2 * Afatech AF9013 demodulator driver
7 * Thanks to Afatech who kindly provided information.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
21 #include "af9013_priv.h"
23 /* Max transfer size done by I2C transfer functions */
24 #define MAX_XFER_SIZE 64
27 struct i2c_adapter *i2c;
28 struct dvb_frontend fe;
29 struct af9013_config config;
31 /* tuner/demod RF and IF AGC limits used for signal strength calc */
32 u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
38 enum fe_status fe_status;
39 unsigned long set_frontend_jiffies;
40 unsigned long read_status_jiffies;
43 unsigned int statistics_step:3;
44 struct delayed_work statistics_work;
47 /* write multiple registers */
48 static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
49 const u8 *val, int len)
52 u8 buf[MAX_XFER_SIZE];
53 struct i2c_msg msg[1] = {
55 .addr = priv->config.i2c_addr,
62 if (3 + len > sizeof(buf)) {
63 dev_warn(&priv->i2c->dev,
64 "%s: i2c wr reg=%04x: len=%d is too big!\n",
65 KBUILD_MODNAME, reg, len);
69 buf[0] = (reg >> 8) & 0xff;
70 buf[1] = (reg >> 0) & 0xff;
72 memcpy(&buf[3], val, len);
74 ret = i2c_transfer(priv->i2c, msg, 1);
78 dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%04x " \
79 "len=%d\n", KBUILD_MODNAME, ret, reg, len);
85 /* read multiple registers */
86 static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
91 struct i2c_msg msg[2] = {
93 .addr = priv->config.i2c_addr,
98 .addr = priv->config.i2c_addr,
105 buf[0] = (reg >> 8) & 0xff;
106 buf[1] = (reg >> 0) & 0xff;
109 ret = i2c_transfer(priv->i2c, msg, 2);
113 dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%04x " \
114 "len=%d\n", KBUILD_MODNAME, ret, reg, len);
120 /* write multiple registers */
121 static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
125 u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
127 if ((priv->config.ts_mode == AF9013_TS_USB) &&
128 ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
129 mbox |= ((len - 1) << 2);
130 ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
132 for (i = 0; i < len; i++) {
133 ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
143 /* read multiple registers */
144 static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
147 u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
149 if ((priv->config.ts_mode == AF9013_TS_USB) &&
150 ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
151 mbox |= ((len - 1) << 2);
152 ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
154 for (i = 0; i < len; i++) {
155 ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
165 /* write single register */
166 static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
168 return af9013_wr_regs(priv, reg, &val, 1);
171 /* read single register */
172 static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
174 return af9013_rd_regs(priv, reg, val, 1);
177 static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
180 u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
181 return af9013_wr_regs_i2c(state, mbox, reg, val, len);
184 static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
190 /* no need for read if whole reg is written */
192 ret = af9013_rd_reg(state, reg, &tmp);
196 mask = (0xff >> (8 - len)) << pos;
202 return af9013_wr_reg(state, reg, val);
205 static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
211 ret = af9013_rd_reg(state, reg, &tmp);
216 *val &= (0xff >> (8 - len));
221 static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
227 dev_dbg(&state->i2c->dev, "%s: gpio=%d gpioval=%02x\n",
228 __func__, gpio, gpioval);
231 * GPIO0 & GPIO1 0xd735
232 * GPIO2 & GPIO3 0xd736
246 dev_err(&state->i2c->dev, "%s: invalid gpio=%d\n",
247 KBUILD_MODNAME, gpio);
264 ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
270 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
274 static u32 af9013_div(struct af9013_state *state, u32 a, u32 b, u32 x)
278 dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
285 for (i = 0; i < x; i++) {
293 r = (c << (u32)x) + r;
295 dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
296 __func__, a, b, x, r, r);
301 static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
306 dev_dbg(&state->i2c->dev, "%s: onoff=%d\n", __func__, onoff);
309 ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
313 /* start reset mechanism */
314 ret = af9013_wr_reg(state, 0xaeff, 1);
318 /* wait reset performs */
319 for (i = 0; i < 150; i++) {
320 ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
325 break; /* reset done */
327 usleep_range(5000, 25000);
335 ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
340 ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
343 ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
346 ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
351 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
355 static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
357 struct af9013_state *state = fe->demodulator_priv;
360 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
362 /* reset and start BER counter */
363 ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
369 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
373 static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
375 struct af9013_state *state = fe->demodulator_priv;
379 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
381 /* check if error bit count is ready */
382 ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
387 dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
391 ret = af9013_rd_regs(state, 0xd387, buf, 5);
395 state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
396 state->ucblocks += (buf[4] << 8) | buf[3];
400 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
404 static int af9013_statistics_snr_start(struct dvb_frontend *fe)
406 struct af9013_state *state = fe->demodulator_priv;
409 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
412 ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
418 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
422 static int af9013_statistics_snr_result(struct dvb_frontend *fe)
424 struct af9013_state *state = fe->demodulator_priv;
428 const struct af9013_snr *uninitialized_var(snr_lut);
430 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
432 /* check if SNR ready */
433 ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
438 dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
443 ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
447 snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
449 /* read current modulation */
450 ret = af9013_rd_reg(state, 0xd3c1, &tmp);
454 switch ((tmp >> 6) & 3) {
456 len = ARRAY_SIZE(qpsk_snr_lut);
457 snr_lut = qpsk_snr_lut;
460 len = ARRAY_SIZE(qam16_snr_lut);
461 snr_lut = qam16_snr_lut;
464 len = ARRAY_SIZE(qam64_snr_lut);
465 snr_lut = qam64_snr_lut;
471 for (i = 0; i < len; i++) {
472 tmp = snr_lut[i].snr;
474 if (snr_val < snr_lut[i].val)
477 state->snr = tmp * 10; /* dB/10 */
481 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
485 static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
487 struct af9013_state *state = fe->demodulator_priv;
489 u8 buf[2], rf_gain, if_gain;
492 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
494 if (!state->signal_strength_en)
497 ret = af9013_rd_regs(state, 0xd07c, buf, 2);
504 signal_strength = (0xffff / \
505 (9 * (state->rf_50 + state->if_50) - \
506 11 * (state->rf_80 + state->if_80))) * \
507 (10 * (rf_gain + if_gain) - \
508 11 * (state->rf_80 + state->if_80));
509 if (signal_strength < 0)
511 else if (signal_strength > 0xffff)
512 signal_strength = 0xffff;
514 state->signal_strength = signal_strength;
518 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
522 static void af9013_statistics_work(struct work_struct *work)
524 struct af9013_state *state = container_of(work,
525 struct af9013_state, statistics_work.work);
526 unsigned int next_msec;
528 /* update only signal strength when demod is not locked */
529 if (!(state->fe_status & FE_HAS_LOCK)) {
530 state->statistics_step = 0;
535 switch (state->statistics_step) {
537 state->statistics_step = 0;
539 af9013_statistics_signal_strength(&state->fe);
540 state->statistics_step++;
544 af9013_statistics_snr_start(&state->fe);
545 state->statistics_step++;
549 af9013_statistics_ber_unc_start(&state->fe);
550 state->statistics_step++;
554 af9013_statistics_snr_result(&state->fe);
555 state->statistics_step++;
559 af9013_statistics_ber_unc_result(&state->fe);
560 state->statistics_step++;
565 schedule_delayed_work(&state->statistics_work,
566 msecs_to_jiffies(next_msec));
569 static int af9013_get_tune_settings(struct dvb_frontend *fe,
570 struct dvb_frontend_tune_settings *fesettings)
572 fesettings->min_delay_ms = 800;
573 fesettings->step_size = 0;
574 fesettings->max_drift = 0;
579 static int af9013_set_frontend(struct dvb_frontend *fe)
581 struct af9013_state *state = fe->demodulator_priv;
582 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
583 int ret, i, sampling_freq;
584 bool auto_mode, spec_inv;
586 u32 if_frequency, freq_cw;
588 dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
589 __func__, c->frequency, c->bandwidth_hz);
592 if (fe->ops.tuner_ops.set_params)
593 fe->ops.tuner_ops.set_params(fe);
595 /* program CFOE coefficients */
596 if (c->bandwidth_hz != state->bandwidth_hz) {
597 for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
598 if (coeff_lut[i].clock == state->config.clock &&
599 coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
604 /* Return an error if can't find bandwidth or the right clock */
605 if (i == ARRAY_SIZE(coeff_lut))
608 ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
609 sizeof(coeff_lut[i].val));
612 /* program frequency control */
613 if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
614 /* get used IF frequency */
615 if (fe->ops.tuner_ops.get_if_frequency)
616 fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
618 if_frequency = state->config.if_frequency;
620 dev_dbg(&state->i2c->dev, "%s: if_frequency=%d\n",
621 __func__, if_frequency);
623 sampling_freq = if_frequency;
625 while (sampling_freq > (state->config.clock / 2))
626 sampling_freq -= state->config.clock;
628 if (sampling_freq < 0) {
630 spec_inv = state->config.spec_inv;
632 spec_inv = !state->config.spec_inv;
635 freq_cw = af9013_div(state, sampling_freq, state->config.clock,
639 freq_cw = 0x800000 - freq_cw;
641 buf[0] = (freq_cw >> 0) & 0xff;
642 buf[1] = (freq_cw >> 8) & 0xff;
643 buf[2] = (freq_cw >> 16) & 0x7f;
645 freq_cw = 0x800000 - freq_cw;
647 buf[3] = (freq_cw >> 0) & 0xff;
648 buf[4] = (freq_cw >> 8) & 0xff;
649 buf[5] = (freq_cw >> 16) & 0x7f;
651 ret = af9013_wr_regs(state, 0xd140, buf, 3);
655 ret = af9013_wr_regs(state, 0x9be7, buf, 6);
660 /* clear TPS lock flag */
661 ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
665 /* clear MPEG2 lock flag */
666 ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
670 /* empty channel function */
671 ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
675 /* empty DVB-T channel function */
676 ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
680 /* transmission parameters */
684 switch (c->transmission_mode) {
685 case TRANSMISSION_MODE_AUTO:
688 case TRANSMISSION_MODE_2K:
690 case TRANSMISSION_MODE_8K:
694 dev_dbg(&state->i2c->dev, "%s: invalid transmission_mode\n",
699 switch (c->guard_interval) {
700 case GUARD_INTERVAL_AUTO:
703 case GUARD_INTERVAL_1_32:
705 case GUARD_INTERVAL_1_16:
708 case GUARD_INTERVAL_1_8:
711 case GUARD_INTERVAL_1_4:
715 dev_dbg(&state->i2c->dev, "%s: invalid guard_interval\n",
720 switch (c->hierarchy) {
736 dev_dbg(&state->i2c->dev, "%s: invalid hierarchy\n", __func__);
740 switch (c->modulation) {
753 dev_dbg(&state->i2c->dev, "%s: invalid modulation\n", __func__);
757 /* Use HP. How and which case we can switch to LP? */
760 switch (c->code_rate_HP) {
779 dev_dbg(&state->i2c->dev, "%s: invalid code_rate_HP\n",
784 switch (c->code_rate_LP) {
805 dev_dbg(&state->i2c->dev, "%s: invalid code_rate_LP\n",
810 switch (c->bandwidth_hz) {
820 dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
826 ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
831 /* clear easy mode flag */
832 ret = af9013_wr_reg(state, 0xaefd, 0);
836 dev_dbg(&state->i2c->dev, "%s: auto params\n", __func__);
838 /* set easy mode flag */
839 ret = af9013_wr_reg(state, 0xaefd, 1);
843 ret = af9013_wr_reg(state, 0xaefe, 0);
847 dev_dbg(&state->i2c->dev, "%s: manual params\n", __func__);
851 ret = af9013_wr_reg(state, 0xffff, 0);
855 state->bandwidth_hz = c->bandwidth_hz;
856 state->set_frontend_jiffies = jiffies;
857 state->first_tune = false;
861 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
865 static int af9013_get_frontend(struct dvb_frontend *fe,
866 struct dtv_frontend_properties *c)
868 struct af9013_state *state = fe->demodulator_priv;
872 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
874 ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
878 switch ((buf[1] >> 6) & 3) {
880 c->modulation = QPSK;
883 c->modulation = QAM_16;
886 c->modulation = QAM_64;
890 switch ((buf[0] >> 0) & 3) {
892 c->transmission_mode = TRANSMISSION_MODE_2K;
895 c->transmission_mode = TRANSMISSION_MODE_8K;
898 switch ((buf[0] >> 2) & 3) {
900 c->guard_interval = GUARD_INTERVAL_1_32;
903 c->guard_interval = GUARD_INTERVAL_1_16;
906 c->guard_interval = GUARD_INTERVAL_1_8;
909 c->guard_interval = GUARD_INTERVAL_1_4;
913 switch ((buf[0] >> 4) & 7) {
915 c->hierarchy = HIERARCHY_NONE;
918 c->hierarchy = HIERARCHY_1;
921 c->hierarchy = HIERARCHY_2;
924 c->hierarchy = HIERARCHY_4;
928 switch ((buf[2] >> 0) & 7) {
930 c->code_rate_HP = FEC_1_2;
933 c->code_rate_HP = FEC_2_3;
936 c->code_rate_HP = FEC_3_4;
939 c->code_rate_HP = FEC_5_6;
942 c->code_rate_HP = FEC_7_8;
946 switch ((buf[2] >> 3) & 7) {
948 c->code_rate_LP = FEC_1_2;
951 c->code_rate_LP = FEC_2_3;
954 c->code_rate_LP = FEC_3_4;
957 c->code_rate_LP = FEC_5_6;
960 c->code_rate_LP = FEC_7_8;
964 switch ((buf[1] >> 2) & 3) {
966 c->bandwidth_hz = 6000000;
969 c->bandwidth_hz = 7000000;
972 c->bandwidth_hz = 8000000;
978 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
982 static int af9013_read_status(struct dvb_frontend *fe, enum fe_status *status)
984 struct af9013_state *state = fe->demodulator_priv;
989 * Return status from the cache if it is younger than 2000ms with the
990 * exception of last tune is done during 4000ms.
992 if (time_is_after_jiffies(
993 state->read_status_jiffies + msecs_to_jiffies(2000)) &&
994 time_is_before_jiffies(
995 state->set_frontend_jiffies + msecs_to_jiffies(4000))
997 *status = state->fe_status;
1004 ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
1009 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
1010 FE_HAS_SYNC | FE_HAS_LOCK;
1014 ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
1019 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
1023 state->fe_status = *status;
1024 state->read_status_jiffies = jiffies;
1028 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1032 static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
1034 struct af9013_state *state = fe->demodulator_priv;
1039 static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1041 struct af9013_state *state = fe->demodulator_priv;
1042 *strength = state->signal_strength;
1046 static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
1048 struct af9013_state *state = fe->demodulator_priv;
1053 static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1055 struct af9013_state *state = fe->demodulator_priv;
1056 *ucblocks = state->ucblocks;
1060 static int af9013_init(struct dvb_frontend *fe)
1062 struct af9013_state *state = fe->demodulator_priv;
1066 const struct af9013_reg_bit *init;
1068 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1071 ret = af9013_power_ctrl(state, 1);
1076 ret = af9013_wr_reg(state, 0xd73a, 0xa4);
1080 /* write API version to firmware */
1081 ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
1085 /* program ADC control */
1086 switch (state->config.clock) {
1087 case 28800000: /* 28.800 MHz */
1090 case 20480000: /* 20.480 MHz */
1093 case 28000000: /* 28.000 MHz */
1096 case 25000000: /* 25.000 MHz */
1100 dev_err(&state->i2c->dev, "%s: invalid clock\n",
1105 adc_cw = af9013_div(state, state->config.clock, 1000000ul, 19);
1106 buf[0] = (adc_cw >> 0) & 0xff;
1107 buf[1] = (adc_cw >> 8) & 0xff;
1108 buf[2] = (adc_cw >> 16) & 0xff;
1110 ret = af9013_wr_regs(state, 0xd180, buf, 3);
1114 ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
1118 /* set I2C master clock */
1119 ret = af9013_wr_reg(state, 0xd416, 0x14);
1124 ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
1128 /* set no trigger */
1129 ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
1133 /* set read-update bit for constellation */
1134 ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
1138 /* settings for mp2if */
1139 if (state->config.ts_mode == AF9013_TS_USB) {
1140 /* AF9015 split PSB to 1.5k + 0.5k */
1141 ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
1145 /* AF9013 change the output bit to data7 */
1146 ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
1150 /* AF9013 set mpeg to full speed */
1151 ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
1156 ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
1160 /* load OFSM settings */
1161 dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
1162 len = ARRAY_SIZE(ofsm_init);
1164 for (i = 0; i < len; i++) {
1165 ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1166 init[i].len, init[i].val);
1171 /* load tuner specific settings */
1172 dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
1174 switch (state->config.tuner) {
1175 case AF9013_TUNER_MXL5003D:
1176 len = ARRAY_SIZE(tuner_init_mxl5003d);
1177 init = tuner_init_mxl5003d;
1179 case AF9013_TUNER_MXL5005D:
1180 case AF9013_TUNER_MXL5005R:
1181 case AF9013_TUNER_MXL5007T:
1182 len = ARRAY_SIZE(tuner_init_mxl5005);
1183 init = tuner_init_mxl5005;
1185 case AF9013_TUNER_ENV77H11D5:
1186 len = ARRAY_SIZE(tuner_init_env77h11d5);
1187 init = tuner_init_env77h11d5;
1189 case AF9013_TUNER_MT2060:
1190 len = ARRAY_SIZE(tuner_init_mt2060);
1191 init = tuner_init_mt2060;
1193 case AF9013_TUNER_MC44S803:
1194 len = ARRAY_SIZE(tuner_init_mc44s803);
1195 init = tuner_init_mc44s803;
1197 case AF9013_TUNER_QT1010:
1198 case AF9013_TUNER_QT1010A:
1199 len = ARRAY_SIZE(tuner_init_qt1010);
1200 init = tuner_init_qt1010;
1202 case AF9013_TUNER_MT2060_2:
1203 len = ARRAY_SIZE(tuner_init_mt2060_2);
1204 init = tuner_init_mt2060_2;
1206 case AF9013_TUNER_TDA18271:
1207 case AF9013_TUNER_TDA18218:
1208 len = ARRAY_SIZE(tuner_init_tda18271);
1209 init = tuner_init_tda18271;
1211 case AF9013_TUNER_UNKNOWN:
1213 len = ARRAY_SIZE(tuner_init_unknown);
1214 init = tuner_init_unknown;
1218 for (i = 0; i < len; i++) {
1219 ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1220 init[i].len, init[i].val);
1226 ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
1230 /* enable lock led */
1231 ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
1235 /* check if we support signal strength */
1236 if (!state->signal_strength_en) {
1237 ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
1238 &state->signal_strength_en);
1243 /* read values needed for signal strength calculation */
1244 if (state->signal_strength_en && !state->rf_50) {
1245 ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
1249 ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
1253 ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
1257 ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
1263 ret = af9013_wr_reg(state, 0xd2e2, 1);
1268 buf[0] = (10000 >> 0) & 0xff;
1269 buf[1] = (10000 >> 8) & 0xff;
1270 ret = af9013_wr_regs(state, 0xd385, buf, 2);
1274 /* enable FEC monitor */
1275 ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
1279 state->first_tune = true;
1280 schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
1284 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1288 static int af9013_sleep(struct dvb_frontend *fe)
1290 struct af9013_state *state = fe->demodulator_priv;
1293 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1295 /* stop statistics polling */
1296 cancel_delayed_work_sync(&state->statistics_work);
1298 /* disable lock led */
1299 ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
1304 ret = af9013_power_ctrl(state, 0);
1310 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1314 static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
1317 struct af9013_state *state = fe->demodulator_priv;
1319 dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
1321 /* gate already open or close */
1322 if (state->i2c_gate_state == enable)
1325 if (state->config.ts_mode == AF9013_TS_USB)
1326 ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
1328 ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
1332 state->i2c_gate_state = enable;
1336 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1340 static void af9013_release(struct dvb_frontend *fe)
1342 struct af9013_state *state = fe->demodulator_priv;
1344 /* stop statistics polling */
1345 cancel_delayed_work_sync(&state->statistics_work);
1350 static const struct dvb_frontend_ops af9013_ops;
1352 static int af9013_download_firmware(struct af9013_state *state)
1354 int i, len, remaining, ret;
1355 const struct firmware *fw;
1359 u8 *fw_file = AF9013_FIRMWARE;
1362 /* check whether firmware is already running */
1363 ret = af9013_rd_reg(state, 0x98be, &val);
1367 dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1370 if (val == 0x0c) /* fw is running, no need for download */
1373 dev_info(&state->i2c->dev, "%s: found a '%s' in cold state, will try " \
1374 "to load a firmware\n",
1375 KBUILD_MODNAME, af9013_ops.info.name);
1377 /* request the firmware, this will block and timeout */
1378 ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
1380 dev_info(&state->i2c->dev, "%s: did not find the firmware " \
1381 "file. (%s) Please see linux/Documentation/dvb/ for " \
1382 "more details on firmware-problems. (%d)\n",
1383 KBUILD_MODNAME, fw_file, ret);
1387 dev_info(&state->i2c->dev, "%s: downloading firmware from file '%s'\n",
1388 KBUILD_MODNAME, fw_file);
1391 for (i = 0; i < fw->size; i++)
1392 checksum += fw->data[i];
1394 fw_params[0] = checksum >> 8;
1395 fw_params[1] = checksum & 0xff;
1396 fw_params[2] = fw->size >> 8;
1397 fw_params[3] = fw->size & 0xff;
1399 /* write fw checksum & size */
1400 ret = af9013_write_ofsm_regs(state, 0x50fc,
1401 fw_params, sizeof(fw_params));
1405 #define FW_ADDR 0x5100 /* firmware start address */
1406 #define LEN_MAX 16 /* max packet size */
1407 for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
1412 ret = af9013_write_ofsm_regs(state,
1413 FW_ADDR + fw->size - remaining,
1414 (u8 *) &fw->data[fw->size - remaining], len);
1416 dev_err(&state->i2c->dev,
1417 "%s: firmware download failed=%d\n",
1418 KBUILD_MODNAME, ret);
1423 /* request boot firmware */
1424 ret = af9013_wr_reg(state, 0xe205, 1);
1428 for (i = 0; i < 15; i++) {
1431 /* check firmware status */
1432 ret = af9013_rd_reg(state, 0x98be, &val);
1436 dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1439 if (val == 0x0c || val == 0x04) /* success or fail */
1444 dev_err(&state->i2c->dev, "%s: firmware did not run\n",
1447 } else if (val != 0x0c) {
1448 dev_err(&state->i2c->dev, "%s: firmware boot timeout\n",
1454 release_firmware(fw);
1458 dev_info(&state->i2c->dev, "%s: found a '%s' in warm state\n",
1459 KBUILD_MODNAME, af9013_ops.info.name);
1463 struct dvb_frontend *af9013_attach(const struct af9013_config *config,
1464 struct i2c_adapter *i2c)
1467 struct af9013_state *state = NULL;
1470 /* allocate memory for the internal state */
1471 state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
1475 /* setup the state */
1477 memcpy(&state->config, config, sizeof(struct af9013_config));
1479 /* download firmware */
1480 if (state->config.ts_mode != AF9013_TS_USB) {
1481 ret = af9013_download_firmware(state);
1486 /* firmware version */
1487 ret = af9013_rd_regs(state, 0x5103, buf, 4);
1491 dev_info(&state->i2c->dev, "%s: firmware version %d.%d.%d.%d\n",
1492 KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3]);
1495 for (i = 0; i < sizeof(state->config.gpio); i++) {
1496 ret = af9013_set_gpio(state, i, state->config.gpio[i]);
1501 /* create dvb_frontend */
1502 memcpy(&state->fe.ops, &af9013_ops,
1503 sizeof(struct dvb_frontend_ops));
1504 state->fe.demodulator_priv = state;
1506 INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
1513 EXPORT_SYMBOL(af9013_attach);
1515 static const struct dvb_frontend_ops af9013_ops = {
1516 .delsys = { SYS_DVBT },
1518 .name = "Afatech AF9013",
1519 .frequency_min = 174000000,
1520 .frequency_max = 862000000,
1521 .frequency_stepsize = 250000,
1522 .frequency_tolerance = 0,
1523 .caps = FE_CAN_FEC_1_2 |
1533 FE_CAN_TRANSMISSION_MODE_AUTO |
1534 FE_CAN_GUARD_INTERVAL_AUTO |
1535 FE_CAN_HIERARCHY_AUTO |
1540 .release = af9013_release,
1542 .init = af9013_init,
1543 .sleep = af9013_sleep,
1545 .get_tune_settings = af9013_get_tune_settings,
1546 .set_frontend = af9013_set_frontend,
1547 .get_frontend = af9013_get_frontend,
1549 .read_status = af9013_read_status,
1550 .read_snr = af9013_read_snr,
1551 .read_signal_strength = af9013_read_signal_strength,
1552 .read_ber = af9013_read_ber,
1553 .read_ucblocks = af9013_read_ucblocks,
1555 .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
1559 MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1560 MODULE_LICENSE("GPL");
1561 MODULE_FIRMWARE(AF9013_FIRMWARE);