2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
25 #define DM_MSG_PREFIX "core"
29 * ratelimit state to be used in DMXXX_LIMIT().
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
44 static const char *_name = DM_NAME;
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
49 static DEFINE_IDR(_minor_idr);
51 static DEFINE_SPINLOCK(_minor_lock);
53 static void do_deferred_remove(struct work_struct *w);
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57 static struct workqueue_struct *deferred_remove_workqueue;
60 * One of these is allocated per bio.
63 struct mapped_device *md;
67 unsigned long start_time;
68 spinlock_t endio_lock;
69 struct dm_stats_aux stats_aux;
72 #define MINOR_ALLOCED ((void *)-1)
75 * Bits for the md->flags field.
77 #define DMF_BLOCK_IO_FOR_SUSPEND 0
78 #define DMF_SUSPENDED 1
81 #define DMF_DELETING 4
82 #define DMF_NOFLUSH_SUSPENDING 5
83 #define DMF_DEFERRED_REMOVE 6
84 #define DMF_SUSPENDED_INTERNALLY 7
86 #define DM_NUMA_NODE NUMA_NO_NODE
87 static int dm_numa_node = DM_NUMA_NODE;
90 * For mempools pre-allocation at the table loading time.
92 struct dm_md_mempools {
98 struct list_head list;
100 struct dm_dev dm_dev;
103 static struct kmem_cache *_io_cache;
104 static struct kmem_cache *_rq_tio_cache;
105 static struct kmem_cache *_rq_cache;
108 * Bio-based DM's mempools' reserved IOs set by the user.
110 #define RESERVED_BIO_BASED_IOS 16
111 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
113 static int __dm_get_module_param_int(int *module_param, int min, int max)
115 int param = ACCESS_ONCE(*module_param);
116 int modified_param = 0;
117 bool modified = true;
120 modified_param = min;
121 else if (param > max)
122 modified_param = max;
127 (void)cmpxchg(module_param, param, modified_param);
128 param = modified_param;
134 unsigned __dm_get_module_param(unsigned *module_param,
135 unsigned def, unsigned max)
137 unsigned param = ACCESS_ONCE(*module_param);
138 unsigned modified_param = 0;
141 modified_param = def;
142 else if (param > max)
143 modified_param = max;
145 if (modified_param) {
146 (void)cmpxchg(module_param, param, modified_param);
147 param = modified_param;
153 unsigned dm_get_reserved_bio_based_ios(void)
155 return __dm_get_module_param(&reserved_bio_based_ios,
156 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
158 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
160 static unsigned dm_get_numa_node(void)
162 return __dm_get_module_param_int(&dm_numa_node,
163 DM_NUMA_NODE, num_online_nodes() - 1);
166 static int __init local_init(void)
170 /* allocate a slab for the dm_ios */
171 _io_cache = KMEM_CACHE(dm_io, 0);
175 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
177 goto out_free_io_cache;
179 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
180 __alignof__(struct request), 0, NULL);
182 goto out_free_rq_tio_cache;
184 r = dm_uevent_init();
186 goto out_free_rq_cache;
188 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
189 if (!deferred_remove_workqueue) {
191 goto out_uevent_exit;
195 r = register_blkdev(_major, _name);
197 goto out_free_workqueue;
205 destroy_workqueue(deferred_remove_workqueue);
209 kmem_cache_destroy(_rq_cache);
210 out_free_rq_tio_cache:
211 kmem_cache_destroy(_rq_tio_cache);
213 kmem_cache_destroy(_io_cache);
218 static void local_exit(void)
220 flush_scheduled_work();
221 destroy_workqueue(deferred_remove_workqueue);
223 kmem_cache_destroy(_rq_cache);
224 kmem_cache_destroy(_rq_tio_cache);
225 kmem_cache_destroy(_io_cache);
226 unregister_blkdev(_major, _name);
231 DMINFO("cleaned up");
234 static int (*_inits[])(void) __initdata = {
245 static void (*_exits[])(void) = {
256 static int __init dm_init(void)
258 const int count = ARRAY_SIZE(_inits);
262 for (i = 0; i < count; i++) {
277 static void __exit dm_exit(void)
279 int i = ARRAY_SIZE(_exits);
285 * Should be empty by this point.
287 idr_destroy(&_minor_idr);
291 * Block device functions
293 int dm_deleting_md(struct mapped_device *md)
295 return test_bit(DMF_DELETING, &md->flags);
298 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
300 struct mapped_device *md;
302 spin_lock(&_minor_lock);
304 md = bdev->bd_disk->private_data;
308 if (test_bit(DMF_FREEING, &md->flags) ||
309 dm_deleting_md(md)) {
315 atomic_inc(&md->open_count);
317 spin_unlock(&_minor_lock);
319 return md ? 0 : -ENXIO;
322 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
324 struct mapped_device *md;
326 spin_lock(&_minor_lock);
328 md = disk->private_data;
332 if (atomic_dec_and_test(&md->open_count) &&
333 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
334 queue_work(deferred_remove_workqueue, &deferred_remove_work);
338 spin_unlock(&_minor_lock);
341 int dm_open_count(struct mapped_device *md)
343 return atomic_read(&md->open_count);
347 * Guarantees nothing is using the device before it's deleted.
349 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
353 spin_lock(&_minor_lock);
355 if (dm_open_count(md)) {
358 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
359 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
362 set_bit(DMF_DELETING, &md->flags);
364 spin_unlock(&_minor_lock);
369 int dm_cancel_deferred_remove(struct mapped_device *md)
373 spin_lock(&_minor_lock);
375 if (test_bit(DMF_DELETING, &md->flags))
378 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 spin_unlock(&_minor_lock);
385 static void do_deferred_remove(struct work_struct *w)
387 dm_deferred_remove();
390 sector_t dm_get_size(struct mapped_device *md)
392 return get_capacity(md->disk);
395 struct request_queue *dm_get_md_queue(struct mapped_device *md)
400 struct dm_stats *dm_get_stats(struct mapped_device *md)
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 struct mapped_device *md = bdev->bd_disk->private_data;
409 return dm_get_geometry(md, geo);
412 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
413 struct block_device **bdev,
416 struct dm_target *tgt;
417 struct dm_table *map;
422 map = dm_get_live_table(md, &srcu_idx);
423 if (!map || !dm_table_get_size(map))
426 /* We only support devices that have a single target */
427 if (dm_table_get_num_targets(map) != 1)
430 tgt = dm_table_get_target(map, 0);
431 if (!tgt->type->prepare_ioctl)
434 if (dm_suspended_md(md)) {
439 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
444 dm_put_live_table(md, srcu_idx);
448 dm_put_live_table(md, srcu_idx);
449 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
456 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
457 unsigned int cmd, unsigned long arg)
459 struct mapped_device *md = bdev->bd_disk->private_data;
462 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
468 * Target determined this ioctl is being issued against a
469 * subset of the parent bdev; require extra privileges.
471 if (!capable(CAP_SYS_RAWIO)) {
473 "%s: sending ioctl %x to DM device without required privilege.",
480 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
486 static struct dm_io *alloc_io(struct mapped_device *md)
488 return mempool_alloc(md->io_pool, GFP_NOIO);
491 static void free_io(struct mapped_device *md, struct dm_io *io)
493 mempool_free(io, md->io_pool);
496 static void free_tio(struct dm_target_io *tio)
498 bio_put(&tio->clone);
501 int md_in_flight(struct mapped_device *md)
503 return atomic_read(&md->pending[READ]) +
504 atomic_read(&md->pending[WRITE]);
507 static void start_io_acct(struct dm_io *io)
509 struct mapped_device *md = io->md;
510 struct bio *bio = io->bio;
512 int rw = bio_data_dir(bio);
514 io->start_time = jiffies;
516 cpu = part_stat_lock();
517 part_round_stats(cpu, &dm_disk(md)->part0);
519 atomic_set(&dm_disk(md)->part0.in_flight[rw],
520 atomic_inc_return(&md->pending[rw]));
522 if (unlikely(dm_stats_used(&md->stats)))
523 dm_stats_account_io(&md->stats, bio_data_dir(bio),
524 bio->bi_iter.bi_sector, bio_sectors(bio),
525 false, 0, &io->stats_aux);
528 static void end_io_acct(struct dm_io *io)
530 struct mapped_device *md = io->md;
531 struct bio *bio = io->bio;
532 unsigned long duration = jiffies - io->start_time;
534 int rw = bio_data_dir(bio);
536 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
538 if (unlikely(dm_stats_used(&md->stats)))
539 dm_stats_account_io(&md->stats, bio_data_dir(bio),
540 bio->bi_iter.bi_sector, bio_sectors(bio),
541 true, duration, &io->stats_aux);
544 * After this is decremented the bio must not be touched if it is
547 pending = atomic_dec_return(&md->pending[rw]);
548 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
549 pending += atomic_read(&md->pending[rw^0x1]);
551 /* nudge anyone waiting on suspend queue */
557 * Add the bio to the list of deferred io.
559 static void queue_io(struct mapped_device *md, struct bio *bio)
563 spin_lock_irqsave(&md->deferred_lock, flags);
564 bio_list_add(&md->deferred, bio);
565 spin_unlock_irqrestore(&md->deferred_lock, flags);
566 queue_work(md->wq, &md->work);
570 * Everyone (including functions in this file), should use this
571 * function to access the md->map field, and make sure they call
572 * dm_put_live_table() when finished.
574 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
576 *srcu_idx = srcu_read_lock(&md->io_barrier);
578 return srcu_dereference(md->map, &md->io_barrier);
581 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
583 srcu_read_unlock(&md->io_barrier, srcu_idx);
586 void dm_sync_table(struct mapped_device *md)
588 synchronize_srcu(&md->io_barrier);
589 synchronize_rcu_expedited();
593 * A fast alternative to dm_get_live_table/dm_put_live_table.
594 * The caller must not block between these two functions.
596 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
599 return rcu_dereference(md->map);
602 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
608 * Open a table device so we can use it as a map destination.
610 static int open_table_device(struct table_device *td, dev_t dev,
611 struct mapped_device *md)
613 static char *_claim_ptr = "I belong to device-mapper";
614 struct block_device *bdev;
618 BUG_ON(td->dm_dev.bdev);
620 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
622 return PTR_ERR(bdev);
624 r = bd_link_disk_holder(bdev, dm_disk(md));
626 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
630 td->dm_dev.bdev = bdev;
635 * Close a table device that we've been using.
637 static void close_table_device(struct table_device *td, struct mapped_device *md)
639 if (!td->dm_dev.bdev)
642 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
643 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
644 td->dm_dev.bdev = NULL;
647 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
649 struct table_device *td;
651 list_for_each_entry(td, l, list)
652 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
658 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
659 struct dm_dev **result) {
661 struct table_device *td;
663 mutex_lock(&md->table_devices_lock);
664 td = find_table_device(&md->table_devices, dev, mode);
666 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
668 mutex_unlock(&md->table_devices_lock);
672 td->dm_dev.mode = mode;
673 td->dm_dev.bdev = NULL;
675 if ((r = open_table_device(td, dev, md))) {
676 mutex_unlock(&md->table_devices_lock);
681 format_dev_t(td->dm_dev.name, dev);
683 atomic_set(&td->count, 0);
684 list_add(&td->list, &md->table_devices);
686 atomic_inc(&td->count);
687 mutex_unlock(&md->table_devices_lock);
689 *result = &td->dm_dev;
692 EXPORT_SYMBOL_GPL(dm_get_table_device);
694 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
696 struct table_device *td = container_of(d, struct table_device, dm_dev);
698 mutex_lock(&md->table_devices_lock);
699 if (atomic_dec_and_test(&td->count)) {
700 close_table_device(td, md);
704 mutex_unlock(&md->table_devices_lock);
706 EXPORT_SYMBOL(dm_put_table_device);
708 static void free_table_devices(struct list_head *devices)
710 struct list_head *tmp, *next;
712 list_for_each_safe(tmp, next, devices) {
713 struct table_device *td = list_entry(tmp, struct table_device, list);
715 DMWARN("dm_destroy: %s still exists with %d references",
716 td->dm_dev.name, atomic_read(&td->count));
722 * Get the geometry associated with a dm device
724 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
732 * Set the geometry of a device.
734 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
736 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
738 if (geo->start > sz) {
739 DMWARN("Start sector is beyond the geometry limits.");
748 /*-----------------------------------------------------------------
750 * A more elegant soln is in the works that uses the queue
751 * merge fn, unfortunately there are a couple of changes to
752 * the block layer that I want to make for this. So in the
753 * interests of getting something for people to use I give
754 * you this clearly demarcated crap.
755 *---------------------------------------------------------------*/
757 static int __noflush_suspending(struct mapped_device *md)
759 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
763 * Decrements the number of outstanding ios that a bio has been
764 * cloned into, completing the original io if necc.
766 static void dec_pending(struct dm_io *io, int error)
771 struct mapped_device *md = io->md;
773 /* Push-back supersedes any I/O errors */
774 if (unlikely(error)) {
775 spin_lock_irqsave(&io->endio_lock, flags);
776 if (!(io->error > 0 && __noflush_suspending(md)))
778 spin_unlock_irqrestore(&io->endio_lock, flags);
781 if (atomic_dec_and_test(&io->io_count)) {
782 if (io->error == DM_ENDIO_REQUEUE) {
784 * Target requested pushing back the I/O.
786 spin_lock_irqsave(&md->deferred_lock, flags);
787 if (__noflush_suspending(md))
788 bio_list_add_head(&md->deferred, io->bio);
790 /* noflush suspend was interrupted. */
792 spin_unlock_irqrestore(&md->deferred_lock, flags);
795 io_error = io->error;
800 if (io_error == DM_ENDIO_REQUEUE)
803 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
805 * Preflush done for flush with data, reissue
806 * without REQ_PREFLUSH.
808 bio->bi_opf &= ~REQ_PREFLUSH;
811 /* done with normal IO or empty flush */
812 trace_block_bio_complete(md->queue, bio, io_error);
813 bio->bi_error = io_error;
819 void disable_write_same(struct mapped_device *md)
821 struct queue_limits *limits = dm_get_queue_limits(md);
823 /* device doesn't really support WRITE SAME, disable it */
824 limits->max_write_same_sectors = 0;
827 static void clone_endio(struct bio *bio)
829 int error = bio->bi_error;
831 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
832 struct dm_io *io = tio->io;
833 struct mapped_device *md = tio->io->md;
834 dm_endio_fn endio = tio->ti->type->end_io;
837 r = endio(tio->ti, bio, error);
838 if (r < 0 || r == DM_ENDIO_REQUEUE)
840 * error and requeue request are handled
844 else if (r == DM_ENDIO_INCOMPLETE)
845 /* The target will handle the io */
848 DMWARN("unimplemented target endio return value: %d", r);
853 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
854 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
855 disable_write_same(md);
858 dec_pending(io, error);
862 * Return maximum size of I/O possible at the supplied sector up to the current
865 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
867 sector_t target_offset = dm_target_offset(ti, sector);
869 return ti->len - target_offset;
872 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
874 sector_t len = max_io_len_target_boundary(sector, ti);
875 sector_t offset, max_len;
878 * Does the target need to split even further?
880 if (ti->max_io_len) {
881 offset = dm_target_offset(ti, sector);
882 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
883 max_len = sector_div(offset, ti->max_io_len);
885 max_len = offset & (ti->max_io_len - 1);
886 max_len = ti->max_io_len - max_len;
895 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
897 if (len > UINT_MAX) {
898 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
899 (unsigned long long)len, UINT_MAX);
900 ti->error = "Maximum size of target IO is too large";
904 ti->max_io_len = (uint32_t) len;
908 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
910 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
911 void **kaddr, pfn_t *pfn, long size)
913 struct mapped_device *md = bdev->bd_disk->private_data;
914 struct dm_table *map;
915 struct dm_target *ti;
917 long len, ret = -EIO;
919 map = dm_get_live_table(md, &srcu_idx);
923 ti = dm_table_find_target(map, sector);
924 if (!dm_target_is_valid(ti))
927 len = max_io_len(sector, ti) << SECTOR_SHIFT;
928 size = min(len, size);
930 if (ti->type->direct_access)
931 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
933 dm_put_live_table(md, srcu_idx);
934 return min(ret, size);
938 * A target may call dm_accept_partial_bio only from the map routine. It is
939 * allowed for all bio types except REQ_PREFLUSH.
941 * dm_accept_partial_bio informs the dm that the target only wants to process
942 * additional n_sectors sectors of the bio and the rest of the data should be
943 * sent in a next bio.
945 * A diagram that explains the arithmetics:
946 * +--------------------+---------------+-------+
948 * +--------------------+---------------+-------+
950 * <-------------- *tio->len_ptr --------------->
951 * <------- bi_size ------->
954 * Region 1 was already iterated over with bio_advance or similar function.
955 * (it may be empty if the target doesn't use bio_advance)
956 * Region 2 is the remaining bio size that the target wants to process.
957 * (it may be empty if region 1 is non-empty, although there is no reason
959 * The target requires that region 3 is to be sent in the next bio.
961 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
962 * the partially processed part (the sum of regions 1+2) must be the same for all
965 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
967 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
968 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
969 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
970 BUG_ON(bi_size > *tio->len_ptr);
971 BUG_ON(n_sectors > bi_size);
972 *tio->len_ptr -= bi_size - n_sectors;
973 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
975 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
978 * Flush current->bio_list when the target map method blocks.
979 * This fixes deadlocks in snapshot and possibly in other targets.
982 struct blk_plug plug;
983 struct blk_plug_cb cb;
986 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
988 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
989 struct bio_list list;
992 INIT_LIST_HEAD(&o->cb.list);
994 if (unlikely(!current->bio_list))
997 list = *current->bio_list;
998 bio_list_init(current->bio_list);
1000 while ((bio = bio_list_pop(&list))) {
1001 struct bio_set *bs = bio->bi_pool;
1002 if (unlikely(!bs) || bs == fs_bio_set) {
1003 bio_list_add(current->bio_list, bio);
1007 spin_lock(&bs->rescue_lock);
1008 bio_list_add(&bs->rescue_list, bio);
1009 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1010 spin_unlock(&bs->rescue_lock);
1014 static void dm_offload_start(struct dm_offload *o)
1016 blk_start_plug(&o->plug);
1017 o->cb.callback = flush_current_bio_list;
1018 list_add(&o->cb.list, ¤t->plug->cb_list);
1021 static void dm_offload_end(struct dm_offload *o)
1023 list_del(&o->cb.list);
1024 blk_finish_plug(&o->plug);
1027 static void __map_bio(struct dm_target_io *tio)
1031 struct dm_offload o;
1032 struct bio *clone = &tio->clone;
1033 struct dm_target *ti = tio->ti;
1035 clone->bi_end_io = clone_endio;
1038 * Map the clone. If r == 0 we don't need to do
1039 * anything, the target has assumed ownership of
1042 atomic_inc(&tio->io->io_count);
1043 sector = clone->bi_iter.bi_sector;
1045 dm_offload_start(&o);
1046 r = ti->type->map(ti, clone);
1049 if (r == DM_MAPIO_REMAPPED) {
1050 /* the bio has been remapped so dispatch it */
1052 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1053 tio->io->bio->bi_bdev->bd_dev, sector);
1055 generic_make_request(clone);
1056 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1057 /* error the io and bail out, or requeue it if needed */
1058 dec_pending(tio->io, r);
1060 } else if (r != DM_MAPIO_SUBMITTED) {
1061 DMWARN("unimplemented target map return value: %d", r);
1067 struct mapped_device *md;
1068 struct dm_table *map;
1072 unsigned sector_count;
1075 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1077 bio->bi_iter.bi_sector = sector;
1078 bio->bi_iter.bi_size = to_bytes(len);
1082 * Creates a bio that consists of range of complete bvecs.
1084 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1085 sector_t sector, unsigned len)
1087 struct bio *clone = &tio->clone;
1089 __bio_clone_fast(clone, bio);
1091 if (bio_integrity(bio)) {
1092 int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1097 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1098 clone->bi_iter.bi_size = to_bytes(len);
1100 if (bio_integrity(bio))
1101 bio_integrity_trim(clone, 0, len);
1106 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1107 struct dm_target *ti,
1108 unsigned target_bio_nr)
1110 struct dm_target_io *tio;
1113 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1114 tio = container_of(clone, struct dm_target_io, clone);
1118 tio->target_bio_nr = target_bio_nr;
1123 static void __clone_and_map_simple_bio(struct clone_info *ci,
1124 struct dm_target *ti,
1125 unsigned target_bio_nr, unsigned *len)
1127 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1128 struct bio *clone = &tio->clone;
1132 __bio_clone_fast(clone, ci->bio);
1134 bio_setup_sector(clone, ci->sector, *len);
1139 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1140 unsigned num_bios, unsigned *len)
1142 unsigned target_bio_nr;
1144 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1145 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1148 static int __send_empty_flush(struct clone_info *ci)
1150 unsigned target_nr = 0;
1151 struct dm_target *ti;
1153 BUG_ON(bio_has_data(ci->bio));
1154 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1155 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1160 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1161 sector_t sector, unsigned *len)
1163 struct bio *bio = ci->bio;
1164 struct dm_target_io *tio;
1165 unsigned target_bio_nr;
1166 unsigned num_target_bios = 1;
1170 * Does the target want to receive duplicate copies of the bio?
1172 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1173 num_target_bios = ti->num_write_bios(ti, bio);
1175 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1176 tio = alloc_tio(ci, ti, target_bio_nr);
1178 r = clone_bio(tio, bio, sector, *len);
1189 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1191 static unsigned get_num_discard_bios(struct dm_target *ti)
1193 return ti->num_discard_bios;
1196 static unsigned get_num_write_same_bios(struct dm_target *ti)
1198 return ti->num_write_same_bios;
1201 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1203 static bool is_split_required_for_discard(struct dm_target *ti)
1205 return ti->split_discard_bios;
1208 static int __send_changing_extent_only(struct clone_info *ci,
1209 get_num_bios_fn get_num_bios,
1210 is_split_required_fn is_split_required)
1212 struct dm_target *ti;
1217 ti = dm_table_find_target(ci->map, ci->sector);
1218 if (!dm_target_is_valid(ti))
1222 * Even though the device advertised support for this type of
1223 * request, that does not mean every target supports it, and
1224 * reconfiguration might also have changed that since the
1225 * check was performed.
1227 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1231 if (is_split_required && !is_split_required(ti))
1232 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1234 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1236 __send_duplicate_bios(ci, ti, num_bios, &len);
1239 } while (ci->sector_count -= len);
1244 static int __send_discard(struct clone_info *ci)
1246 return __send_changing_extent_only(ci, get_num_discard_bios,
1247 is_split_required_for_discard);
1250 static int __send_write_same(struct clone_info *ci)
1252 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1256 * Select the correct strategy for processing a non-flush bio.
1258 static int __split_and_process_non_flush(struct clone_info *ci)
1260 struct bio *bio = ci->bio;
1261 struct dm_target *ti;
1265 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1266 return __send_discard(ci);
1267 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1268 return __send_write_same(ci);
1270 ti = dm_table_find_target(ci->map, ci->sector);
1271 if (!dm_target_is_valid(ti))
1274 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1276 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1281 ci->sector_count -= len;
1287 * Entry point to split a bio into clones and submit them to the targets.
1289 static void __split_and_process_bio(struct mapped_device *md,
1290 struct dm_table *map, struct bio *bio)
1292 struct clone_info ci;
1295 if (unlikely(!map)) {
1302 ci.io = alloc_io(md);
1304 atomic_set(&ci.io->io_count, 1);
1307 spin_lock_init(&ci.io->endio_lock);
1308 ci.sector = bio->bi_iter.bi_sector;
1310 start_io_acct(ci.io);
1312 if (bio->bi_opf & REQ_PREFLUSH) {
1313 ci.bio = &ci.md->flush_bio;
1314 ci.sector_count = 0;
1315 error = __send_empty_flush(&ci);
1316 /* dec_pending submits any data associated with flush */
1319 ci.sector_count = bio_sectors(bio);
1320 while (ci.sector_count && !error)
1321 error = __split_and_process_non_flush(&ci);
1324 /* drop the extra reference count */
1325 dec_pending(ci.io, error);
1327 /*-----------------------------------------------------------------
1329 *---------------------------------------------------------------*/
1332 * The request function that just remaps the bio built up by
1335 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1337 int rw = bio_data_dir(bio);
1338 struct mapped_device *md = q->queuedata;
1340 struct dm_table *map;
1342 map = dm_get_live_table(md, &srcu_idx);
1344 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1346 /* if we're suspended, we have to queue this io for later */
1347 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1348 dm_put_live_table(md, srcu_idx);
1350 if (!(bio->bi_opf & REQ_RAHEAD))
1354 return BLK_QC_T_NONE;
1357 __split_and_process_bio(md, map, bio);
1358 dm_put_live_table(md, srcu_idx);
1359 return BLK_QC_T_NONE;
1362 static int dm_any_congested(void *congested_data, int bdi_bits)
1365 struct mapped_device *md = congested_data;
1366 struct dm_table *map;
1368 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1369 if (dm_request_based(md)) {
1371 * With request-based DM we only need to check the
1372 * top-level queue for congestion.
1374 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1376 map = dm_get_live_table_fast(md);
1378 r = dm_table_any_congested(map, bdi_bits);
1379 dm_put_live_table_fast(md);
1386 /*-----------------------------------------------------------------
1387 * An IDR is used to keep track of allocated minor numbers.
1388 *---------------------------------------------------------------*/
1389 static void free_minor(int minor)
1391 spin_lock(&_minor_lock);
1392 idr_remove(&_minor_idr, minor);
1393 spin_unlock(&_minor_lock);
1397 * See if the device with a specific minor # is free.
1399 static int specific_minor(int minor)
1403 if (minor >= (1 << MINORBITS))
1406 idr_preload(GFP_KERNEL);
1407 spin_lock(&_minor_lock);
1409 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1411 spin_unlock(&_minor_lock);
1414 return r == -ENOSPC ? -EBUSY : r;
1418 static int next_free_minor(int *minor)
1422 idr_preload(GFP_KERNEL);
1423 spin_lock(&_minor_lock);
1425 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1427 spin_unlock(&_minor_lock);
1435 static const struct block_device_operations dm_blk_dops;
1437 static void dm_wq_work(struct work_struct *work);
1439 void dm_init_md_queue(struct mapped_device *md)
1442 * Request-based dm devices cannot be stacked on top of bio-based dm
1443 * devices. The type of this dm device may not have been decided yet.
1444 * The type is decided at the first table loading time.
1445 * To prevent problematic device stacking, clear the queue flag
1446 * for request stacking support until then.
1448 * This queue is new, so no concurrency on the queue_flags.
1450 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1453 * Initialize data that will only be used by a non-blk-mq DM queue
1454 * - must do so here (in alloc_dev callchain) before queue is used
1456 md->queue->queuedata = md;
1457 md->queue->backing_dev_info->congested_data = md;
1460 void dm_init_normal_md_queue(struct mapped_device *md)
1462 md->use_blk_mq = false;
1463 dm_init_md_queue(md);
1466 * Initialize aspects of queue that aren't relevant for blk-mq
1468 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1469 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1472 static void cleanup_mapped_device(struct mapped_device *md)
1475 destroy_workqueue(md->wq);
1476 if (md->kworker_task)
1477 kthread_stop(md->kworker_task);
1478 mempool_destroy(md->io_pool);
1480 bioset_free(md->bs);
1483 spin_lock(&_minor_lock);
1484 md->disk->private_data = NULL;
1485 spin_unlock(&_minor_lock);
1486 del_gendisk(md->disk);
1491 blk_cleanup_queue(md->queue);
1493 cleanup_srcu_struct(&md->io_barrier);
1500 dm_mq_cleanup_mapped_device(md);
1504 * Allocate and initialise a blank device with a given minor.
1506 static struct mapped_device *alloc_dev(int minor)
1508 int r, numa_node_id = dm_get_numa_node();
1509 struct mapped_device *md;
1512 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1514 DMWARN("unable to allocate device, out of memory.");
1518 if (!try_module_get(THIS_MODULE))
1519 goto bad_module_get;
1521 /* get a minor number for the dev */
1522 if (minor == DM_ANY_MINOR)
1523 r = next_free_minor(&minor);
1525 r = specific_minor(minor);
1529 r = init_srcu_struct(&md->io_barrier);
1531 goto bad_io_barrier;
1533 md->numa_node_id = numa_node_id;
1534 md->use_blk_mq = dm_use_blk_mq_default();
1535 md->init_tio_pdu = false;
1536 md->type = DM_TYPE_NONE;
1537 mutex_init(&md->suspend_lock);
1538 mutex_init(&md->type_lock);
1539 mutex_init(&md->table_devices_lock);
1540 spin_lock_init(&md->deferred_lock);
1541 atomic_set(&md->holders, 1);
1542 atomic_set(&md->open_count, 0);
1543 atomic_set(&md->event_nr, 0);
1544 atomic_set(&md->uevent_seq, 0);
1545 INIT_LIST_HEAD(&md->uevent_list);
1546 INIT_LIST_HEAD(&md->table_devices);
1547 spin_lock_init(&md->uevent_lock);
1549 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1553 dm_init_md_queue(md);
1555 md->disk = alloc_disk_node(1, numa_node_id);
1559 atomic_set(&md->pending[0], 0);
1560 atomic_set(&md->pending[1], 0);
1561 init_waitqueue_head(&md->wait);
1562 INIT_WORK(&md->work, dm_wq_work);
1563 init_waitqueue_head(&md->eventq);
1564 init_completion(&md->kobj_holder.completion);
1565 md->kworker_task = NULL;
1567 md->disk->major = _major;
1568 md->disk->first_minor = minor;
1569 md->disk->fops = &dm_blk_dops;
1570 md->disk->queue = md->queue;
1571 md->disk->private_data = md;
1572 sprintf(md->disk->disk_name, "dm-%d", minor);
1574 format_dev_t(md->name, MKDEV(_major, minor));
1576 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1580 md->bdev = bdget_disk(md->disk, 0);
1584 bio_init(&md->flush_bio, NULL, 0);
1585 md->flush_bio.bi_bdev = md->bdev;
1586 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1588 dm_stats_init(&md->stats);
1590 /* Populate the mapping, nobody knows we exist yet */
1591 spin_lock(&_minor_lock);
1592 old_md = idr_replace(&_minor_idr, md, minor);
1593 spin_unlock(&_minor_lock);
1595 BUG_ON(old_md != MINOR_ALLOCED);
1600 cleanup_mapped_device(md);
1604 module_put(THIS_MODULE);
1610 static void unlock_fs(struct mapped_device *md);
1612 static void free_dev(struct mapped_device *md)
1614 int minor = MINOR(disk_devt(md->disk));
1618 cleanup_mapped_device(md);
1620 free_table_devices(&md->table_devices);
1621 dm_stats_cleanup(&md->stats);
1624 module_put(THIS_MODULE);
1628 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1630 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1633 /* The md already has necessary mempools. */
1634 if (dm_table_bio_based(t)) {
1636 * Reload bioset because front_pad may have changed
1637 * because a different table was loaded.
1639 bioset_free(md->bs);
1644 * There's no need to reload with request-based dm
1645 * because the size of front_pad doesn't change.
1646 * Note for future: If you are to reload bioset,
1647 * prep-ed requests in the queue may refer
1648 * to bio from the old bioset, so you must walk
1649 * through the queue to unprep.
1654 BUG_ON(!p || md->io_pool || md->bs);
1656 md->io_pool = p->io_pool;
1662 /* mempool bind completed, no longer need any mempools in the table */
1663 dm_table_free_md_mempools(t);
1667 * Bind a table to the device.
1669 static void event_callback(void *context)
1671 unsigned long flags;
1673 struct mapped_device *md = (struct mapped_device *) context;
1675 spin_lock_irqsave(&md->uevent_lock, flags);
1676 list_splice_init(&md->uevent_list, &uevents);
1677 spin_unlock_irqrestore(&md->uevent_lock, flags);
1679 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1681 atomic_inc(&md->event_nr);
1682 wake_up(&md->eventq);
1686 * Protected by md->suspend_lock obtained by dm_swap_table().
1688 static void __set_size(struct mapped_device *md, sector_t size)
1690 set_capacity(md->disk, size);
1692 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1696 * Returns old map, which caller must destroy.
1698 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1699 struct queue_limits *limits)
1701 struct dm_table *old_map;
1702 struct request_queue *q = md->queue;
1705 lockdep_assert_held(&md->suspend_lock);
1707 size = dm_table_get_size(t);
1710 * Wipe any geometry if the size of the table changed.
1712 if (size != dm_get_size(md))
1713 memset(&md->geometry, 0, sizeof(md->geometry));
1715 __set_size(md, size);
1717 dm_table_event_callback(t, event_callback, md);
1720 * The queue hasn't been stopped yet, if the old table type wasn't
1721 * for request-based during suspension. So stop it to prevent
1722 * I/O mapping before resume.
1723 * This must be done before setting the queue restrictions,
1724 * because request-based dm may be run just after the setting.
1726 if (dm_table_request_based(t)) {
1729 * Leverage the fact that request-based DM targets are
1730 * immutable singletons and establish md->immutable_target
1731 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1733 md->immutable_target = dm_table_get_immutable_target(t);
1736 __bind_mempools(md, t);
1738 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1739 rcu_assign_pointer(md->map, (void *)t);
1740 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1742 dm_table_set_restrictions(t, q, limits);
1750 * Returns unbound table for the caller to free.
1752 static struct dm_table *__unbind(struct mapped_device *md)
1754 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1759 dm_table_event_callback(map, NULL, NULL);
1760 RCU_INIT_POINTER(md->map, NULL);
1767 * Constructor for a new device.
1769 int dm_create(int minor, struct mapped_device **result)
1771 struct mapped_device *md;
1773 md = alloc_dev(minor);
1784 * Functions to manage md->type.
1785 * All are required to hold md->type_lock.
1787 void dm_lock_md_type(struct mapped_device *md)
1789 mutex_lock(&md->type_lock);
1792 void dm_unlock_md_type(struct mapped_device *md)
1794 mutex_unlock(&md->type_lock);
1797 void dm_set_md_type(struct mapped_device *md, unsigned type)
1799 BUG_ON(!mutex_is_locked(&md->type_lock));
1803 unsigned dm_get_md_type(struct mapped_device *md)
1808 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1810 return md->immutable_target_type;
1814 * The queue_limits are only valid as long as you have a reference
1817 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1819 BUG_ON(!atomic_read(&md->holders));
1820 return &md->queue->limits;
1822 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1825 * Setup the DM device's queue based on md's type
1827 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1830 unsigned type = dm_get_md_type(md);
1833 case DM_TYPE_REQUEST_BASED:
1834 r = dm_old_init_request_queue(md, t);
1836 DMERR("Cannot initialize queue for request-based mapped device");
1840 case DM_TYPE_MQ_REQUEST_BASED:
1841 r = dm_mq_init_request_queue(md, t);
1843 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1847 case DM_TYPE_BIO_BASED:
1848 case DM_TYPE_DAX_BIO_BASED:
1849 dm_init_normal_md_queue(md);
1850 blk_queue_make_request(md->queue, dm_make_request);
1852 * DM handles splitting bios as needed. Free the bio_split bioset
1853 * since it won't be used (saves 1 process per bio-based DM device).
1855 bioset_free(md->queue->bio_split);
1856 md->queue->bio_split = NULL;
1858 if (type == DM_TYPE_DAX_BIO_BASED)
1859 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1866 struct mapped_device *dm_get_md(dev_t dev)
1868 struct mapped_device *md;
1869 unsigned minor = MINOR(dev);
1871 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1874 spin_lock(&_minor_lock);
1876 md = idr_find(&_minor_idr, minor);
1878 if ((md == MINOR_ALLOCED ||
1879 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1880 dm_deleting_md(md) ||
1881 test_bit(DMF_FREEING, &md->flags))) {
1889 spin_unlock(&_minor_lock);
1893 EXPORT_SYMBOL_GPL(dm_get_md);
1895 void *dm_get_mdptr(struct mapped_device *md)
1897 return md->interface_ptr;
1900 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1902 md->interface_ptr = ptr;
1905 void dm_get(struct mapped_device *md)
1907 atomic_inc(&md->holders);
1908 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1911 int dm_hold(struct mapped_device *md)
1913 spin_lock(&_minor_lock);
1914 if (test_bit(DMF_FREEING, &md->flags)) {
1915 spin_unlock(&_minor_lock);
1919 spin_unlock(&_minor_lock);
1922 EXPORT_SYMBOL_GPL(dm_hold);
1924 const char *dm_device_name(struct mapped_device *md)
1928 EXPORT_SYMBOL_GPL(dm_device_name);
1930 static void __dm_destroy(struct mapped_device *md, bool wait)
1932 struct request_queue *q = dm_get_md_queue(md);
1933 struct dm_table *map;
1938 spin_lock(&_minor_lock);
1939 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1940 set_bit(DMF_FREEING, &md->flags);
1941 spin_unlock(&_minor_lock);
1943 blk_set_queue_dying(q);
1945 if (dm_request_based(md) && md->kworker_task)
1946 kthread_flush_worker(&md->kworker);
1949 * Take suspend_lock so that presuspend and postsuspend methods
1950 * do not race with internal suspend.
1952 mutex_lock(&md->suspend_lock);
1953 map = dm_get_live_table(md, &srcu_idx);
1954 if (!dm_suspended_md(md)) {
1955 dm_table_presuspend_targets(map);
1956 dm_table_postsuspend_targets(map);
1958 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1959 dm_put_live_table(md, srcu_idx);
1960 mutex_unlock(&md->suspend_lock);
1963 * Rare, but there may be I/O requests still going to complete,
1964 * for example. Wait for all references to disappear.
1965 * No one should increment the reference count of the mapped_device,
1966 * after the mapped_device state becomes DMF_FREEING.
1969 while (atomic_read(&md->holders))
1971 else if (atomic_read(&md->holders))
1972 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1973 dm_device_name(md), atomic_read(&md->holders));
1976 dm_table_destroy(__unbind(md));
1980 void dm_destroy(struct mapped_device *md)
1982 __dm_destroy(md, true);
1985 void dm_destroy_immediate(struct mapped_device *md)
1987 __dm_destroy(md, false);
1990 void dm_put(struct mapped_device *md)
1992 atomic_dec(&md->holders);
1994 EXPORT_SYMBOL_GPL(dm_put);
1996 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2002 prepare_to_wait(&md->wait, &wait, task_state);
2004 if (!md_in_flight(md))
2007 if (signal_pending_state(task_state, current)) {
2014 finish_wait(&md->wait, &wait);
2020 * Process the deferred bios
2022 static void dm_wq_work(struct work_struct *work)
2024 struct mapped_device *md = container_of(work, struct mapped_device,
2028 struct dm_table *map;
2030 map = dm_get_live_table(md, &srcu_idx);
2032 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2033 spin_lock_irq(&md->deferred_lock);
2034 c = bio_list_pop(&md->deferred);
2035 spin_unlock_irq(&md->deferred_lock);
2040 if (dm_request_based(md))
2041 generic_make_request(c);
2043 __split_and_process_bio(md, map, c);
2046 dm_put_live_table(md, srcu_idx);
2049 static void dm_queue_flush(struct mapped_device *md)
2051 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2052 smp_mb__after_atomic();
2053 queue_work(md->wq, &md->work);
2057 * Swap in a new table, returning the old one for the caller to destroy.
2059 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2061 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2062 struct queue_limits limits;
2065 mutex_lock(&md->suspend_lock);
2067 /* device must be suspended */
2068 if (!dm_suspended_md(md))
2072 * If the new table has no data devices, retain the existing limits.
2073 * This helps multipath with queue_if_no_path if all paths disappear,
2074 * then new I/O is queued based on these limits, and then some paths
2077 if (dm_table_has_no_data_devices(table)) {
2078 live_map = dm_get_live_table_fast(md);
2080 limits = md->queue->limits;
2081 dm_put_live_table_fast(md);
2085 r = dm_calculate_queue_limits(table, &limits);
2092 map = __bind(md, table, &limits);
2095 mutex_unlock(&md->suspend_lock);
2100 * Functions to lock and unlock any filesystem running on the
2103 static int lock_fs(struct mapped_device *md)
2107 WARN_ON(md->frozen_sb);
2109 md->frozen_sb = freeze_bdev(md->bdev);
2110 if (IS_ERR(md->frozen_sb)) {
2111 r = PTR_ERR(md->frozen_sb);
2112 md->frozen_sb = NULL;
2116 set_bit(DMF_FROZEN, &md->flags);
2121 static void unlock_fs(struct mapped_device *md)
2123 if (!test_bit(DMF_FROZEN, &md->flags))
2126 thaw_bdev(md->bdev, md->frozen_sb);
2127 md->frozen_sb = NULL;
2128 clear_bit(DMF_FROZEN, &md->flags);
2132 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2133 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2134 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2136 * If __dm_suspend returns 0, the device is completely quiescent
2137 * now. There is no request-processing activity. All new requests
2138 * are being added to md->deferred list.
2140 * Caller must hold md->suspend_lock
2142 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2143 unsigned suspend_flags, long task_state,
2144 int dmf_suspended_flag)
2146 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2147 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2150 lockdep_assert_held(&md->suspend_lock);
2153 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2154 * This flag is cleared before dm_suspend returns.
2157 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2160 * This gets reverted if there's an error later and the targets
2161 * provide the .presuspend_undo hook.
2163 dm_table_presuspend_targets(map);
2166 * Flush I/O to the device.
2167 * Any I/O submitted after lock_fs() may not be flushed.
2168 * noflush takes precedence over do_lockfs.
2169 * (lock_fs() flushes I/Os and waits for them to complete.)
2171 if (!noflush && do_lockfs) {
2174 dm_table_presuspend_undo_targets(map);
2180 * Here we must make sure that no processes are submitting requests
2181 * to target drivers i.e. no one may be executing
2182 * __split_and_process_bio. This is called from dm_request and
2185 * To get all processes out of __split_and_process_bio in dm_request,
2186 * we take the write lock. To prevent any process from reentering
2187 * __split_and_process_bio from dm_request and quiesce the thread
2188 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2189 * flush_workqueue(md->wq).
2191 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2193 synchronize_srcu(&md->io_barrier);
2196 * Stop md->queue before flushing md->wq in case request-based
2197 * dm defers requests to md->wq from md->queue.
2199 if (dm_request_based(md)) {
2200 dm_stop_queue(md->queue);
2201 if (md->kworker_task)
2202 kthread_flush_worker(&md->kworker);
2205 flush_workqueue(md->wq);
2208 * At this point no more requests are entering target request routines.
2209 * We call dm_wait_for_completion to wait for all existing requests
2212 r = dm_wait_for_completion(md, task_state);
2214 set_bit(dmf_suspended_flag, &md->flags);
2217 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2219 synchronize_srcu(&md->io_barrier);
2221 /* were we interrupted ? */
2225 if (dm_request_based(md))
2226 dm_start_queue(md->queue);
2229 dm_table_presuspend_undo_targets(map);
2230 /* pushback list is already flushed, so skip flush */
2237 * We need to be able to change a mapping table under a mounted
2238 * filesystem. For example we might want to move some data in
2239 * the background. Before the table can be swapped with
2240 * dm_bind_table, dm_suspend must be called to flush any in
2241 * flight bios and ensure that any further io gets deferred.
2244 * Suspend mechanism in request-based dm.
2246 * 1. Flush all I/Os by lock_fs() if needed.
2247 * 2. Stop dispatching any I/O by stopping the request_queue.
2248 * 3. Wait for all in-flight I/Os to be completed or requeued.
2250 * To abort suspend, start the request_queue.
2252 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2254 struct dm_table *map = NULL;
2258 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2260 if (dm_suspended_md(md)) {
2265 if (dm_suspended_internally_md(md)) {
2266 /* already internally suspended, wait for internal resume */
2267 mutex_unlock(&md->suspend_lock);
2268 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2274 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2276 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2280 dm_table_postsuspend_targets(map);
2283 mutex_unlock(&md->suspend_lock);
2287 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2290 int r = dm_table_resume_targets(map);
2298 * Flushing deferred I/Os must be done after targets are resumed
2299 * so that mapping of targets can work correctly.
2300 * Request-based dm is queueing the deferred I/Os in its request_queue.
2302 if (dm_request_based(md))
2303 dm_start_queue(md->queue);
2310 int dm_resume(struct mapped_device *md)
2313 struct dm_table *map = NULL;
2317 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2319 if (!dm_suspended_md(md))
2322 if (dm_suspended_internally_md(md)) {
2323 /* already internally suspended, wait for internal resume */
2324 mutex_unlock(&md->suspend_lock);
2325 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2331 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2332 if (!map || !dm_table_get_size(map))
2335 r = __dm_resume(md, map);
2339 clear_bit(DMF_SUSPENDED, &md->flags);
2341 mutex_unlock(&md->suspend_lock);
2347 * Internal suspend/resume works like userspace-driven suspend. It waits
2348 * until all bios finish and prevents issuing new bios to the target drivers.
2349 * It may be used only from the kernel.
2352 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2354 struct dm_table *map = NULL;
2356 if (md->internal_suspend_count++)
2357 return; /* nested internal suspend */
2359 if (dm_suspended_md(md)) {
2360 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2361 return; /* nest suspend */
2364 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2367 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2368 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2369 * would require changing .presuspend to return an error -- avoid this
2370 * until there is a need for more elaborate variants of internal suspend.
2372 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2373 DMF_SUSPENDED_INTERNALLY);
2375 dm_table_postsuspend_targets(map);
2378 static void __dm_internal_resume(struct mapped_device *md)
2380 BUG_ON(!md->internal_suspend_count);
2382 if (--md->internal_suspend_count)
2383 return; /* resume from nested internal suspend */
2385 if (dm_suspended_md(md))
2386 goto done; /* resume from nested suspend */
2389 * NOTE: existing callers don't need to call dm_table_resume_targets
2390 * (which may fail -- so best to avoid it for now by passing NULL map)
2392 (void) __dm_resume(md, NULL);
2395 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2396 smp_mb__after_atomic();
2397 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2400 void dm_internal_suspend_noflush(struct mapped_device *md)
2402 mutex_lock(&md->suspend_lock);
2403 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2404 mutex_unlock(&md->suspend_lock);
2406 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2408 void dm_internal_resume(struct mapped_device *md)
2410 mutex_lock(&md->suspend_lock);
2411 __dm_internal_resume(md);
2412 mutex_unlock(&md->suspend_lock);
2414 EXPORT_SYMBOL_GPL(dm_internal_resume);
2417 * Fast variants of internal suspend/resume hold md->suspend_lock,
2418 * which prevents interaction with userspace-driven suspend.
2421 void dm_internal_suspend_fast(struct mapped_device *md)
2423 mutex_lock(&md->suspend_lock);
2424 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2427 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2428 synchronize_srcu(&md->io_barrier);
2429 flush_workqueue(md->wq);
2430 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2432 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2434 void dm_internal_resume_fast(struct mapped_device *md)
2436 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2442 mutex_unlock(&md->suspend_lock);
2444 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2446 /*-----------------------------------------------------------------
2447 * Event notification.
2448 *---------------------------------------------------------------*/
2449 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2452 char udev_cookie[DM_COOKIE_LENGTH];
2453 char *envp[] = { udev_cookie, NULL };
2456 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2458 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2459 DM_COOKIE_ENV_VAR_NAME, cookie);
2460 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2465 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2467 return atomic_add_return(1, &md->uevent_seq);
2470 uint32_t dm_get_event_nr(struct mapped_device *md)
2472 return atomic_read(&md->event_nr);
2475 int dm_wait_event(struct mapped_device *md, int event_nr)
2477 return wait_event_interruptible(md->eventq,
2478 (event_nr != atomic_read(&md->event_nr)));
2481 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2483 unsigned long flags;
2485 spin_lock_irqsave(&md->uevent_lock, flags);
2486 list_add(elist, &md->uevent_list);
2487 spin_unlock_irqrestore(&md->uevent_lock, flags);
2491 * The gendisk is only valid as long as you have a reference
2494 struct gendisk *dm_disk(struct mapped_device *md)
2498 EXPORT_SYMBOL_GPL(dm_disk);
2500 struct kobject *dm_kobject(struct mapped_device *md)
2502 return &md->kobj_holder.kobj;
2505 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2507 struct mapped_device *md;
2509 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2511 if (test_bit(DMF_FREEING, &md->flags) ||
2519 int dm_suspended_md(struct mapped_device *md)
2521 return test_bit(DMF_SUSPENDED, &md->flags);
2524 int dm_suspended_internally_md(struct mapped_device *md)
2526 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2529 int dm_test_deferred_remove_flag(struct mapped_device *md)
2531 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2534 int dm_suspended(struct dm_target *ti)
2536 return dm_suspended_md(dm_table_get_md(ti->table));
2538 EXPORT_SYMBOL_GPL(dm_suspended);
2540 int dm_noflush_suspending(struct dm_target *ti)
2542 return __noflush_suspending(dm_table_get_md(ti->table));
2544 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2546 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2547 unsigned integrity, unsigned per_io_data_size)
2549 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2550 unsigned int pool_size = 0;
2551 unsigned int front_pad;
2557 case DM_TYPE_BIO_BASED:
2558 case DM_TYPE_DAX_BIO_BASED:
2559 pool_size = dm_get_reserved_bio_based_ios();
2560 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2562 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2563 if (!pools->io_pool)
2566 case DM_TYPE_REQUEST_BASED:
2567 case DM_TYPE_MQ_REQUEST_BASED:
2568 pool_size = dm_get_reserved_rq_based_ios();
2569 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2570 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2576 pools->bs = bioset_create_nobvec(pool_size, front_pad);
2580 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2586 dm_free_md_mempools(pools);
2591 void dm_free_md_mempools(struct dm_md_mempools *pools)
2596 mempool_destroy(pools->io_pool);
2599 bioset_free(pools->bs);
2611 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2614 struct mapped_device *md = bdev->bd_disk->private_data;
2615 struct dm_table *table;
2616 struct dm_target *ti;
2617 int ret = -ENOTTY, srcu_idx;
2619 table = dm_get_live_table(md, &srcu_idx);
2620 if (!table || !dm_table_get_size(table))
2623 /* We only support devices that have a single target */
2624 if (dm_table_get_num_targets(table) != 1)
2626 ti = dm_table_get_target(table, 0);
2629 if (!ti->type->iterate_devices)
2632 ret = ti->type->iterate_devices(ti, fn, data);
2634 dm_put_live_table(md, srcu_idx);
2639 * For register / unregister we need to manually call out to every path.
2641 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2642 sector_t start, sector_t len, void *data)
2644 struct dm_pr *pr = data;
2645 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2647 if (!ops || !ops->pr_register)
2649 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2652 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2663 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2664 if (ret && new_key) {
2665 /* unregister all paths if we failed to register any path */
2666 pr.old_key = new_key;
2669 pr.fail_early = false;
2670 dm_call_pr(bdev, __dm_pr_register, &pr);
2676 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2679 struct mapped_device *md = bdev->bd_disk->private_data;
2680 const struct pr_ops *ops;
2684 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2688 ops = bdev->bd_disk->fops->pr_ops;
2689 if (ops && ops->pr_reserve)
2690 r = ops->pr_reserve(bdev, key, type, flags);
2698 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2700 struct mapped_device *md = bdev->bd_disk->private_data;
2701 const struct pr_ops *ops;
2705 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2709 ops = bdev->bd_disk->fops->pr_ops;
2710 if (ops && ops->pr_release)
2711 r = ops->pr_release(bdev, key, type);
2719 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2720 enum pr_type type, bool abort)
2722 struct mapped_device *md = bdev->bd_disk->private_data;
2723 const struct pr_ops *ops;
2727 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2731 ops = bdev->bd_disk->fops->pr_ops;
2732 if (ops && ops->pr_preempt)
2733 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2741 static int dm_pr_clear(struct block_device *bdev, u64 key)
2743 struct mapped_device *md = bdev->bd_disk->private_data;
2744 const struct pr_ops *ops;
2748 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2752 ops = bdev->bd_disk->fops->pr_ops;
2753 if (ops && ops->pr_clear)
2754 r = ops->pr_clear(bdev, key);
2762 static const struct pr_ops dm_pr_ops = {
2763 .pr_register = dm_pr_register,
2764 .pr_reserve = dm_pr_reserve,
2765 .pr_release = dm_pr_release,
2766 .pr_preempt = dm_pr_preempt,
2767 .pr_clear = dm_pr_clear,
2770 static const struct block_device_operations dm_blk_dops = {
2771 .open = dm_blk_open,
2772 .release = dm_blk_close,
2773 .ioctl = dm_blk_ioctl,
2774 .direct_access = dm_blk_direct_access,
2775 .getgeo = dm_blk_getgeo,
2776 .pr_ops = &dm_pr_ops,
2777 .owner = THIS_MODULE
2783 module_init(dm_init);
2784 module_exit(dm_exit);
2786 module_param(major, uint, 0);
2787 MODULE_PARM_DESC(major, "The major number of the device mapper");
2789 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2790 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2792 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2793 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2795 MODULE_DESCRIPTION(DM_NAME " driver");
2797 MODULE_LICENSE("GPL");