring == sdma1))
667 amdgpu_ttm_set_buffer_funcs_status(adev, false);
669 for (i = 0; i < adev->sdma.num_instances; i++) {
670 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
671 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
673 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
674 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
675 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
677 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
680 sdma0->sched.ready = false;
681 sdma1->sched.ready = false;
685 * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
687 * @adev: amdgpu_device pointer
688 * @enable: enable/disable the DMA MEs context switch.
690 * Halt or unhalt the async dma engines context switch (VEGA10).
692 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
694 u32 f32_cntl, phase_quantum = 0;
697 if (amdgpu_sdma_phase_quantum) {
698 unsigned value = amdgpu_sdma_phase_quantum;
701 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
702 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
703 value = (value + 1) >> 1;
706 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
707 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
708 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
709 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
710 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
711 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
713 "clamping sdma_phase_quantum to %uK clock cycles\n",
717 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
718 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
721 for (i = 0; i < adev->sdma.num_instances; i++) {
722 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
723 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
724 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
725 if (enable && amdgpu_sdma_phase_quantum) {
726 WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
727 WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
728 WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
730 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
736 * sdma_v4_0_enable - stop the async dma engines
738 * @adev: amdgpu_device pointer
739 * @enable: enable/disable the DMA MEs.
741 * Halt or unhalt the async dma engines (VEGA10).
743 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
748 if (enable == false) {
749 sdma_v4_0_gfx_stop(adev);
750 sdma_v4_0_rlc_stop(adev);
751 if (adev->sdma.has_page_queue)
752 sdma_v4_0_page_stop(adev);
755 for (i = 0; i < adev->sdma.num_instances; i++) {
756 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
757 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
758 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
763 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
765 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
767 /* Set ring buffer size in dwords */
768 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
770 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
772 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
773 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
774 RPTR_WRITEBACK_SWAP_ENABLE, 1);
780 * sdma_v4_0_gfx_resume - setup and start the async dma engines
782 * @adev: amdgpu_device pointer
783 * @i: instance to resume
785 * Set up the gfx DMA ring buffers and enable them (VEGA10).
786 * Returns 0 for success, error for failure.
788 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
790 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
791 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
797 wb_offset = (ring->rptr_offs * 4);
799 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
800 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
801 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
803 /* Initialize the ring buffer's read and write pointers */
804 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
805 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
806 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
807 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
809 /* set the wb address whether it's enabled or not */
810 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
811 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
812 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
813 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
815 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
816 RPTR_WRITEBACK_ENABLE, 1);
818 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
819 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
823 /* before programing wptr to a less value, need set minor_ptr_update first */
824 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
826 doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
827 doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
829 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
831 doorbell_offset = REG_SET_FIELD(doorbell_offset,
832 SDMA0_GFX_DOORBELL_OFFSET,
833 OFFSET, ring->doorbell_index);
834 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
835 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
836 adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
837 ring->doorbell_index);
839 sdma_v4_0_ring_set_wptr(ring);
841 /* set minor_ptr_update to 0 after wptr programed */
842 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
844 /* setup the wptr shadow polling */
845 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
846 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
847 lower_32_bits(wptr_gpu_addr));
848 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
849 upper_32_bits(wptr_gpu_addr));
850 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
851 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
852 SDMA0_GFX_RB_WPTR_POLL_CNTL,
853 F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
854 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
857 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
858 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
860 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
861 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
863 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
866 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
868 ring->sched.ready = true;
872 * sdma_v4_0_page_resume - setup and start the async dma engines
874 * @adev: amdgpu_device pointer
875 * @i: instance to resume
877 * Set up the page DMA ring buffers and enable them (VEGA10).
878 * Returns 0 for success, error for failure.
880 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
882 struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
883 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
889 wb_offset = (ring->rptr_offs * 4);
891 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
892 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
893 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
895 /* Initialize the ring buffer's read and write pointers */
896 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
897 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
898 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
899 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
901 /* set the wb address whether it's enabled or not */
902 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
903 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
904 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
905 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
907 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
908 RPTR_WRITEBACK_ENABLE, 1);
910 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
911 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
915 /* before programing wptr to a less value, need set minor_ptr_update first */
916 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
918 doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
919 doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
921 doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
923 doorbell_offset = REG_SET_FIELD(doorbell_offset,
924 SDMA0_PAGE_DOORBELL_OFFSET,
925 OFFSET, ring->doorbell_index);
926 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
927 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
929 /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
930 sdma_v4_0_page_ring_set_wptr(ring);
932 /* set minor_ptr_update to 0 after wptr programed */
933 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
935 /* setup the wptr shadow polling */
936 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
937 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
938 lower_32_bits(wptr_gpu_addr));
939 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
940 upper_32_bits(wptr_gpu_addr));
941 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
942 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
943 SDMA0_PAGE_RB_WPTR_POLL_CNTL,
944 F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
945 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
948 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
949 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
951 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
952 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
954 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
957 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
959 ring->sched.ready = true;
963 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
967 if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
968 /* enable idle interrupt */
969 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
970 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
973 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
975 /* disable idle interrupt */
976 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
977 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
979 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
983 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
987 /* Enable HW based PG. */
988 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
989 data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
991 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
993 /* enable interrupt */
994 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
995 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
997 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
999 /* Configure hold time to filter in-valid power on/off request. Use default right now */
1000 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1001 data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1002 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1003 /* Configure switch time for hysteresis purpose. Use default right now */
1004 data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1005 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1007 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1010 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1012 if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1015 switch (adev->asic_type) {
1017 sdma_v4_1_init_power_gating(adev);
1018 sdma_v4_1_update_power_gating(adev, true);
1026 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1028 * @adev: amdgpu_device pointer
1030 * Set up the compute DMA queues and enable them (VEGA10).
1031 * Returns 0 for success, error for failure.
1033 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1035 sdma_v4_0_init_pg(adev);
1041 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1043 * @adev: amdgpu_device pointer
1045 * Loads the sDMA0/1 ucode.
1046 * Returns 0 for success, -EINVAL if the ucode is not available.
1048 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1050 const struct sdma_firmware_header_v1_0 *hdr;
1051 const __le32 *fw_data;
1056 sdma_v4_0_enable(adev, false);
1058 for (i = 0; i < adev->sdma.num_instances; i++) {
1059 if (!adev->sdma.instance[i].fw)
1062 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1063 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1064 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1066 fw_data = (const __le32 *)
1067 (adev->sdma.instance[i].fw->data +
1068 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1070 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1072 for (j = 0; j < fw_size; j++)
1073 WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1074 le32_to_cpup(fw_data++));
1076 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1077 adev->sdma.instance[i].fw_version);
1084 * sdma_v4_0_start - setup and start the async dma engines
1086 * @adev: amdgpu_device pointer
1088 * Set up the DMA engines and enable them (VEGA10).
1089 * Returns 0 for success, error for failure.
1091 static int sdma_v4_0_start(struct amdgpu_device *adev)
1093 struct amdgpu_ring *ring;
1096 if (amdgpu_sriov_vf(adev)) {
1097 sdma_v4_0_ctx_switch_enable(adev, false);
1098 sdma_v4_0_enable(adev, false);
1101 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1102 r = sdma_v4_0_load_microcode(adev);
1107 /* unhalt the MEs */
1108 sdma_v4_0_enable(adev, true);
1109 /* enable sdma ring preemption */
1110 sdma_v4_0_ctx_switch_enable(adev, true);
1113 /* start the gfx rings and rlc compute queues */
1114 for (i = 0; i < adev->sdma.num_instances; i++) {
1117 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1118 sdma_v4_0_gfx_resume(adev, i);
1119 if (adev->sdma.has_page_queue)
1120 sdma_v4_0_page_resume(adev, i);
1122 /* set utc l1 enable flag always to 1 */
1123 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1124 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1125 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1127 if (!amdgpu_sriov_vf(adev)) {
1129 temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1130 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1131 WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1135 if (amdgpu_sriov_vf(adev)) {
1136 sdma_v4_0_ctx_switch_enable(adev, true);
1137 sdma_v4_0_enable(adev, true);
1139 r = sdma_v4_0_rlc_resume(adev);
1144 for (i = 0; i < adev->sdma.num_instances; i++) {
1145 ring = &adev->sdma.instance[i].ring;
1147 r = amdgpu_ring_test_helper(ring);
1151 if (adev->sdma.has_page_queue) {
1152 struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1154 r = amdgpu_ring_test_helper(page);
1158 if (adev->mman.buffer_funcs_ring == page)
1159 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1162 if (adev->mman.buffer_funcs_ring == ring)
1163 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1170 * sdma_v4_0_ring_test_ring - simple async dma engine test
1172 * @ring: amdgpu_ring structure holding ring information
1174 * Test the DMA engine by writing using it to write an
1175 * value to memory. (VEGA10).
1176 * Returns 0 for success, error for failure.
1178 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1180 struct amdgpu_device *adev = ring->adev;
1187 r = amdgpu_device_wb_get(adev, &index);
1191 gpu_addr = adev->wb.gpu_addr + (index * 4);
1193 adev->wb.wb[index] = cpu_to_le32(tmp);
1195 r = amdgpu_ring_alloc(ring, 5);
1199 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1200 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1201 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1202 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1203 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1204 amdgpu_ring_write(ring, 0xDEADBEEF);
1205 amdgpu_ring_commit(ring);
1207 for (i = 0; i < adev->usec_timeout; i++) {
1208 tmp = le32_to_cpu(adev->wb.wb[index]);
1209 if (tmp == 0xDEADBEEF)
1214 if (i >= adev->usec_timeout)
1218 amdgpu_device_wb_free(adev, index);
1223 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1225 * @ring: amdgpu_ring structure holding ring information
1227 * Test a simple IB in the DMA ring (VEGA10).
1228 * Returns 0 on success, error on failure.
1230 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1232 struct amdgpu_device *adev = ring->adev;
1233 struct amdgpu_ib ib;
1234 struct dma_fence *f = NULL;
1240 r = amdgpu_device_wb_get(adev, &index);
1244 gpu_addr = adev->wb.gpu_addr + (index * 4);
1246 adev->wb.wb[index] = cpu_to_le32(tmp);
1247 memset(&ib, 0, sizeof(ib));
1248 r = amdgpu_ib_get(adev, NULL, 256, &ib);
1252 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1253 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1254 ib.ptr[1] = lower_32_bits(gpu_addr);
1255 ib.ptr[2] = upper_32_bits(gpu_addr);
1256 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1257 ib.ptr[4] = 0xDEADBEEF;
1258 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1259 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1260 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1263 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1267 r = dma_fence_wait_timeout(f, false, timeout);
1274 tmp = le32_to_cpu(adev->wb.wb[index]);
1275 if (tmp == 0xDEADBEEF)
1281 amdgpu_ib_free(adev, &ib, NULL);
1284 amdgpu_device_wb_free(adev, index);
1290 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1292 * @ib: indirect buffer to fill with commands
1293 * @pe: addr of the page entry
1294 * @src: src addr to copy from
1295 * @count: number of page entries to update
1297 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1299 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1300 uint64_t pe, uint64_t src,
1303 unsigned bytes = count * 8;
1305 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1306 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1307 ib->ptr[ib->length_dw++] = bytes - 1;
1308 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1309 ib->ptr[ib->length_dw++] = lower_32_bits(src);
1310 ib->ptr[ib->length_dw++] = upper_32_bits(src);
1311 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1312 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1317 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1319 * @ib: indirect buffer to fill with commands
1320 * @pe: addr of the page entry
1321 * @addr: dst addr to write into pe
1322 * @count: number of page entries to update
1323 * @incr: increase next addr by incr bytes
1324 * @flags: access flags
1326 * Update PTEs by writing them manually using sDMA (VEGA10).
1328 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1329 uint64_t value, unsigned count,
1332 unsigned ndw = count * 2;
1334 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1335 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1336 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1337 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1338 ib->ptr[ib->length_dw++] = ndw - 1;
1339 for (; ndw > 0; ndw -= 2) {
1340 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1341 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1347 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1349 * @ib: indirect buffer to fill with commands
1350 * @pe: addr of the page entry
1351 * @addr: dst addr to write into pe
1352 * @count: number of page entries to update
1353 * @incr: increase next addr by incr bytes
1354 * @flags: access flags
1356 * Update the page tables using sDMA (VEGA10).
1358 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1360 uint64_t addr, unsigned count,
1361 uint32_t incr, uint64_t flags)
1363 /* for physically contiguous pages (vram) */
1364 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1365 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1366 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1367 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1368 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1369 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1370 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1371 ib->ptr[ib->length_dw++] = incr; /* increment size */
1372 ib->ptr[ib->length_dw++] = 0;
1373 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1377 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1379 * @ib: indirect buffer to fill with padding
1382 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1384 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1388 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1389 for (i = 0; i < pad_count; i++)
1390 if (sdma && sdma->burst_nop && (i == 0))
1391 ib->ptr[ib->length_dw++] =
1392 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1393 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1395 ib->ptr[ib->length_dw++] =
1396 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1401 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1403 * @ring: amdgpu_ring pointer
1405 * Make sure all previous operations are completed (CIK).
1407 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1409 uint32_t seq = ring->fence_drv.sync_seq;
1410 uint64_t addr = ring->fence_drv.gpu_addr;
1413 sdma_v4_0_wait_reg_mem(ring, 1, 0,
1415 upper_32_bits(addr) & 0xffffffff,
1416 seq, 0xffffffff, 4);
1421 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1423 * @ring: amdgpu_ring pointer
1424 * @vm: amdgpu_vm pointer
1426 * Update the page table base and flush the VM TLB
1427 * using sDMA (VEGA10).
1429 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1430 unsigned vmid, uint64_t pd_addr)
1432 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1435 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1436 uint32_t reg, uint32_t val)
1438 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1439 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1440 amdgpu_ring_write(ring, reg);
1441 amdgpu_ring_write(ring, val);
1444 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1445 uint32_t val, uint32_t mask)
1447 sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1450 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1452 uint fw_version = adev->sdma.instance[0].fw_version;
1454 switch (adev->asic_type) {
1456 return fw_version >= 430;
1458 /*return fw_version >= 31;*/
1461 /*return fw_version >= 115;*/
1468 static int sdma_v4_0_early_init(void *handle)
1470 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1473 if (adev->asic_type == CHIP_RAVEN)
1474 adev->sdma.num_instances = 1;
1476 adev->sdma.num_instances = 2;
1478 r = sdma_v4_0_init_microcode(adev);
1480 DRM_ERROR("Failed to load sdma firmware!\n");
1484 /* TODO: Page queue breaks driver reload under SRIOV */
1485 if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1486 adev->sdma.has_page_queue = false;
1487 else if (sdma_v4_0_fw_support_paging_queue(adev))
1488 adev->sdma.has_page_queue = true;
1490 sdma_v4_0_set_ring_funcs(adev);
1491 sdma_v4_0_set_buffer_funcs(adev);
1492 sdma_v4_0_set_vm_pte_funcs(adev);
1493 sdma_v4_0_set_irq_funcs(adev);
1498 static int sdma_v4_0_sw_init(void *handle)
1500 struct amdgpu_ring *ring;
1502 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1504 /* SDMA trap event */
1505 r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1506 &adev->sdma.trap_irq);
1510 /* SDMA trap event */
1511 r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1512 &adev->sdma.trap_irq);
1516 for (i = 0; i < adev->sdma.num_instances; i++) {
1517 ring = &adev->sdma.instance[i].ring;
1518 ring->ring_obj = NULL;
1519 ring->use_doorbell = true;
1521 DRM_INFO("use_doorbell being set to: [%s]\n",
1522 ring->use_doorbell?"true":"false");
1524 /* doorbell size is 2 dwords, get DWORD offset */
1525 ring->doorbell_index = (i == 0) ?
1526 (adev->doorbell_index.sdma_engine0 << 1)
1527 : (adev->doorbell_index.sdma_engine1 << 1);
1529 sprintf(ring->name, "sdma%d", i);
1530 r = amdgpu_ring_init(adev, ring, 1024,
1531 &adev->sdma.trap_irq,
1533 AMDGPU_SDMA_IRQ_TRAP0 :
1534 AMDGPU_SDMA_IRQ_TRAP1);
1538 if (adev->sdma.has_page_queue) {
1539 ring = &adev->sdma.instance[i].page;
1540 ring->ring_obj = NULL;
1541 ring->use_doorbell = true;
1543 /* paging queue use same doorbell index/routing as gfx queue
1544 * with 0x400 (4096 dwords) offset on second doorbell page
1546 ring->doorbell_index = (i == 0) ?
1547 (adev->doorbell_index.sdma_engine0 << 1)
1548 : (adev->doorbell_index.sdma_engine1 << 1);
1549 ring->doorbell_index += 0x400;
1551 sprintf(ring->name, "page%d", i);
1552 r = amdgpu_ring_init(adev, ring, 1024,
1553 &adev->sdma.trap_irq,
1555 AMDGPU_SDMA_IRQ_TRAP0 :
1556 AMDGPU_SDMA_IRQ_TRAP1);
1565 static int sdma_v4_0_sw_fini(void *handle)
1567 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1570 for (i = 0; i < adev->sdma.num_instances; i++) {
1571 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1572 if (adev->sdma.has_page_queue)
1573 amdgpu_ring_fini(&adev->sdma.instance[i].page);
1576 for (i = 0; i < adev->sdma.num_instances; i++) {
1577 release_firmware(adev->sdma.instance[i].fw);
1578 adev->sdma.instance[i].fw = NULL;
1584 static int sdma_v4_0_hw_init(void *handle)
1587 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1589 if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1590 adev->powerplay.pp_funcs->set_powergating_by_smu)
1591 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1593 sdma_v4_0_init_golden_registers(adev);
1595 r = sdma_v4_0_start(adev);
1600 static int sdma_v4_0_hw_fini(void *handle)
1602 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1604 if (amdgpu_sriov_vf(adev))
1607 sdma_v4_0_ctx_switch_enable(adev, false);
1608 sdma_v4_0_enable(adev, false);
1610 if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1611 && adev->powerplay.pp_funcs->set_powergating_by_smu)
1612 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1617 static int sdma_v4_0_suspend(void *handle)
1619 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1621 return sdma_v4_0_hw_fini(adev);
1624 static int sdma_v4_0_resume(void *handle)
1626 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1628 return sdma_v4_0_hw_init(adev);
1631 static bool sdma_v4_0_is_idle(void *handle)
1633 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1636 for (i = 0; i < adev->sdma.num_instances; i++) {
1637 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1639 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1646 static int sdma_v4_0_wait_for_idle(void *handle)
1650 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1652 for (i = 0; i < adev->usec_timeout; i++) {
1653 sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG);
1654 sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG);
1656 if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1663 static int sdma_v4_0_soft_reset(void *handle)
1670 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1671 struct amdgpu_irq_src *source,
1673 enum amdgpu_interrupt_state state)
1675 unsigned int instance = (type == AMDGPU_SDMA_IRQ_TRAP0) ? 0 : 1;
1678 sdma_cntl = RREG32_SDMA(instance, mmSDMA0_CNTL);
1679 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1680 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1681 WREG32_SDMA(instance, mmSDMA0_CNTL, sdma_cntl);
1686 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1687 struct amdgpu_irq_src *source,
1688 struct amdgpu_iv_entry *entry)
1692 DRM_DEBUG("IH: SDMA trap\n");
1693 switch (entry->client_id) {
1694 case SOC15_IH_CLIENTID_SDMA0:
1697 case SOC15_IH_CLIENTID_SDMA1:
1704 switch (entry->ring_id) {
1706 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
1715 amdgpu_fence_process(&adev->sdma.instance[instance].page);
1721 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1722 struct amdgpu_irq_src *source,
1723 struct amdgpu_iv_entry *entry)
1727 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1729 switch (entry->client_id) {
1730 case SOC15_IH_CLIENTID_SDMA0:
1733 case SOC15_IH_CLIENTID_SDMA1:
1740 switch (entry->ring_id) {
1742 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1748 static void sdma_v4_0_update_medium_grain_clock_gating(
1749 struct amdgpu_device *adev,
1754 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1755 /* enable sdma0 clock gating */
1756 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1757 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1758 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1759 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1760 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1761 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1762 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1763 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1764 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1766 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1768 if (adev->sdma.num_instances > 1) {
1769 def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1770 data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1771 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1772 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1773 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1774 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1775 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1776 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1777 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1779 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1782 /* disable sdma0 clock gating */
1783 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1784 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1785 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1786 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1787 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1788 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1789 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1790 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1791 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1794 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1796 if (adev->sdma.num_instances > 1) {
1797 def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1798 data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1799 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1800 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1801 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1802 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1803 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1804 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1805 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1807 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1813 static void sdma_v4_0_update_medium_grain_light_sleep(
1814 struct amdgpu_device *adev,
1819 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1820 /* 1-not override: enable sdma0 mem light sleep */
1821 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1822 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1824 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1826 /* 1-not override: enable sdma1 mem light sleep */
1827 if (adev->sdma.num_instances > 1) {
1828 def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1829 data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1831 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1834 /* 0-override:disable sdma0 mem light sleep */
1835 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1836 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1838 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1840 /* 0-override:disable sdma1 mem light sleep */
1841 if (adev->sdma.num_instances > 1) {
1842 def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1843 data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1845 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1850 static int sdma_v4_0_set_clockgating_state(void *handle,
1851 enum amd_clockgating_state state)
1853 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1855 if (amdgpu_sriov_vf(adev))
1858 switch (adev->asic_type) {
1863 sdma_v4_0_update_medium_grain_clock_gating(adev,
1864 state == AMD_CG_STATE_GATE ? true : false);
1865 sdma_v4_0_update_medium_grain_light_sleep(adev,
1866 state == AMD_CG_STATE_GATE ? true : false);
1874 static int sdma_v4_0_set_powergating_state(void *handle,
1875 enum amd_powergating_state state)
1877 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1879 switch (adev->asic_type) {
1881 sdma_v4_1_update_power_gating(adev,
1882 state == AMD_PG_STATE_GATE ? true : false);
1891 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
1893 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1896 if (amdgpu_sriov_vf(adev))
1899 /* AMD_CG_SUPPORT_SDMA_MGCG */
1900 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1901 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1902 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1904 /* AMD_CG_SUPPORT_SDMA_LS */
1905 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1906 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1907 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1910 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
1911 .name = "sdma_v4_0",
1912 .early_init = sdma_v4_0_early_init,
1914 .sw_init = sdma_v4_0_sw_init,
1915 .sw_fini = sdma_v4_0_sw_fini,
1916 .hw_init = sdma_v4_0_hw_init,
1917 .hw_fini = sdma_v4_0_hw_fini,
1918 .suspend = sdma_v4_0_suspend,
1919 .resume = sdma_v4_0_resume,
1920 .is_idle = sdma_v4_0_is_idle,
1921 .wait_for_idle = sdma_v4_0_wait_for_idle,
1922 .soft_reset = sdma_v4_0_soft_reset,
1923 .set_clockgating_state = sdma_v4_0_set_clockgating_state,
1924 .set_powergating_state = sdma_v4_0_set_powergating_state,
1925 .get_clockgating_state = sdma_v4_0_get_clockgating_state,
1928 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
1929 .type = AMDGPU_RING_TYPE_SDMA,
1931 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1932 .support_64bit_ptrs = true,
1933 .vmhub = AMDGPU_MMHUB,
1934 .get_rptr = sdma_v4_0_ring_get_rptr,
1935 .get_wptr = sdma_v4_0_ring_get_wptr,
1936 .set_wptr = sdma_v4_0_ring_set_wptr,
1938 6 + /* sdma_v4_0_ring_emit_hdp_flush */
1939 3 + /* hdp invalidate */
1940 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1941 /* sdma_v4_0_ring_emit_vm_flush */
1942 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1943 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1944 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1945 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1946 .emit_ib = sdma_v4_0_ring_emit_ib,
1947 .emit_fence = sdma_v4_0_ring_emit_fence,
1948 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1949 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1950 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1951 .test_ring = sdma_v4_0_ring_test_ring,
1952 .test_ib = sdma_v4_0_ring_test_ib,
1953 .insert_nop = sdma_v4_0_ring_insert_nop,
1954 .pad_ib = sdma_v4_0_ring_pad_ib,
1955 .emit_wreg = sdma_v4_0_ring_emit_wreg,
1956 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1957 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1960 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
1961 .type = AMDGPU_RING_TYPE_SDMA,
1963 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1964 .support_64bit_ptrs = true,
1965 .vmhub = AMDGPU_MMHUB,
1966 .get_rptr = sdma_v4_0_ring_get_rptr,
1967 .get_wptr = sdma_v4_0_page_ring_get_wptr,
1968 .set_wptr = sdma_v4_0_page_ring_set_wptr,
1970 6 + /* sdma_v4_0_ring_emit_hdp_flush */
1971 3 + /* hdp invalidate */
1972 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1973 /* sdma_v4_0_ring_emit_vm_flush */
1974 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1975 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1976 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1977 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1978 .emit_ib = sdma_v4_0_ring_emit_ib,
1979 .emit_fence = sdma_v4_0_ring_emit_fence,
1980 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1981 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1982 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1983 .test_ring = sdma_v4_0_ring_test_ring,
1984 .test_ib = sdma_v4_0_ring_test_ib,
1985 .insert_nop = sdma_v4_0_ring_insert_nop,
1986 .pad_ib = sdma_v4_0_ring_pad_ib,
1987 .emit_wreg = sdma_v4_0_ring_emit_wreg,
1988 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1989 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1992 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
1996 for (i = 0; i < adev->sdma.num_instances; i++) {
1997 adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1998 adev->sdma.instance[i].ring.me = i;
1999 if (adev->sdma.has_page_queue) {
2000 adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs;
2001 adev->sdma.instance[i].page.me = i;
2006 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2007 .set = sdma_v4_0_set_trap_irq_state,
2008 .process = sdma_v4_0_process_trap_irq,
2011 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2012 .process = sdma_v4_0_process_illegal_inst_irq,
2015 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2017 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2018 adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2019 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2023 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2025 * @ring: amdgpu_ring structure holding ring information
2026 * @src_offset: src GPU address
2027 * @dst_offset: dst GPU address
2028 * @byte_count: number of bytes to xfer
2030 * Copy GPU buffers using the DMA engine (VEGA10/12).
2031 * Used by the amdgpu ttm implementation to move pages if
2032 * registered as the asic copy callback.
2034 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2035 uint64_t src_offset,
2036 uint64_t dst_offset,
2037 uint32_t byte_count)
2039 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2040 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2041 ib->ptr[ib->length_dw++] = byte_count - 1;
2042 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2043 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2044 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2045 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2046 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2050 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2052 * @ring: amdgpu_ring structure holding ring information
2053 * @src_data: value to write to buffer
2054 * @dst_offset: dst GPU address
2055 * @byte_count: number of bytes to xfer
2057 * Fill GPU buffers using the DMA engine (VEGA10/12).
2059 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2061 uint64_t dst_offset,
2062 uint32_t byte_count)
2064 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2065 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2066 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2067 ib->ptr[ib->length_dw++] = src_data;
2068 ib->ptr[ib->length_dw++] = byte_count - 1;
2071 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2072 .copy_max_bytes = 0x400000,
2074 .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2076 .fill_max_bytes = 0x400000,
2078 .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2081 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2083 adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2084 if (adev->sdma.has_page_queue)
2085 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2087 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2090 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2091 .copy_pte_num_dw = 7,
2092 .copy_pte = sdma_v4_0_vm_copy_pte,
2094 .write_pte = sdma_v4_0_vm_write_pte,
2095 .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2098 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2100 struct drm_gpu_scheduler *sched;
2103 adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2104 for (i = 0; i < adev->sdma.num_instances; i++) {
2105 if (adev->sdma.has_page_queue)
2106 sched = &adev->sdma.instance[i].page.sched;
2108 sched = &adev->sdma.instance[i].ring.sched;
2109 adev->vm_manager.vm_pte_rqs[i] =
2110 &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2112 adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2115 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2116 .type = AMD_IP_BLOCK_TYPE_SDMA,
2120 .funcs = &sdma_v4_0_ip_funcs,